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PREFACE

I was never sure about what a thesis should consist of: I worked on so many things during
the four years of my doctorate that I found myself somewhat lost when I had to decide what to
write in the thesis. There are official documents suggesting how the thesis should be written,
but not exactly what should be written – I find the definitions somewhat vague. For example,
the manual of our University states that a “thesis consists of the result of a research which
is presented as the final requirement for the completion of a doctorate”1, which is quite the
same thing said by the International Organization for Standardization (ISO): a “document which
presents the author’s research and findings and submitted by him in support of his candidature
for a degree or professional qualification”2. I tried reading other theses to see if I could get an
inspiration. I also discussed this matter with my patient supervisors Lúcia Anjos (Universidade
Federal Rural do Rio de Janeiro, Brazil), Gustavo Vasques (Embrapa Solos, Brazil), and Gerard
Heuvelink (ISRIC – World Soil Information, the Netherlands). Unfortunately, for one reason or
another, I was never satisfied with the outcome.

At first, I was a bit desperate. Have I failed? Has everyone failed? I hoped not! Perhaps
the lack of an objective, ultimate, universal definition of what a thesis should consist of meant
that, as a doctorate student, it was my responsibility to construct such a definition. This idea
gave me back the long-lost excitement to write my thesis. I did not want to follow a boring
ritual. I wanted to have fun and be completely honest with the reader, as Richard Webster3 had
once suggested. As such, I started thinking about all steps given since the start of the doctorate,
something like

Once upon a time in Seropédica...
As the title says, this thesis is about a research on the factors determining a soil map to

be more or less accurate, what I call sources of uncertainty. Many of these sources are known,
others are still unknown, and some are disregarded due to our ignorance – or by convenience.
When I wrote my doctorate research project, it seemed appropriate to aim at evaluating what
I understood as being the main sources of uncertainty in the process of building a model to
produce soil maps, a process that I call soil spatial modelling. The reason was simple: soil
spatial modelling using modern techniques was a growing activity in Brazilian universities and
research centres, and I felt that many soil spatial modellers were inclined towards using the most
expensive data sources as the only way of producing higher accuracy soil maps of the Brazilian
territory. I was preoccupied about these ideas – which appeared to be sort of an euphoria about
new remote sensors – because I believed that high quality soil maps could be produced if we
simply started using the data at hand.

Defining the main sources of uncertainty in soil spatial modelling required an operati-
onal definition, which was given based on the observation that, in general, the main decisions
made by soil spatial modellers concern the a) calibration observations, b) covariates, and c)
model structure. The general objective of evaluating these three mains sources of uncertainty
was then divided into five specific objectives:

1 UFRRJ (2006)
2 ISO (1986)
3 Webster (2003)

http://www.iso.org/iso/catalogue_detail.htm?csnumber=13736




(I) Identify appropriate calibration sample sizes and designs for soil spatial modelling;

(II) Determine the accuracy of freely available covariates and their suitability to calibrate soil
spatial models;

(III) Identify appropriate covariate selection methods to build linear soil spatial models;

(IV) Assess the effect of multicollinearity among covariates on the performance of linear soil
spatial models;

(V) Identify database scenarios in which non-linear soil spatial models are more efficient than
linear soil spatial models.

The idea was to deal with each of the objectives separately and present the results in
individual chapters of the thesis which would be submitted for publication in peer reviewed
journals. The main expected result was the definition of a sound working protocol that would
allow the construction of efficient soil spatial models. My goal was to contribute to national
(Brazilian Research Network on Digital Soil Mapping – RedeMDS) and international (Global-
SoilMap and Global Soil Information Facilities – GSIF) initiatives, while generating a signifi-
cant amount of bibliographic material to support the teaching of modern soil spatial modelling
techniques in soil classes at Brazilian universities.

With time it became clear that the five objectives and the expected results were too am-
bitious. I certainly was overwhelmed by the knowledge of the multiple sources of uncertainty,
and felt compelled to develop a very thorough study. But I forgot that a doctorate includes more
activities than those planned in the research project: you take classes, prepare grant proposals,
write reports, help colleagues, get involved in other projects – such as adapting the LATEX4 class
used to compile this thesis –, publish the papers of your master thesis, train undergraduate stu-
dents, create and maintain the newsletter of a scientific group, read many articles and books,
learn a couple of computer languages, start a relationship, get sick, and so on. Then, one day
you realize that two years are already gone by and you still are preparing the database with
which you will develop your case studies.

I know that I was particularly lucky for most of the soil and covariate data already being
available for my use. This is because I have decided very early to continue using the data that
I collected during my master so that I could go deeper into the details of modern soil spatial
modelling techniques. Looking back, I think that this was the right decision. However, the
resources needed to properly organize the data before I could actually use it were considerable.
This effort was in line with my original intent of defining a working protocol for constructing
soil spatial models, which I guess to have achieved, at least partially. Then I realized that
I also needed to make my research the most reproducible as possible. The way to go was
to make a thorough description of all data processing steps, including making available all
computer scripts so that they could be reused by other people. The result was thousands of
lines of computer code, mostly on R5, which I used to indirectly access most of other computer
programs. These computer scripts have shown to be invaluable for my own applications, and
I have always hoped that other people would find them useful as well. But I then learned that
many well known methods of data analysis/processing are not used simply because they are
not implemented in a (single) software package. As such, making only the computer scripts
available did seem to be a poor solution. Developing and maintaining a software package in
4 See more about LATEX in Wikipedia. The LATEX class that I have adapted to compile this thesis is available in
GitHub.
5 See more about R in Wikipedia.

https://www.embrapa.br/busca-de-noticias/-/noticia/2062813/solo-brasileiro-agora-tem-mapeamento-digital
http://www.globalsoilmap.net/
http://www.globalsoilmap.net/
http://www.isric.org/projects/global-soil-information-facilities-gsif
https://en.wikipedia.org/wiki/LaTeX
https://github.com/samuel-rosa/UFRuralRJ
https://en.wikipedia.org/wiki/R_%28programming_language%29




the most popular environment for data processing and analysis, i.e. R, was a natural decision.
Although being fun, programming took a lot of resources!

A significant amount of resources was also spent preparing a description of the soil-
forming factors and processes that determine the soil spatio-temporal distribution in the study
area where the case studies were to be developed. Such a description is what I call conceptual
model of pedogenesis. This was another effort in line with the definition of a working protocol
because I believe that soil spatial modelling is not only about making maps, but also construc-
ting soil knowledge. Within the scope of the thesis, this knowledge was expected to serve the
development of an experiment devoted to meeting the third objective of the research project. My
intent was to compare automated covariate selection methods with the use of expert knowledge.
Preliminary tests were conducted with a few experts to help planning the experiment, which
was believed to be a complex one. Preliminary results were encouraging, but since I needed to
give more attention to the first and second objectives, I had to temporarily stop working on the
third objective.

There also was my poor knowledge on some known topics, which sometimes took me
to the wrong direction. For example, I wanted to evaluate how much more accurate a soil
map is when more accurate covariates are used (second objective), the reason being that I was
concerned with the fact that the covariates too are in error. As such, I collected field data to
validate the covariates and correct them for any systematic errors. Only later, discussing with
Gerard, I understood that 1) the validation data was poor, and 2) in soil spatial modelling the
covariates are generally taken as they are. The latter is like assuming that the covariates were
measured without error – otherwise a technique called error propagation analysis (or uncertainty
analysis) can be employed to take that error into account. As such, the second objective of the
research project needed to be reformulated in terms of how to define the different covariates that
we had at hand. After many discussions we still were unable to reach a satisfactory solution,
which did not prevent the study from being developed. Quite interesting results were produced,
but presenting them also was a challenge: many models and covariates had been compared,
and we wanted to have a summary way of presenting them, preferentially a figure. We came
up with a figure that we later called a model series plot, i.e. a figure that depicts a series of
models ordered according to some chosen summary performance statistic. For the purpose of
our study, that was a useful figure, and I hope that the readers will understand how to interpret
it. The reviewers of our paper were fundamental for improving the description of the model
series plot. Fortunately, they were also able to help deciding upon a proper definition for the
differences observed between the covariates that were being compared. The study was not
exactly about their accuracy, but about how they were produced and their level of spatial detail.

Devising an experiment to evaluate the influence of sample design on the accuracy of
soil maps also was a challenge. Most soil data used for soil spatial modelling were produced in
the past century (legacy data) with observation locations purposively selected by soil spatial mo-
dellers using tacit rules. As such, I wanted to build an algorithm composed of a set of objective
decision rules that would produce spatial samples similar to those produced by a soil spatial
modeller. I would then simulate budget scenarios for sampling and see how different spatial
samples would perform regarding soil map accuracy. But how to devise such an algorithm? I
interviewed the soil spatial modellers that produced the soil data to be used to conduct the case
studies, carried out a point pattern analysis of the resulting spatial sample configuration, and ex-
plored psychological concepts to understand the whys of the locations of the sampling points.
A lengthy study was carried out, which provided evidence that many poorly understood factors
influence the decision of soil spatial modellers on where to make soil observations. From one
perspective, this enables one to plan more efficient soil observation campaigns. However, it did





not help finding a practical solution for the problem that we had at hand. Perhaps it was more
appropriate to explore the existing, less complex algorithms that produce spatial samples using
more objective decision rules formulated with basis on conceptual and operational factors.

We then invited Dick Brus (Alterra, the Netherlands) to participate devising the expe-
riment to evaluate the influence of sample design on the accuracy of soil maps. After some
talks and a bibliographic review, we decided for using sampling algorithms that are based on
the so-called spatial simulated annealing which are commonly used to produce spatial samples
for soil spatial modelling. The problem was that we did not know of spatial simulated annea-
ling being implemented in any free and open source software package in a way that could meet
the requirements of our study. Again, the solution was to work on our own implementation
of spatial simulated annealing, which resulted in a second package for R. Having decided the
sampling algorithm to work with, we needed to choose a sound method to take sampling costs
into account. Because the access time to sampling points usually is the major cost component in
soil sampling, Gerard and I thought of coupling with spatial simulated annealing an algorithm
to solve the problem of travelling from one sampling point to the next with the least cost6. This
would be a good piece of work, but we soon realized that solving the travelling problem was
impossible given the available resources. The goal of taking sampling costs into account ended
up being dropped out.

After some time working on the sampling experiment, which at the time seemed simpler
than ever, we came to learn that the sampling algorithms that we had chosen had weaknesses –
apparently like any algorithm. So, we thought that, perhaps, we could improve on those algo-
rithms! A literature review suggested that we were correct and there was room for algorithmic
improvements. Working on these improvements took a lot of resources, and I guess we came
up with interesting, sound solutions. We only needed to know if the algorithmic improvements
had any practical added value before evaluating the influence of sample design of prediction
accuracy. It seemed appropriate to carry out two experiments, the first to evaluate the algorith-
mic improvements, the second to compare the algorithms. Again, the results were promising,
specially from the algorithmic point of view. With regard to prediction accuracy, we cannot
make high claims because the algorithms were tested using a single case study. But this gap
should be easily filled since we have made our software package freely available for anyone to
use. The negative side of these important developments is that carrying out the experiment to
evaluate covariate selection methods became impossible due to the remaining resources availa-
ble. This was a pity because I visited Murray Lark at the the British Geological Survey (BGS)
headquarters in Nottingham, UK, to discuss about that experiment.

Like it happened with the third objective, there was not enough resources to conduct
experiments to meet the fourth and fifth objectives. I think the topic of the fourth objective
is a very important one, directly related to the problem of selecting covariates, which I really
wanted to deal with. I would have been very happy if I could discuss the topic at least partially,
but perhaps partial solutions may not be very useful. As for the fifth objective, I believe that
developing a sound globally relevant work on the topic requires using several datasets, not a
single dataset as I explored in my research project.

As a consequence of all these events, at the end of the doctorate, I was able to meet only
the first and second scientific objectives – scientific in the sense of answering research questions
– of my doctorate research project. This may seem little but only because the research project
was too ambitious. Aside from meeting the original scientific objectives, I guess I made other
important contributions that one may call technical contributions – technical in the sense of
practical application – that were part of the original goal of defining a working protocol for

6 See about the travelling salesman problem at Wikipedia.

http://www.bgs.ac.uk/
https://en.wikipedia.org/wiki/Travelling_salesman_problem




soil spatial modelling. This includes, for example, documenting the soil and covariate data, as
well as their processing steps, and describing the soil-forming factors that determine the soil
spatio-temporal distribution in the study area. I know that these technical contributions do not
help meeting any of the original scientific objectives. The same applies to the two R-packages
that I developed, and the experiment conducted to understand how soil spatial modellers decide
upon where to observe the soil, which were not originally planned in the research project. But I
guess this is still valid, perhaps very important, as it seems to be common in any scientific rese-
arch: you end up doing many things that are quite different from those that you were originally
planning to do.

So... this is, more or less, the story of the research that I have carried out in collaboration
with my supervisors and co-authors during my doctorate. Perhaps one will find this story biased
towards the negative aspects of my doctorate. This is not entirely false, specially because I think
that I generally tend to be happier with stories that have more errors than hits – because I learn
more with the former than with the latter. As such, I guess there is nothing to write in this thesis
other than what I have done during the doctorate that is directly and/or indirectly related to the
original research project, have it been planned or not, be it a technical or scientific contribution,
completed or not. This is what I present as the final requirement for the completion of the
doctorate.

I do hope that my supervisors and co-authors like the work that I have done in the
past four years. Lúcia, Gustavo, Gerard, and Dick have been so patient, so understanding,
so respectful, that I have no words to prepare the deserved thanks. Each one of them with a
different background, a different life story, a different perspective, working in a different part of
the world... I learned a lot with them: soil science, mathematics, statistics, informatics, English,
politics and science, human relations, and much more. What a pleasure experience working
with the four of you!

I also hope that the outcome of my doctorate is of interest for the supporting institutions,
because I would never write this thesis without their support. These are:

• Universidade Federal Rural do Rio de Janeiro, through the Post-Graduate Course in Agro-
nomy – Soil Science and Department of Soil Science, for providing a solid soil science
education, unconditionally supporting my research, and finding the means to guarantee
my participation in several international events;

• Ministry of Science and Technology of Brazil, through the CNPq Foundation (Process
140720/2012-0), that provided a three-year grant without which I would not be able to
develop any research at all;

• Ministry of Education of Brazil, through the CAPES Foundation (Process ID BEX 11677/13-
9), that funded my one-year stay in the Netherlands, where most of the research was
actually developed;

• ISRIC – World Soil Information, for unconditionally supporting my research.

• Embrapa Solos, for supporting my research.

• Universidade Federal de Santa Maria, through the Department of Soil Science, for sup-
porting my research.

• Ministry of the Environment of Brazil, for providing some of the data that we used.





I need to note that seven individuals gave important contributions during the preparation
of the data that were used to develop the case studies. Four of them are from the Universi-
dade Federal Rural do Rio de Janeiro: Fabio Paes Leme Ferreira, Anastácia Perci Campos de
Almeida, Pedro de Souza Calegaro and Mauro Antônio Homem Antunes. The other three are
from the Universidade Federal de Santa Maria: Ricardo Simão Diniz Dalmolin, Jean Michel
Moura Bueno, and Luis Fernando Chimelo Ruiz. Along with them, I must thank the deve-
lopment teams and module/package authors of the many free and open source software and
operating system that were used to develop the case studies.

Many other individuals have also given some form of scientific and/or technical contri-
bution, be it through the exchange of email messages, chatting during a coffee break, a short
visit to their home institutions, or any other informal occasion. Their contributions were inva-
luable for usually raising unforeseen questions, pointing to extremely helpful references, and
helping me seeing the research problems from another perspective. Special thanks are due to
Ad van Oostrum, Andreas Papritz, Bas Kempen, Bradley Miller, Chantal Hendriks, Dominique
Arrouays, Edgardo Ramos Medeiros, Eloi Carvalho Ribeiro, Jorge Mendes de Jesus, Madlene
Nussbaum, Marcos Angelini, Murray Lark, Nicolas Saby, Pablo Miguel, Richard Webster, Tho-
mas Caspari, Tom Hengl, Titia Mulder, and many others that I might have forgotten.

Having the story of a doctorate to tell depends not only on scientific and/or technical
contributions, but also on the unconditional support of family, friends, and colleagues. My
family, which gained several new members in the last four years, was strong enough to un-
derstand my rare and short visits, and the importance of a long stay on the other side of the
Atlantic. Although my mother (Elaine), father (Adir), and brother (Eduardo) have only a vague
idea of what I have been working on, their support was incommensurable. South-American
and European friends were invaluable: Marcos, Indira, Eloi, Thomas, Nina, Jorge, André, Thi-
ago, and Andriéli. There was the amazing, coolest of them all, ISRIC family, which I miss
very much, lead by our dearest Yolanda. There also were my postgraduate colleagues and te-
achers. But one friend deserves a special thanks: Manoeli! Thank you Manoeli – by destiny
or a strange coincidence –, born and raised in the same small town, after completing the ba-
chelor and master together in Brazil, we ended up sharing the same house in The Netherlands
during the doctorate. There, we continued our philosophical chats about all aspects of life, the
universe, and everything which we started years ago. It was a pleasure to share a full year with
such a wonderful friend!

Finally, three little Bacchanalian creatures, one having only a vague idea of my work,
the other two not speaking any human language, deserve my most sincere thanks: Monique,
Tupã, and Dindi! Your love was fire through my veins!

Alessandro Samuel Rosa
Seropédica, February 2016.

P.S. The reader should be aware that, despite the book style and formatting can cause estrange-
ment, it follows the standards of the Universidade Federal Rural do Rio de Janeiro – we even
created a LATEX class for that end! I agree that the chapter numbering style is awkward. So
is the use of two languages (English and Portuguese). But, please, do not crucify me for the
awkwardness. Leave it aside and enjoy the content!





RESUMO GERAL

SAMUEL-ROSA, Alessandro. Análise de fontes de incerteza na modelagem espacial do
solo. 2016. 278p. Tese (Doutorado em Agronomia, Ciência do Solo). Instituto de Agronomia,
Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.

A modelagem espacial do solo moderna usa modelos estatísticos para explorar a relação em-
pírica entre as condições ambientais e as propriedades do solo. Esses modelos são uma sim-
plificação da realidade, e seu resultado (mapa do solo) estará sempre errado. O que um mapa
do solo transmite é o que esperamos que o solo seja, reconhecendo que somos incertos sobre
ele. O objetivo dessa tese é avaliar importantes fontes de incerteza na modelagem espacial do
solo, com ênfase nos dados do solo e covariáveis. Estudos de caso foram desenvolvidos usando
dados de uma bacia hidrográfica do sul do Brasil. A distribuição espacial do solo na área de
estudo é variável, sendo determinada pela geologia e geomorfologia (escalas espaciais maiores)
e práticas agrícolas (escalas espaciais menores). Quatro propriedades do solo foram explora-
das: teor de argila, teor de carbono orgânico, capacidade de troca catiônica efetiva e densidade.
Cinco covariáveis, cada um com dois níveis de detalhe espacial, foram utilizadas: mapas areais
de classes de solo, modelos digitais de elevação, mapas geológicos, mapas de uso da terra, e
imagens de satélite. Esses dados constituem o conjunto de dados de Santa Maria. Dois paco-
tes para R foram criados, o primeiro (pedometrics) contendo várias funções para a análise
exploratória espacial de dados e calibração de modelos, o segundo (spann) projetado para a
optimização de amostras espaciais usando recozimento simulado. Os estudos de caso ilustraram
que as covariáveis existentes são apropriadas para calibrar modelos espaciais do solo, e que o
uso de covariáveis mais detalhadas resulta em modesto aumento na acurácia de predição que
pode não compensar os custos adicionais. Meios mais eficientes de aumentar a acurácia de pre-
dição devem ser explorados, como obter mais observações do solo. Para esse fim, deve-se usar
meios objetivos para a seleção dos locais de observação a fim de minimizar os efeitos das res-
postas psicológicas dos modeladores do solo a fatores conceituais e operacionais sobre o plano
de amostragem. Isso porque as dificuldades conceituais e operacionais encontradas no campo
determinam mudanças na motivação dos modeladores do solo entre aprendizagem/verificação
das relações solo-paisagem e maximização do número de observações e cobertura geográfica.
Para estimar a tendência espacial, deve ser suficiente otimizar as amostras espaciais visando so-
mente reproduzir a distribuição marginal das covariáveis. Para otimizar configurações amostrais
para estimar a tendência espacial e o variograma, e interpolação espacial, pode-se formular um
problema de otimização multi-objetivo sólido usando versões robustas de algoritmos de amos-
tragem existentes. No geral, aprendemos que uma receita única, universal para a redução da
incerteza na modelagem espacial do solo não pode ser formulada. Decidir sobre formas efi-
cazes de redução da incerteza requer, em primeiro lugar, que exploremos todo o potencial dos
dados existentes usando técnicas de modelagem espacial sólidas.

Palavras-chave: Pedometria. Mapeamento Digital do Solo. Dados de Solo e Covariáveis.





GENERAL ABSTRACT

SAMUEL-ROSA, Alessandro. Analysis of sources of uncertainty in soil spatial modelling.
2016. 278p. Thesis (Doctor of Science in Agronomy, Soil Science). Instituto de Agronomia,
Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.

Modern soil spatial modelling is based on statistical models to explore the empirical relation-
ship among environmental conditions and soil properties. These models are a simplification of
reality, and their outcome (soil map) will always be in error. What a soil map conveys is what
we expect the soil to be, acknowledging that we are uncertain about it. The objective of this
thesis is to evaluate important sources of uncertainty in spatial soil modelling, with emphasis
on soil and covariate data. Case studies were developed using data from a catchment located in
Southern Brazil. The soil spatial distribution in the study area is highly variable, being deter-
mined by the geology and geomorphology (coarse spatial scales), and by agricultural practices
(fine spatial scales). Four topsoil properties were explored: clay content, organic carbon con-
tent, effective cation exchange capacity and bulk density. Five covariates, each with two levels
of spatial detail, were used: area-class soil maps, digital elevation models, geologic maps, land
use maps, and satellite images. These soil and covariate data constitute the Santa Maria dataset.
Two packages for R were created in support to the case studies, the first (pedometrics) con-
taining various functions for spatial exploratory data analysis and model calibration, the second
(spsann) designed for the optimization of spatial samples using simulated annealing. The
case studies illustrated that existing covariates are suitable for calibrating soil spatial models,
and that using more detailed covariates results in only a modest increase in the prediction ac-
curacy that may not outweigh the extra costs. More efficient means of increasing prediction
accuracy should be explored, such as obtaining more soil observations. For this end, one should
use objective means for selecting observation locations to minimize the effects of psycholog-
ical responses of soil modellers to conceptual and operational factors on the sampling design.
This because conceptual and operational difficulties encountered in the field determine how the
motivation of soil modellers shifts between learning/verifying soil-landscape relationships and
maximizing the number of observations and geographic coverage. For the sole purpose of spa-
tial trend estimation, it should suffice to optimize spatial samples aiming only at reproducing
the marginal distribution of the covariates. For the joint purpose of optimizing sample configu-
rations for spatial trend and variogram estimation, and spatial interpolation, one can formulate
a sound multi-objective optimization problem using robust versions of existing sampling algo-
rithms. Overall, we have learned that a single, universal recipe for reducing our uncertainty
in soil spatial modelling cannot be formulated. Deciding upon efficient ways of reducing our
uncertainty requires, first, that we explore the full potential of existing soil and covariate data
using sound spatial modelling techniques.

Keywords: Pedometrics. Digital Soil Mapping. Soil and Covariate Data.
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1 GENERAL INTRODUCTION

Modern soil spatial modelling is based on using statistical models to explore the empiri-
cal relationship among environmental conditions and soil properties. These soil spatial models,
like any other model, are nothing more than a simplification of reality. Unless we observe the
soil everywhere – which would destroy the soil and render the observations useless –, no mat-
ter how large the volume of data is, or how comprehensive our background knowledge, it will
never be possible to construct a model that explains the entire complexity of the soil. Thus,
the outcome of a soil spatial model, i.e. a soil map, will always deviate from the “truth” – this
deviation from the “truth” is what we call error. What a soil map conveys is what we expect the
soil to be, acknowledging that there is uncertainty about it.

Because soil spatial modellers aim at using the available resources to produce the most
accurate representation of the soil, a sensible research programme is to investigate the main
causes for soil maps being more or less uncertain. There are many sources of uncertainty
in soil spatial modelling, such as the errors that result from using a poor statistical model or
from making interpolations and extrapolations to predict soil properties at unvisited locations.
Another important source of uncertainty is the data used to assess the empirical relationship
among environmental conditions and soil properties: covariate and soil data.

The general objective of this thesis is to evaluate important sources of uncertainty in
soil spatial modelling with emphasis on soil and covariate data. This general objective can be
divided into specific objectives and their respective research questions:

(I) Determine the suitability of freely available covariates to calibrate soil spatial models.

(a) Does the use of more detailed covariates result in considerably more accurate soil
maps?

(b) How does incorporation of spatial dependence in a soil spatial model compares to
the gain in prediction accuracy obtained from using more detailed covariates?

(c) Are the answers to these research questions consistent across soil properties?

(II) Identify the factors that determine how field soil spatial modellers select soil observation
locations.

(a) Which factors are considered for deciding upon the location of soil observations,
and do they have a pedological origin?

(b) Do the factors play the same role along the course of the soil observation process?

(c) Can point pattern analysis help understanding the purposive sampling strategy tra-
ditionally employed by field soil spatial modellers?

(III) Identify appropriate calibration sample sizes and designs for soil spatial modelling.

(a) Can the conditioned Latin hypercube sampling algorithm be improved, and does
this improvement deliver more accurate soil spatial predictions?

(b) Which are the most theoretically sound sampling algorithms for spatial trend esti-
mation, variogram estimation, and spatial prediction when we know very little about
the soil spatial variation?

* The Portuguese version of this General Introduction is included in Appendix C.
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(c) Can these sampling algorithms be used to construct a general purpose sampling
algorithm?

The thesis is composed of eight chapters where each of the above mentioned objectives
are met. Although there is a logical sequence in their presentation, all chapters were planned
so that they could be read separately. This means that there is some overlap between them, i.e.
repeated information. References to specific sections of other chapters using coloured (blue)
hyperlinks are common.

Chapter I is a commented review of the literature on soil spatial modelling and its main
sources of uncertainty. The review starts with a discussion about the efforts made by soil spatial
modellers to raise awareness about the importance of soil spatial information. These efforts
seem to have fuelled a global scientific demand for up-to-date, high resolution soil spatial infor-
mation. The chapter continues with a description of soil spatial modelling along human history,
suggesting that the goal of producing soil maps remains more or less the same since the Ne-
olithic Revolution (ca. 10 000 years). The chapter closes with the main sources of uncertainty.

Chapter II describes the soil data included in the Santa Maria dataset, which was used
to develop the case studies presented in this thesis. The Santa Maria dataset is composed of
n = 410 soil observations compiled from studies carried out between 2004 and 2013. These
studies aimed at producing semi-detailed soil and land use maps, and modelling topsoil carbon
stock and vulnerability to erosion. A comprehensive description of the covariate data included
in the Santa Maria dataset, and their processing, is given in Chapter III. Chapter IV presents the
conceptual model of pedogenesis (in Portuguese), which consists of a description of the study
area that includes an explicit description of soil-forming factors (climate, geology, geomorphol-
ogy, hydrology, land use, and vegetation) and processes that determine the soil spatio-temporal
distribution. Beyond describing the data used in the thesis, the goal of these chapters, along
with the conceptual model of pedogenesis, is to provide the basis for future soil spatial mod-
elling exercises in the study area, and to serve as examples for new soil spatial modelling studies
developed elsewhere.

Based on an article published in the peer reviewed journal Geoderma, Chapter V serves
the purpose of meeting the first objective of the thesis and answering its respective research
questions. The prediction performance of linear soil spatial models calibrated using covariates
(area-class soil maps, land use maps, geological maps, digital elevation models, and satellite
images) available in two levels of detail is evaluated. The influence of taking the spatial depen-
dence of the residuals into account is assessed as well.

Chapter VI presents an approach that aims at helping to understand the purposive sam-
pling strategy traditionally employed by field soil modellers, i.e. free survey. This is important
because many soil spatial modelling projects rely on legacy data, i.e. soil data produced pre-
viously and made available (publicly or not), whose observation locations were purposively
selected by soil spatial modellers using poorly documented tacit rules. The chapter is designed
to answer the research questions of the second objective of the thesis. Point pattern analysis
is used to characterize the spatial sample configuration, whereas theories borrowed from Psy-
chology are used to elaborate on the subjective factors involved in selecting soil observation
locations.

Objective 3 and its research questions are addressed in Chapter VII and Chapter VIII.
In Chapter VII, three improved sampling algorithms are compared to the original conditioned
Latin hypercube sampling algorithm on how they affect geographic coverage, estimated model
parameters and prediction accuracy. The influence of sample size is also discussed. Chap-
ter VIII presents the most efficient sampling strategies for spatial trend estimation, variogram
estimation, and spatial prediction when we know very little about the soil spatial variation. The
2
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chapter closes with a new general purpose sampling algorithm that aims at the three objectives
jointly.

The sequence of eight chapters is closed with General Conclusions where I highlight
the main research results and contributions of the study. Next, there are two appendices, both
devoted to the description of the two packages for R developed to support the thesis: spsann
(Appendix A) and pedometrics (Appendix B). The first was designed for the optimization
of sample configurations using spatial simulated annealing. The second includes miscellaneous
functions that were put together for ease of use. All literature references are presented under a
unique list of Bibliographic References at the end of the thesis.

3
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2 Chapter I. Uncertainty in Soil Spatial Modelling

2.1 RESUMO

Os esforços da comunidade da ciência do solo têm motivado a comunidade científica a reconhe-
cer a importância do solo para a humanidade e para o ambiente a nível local, regional e global.
Os modeladores espaciais do solo parecem estar sendo capazes de convencer os tomadores de
decisão e formuladores de políticas públicas sobre a importância de produzir e atualizar as in-
formações do solo. Para essa finalidade, os modeladores espacias do solo tem usado o modelo
misto de variação espacial. O modelo misto de variação espacial integra aspectos dos méto-
dos “tradicionais” de modelagem espacial do solo, baseados no modelo discreto de variação
espacial, além de técnicas geoestatísticas, mais formalmente o modelo contínuo de variação
espacial. Como tal, o modelo misto de variação espacial explora o conhecimento dos fatores
de formação do solo, bem como o fato de que o solo é um meio contínuo. Ele também re-
conhece que mapas do solo sempre desviam da “verdade”, o que significa que um mapa do
solo transmite o que esperamos que o solo seja, não a nossa certeza sobre ele. As fontes de
nosso incerteza sobre o solo são muitas. Por exemplo, os dados do solo e covariáveis usados
para calibrar modelos espaciais do solo são uma importante fonte de incerteza. Dados do solo
pode conter erros e representar pobremente a população da qual foram amostrados. A influên-
cia dos dados das covariáveis na nossa incerteza sobre o solo se expressa através da sua fraca
correlação com as propriedades do solo. Finalmente, a forma do modelo utilizado para explicar
empiricamente as estruturas de variação espacial de pequena a grande escala pode determinar
consideravelmente a precisão das nossas predições espaciais. Como não podemos eliminar a
incerteza de um mapa do solo, o nosso conhecimento sobre o solo será sempre limitado. Apesar
disso, modelos espaciais do solo ainda são necessários para guiar nossas ações do dia a dia.

Palavras-chave: Demanda por Informação do Solo. Modelo Misto de Variação Espacial. Da-
dos do Solo e Covariáveis. Estrutura do Modelo.
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2.2 ABSTRACT

The efforts of the soil science community have motivated the scientific community to recognize
the importance of soils for humanity and the environment at the local, regional, and global
levels. Soil spatial modellers seem to be able to convince policy and decision makers about the
importance of producing and updating soil information. For that end, soil spatial modellers have
been using the mixed model of spatial variation. The mixed model of spatial variation integrates
aspects of “traditional” methods of soil spatial modelling, based on the discrete model of spatial
variation, as well of geostatistical techniques, more formally the continuous model of spatial
variation. As such, the mixed model of spatial variation explores the knowledge of soil-forming
factors as well as the fact that the soil is a continuous media. It also acknowledges that soil maps
always deviate from the “truth”, which means that a soil map conveys what we expect the soil
to be, not our certainty about it. There are many sources for our uncertainty about the soil. For
instance, the soil and covariate data used to calibrate soil spatial models is an important source
of uncertainty. Soil data can have errors and poorly represent the population from which it has
been sampled. The influence of the covariate data on our uncertainty about the soil expresses
itself through the poor correlation with soil properties. Finally, the form of the model used to
empirically account for the structures of spatial variation from the small to the large scales can
greatly determined the accuracy of our spatial predictions. Because we cannot eliminate the
uncertainty of a soil map, our knowledge about the soil will always be limited. Despite of this,
soil spatial models are still needed to guide our every-day actions.

Keywords: Demand for Soil Information. Mixed Model of Spatial Variation. Soil and Covari-
ate Data. Model Structure.
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2.3 DEMAND FOR SOIL SPATIAL INFORMATION

Many soil spatial modellers7 have complained for many years about the decreasing in-
terest in producing and updating soil information, not only in Brazil (DALMOLIN, 1999; KER,
1999; KER; NOVAIS, 2003; MENDONÇA-SANTOS; SANTOS, 2003; RAMOS, 2003; ES-
PINDOLA, 2008; SAMUEL-ROSA, 2012), but in many countries around the world (BASHER,
1997; HARTEMINK; MCBRATNEY, 2008; GRUNWALD, 2009; SANCHEZ et al., 2009;
FINKE, 2012). Several reasons were presented to explain the general lack of interest in produc-
ing and updating soil information after the 1980s: the use of specialized taxonomic terminology
by soil spatial modellers was abusive; information conveyed by soil maps was too limited due
to its qualitative nature; policy and decision makers were unaware of the usefulness of soil
information and dynamicity of soil; applied scientific research came to be preferred over ba-
sic scientific research; soil spatial modelling largely ignored environmental applications other
than agriculture; lack of communication between soil spatial modellers and the general public;
among others. But everyone seem to agree on one point: governments understood that pro-
ducing and updating soil information was too costly. Cutting down the budget for soil spatial
modelling fundamentally was an economic decision.

Since the last decade, soil scientists in general have launched many initiatives to make
soil become a hot topic (HARTEMINK; MCBRATNEY, 2008). For example, the United Na-
tions (UN) declared 5 December the World Soil Day and 2015 the International Year of Soils
“in an effort to raise awareness and promote more sustainable use of this critical resource”.
Soil spatial modellers created a global consortium, the GlobalSoilMap, with the goal of pro-
ducing “a new digital soil map of the world using state-of-the-art and emerging technologies”.
The Food and Agriculture Organization (FAO) launched a Global Soil Partnership (GSP) for
“leading to the adoption of sustainable development goals for soils”. The International Union
of Soil Sciences (IUSS) created a working group, funded by the United States Department of
Agriculture (USDA) to develop a Universal Soil Classification System, “a common language
to describe soils that can be used internationally”. An Intergovernmental Technical Panel on
Soils (ITPS) was formed with soil experts from all regions of the world “to provide scientific
and technical advice and guidance on global soil issues to the Global Soil Partnership”. The
Bill & Melinda Gates foundation handed out an $18 million grant “to map most parts in Sub-
Saharan Africa, and make all Sub-Saharan Africa soil data available”. Soil spatial modellers
at the International Soil Reference and Information Centre (ISRIC) launched its Global Soil
Information Facilities (GSIF), a “framework for production of open soil data”, which has al-
ready output 250 m-resolution soil maps with global coverage. In Brazil, soil spatial modellers
created the Brazilian Network for Research in Digital Soil Mapping (RedeMDS) with the ob-
jective of “generating synergy among Brazilian soil scientists to advance research in digital soil
mapping”.

The efforts of the soil science community have motivated the scientific community to
recognize the importance of soils for humanity and the environment at the local, regional, and

7 The use that I give to the expression soil spatial modeller throughout this thesis is approximately equivalent to
expressions traditionally used in the academic world such as soil scientist, soil surveyor, soil taxonomist, geostatis-
tician, pedometrician, soil investigator, soil mapper, and so on. In this thesis, a soil spatial modeller is any person
that constructs an explanation – a model – of the observed spatial soil variation using the tools and techniques
available at his/her time and place. The goal of a soil spatial modeller is to construct a model that is simple yet
able to produce an accurate representation of the spatial soil variation given the available resources and its intended
application. I call this activity soil spatial modelling. Accordingly, I understand that those that are excluded from
the academic world such as peasants, farmers, indigenous populations, and so on, are soil spatial modellers as well,
although their modelling of the soil is not the focus of this thesis.
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global levels (SANCHEZ et al., 2009; KEMPEN, 2011; OMUTO et al., 2013). Soil scientists,
whose presence in public administration through scientific and technical advisory boards ap-
pears to grow, seem to have been able to convince policy and decision makers about the impor-
tance of producing and updating soil information. For example, in Brazil, the Federal Court of
Accounts (TCU), in collaboration with Embrapa Soils and other soil science related institutions,
held a Soil Governance Conference, where a new National Program for Soil Survey and Inter-
pretation of Brazil (PRONASOLOS) was announced, with an expected budget of R$8 billion8.
In the sequence, Embrapa Soils created a working group, with soil spatial modellers from other
government institutions and universities, and the first PRONASOLOS report with proposal and
goals was completed on December 2015. Unfortunately, it is not clear whether the national soil
survey program will truly be restarted because, like happened in the end of the 1980s, it essen-
tially is an economic decision. Apparently, other areas of soil science have not been receiving
much more attention and/or funding than soil spatial modelling. It is also not clear whether the
soil science community efforts have brought about a renewed recognition of the importance of
soils for humanity and the environment among the general public.

2.4 MODERN SOIL SPATIAL MODELLING

Technology plays a determinant role on how we perceive the world around us – see, for
example, Hartemink (2009). When early farmers, during the Neolithic Revolution, ca. 10 000
years ago, first observed that soil properties varied in space, they probably soon figured out
that such variation was related to other environmental features and influenced crop yields. That
early, rough, approximate understanding – a model – of soil spatial variation certainly was fun-
damental for choosing – predicting – the most appropriate locations to start and maintain human
settlements, some of which became great, long-standing empires (MAZOYER; ROUDART,
2008; BREVIK; HARTEMINK, 2010; CHURCHMAN, 2010). Archaeological research pro-
vides evidence that several of these empires had more formal soil classification systems and soil
survey programs, in most cases for taxation purposes (BARRERA-BASSOLS; ZINCK, 2003)
– a practice that lasts till today.

A lot happened since the Neolithic Revolution (BREVIK; HARTEMINK, 2010) – from
bone to spacecraft, as in Kubrick’s 2001: A Space Odyssey –, and the knowledge constructed
with multiple soil spatial studies was fundamental for the development of agriculture and in-
crease of food production – although many farmers still live in Neolithic conditions (MA-
ZOYER; ROUDART, 2008). If we adopt an integrative view, soil maps produced during this
long period of human history seem to fit into what we call today the discrete model of spa-

8 The initiative to restart the national soil survey program coincides with the currently increased, government
funded, economically driven, historical pressure to occupy the Cerrado and Amazon biomes, considered “the last
agricultural frontier” (CORREIA, 2005; MACARINI, 2005; SILVA, 2005; CARVALHO et al., 2009; BATLLE-
BAYER et al., 2010; MARTINELLI et al., 2010; SCHNEIDER; PERES, 2015). It is traditionally argumented
that transforming parts of the Cerrado and Amazon biomes into agricultural land is needed to eradicate poverty in
Brazil and to feed a growing world population. This is one of the argument used by the Brazilian politicians who
are in favour of changing the Brazilian legislation to easy the acquisition of up to 100 000 ha of agricultural land
in these regions by multinational corporations to produce cellulose and paper (SECOM, 2015). Unfortunately, the
parts of the Brazilian territory that compose “the last agricultural frontier” suffer from severe social inequalities
intensified by a long history of land conflicts fuelled by the conservative development model adopted in Brazil
(COMISSÃO PASTORAL DA TERRA, 2015; SCHNEIDER; PERES, 2015; FERNANDES, 2016), where the
benefits of economic growth are not shared by all people. In regions such as this, the problem of food insecurity
(and other societal problems) is likely more due to the lack of political will than to the lack of food (FAO, 2005;
FAO, 2009; FAO, 2015). As such, one might wonder whether restarting the national soil survey program decoupled
from a deep-cutting agrarian reform is beneficial for the general Brazilian population.
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tial variation. The discrete model of spatial variation explains the variation of soil properties
in space using mutually exclusive mapping units that are separated by sharply defined, crisp
boundaries (i.e. polygons) (HEUVELINK, 1996; LEGROS, 2006). The soil9 within each map-
ping unit is more or less homogeneous with regard to its properties at the time of mapping.
These properties, which are generally used to name the mapping unit along with other environ-
mental features, can be characterised using one or more direct observations made within the
domain of the mapping unit (WEBSTER; OLIVER, 1990; ROSSITER, 2000; LEGROS, 2006).

2.4.1 Discrete Model of Spatial Variation

A key step was given in 1886 in Russia with the formalization of the approximate un-
derstanding of the soil spatial variation using scientific parlance, i.e. the postulation of the “the
basic law of soil science” by Vasily Dokuchaev (FLORINSKY, 2012): “Any... soil is always
and everywhere a mere function of the following factors of soil formation: 1) the nature (content
and structure) of the parent rock, 2) the climate of the given terrain, 3) the mass and character
of vegetation, 4) the age of the terrain, and finally, 5) the terrain topography.”. The basic law
of soil science was presented 40-years later by Sergey Zakharov in the form of a general soil
formation equation, which is known in the western soil science literature as (JENNY, 1941;
FLORINSKY, 2012)

soil = f(cl, o, r, p, t, . . .), (2.1)

where soil is the soil and its properties, cl if the climate, o are the organisms, including humans,
r stands for relief or topography, p is the parent material, t is time or age of the terrain, and
. . . stand for other unknown players. Dokuchaev was aware that producing empirical evidence
to corroborate his basic law of soil science was difficult because data on soil formation factors
was scarce. Besides, it was difficult to numerically express the relation between soil and forma-
tion factors. Despite of these difficulties, the basic law of soil science was readily adopted by
soil spatial modellers because it provided a solid basis for explaining the soil spatial variation
(SMITH, 1986).

An important enthusiast and supporter of the use of Equation 2.1 was Hans Jenny (1941).
He believed that the large volume of already existing soil data/knowledge, which had been
constructed mostly based on the basic law of soil science, needed to be organized by means of
numerical laws and quantitative theories – instead of soil maps, taxonomic classifications, and
soil-forming processes – to enable treating it mathematically (i.e. using empirical correlation).

9 It is common sense among many soil scientists, not only in Brazil, that the activity of soil mapping concerns
the production of area-class soil maps, also called polygon soil maps, choropleth soil maps, and more generally
soil maps. My view is that such an understanding, which is rooted in the fact that most early soil mapping projects
aimed at producing area-class soil maps – see Grunwald (2009) for a discussion –, is erroneous. Multiple times
it results in the confusion between the concept of soil itself and that of soil class, soil taxon and/or soil series. In
this thesis a soil map is nothing more than a graphical representation of the soil. For that end, one has to choose a
finite number of properties, characteristics, attributes, features of the soil. The taxonomic classification is one such
feature. Thus, one must bear in mind that, throughout this thesis, the term soil is used to mean soil – the uppermost
layer of unconsolidated material of the Earth’s surface... –, not soil class or soil taxon or soil series. One could
argue that a soil class and a soil property are completely different things. For Rossiter (2000) a major difference
is that soil properties are measurable characteristics of the soil, while soil classes are categories of a predefined
classification. This view is not entirely correct because even measurable characteristics of the soil such as the
particle size distribution are categories of a predefined classification. It follows that, in this thesis, any property,
class, characteristic, attribute, feature of the soil whose spatial variations is being modelled is treated as any other
reponse variable or dependent variable that enters a model.
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For that end, solving Equation 2.1 depended on the soil scientist’ skills to select suitable study
areas and locations for making observations. But the problem continued to be that obtaining data
on soil-forming factors was still difficult compared to obtaining soil data. It follows that direct
application of Equation 2.1 for producing soil maps was impossible because it required soil-
forming factors to be exhaustively known everywhere (JENNY, 1941). Despite the operational
difficulties encountered since the postulation of the basic law of soil science and definition of
Equation 2.1, the concept of soil-forming factors were employed in most of the subsequent
soil spatial studies around the world, resulting in the enhancement of taxonomic classifications,
theories about soil-forming processes, and production of soil maps using the discrete model of
spatial variation (SCHELLING, 1970; HUDSON, 1992; BOCKHEIM; GENNADIYEV, 2000;
LEGROS, 2006; KRASILNIKOV et al., 2009; HARTEMINK; BOCKHEIM, 2013).

Soil spatial modelling using the discrete model of spatial variation and the idea that
soil properties were determined by soil-forming factors had its weaknesses as any other model
of spatial variation. Three main weaknesses can be pointed out, all of which only were rec-
ognized and understood using post-war scientific/technological developments (HEUVELINK;
WEBSTER, 2001; MCBRATNEY et al., 2003; SCULL et al., 2003). First, “soil bodies” were
described as discrete, homogeneous entities – although it was recognized that soil is a continu-
ous media whose properties vary from place to place in such a way that nearby locations have
more similar soil property values than distant locations (spatial autocorrelation) –, implying
that the fluxes of energy and matter across the landscape had to be understood as being par-
tially homogeneous (within a mapping unit), partially discontinuous (between mapping units)
processes. Second, the uncertainty (the acknowledgement of errors) about mapped soil prop-
erties was disregarded, meaning that a single, absolute value for each soil property would be
attributed to each mapping unit ignoring that soil properties vary from place to place and that
estimates can be affected by all sorts of errors. Last, but not least, some important soil spatial
modelling decisions could not be efficiently shared with others by means of formal, explicit
knowledge because they were largely based on the intuitive, tacit knowledge of soil modellers,
i.e. the knowledge that a soil modeller has about the soil-landscape relationships and the soil
modelling process but that cannot be adequately communicated, articulated by verbal (written
or spoken) means. This was evidenced, for example, by the fact that different soil modellers
would produce considerably different soil maps without being able to explain why (LEGROS,
2006; BAZAGLIA FILHO et al., 2013).

2.4.2 Continuous Model of Spatial Variation

Different solutions were explored during the post-war to overcome one or another weak-
nesses of the discrete model of spatial variation. Most of these solutions came from the new
developments in the fields of mathematics, statistics and informatics. For example, those im-
portant soil spatial modelling decisions, generally taken with basis on the tacit knowledge of
the soil modeller, could now be more efficiently communicated with others through the use of
computers – provided they had a computer. This is because using a computer to produce soil
maps requires modelling rules to be formalized in the form of a computer script, which is the
mean used to establish the communication between the soil modeller (a human being) and the
data processing environment (a computer).

Some soil modellers also came to understand that the error about the mapped soil prop-
erty could be acknowledged using classical statistical theory. First, the definition of mapping
units, which was based on the knowledge of the soil-forming factors, needed to be viewed
as a modelling exercise that aims at minimizing the within-unit variance (and maximizing the
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between-unit variance) of a soil property (VOLTZ; WEBSTER, 1990). This was equivalent to
designing controlled agronomic experiments as devised by Ronald Fisher in the United King-
dom during the 1920s, by which large plots and blocking are used to deal with the effects of
short and long-range variation, respectively (WEBSTER; OLIVER, 2007). In both cases the
spatial autocorrelation was regarded as being of little importance – it still is in most agricul-
tural experiments. Then, under the assumption of spatial independence within mapping units,
the most likely value of a soil property at any one point in a given mapping unit would be its
mean over the multiple observations made in that mapping unit (VOLTZ; WEBSTER, 1990;
CRESSIE, 1993). It follows that the uncertainty about the value of the mapped soil property
is the same everywhere within a mapping unit, irrespective of the location of existing soil ob-
servations (HEUVELINK, 1996). This is because due to statistical independence and constant
variance within mapping units, the expected error of predicting the value of a soil property
at any location with its mean is also the same everywhere. The only requirement so that the
estimated mean and variance would be fair (unbiased) was that the location of soil observa-
tions be selected using some form of randomization (probability sampling) such as it is done in
controlled agronomic experiments (DE GRUIJTER; TER BRAAK, 1990).

Those solutions still required describing “soil bodies” as discrete, homogeneous entities,
and continued neglecting the spatial variation and autocorrelation of soil properties. Besides,
despite the statistical soundness, most soil modellers fiercely rejected to employ random sam-
pling and design-based estimation. They have always preferred to select observation locations
purposively according to their mental model of soil-landscape relationships because, from a
pedological perspective, this seemed more reasonable. However, they were generally unaware
of the biasedness of their model-based estimates. For other soil spatial modellers a solution was
to partially ignore the knowledge on soil-forming factors and use a different model of spatial
variation: the continuous model of spatial variation. Accordingly, the main requirement was
that a soil property be treated as a regionalised variable, the outcome of a random (stochastic)
spatial process (CRESSIE, 1993; WEBSTER, 2000). A comprehensive theory of regionalised
variables was first constructed during the 1960s by the French mathematician Georges Math-
eron, heavily based on earlier studies of engineers, mathematician, meteorology and statistician
such as the South African Daniel Krige, the Swedish Bertil Matérn, the Russian Andrey Kol-
mogorov, among others (KRIGE, 1951; MATÉRN, 1960; MATHERON, 1965; MATHERON;
KLEINGELD, 1987; CRESSIE, 1990; WEBSTER; OLIVER, 2007).

At first, the proposition of imagining the soil as being the result of randomness is
awkward (see, for example, Equation 2.1). However, pondering on the multitude of soil-
forming factors and processes, and on the complexity of their interactions (BOCKHEIM; GEN-
NADIYEV, 2010; GRUNWALD et al., 2011), as well as on the limitations of the existing
knowledge on soil spatial variation, one can easily conclude that soil is a chaotic media (WEB-
STER, 2000) – so why not treat it as such? One only had to imagine that the value of a soil
property observed at a given location simply was one that happened to be recorded by chance
among an infinitely large number of values that could have been recorded instead (WEBSTER,
2000). In other words, one had to imagine that, if a soil property is recorded multiple times at
the same location, the recorded values would not necessarily be the same. As such, a soil prop-
erty at a given location would not be described using a single absolute value, but a probability
distribution function (PDF), generally the normal (Gaussian), characterised by the mean and
variance of those “recorded” values. Accordingly, to describe the fact that soil property values
at nearby locations are more similar than at locations further apart – they covary, vary together
or jointly – would require a joint probability distribution function, characterised by the covari-
ance (WEBSTER; OLIVER, 1990; CRESSIE, 1993). The obvious difficulty in this approach
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is that the PDF cannot be defined because we usually have one single value recorded at each
observation location.

Different from its discrete counterpart, the continuous model of spatial variation takes
into account the relative location of existing observations when predicting a soil property at
a given unobserved location. In the simplest case, the most likely value of a soil property in
a given location is defined by a constant mean computed over all observations made in the
mapping region, plus a random variable with mean zero and (spatial) covariance that depends
only on the separation distance between locations (WEBSTER; OLIVER, 1990; CRESSIE,
1993). This prediction method is known as the best linear unbiased predictor (BLUP), usually
called ordinary kriging. The main idea underlying the continuous model of spatial variation
is that soil property values at nearby locations are more similar than at locations further apart
(WEBSTER; OLIVER, 1990). Thus, we err less if we predict the value of a soil property at a
given location with a value observed at a nearby location than with a value observed at a distant
location. Optimally, because the soil is a continuous media and its properties vary in space in
an autocorrelated fashion, we make the most accurate prediction taking a weighted average of
the values recorded at all observation locations, nearby locations receiving larger weights than
distant locations. In both cases, it follows that the uncertainty about the mapped soil property is
larger the farther from existing soil observations, i.e. it is spatially varying (CRESSIE, 1993).

2.4.3 Mixed Model of Spatial Variation

Availability of general-purpose computers fuelled the use and development of the con-
tinuous model of spatial variation, especially in European, North American, and Oceanian coun-
tries (HEUVELINK; WEBSTER, 2001; MCBRATNEY et al., 2003; SCULL et al., 2003). But
limitations in its prediction performance and developments in remote sensing and nonlinear
models helped many soil scientists to understand that the continuous model of spatial variation
had limitations too. For instance, it is unable to capture abrupt changes in the values of soil
properties that occur, for example, between agricultural fields, parent materials, land uses, and
so on (STEIN et al., 1988; VOLTZ; WEBSTER, 1990). Because, compared to the discrete
model of spatial variation, in its simplest form, the continuous model of spatial variation largely
ignores the existing pedological knowledge (GRUNWALD, 2009; LARK, 2012). Soil scientists
also understood that the discrete model of spatial variation was more efficient than previously
thought (BREGT et al., 1987; HEUVELINK; WEBSTER, 2001). First, because it was now
possible to employ the equation of soil-forming factors (Equation 2.1) for soil mapping using
remote sensing products as surrogates of the factors of soil formation (MOORE et al., 1993).
Second, nonlinear models enabled identifying complex spatial patterns that before could only
be identified by an experienced soil scientist (MCKENZIE; RYAN, 1999). The most logical
step was to combine the strengths of both discrete and continuous models of spatial variation
into a single model – the mixed model of spatial variation –, that is, inclusion of the existing
pedological knowledge and consideration of the spatial continuity of soil property values.

The mixed model of spatial variation10 can be viewed as a generalization of previously

10 The use that I give to the expression mixed model of spatial variation in this thesis is approximately equivalent
to expressions such as regression-kriging, kriging with external drift, universal kriging, hybrid approach for soil
mapping, pedometric mapping, digital soil mapping, predictive soil mapping, environmental correlation, geosta-
tistical mapping, soil-landscape modelling, and so on. As far as I know, soil spatial modellers have not yet reached
an agreement on how these “traditional” expressions should be used, nor what their “correct” meaning is. See,
for example, Hengl (2003), McBratney et al. (2003), Scull et al. (2003). Because the expression mixed model of
spatial variation has a stronger theoretical basis (other expressions are defined based on operational aspects), I
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existing models of spatial variation, by which a soil property, here denoted Y (s), at a given
spatial location symbolised as s is modelled as the outcome of a spatial stochastic process
(CRESSIE, 1993; HEUVELINK; WEBSTER, 2001; LARK et al., 2006). Accordingly, the
model is composed of fixed and random effects. The fixed effects, a deterministic large-scale
spatial trend, denoted m(s), describes the portion of the spatial variation of the soil property
that is explained with the factors of soil formation as suggested by the empirical correlation
calculated using point soil observations and spatially exhaustive covariates11. The random ef-
fects, also known as stochastic residuals or latent variables, denoted e(s), describe the portion
of the spatial variation of the soil property that cannot be explained with the covariates but is
potentially spatially correlated, the form and degree of this spatial correlation possibly being
interpreted pedologically (LARK, 2012). Thus

Y (s) = m(s) + e(s). (2.2)

Equation 2.2 possesses a great flexibility that facilitates to explore newly developed sta-
tistical and data-mining methods, generally resulting in better performance than the constituent
models alone, as well as integrating the existing pedological knowledge provided it is trans-
lated into a mathematical form (ODEH et al., 1994; ODEH et al., 1995; HEUVELINK, 1996;
MCBRATNEY et al., 2000; HENGL et al., 2004; LÓPEZ-GRANADOS et al., 2005; WEB-
STER; OLIVER, 2007; GRUNWALD, 2009; LARK, 2012). These features promoted the rapid
popularization of the mixed model of spatial variation, and many recent large scale soil-mapping
projects already successfully employed the mixed model of spatial variation (POGGIO; GI-
MONA, 2014; NUSSBAUM et al., 2014; HENGL et al., 2015).

2.4.4 Spatial Soil Modelling Steps

Despite the rapid technological developments observed recently, the activity of mod-
elling the soil remained essentially the same throughout human history. Soil maps still serve
the same old purpose of representing our limited understanding about the spatial organization
of the soil in the natural environment in a simplified manner, as well as giving insights about
how the soil came to be and how they should be managed (JENNY, 1941; HUDSON, 1992;
LEGROS, 2006; BLANCO-CANQUI; LAL, 2008; GRUNWALD, 2010). For this reason, irre-
spective of the method/model used to produce soil maps, perhaps we should use an (integrative)
expression such as soil spatial modelling instead of picking one out of the many currently used.

It follows that, based on the existing body of knowledge on soil spatial modelling and
the currently available technologies, we should try to define what it constitutes, in practice, the
soil spatial modelling activity. A suggested general (didactic) sequence of eight steps that we
believe represent what is or should be done in soil spatial modelling is presented below. The
first step is numbered zero (0) to emphasize its importance: we believe it to be a crucial step,
where political, economical and paradigmatic decisions have to be made. Many soil spatial

understand that its adoption and use is a more appropriate choice.
11 In the statistical literature, the term covariate is synonymous to explanatory variable, predictor variable, and
independent variable, and refers to the variable that, although not being of primary interest, is used in a model
because it determines the behaviour of the response variable or dependent variable (EVERITT, 2006). In soil
science, a covariate has the same statistical meaning, the difference being that they assume a pedological meaning
as well, i.e. they are viewed as proxies, indicators, substitutes, surrogates, approximations of the soil-forming
factors due to the simple fact that the soil-forming factors – the true environmental conditions that helped shape
the soil – are unknown and cannot be known. Covariates are defined spatially exhaustive when they cover the
entire area being modelled, i.e. they are exhaustively known in the entire geographic space.

14



2 Chapter I. Uncertainty in Soil Spatial Modelling

modelling projects are not implemented because this first step is not completed.

Step 0 Identify a reality or problem entity, the geographic region for which there is a demand
of spatial soil information. Target soil properties are appointed as well as the required
accompanying output information (e.g. metadata). A minimum required accuracy level
of the produced soil information can also be defined. Key modelling decisions are taken
in this step such as the support (punctual or areal), spatial resolution (and possibly the
cartographic scale), coordinate reference system, etc. Depending on how well defined the
demand is, the model of spatial variation can also be specified, i.e. discrete, continuous, or
mixed. Data policy is discussed (What data should be public? How to make data public?
How to implement the data policy?) and agreed upon. Finally, the available infrastructure,
budget, time, and workforce are specified so that next steps can be appropriately planned
as to fulfil the demand.

Step 1 Develop a conceptual model of pedogenesis, a verbal representation of the reality or
problem entity including the explicit description of soil-forming factors and processes
that determine the spatio-temporal distribution of soil properties. This requires gathering
the most of the existing environmental information contained in scientific articles, tech-
nical reports, books, websites, local knowledge, as well as existing maps of the soil, land
use, geology, digital elevation models, satellite images, aerial photographs, among others.
Environmental information is used to articulate pedogenetic concepts. Provided that any
of the existing soil data are available, an exploratory data analysis can help unravelling
soil-landscape relationships. The poorer the volume of existing environmental informa-
tion, and the less experienced the soil modeller is, the more important an exploratory field
campaign is to help understanding the existing soil-landscape relationships.

Step 2 Define the model of spatial variation, a translation of the conceptual model of pedogen-
esis into a set of possible mathematical representations. Depending on how well defined
the demand was, the model of spatial variation was already specified in Step 0. Pro-
vided the volume of existing environmental information and legacy soil data is moderate
to large and/or the soil modeller is very experienced and/or the available budget allows
carrying out exploratory field campaigns, a single model of spatial variation is defined,
i.e. discrete, continuous, or mixed. Assuming that the mixed model of spatial variation
is chosen, the statistical and/or data-mining models that will be used to represent the
discrete and continuous components are specified, taking into account the feasibility of
meeting their requirements given the available soil data, infrastructure, budget, time, and
workforce. If multiple models or statistical and/or data-mining models are chosen, the
pedological and statistical criteria for identifying the best performing model are defined.

Step 3 Prepare the modelling database, a collection of soil and covariate data needed to esti-
mate the parameters and test the chosen statistical and/or data-mining models. In some
rare cases the modelling database is already available and does not require any further im-
provement. If this is the case, then this step would have already been covered in Step 1.
However, in most cases this step requires preparing a sampling plan with formally defined
selection rules, making properly documented field soil observations, and running repli-
cated laboratory analyses. Soil data from different sources are harmonized. Covariates
are selected using the conceptual model of pedogenesis and empirical evidence. Both soil
and covariate data are assessed regarding the need for nonlinear transformations to meet
the requirements of the chosen statistical and/or data-mining models, and to improve their
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empirical correlation. Several of these tasks can be (and usually are) carried out with the
aid of a data processing environment (a computer).

Step 4 Estimate the parameters of the statistical and/or data-mining models, a task that es-
sentially depends on translating the set of possible mathematical representations of the
conceptual model of pedogenesis into a computer representation, that is, a computer code
or script. Developing a well documented computer code that describes all processing
steps ease re-design, future consistency checks, correction of mistakes, and dissemina-
tion/reproducibility. Calibrated models are evaluated using statistical criteria defined in
Step 2 such as goodness-of-fit measures, as well as regarding their tenability (pedologi-
cal evaluation). The latter includes visually assessing draft soil maps, and how well they
represent the range of possible mathematical models. Failure in any of these evaluations
suggests that the model requires adjustments, possibly more calibration data, or that it
can be discarded.

Step 5 Validate the statistical and/or data-mining models, preferentially predicting the values of
the modelled soil properties at a set of independent, probabilistically selected observation
locations for which the true values are known. If an independent set of observation lo-
cations is unavailable, validation is performed using leave-one-out cross-validation. The
best performing model is selected using the set of criteria defined in Step 2: this is the
best mathematical representation of the reality under study given the available data and
knowledge. If two or more models present similar performance and have a considerably
different structure, then (1) an aggregated version of these models is constructed or (2)
parsimony is considered to elect the simpler model with fewer variables, steps, rules,
etc. If previous steps have already allowed defining/selecting a single model, statistical
validation is used only to assess model accuracy.

Step 6 Make spatial predictions, the application of the best performing model(s) to predict soil
properties values at unvisited locations in the entire modelling region. If demanded, the
uncertainty about the predicted soil properties values (i.e. the prediction interval) is esti-
mated too. Maps of the target soil properties as well as the required accompanying output
information (e.g. point soil observations, covariate maps, uncertainty maps, metadata,
computer scripts) are delivered to the users of the soil information, and possibly used to
populate a spatial soil information system, where they are made available for inspection
using different visualization techniques. Provided there is infrastructure, budget, time,
and workforce available, modelling steps can be re-designed and the outputs updated at
the user request.

Step 7 Improve on the conceptual model of pedogenesis, the use of the knowledge gained dur-
ing the previous steps until the production of the soil property maps, which give insights
about the reality or problem entity under study, to correct and/or improve the description
of soil-forming factors and processes that determine the soil spatio-temporal distribution.
If demanded, the reformulated conceptual model of pedogenesis is delivered to the users
of the soil information as well to help in scenario analysis and decision making.

2.5 SOURCES OF UNCERTAINTY IN SOIL SPATIAL MODELLING

Soil spatial models, like any other model (BOX, 1976), are nothing more than a sim-
plification of reality. The reason for this is the fact that the existing knowledge and data are
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always (very) limited – we have to try our best with the available resources. This means that
soil spatial models are unable to explain the spatial soil variation in its entirety, but only a small
part of it (HEUVELINK, 1998; LEGROS, 2006). When we use a spatial soil model to produce
continuous representations of soil properties across space, i.e. soil maps, these continuous rep-
resentations will inexorably deviate from the “truth”. What the soil map presents is our most
likely expectation about the soil properties – not our certainty about them. The deviation from
the “truth” is what we call error.

Many examples from the soil spatial modelling literature show that, irrespective of the
soil property, spatial soil models have a quite variable predictive performance. In general, these
models explain between 15 % (or less) and (rarely more than) 75 % of the soil spatial variation
(MOORE et al., 1993; ODEH et al., 1994; GESSLER et al., 1995; MCKENZIE; RYAN, 1999;
GOBIN et al., 2001; SUMFLETH; DUTTMANN, 2008; SUN et al., 2012; ROSSEL et al.,
2013; NUSSBAUM et al., 2014; HENGL et al., 2015; GASCH et al., 2015; HEUNG et al.,
2016). Thus, because we cannot eliminate the uncertainty of a soil map, they can always be
considered as wrong, the difference being that some might be useful.

2.5.1 Soil Data

Soil modellers aim at producing the most accurate representations of the soil given the
available resources. Thus, a reasonable research program is the identification of the causes
for soil maps being more or less accurate. For instance, the error that results from making
extrapolations and interpolations to predict soil properties at unvisited locations is an important
source of uncertainty (HEUVELINK; PEBESMA, 1999; REFSGAARD et al., 2006). In the
case of data-centred soil models, such as the mixed model of spatial variation, these errors are
larger the farther we are from the existing observations. Thus, the most efficient way of reducing
these errors generally is to increase the number of observations and improve the spatial coverage
of the mapping region (BRUS; HEUVELINK, 2007). However, most soil spatial modelling
projects must rely on using only legacy soil data, i.e. soil data produced many years or decades
ago (KEMPEN et al., 2009; HENGL et al., 2014; POGGIO; GIMONA, 2014; NUSSBAUM et
al., 2014; MULDER et al., 2016).

Legacy soil data have weaknesses that can affect prediction accuracy. For example, the
size of the impact of using outdated soil data for predicting the current status of soil properties is
unknown. However, we can expect that this impact will be larger on the accuracy of predictions
of soil properties that are relatively more sensitive to land-use and climatic changes such as the
organic carbon content. This is one of the reasons for the high uncertainty of global estimates
of organic carbon storage in soils (HENGL et al., 2014). A second weakness is the generally
poor “quality” of soil legacy data for current uses. A poor quality arises from documentation
inconsistencies, diversity of field and laboratory methods, use of different measurement units
and nomenclature, absence of spatial positioning data, varying levels of precision and accu-
racy, among others (RIBEIRO et al., 2015). As for the use of outdated data, how much the
use of non-standardised and non-harmonised soil data affects soil spatial predictions remains
unknown. Finally, legacy soil data can poorly represent the mapping region due to bias in the
selection of observations locations. This location bias comes from soil modellers sampling pref-
erentially in complex and less known areas (to gain knowledge of soil-landscape relationships)
or by convenience in most easy access areas (to optimize the use of the available resources)
(ROSSITER, 2000; DE GRUIJTER et al., 2006).

Some times the budget of the soil spatial modelling project (fortunately) includes (addi-
tional) sampling. Then soil modellers have to decide upon the number and spatial configuration
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of the sample (DE GRUIJTER et al., 2006; WEBSTER; LARK, 2013). But this is not an
easy task, except if the goal is on modelling very few soil properties that can be rapidly mea-
sured using field sensors, and for which a model of spatial (co)variation can be assumed known
(MARCHANT; LARK, 2006). In most cases, several difficult-to-measure soil properties have
to be modelled, many of which have a poorly known structure of spatial (co)variation. If us-
ing the mixed model of spatial variation, the chosen spatial sample configuration has to be
appropriate for estimating the spatial trend (HENGL et al., 2003; MINASNY; MCBRATNEY,
2006) and the variogram model (WARRICK; MYERS, 1987; WEBSTER; OLIVER, 1992;
LARK, 2002), making spatial predictions (YFANTIS et al., 1987; WALVOORT et al., 2010)
and, (cross)validating spatial predictions (BRUS et al., 2011), four often conflicting objectives.
Besides, one must be careful not to decide upon collecting an insufficient or an exaggerated
number of soil samples. Under-sampling can result in soil models with large uncertainty, while
over-sampling can produce modelling benefits that do not outweigh the sampling costs (VAN
GROENIGEN et al., 1999).

Soil data can uniformly cover the geographic and/or feature spaces12, but at an observa-
tion density that still is unable to capture the main structures of correlated spatial variation of a
soil property. This is likely to happen when the range of correlated spatial variation is relatively
short (small scale variation) compared to the size of the mapping region (large scale variation)
(BURROUGH, 1983). Soil data can also have significant laboratory and positional errors (NEL-
SON et al., 2011). Besides, data on some soil properties may naturally contain more errors due
to conceptual definitions and analytical procedures employed. Take particle-size distribution as
an example. First, the errors are propagated to the fraction obtained by difference (silt). Second,
pre-treatments, such as organic matter oxidation, can change mineral structure (MIKUTTA et
al., 2005). And third, ignoring that the particle-size distribution is a compositional datum can
introduce bias in the predictions (LARK; BISHOP, 2007).

2.5.2 Covariate Data

Another important source of uncertainty is the covariate data used to calibrate the soil
models. Their effect appears as a poor correlation with soil properties being modelled, resulting
in poor predictions. Several are the possible reasons for the covariate data to be poorly cor-
related with the soil property. One of the them is the fact that the covariate data also contain
varying levels of error (HEUVELINK et al., 1989) which could make them poor proxies of the
soil-forming factors. These errors derive from the various methods of data generation, analytical
procedures and, inherent characteristics of each site. For example, digital elevation models usu-
ally present larger errors in areas with steep slopes, rough terrains, and high altitude, and with
dense forest cover or urbanized (FLORINSKY, 1998; TOUTIN, 2000; FISHER; TATE, 2006).
Interpolation of elevation data using kriging can produce spurious artefacts (HENGL; EVANS,
2009) compared to hydrologically consistent algorithms (HUTCHINSON, 1989). And stereo-
scopic correlation techniques generally produce digital elevation models with poorer quality

12 The feature space, also known as attribute space, is the multi-dimensional mathematical space defined by the set
of covariates used in a soil spatial modelling exercise. Specifically, if the number of covariates is equal to p, then
the feature space is a p-dimensional mathematical space. In contrast, the geographic space is the bi-dimensional
mathematical space defined by the geographic coordinates of the mapping region. Both spaces are finite in the
sense that they are bounded by the set of geographic coordinates that define the geographic limits of the study
area (or mapping region) and any existing non-mapping area. However, while the feature space is a discrete space
– the set of possible values attributed to the covariates is limited to the set of known existing covariate values –,
the geographic space is a continuous space – any pair of values can be attributed to the geographic coordinates
provided it is bounded by the geographic limits of the study area and any existing non-mapping area.
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than interferometric synthetic aperture radar (HIRT et al., 2010).
The method used to select which covariates to include in the soil spatial model can also

be a reason for soil maps to be in more or less error. This is because every method can select
considerably different sets of covariates, perhaps including a few that are poorly correlated
with soil properties. The selection of covariates is especially important because the number of
available (uncertain) covariates is large, many of which possibly being statistically redundant.

A pedologically sound approach for the selection of covariates is the elicitation of the
knowledge of a few experts (LARK et al., 2007; MEYER; BOOKER, 2001). An expert is every
soil modeller with long-term practical experience in soil spatial modelling and deep knowledge
of the mapping region, as expressed in the conceptual model of pedogenesis, as well as of the
soil and covariate data. However, it may be that the understanding about the mapping region
may be limited to a point that enables building only a very poor conceptual model of pedoge-
nesis. Take for example a geomorphologically complex, unstable landscape that consistently
suffers from natural and/or anthropogenic alterations. Establishing soil-landscape relationships
is very difficult in such circumstances, especially if the geomorphological complexity is in-
creased as the landscape is rejuvenated (STRECK et al., 2008). Similar uncertainty regarding
the soil-landscape relationships can arise in very old, stable surfaces of the tropics that have
gone through many environmental modifications, but were not affected by Pleistocene glacia-
tions (MCKENZIE; GALLANT, 2006). These landscapes commonly have polygenetic soils
that present properties reflecting today and ancient vegetation and climate (PAIN; OILIER,
1995; KER, 1998). One could wonder whether expert soil modellers would be more efficient at
identifying the covariates with the highest predictive power than sound statistical inference in
such circumstances.

A commonly used approach to select the covariates to enter a soil spatial model is au-
tomated selection. Automated covariate selection algorithms have always been relatively easy
to use (DRAPER et al., 1971) and are available in most software packages (HARRELL, 2001).
They generally deliver satisfactory results and are needed to automate soil spatial modelling
routines (HENGL et al., 2014). Each of them employs different search strategies. For example,
some methods analyse all possible combinations of covariates. Others simulate the process of
natural selection (ANDERSEN; BRO, 2010). Cross-validation selects covariates that produce
the best predictions on test sets (GUYON; ELISSEEFF, 2003). Other methods take into account
the order in which the covariates are added to (forward selection) or removed from (backward
elimination) the model (LARK et al., 2007). The stepwise method adds and removes covari-
ates until no further addition or removal results in significant changes in the model (DRAPER;
SMITH, 1998). Some prefer to use dimensionality reduction techniques to reduce the number
of covariates (MASSY, 1965) before running the covariate selection algorithm (TEN CATEN et
al., 2011; HENGL et al., 2014). Several other methods exist and have been used in soil spatial
modelling (POGGIO et al., 2013; NUSSBAUM et al., 2014). Because each algorithm employs
a different search strategy, they generally select different sets of covariates possibly with vary-
ing degrees of correlation with the soil property being modelled. The best covariate selection
algorithm can be identified, for example, using sound statistical inference made on external
validation data. However, this is rarely done and the most popular algorithm, or that imple-
mented in the available software package is used. Besides, there are evidences that the number
of problems associated with using automated covariate selection methods, and dimensionality
reduction techniques, can be greater than the number of advantages (FARRAR; GLAUBER,
1967; JACKSON, 1993; CHATFIELD, 1995; EDIRISOORIYA, 1995; HARRELL, 2001; JOL-
LIFFE, 2002; PERES-NETO et al., 2005; LARK et al., 2007; RATNER, 2010).

Despite the difficulties associated with using uncertain covariates and automated selec-
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tion algorithms, their contribution to the error in soil spatial modelling is poorly understood. For
example, more accurate covariate data may not necessarily be a better proxy of the soil-forming
factors. In very old and stable surfaces of the tropics such as described above, current soil prop-
erties are more due to past than to present environmental conditions. Present day covariate data
are not indicators of such environmental conditions. Indeed, “degrading” the accuracy of the
covariates to produce multiple representations of the landscape from moderate to large spatial
scales can yield more accurate predictions (BEHRENS et al., 2010). However, this multiplies
the number of covariates, increasing the need to better understand the effects of using automated
selection algorithms in soil spatial modelling.

2.5.3 Model Structure

The last source of uncertainty discussed here is the structure of the model of spatial
variation. Such a source of uncertainty arises from the fact that soil spatial variation can be
modelled using very different spatial models (Section 2.4). Based on the existing knowledge
and available data and resources, the soil modeller must decide between modelling the determin-
istic (discrete model) or the stochastic (continuous model) or both components (mixed model)
of soil spatial variation. Optimally, the best model structure is selected based on statistical in-
ferences made using external validation data. However, like covariate selection algorithms, soil
modellers usually select a single model, generally the most popular or that implemented in the
available software package.

The deterministic component of spatial variation, which uses information on the soil-
forming factors (i.e. covariates), usually has a larger ability to explain the structure of the large
scale soil spatial variation. For that end, besides the covariates (Section 2.5.2), soil modellers
have to choose the form of the model that will be used to account for the empirical relation
between covariates and soil properties. Early soil spatial modelling was based solely on using
mental models (or tacit models) that could account for many complex effects of the covariates
on soil properties (HUDSON, 1992). Later, due to developments in statistics, these mental
models were replaced with linear models (MOORE et al., 1993; ODEH et al., 1994). These
linear models account for the effects of the covariates on the soil property being modelled only
through a weighted sum of the individual effects of all covariates (HARRELL, 2001).

Developments in informatics introduced new forms of modelling soil-landscape rela-
tionships. Many soil spatial modellers started to employ nonlinear models such as classification
and regression trees, artificial neural networks, random forests, support vector machines, among
many others (MCBRATNEY et al., 2000; HEUNG et al., 2016). The main reason for the ready
adoption of these nonlinear models is that they usually have a greater ability to capture more
complex site-specific soil-landscape relations (GRUNWALD, 2009), possibly yielding more
accurate predictions.

Modelling the structure of the small scale soil spatial variation usually requires employ-
ing stochastic models. This can be done using both the continuous and mixed models of spatial
variation. Here the soil modeller has to decide upon the form of the spatial covariance function
(exponential, spherical, circular, Gaussian, linear, etc) (WEBSTER; OLIVER, 2007). Again,
the decision can be based on the existing pedological knowledge and on using statistical infer-
ences made with validation data. However, different spatial covariance functions yield spatial
predictions with similar accuracies, although the visual aspect of the resulting maps is consider-
ably different (LARK, 2000a). This also happens when modelling the deterministic component
of spatial variation (HEUNG et al., 2016). A solution is to aggregate the predictions of the
many different models, but this will not necessarily reduce our uncertainty.
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2.6 FINAL CONSIDERATIONS

The sources of uncertainty in soil spatial modelling are multiple and the list that has
been presented here is far from being comprehensive – others will do a better job. The main
message is that we cannot eliminate the uncertainty of a soil map and, as such, our knowledge
about the soil will always be limited. Despite of this, soil spatial models – and the entire body of
human knowledge – are still needed to guide our every-day actions. So, instead of eliminating
uncertainty, the real quest is for understanding it and its sources. For instance, if it happens to
us to gain knowledge that a source of uncertainty systematically affects our soil spatial models
in a very specific manner, then a corrective measure can be taken right away.

The most comprehensive way of dealing with the multiple sources of uncertainty is error
propagation analysis, also called uncertainty analysis (HEUVELINK et al., 1989; TAYLOR,
1997). This is done taking our uncertainty into account through all modelling steps, seeing
how it propagates, and evaluating its impact on the uncertainty about the output soil map. This
would allow us identifying the main source of uncertainty, so that we could try to take cor-
rective measures to improve its quality. But such an exercise is cumbersome, and the efforts
required may not outweigh the benefits, this being one of the main reasons why it is rarely
carried out (HEUVELINK et al., 2006; NELSON et al., 2011) – including this thesis. Another
important reason for error propagation analysis being unpopular is the common ignorance and
lack of understanding – perhaps prejudice – about error and uncertainty (WECHSLER, 2003;
HEUVELINK, 2005).

Considering the difficulties with implementing a sound error propagation analysis –
given the available resources –, it seems reasonable to devise studies limited to only a few
sources of uncertainty. The knowledge on the sources of uncertainty gathered here suggests
that the calibration and covariate data, and the model structure should be the focus of such
studies. In general, the main decisions made by soil spatial modellers concern these three top-
ics. However, fine tuning the model structure seems to strongly depend on the existing soil
and covariate data. For example, capturing the moderate to large scale structures of soil spatial
variation largely depends on using covariates that depict environmental conditions at multiple
scales. This also requires the soil data to cover the feature and geographic spaces. On the
other hand, capturing the structure of the short range spatial variation depends on having soil
observations at short distances. Thus, it may be that evaluating the impact of soil and covariate
data on prediction accuracy should precede that of the model structure. Besides, gathering soil
and covariate data have a larger weight on the costs of soil spatial modelling that choosing the
model structure.
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3.1 RESUMO

O conjunto de dados de Santa Maria compreende dados do solo de n = 410 observações feitas
entre 2008 e 2013 na bacia do reservatório do Departamento Nacional de Obras de Saneamento-
Companhia Riograndense de Saneamento (DNOS-CORSAN), localizada no estado brasileiro
do Rio Grande do Sul. Esses dados do solo foram produzidos no âmbito de projetos de pesquisa
que visam a produção de mapas semi-detalhados do solo e do uso da terra, e prever o estoque
superficial de carbono no solo e sua vulnerabilidade à erosão. Todos os locais de observação
foram selecionados intencionalmente ou por conveniência. Várias características ambientais fo-
ram descritas nos locais de observação, tais como o uso da terra, geologia, classificação do solo,
declividade, condições de drenagem, presença de fragmentos grosseiros e afloramentos rocho-
sos, cobertura do solo com vegetação, entre outras peculiaridades de cada local de observação
que não foram registradas de uma forma sistemática. As amostras do solo foram submetidos
à análise de laboratório para determinar o conteúdo de carbono orgânico no solo, a distribui-
ção do tamanho de partículas, a densidade e o conteúdo de bases (cálcio, magnésio, potássio e
sódio) e acidez trocáveis. A capacidade de troca de cátions efetiva foi calculada como a soma
das bases e acidez trocáveis. Os dados do solo estão disponíveis gratuitamente em um reposi-
tório hospedado no GitHub. Eles incluem a identificação de todos os locais de observação, as
suas coordenadas geográficas, e dados de campo e de laboratório. O número de repetições de
laboratório e o desvio padrão amostral também são fornecidos.

Palavras-chave: Modelagem espacial do solo. Amostragem intencional. Dados legados. Des-
crição do solo no campo. Análise laboratorial do solo.
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3.2 ABSTRACT

The Santa Maria dataset comprises soil data from n = 410 soil observations made between
2008 and 2013 in the catchment of the reservoir of the Departamento Nacional de Obras
de Saneamento-Companhia Riograndense de Saneamento (DNOS-CORSAN), located in the
southern Brazilian state of Rio Grande do Sul. These soil data were produced within the scope
of research projects that aimed at producing semi-detailed soil and land use maps, and predict-
ing topsoil carbon stock and vulnerability to erosion. All observation locations were selected
purposively or by convenience. Several environmental features were described at the observa-
tion locations, such as land use, geology, soil classification, slope, drainage condition, presence
of coarse fragments and rock outcrops, soil coverage with vegetation, among other peculiar-
ities of each observation location that were not recorded in a systematic way. Soil samples
were submitted to laboratory analysis to determine the soil organic carbon content, particle size
distribution, bulk density, and the content of exchangeable bases (calcium, magnesium, potas-
sium, and sodium) and acidity. The effective cation exchange capacity was calculated as the
sum of exchangeable bases and acidity. The soil data is freely available in a repository hosted
in GitHub. These include the identification of all observation locations, their geographic co-
ordinates, and field and laboratory data. The number of laboratory replicates and the sample
standard deviation is provided as well.

Keywords: Spatial soil modelling. Purposive sampling. Legacy data. Soil field description.
Soil laboratory analysis.
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3.3 INTRODUCTION

The Santa Maria dataset comprises soil data from n = 410 soil observations made
between 2004 and 2013 in the catchment of the reservoir of the Departamento Nacional de
Obras de Saneamento-Companhia Riograndense de Saneamento (DNOS-CORSAN), hence-
forth called DNOS catchment, located in the southern border of the Plateau of the Paraná Sedi-
mentary Basin, in the city of Santa Maria, state of Rio Grande do Sul, Brazil. Soil observations
cover the northern sector of the DNOS catchment – an area of ±2000 ha, which corresponds
to ±60 % of the entire catchment. These soil data were produced during the development of
research projects that aimed at producing semi-detailed soil and land use maps (cartographic
scale of 1:25 000) (PEDRON, 2005; MIGUEL, 2010; SAMUEL-ROSA et al., 2011; MIGUEL
et al., 2011), and predicting topsoil carbon stock and vulnerability to erosion (SAMUEL-ROSA,
2009; MOURA-BUENO, 2012; MIGUEL, 2013).

This chapter presents a thorough description of the soil data contained in the Santa Maria
dataset. A thorough description of the procedures for soil sampling and description, as well as
the analytical methods employed13 is given. Soil data is also described using summary plots
with descriptive statistics.

The chapter is divided in four sections. Section 3.4 presents general information about
the data, as well as the structure of the database where they have been stored and managed.
Next, Section 3.5 describes how field soil observation was carried out in each of the different
project that contributed with soil data to the Santa Maria dataset. Methods used to describe the
soil in the field are described in Section 3.6. Section 3.7 closes the chapter with a description of
the laboratory methods used to produce data on physical and chemical soil properties.

3.4 DATABASE STRUCTURE

The soil data contained in the Santa Maria dataset, as well as the code used in its pro-
cessing, is freely available in the web-based Git repository <https://github.com/samuel-rosa/
dnos-sm-rs-general/>. This is the same repository containing the ground control data (Sec-
tion 4.4) The repository has the following folder structure:

dnos-sm-rs-general
|- code/ # source code folder
| - R/ # R source code folder
| - general.R # R source code file
|
|- data/ # soil data folder
| - fieldData.csv # field data file
| - fieldMetadata.csv # field metadata file
| - labData.csv # laboratory data file
| - labMetadata.csv # laboratory metadata file
|- README.md # description of the repository

Soil data files are available as comma-separated values (CSV) files. The identification

13 The reader should be aware that soil science evolved in Brazil following a somewhat different pathway than
in the countries of the northern hemisphere due to the specific soil features of tropical and subtropical regions.
Methods have been adapted along the years, possibly leading to nomenclature mismatches. The reader is invited
to contribute to solve any problems in this document.
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of all observation locations, their geographic coordinates, and field and laboratory data are con-
tained in files fieldData.csv and labData.csv, respectively. Files fieldMetadata.csv
and labMetadata.csv contain the metadata. The coordinate reference system (CRS) is
WGS 84, coded EPSG:4326 by the European Petroleum Survey Group (EPSG).

Every soil property is identified with a code composed of three or four capital letters.
For example, soil organic carbon is identified with ORCA. A column containing the number of
laboratory replicates is identified with the code of the soil property followed by the letter “N”.
The column containing the sample standard deviation is identified in the same manner, but using
“SD”. For example, ORCA_N and ORCA_SD.

3.5 FIELD SAMPLING

The Santa Maria dataset is composed of three subsets which are described in the next
three sections. Together, these subsets yield a sampling density of about±0.18 observations per
hectare, with an average separation distance between two neighbouring points of 180 m, mini-
mum and maximum separation distances of 18 and 328 m, 95 % of neighbouring observations
being separated by more than 49 m.

3.5.1 Subset I

The first subset (n = 340, Figure 3.1) was produced between 2008 and 20011 as part
of projects that aimed at producing semi-detailed soil and land use maps, and predicting topsoil
carbon stock and vulnerability to erosion (SAMUEL-ROSA, 2009; SAMUEL-ROSA et al.,
2011; MIGUEL et al., 2011; MOURA-BUENO et al., 2012; SAMUEL-ROSA et al., 2013).
The researchers faced several difficulties with a budget cut and shortage of workforce. They
also had restricted access to several areas due to geographic barriers and prohibition of access
by some landowners. These difficulties forced the researchers to reduce the originally aimed
number of observations (n = 500) during the development of the project.

All observation locations were selected purposively or by convenience. Tacit knowl-
edge (Section 2.4.1 and Section 7.5.1) was the main tool to choose the observation locations, a
process that was carried out in the office using 1 m spatial resolution Google Earth® imagery of
the years of 2008 and 2009. The main goal of the researchers was to obtain a sample that they
understood as being representative of the different landforms, land uses, and soil taxa present
in the DNOS catchment. They also wanted the observations to be spread throughout the entire
DNOS catchment.

At the observation locations, the researchers defined an area of ±100 m2 within which
they opened three soil pits up to a depth of 20 cm. Soil samples were collected up to a depth of
20 cm, the depth being measured with a ruler. The resulting sampling depth of Subset I varies
from 2 to 20 cm, with an average of 17 cm. This variation of the vertical sampling support14 was

14 Sample support refers to the shape, size and orientation of sampling units, the latter being the smallest single
entity that we are able or choose to observe in the universe of interest, i.e. the sampling region. A discrete universe
such as a forest is defined by the collection of these single entities. However, by definition, such single entities
have no real, physical existence in continuous universes such as the soil – their “existence” require our prior, more
or less arbitrary, definition of their shape, size and orientation. This definition is usually based on theoretical and
practical considerations. For example, the sampling unit can be defined as a roughly polygonal block that is large
enough to encompass the pattern of small-scale local vertical (≤ 2 m) and horizontal (1–10 m2) variability of soil
properties – a pedon. Depending on the size of the sampling unit relative to the universe of interest, the sample
support is referred to as areal or point sample support. A pedon of 10 m2 area observed in an agricultural field of
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not a problem for the researchers because their goal was to sample the topsoil. The topsoil was
defined as the topmost soil layer, with a thickness equal or inferior to 20 cm, being the soil layer
most susceptible to degradation induced by poor agricultural practices and land use changes.

Soil samples from the three pits opened in each sampling area were used to produce
a composite sample which was used for laboratory analyses. Subsurface soil features were
observed with an auger in each pit, and the average (continuous variables) or most common
(categorical variables) value recorded. Note that soil sampling was done using an areal hori-
zontal support – an area of ±100 m2. However, the shape and exact area of the sampling units
are unknown, and georeferencing took place at point support.

Figure 3.1: Spatial distribution of the soil observations contained in Subset I (n = 340, black solid
circles) and Subset III (n = 10, red stars) of the Santa Maria dataset. The drainage network
is shown in the background (blue dashed line) to give an idea of how the locations of soil
observations is related to terrain features.

Georeferencing was done in the field using a Global Navigation Satellite System (GNSS)
receiver with a horizontal positional error of less than 8 m positioned approximately at the cen-
tre of the sampling area. Sometimes, the horizontal positional error was larger than 8 m due

1 ha corresponds to the areal sample support. However, the same pedon observed in a catchment of 200 ha would
correspond to the point sample support.
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the effects of vegetation, terrain, and satellite configuration. In these cases, observation loca-
tions were georeferenced in the office using 1 m spatial resolution Google Earth® imagery with
positional horizontal error of 6 m (Table 4.5).

Every observation was identified with a number in increasing order, following the order
in which the observations were made (1–340). A total of 17 field campaigns were carried out,
yielding an observation density of about 18 observations per km2 (Chapter VI).

3.5.2 Subset II

The second subset (n = 60, Figure 3.2) was produced in the years 2012 and 2013,
and was intended to constitute an independent dataset for validation purposes. Because of the
many access limitations (geographic barriers and prohibition by landowners) and shortage of
workforce, budget, infrastructure and time faced in previous field campaigns, researchers chose
to employ transect (cluster) sampling (MIGUEL et al., 2011; MOURA-BUENO et al., 2012;
SAMUEL-ROSA et al., 2013). They started defining the population of transects using their
knowledge of the study area, taking into account the factors that they thought determined the
spatial distribution of soil properties. Each researcher (three) delineated m = 60 easily ac-
cessible, straight transects of 400 m following the spatial gradients of selected environmental
features (topography, geology, vegetation, land use, and soils), totalling 180 transects. Accord-
ingly, knowledge of existing roads, human settlements, water bodies, and other access limita-
tions was used as well. The activity was carried out using 1 m spatial resolution Google Earth®

imagery of the years of 2008 and 2009.
Twelve out of them = 180 transects were randomly selected using as many iterations as

necessary until there were no intersecting transects, and there was at least one transect in each of
the three major morphostructural units of the DNOS catchment (Planalto, Rebordo do Planalto,
and Depressão Periférica) (Chapter IV). Finally, n = 5 observation locations, separated by
equidistant intervals of 100 m, were selected in each transect. Observation locations were named
with a number in increasing order, following the order in which the observations were made,
starting from 341 (341–400).

The location of the observations was identified in the field using a GNSS receiver with a
horizontal positional error of less than 8 m. Soil sampling and description was carried out using
the same procedure used with Subset I, except for the fact that a single soil pit was opened
within a radius of 2 m from the predefined observation location. More accurate geographic
coordinates were collected in the field using a Differential Global Positioning System (DGPS)
with a horizontal positional error of less than 1 cm.

3.5.3 Subset III

The third subset (n = 10) contains data compiled from the studies of Pedron (2005) and
Miguel (2010), specifically from the uppermost A horizon of modal soil profiles (point support)
whose locations were purposively selected using tacit knowledge after a preliminary area-class
soil map had been produced and/or the observations included in Subset I had been made.

Pedron (2005) and Miguel (2010) aimed at observation locations that they understood
as being most representative of the soil mapping units depicted in their respective area-class
soil maps. A single soil sample was taken from each of the described soil horizons and used
for laboratory analysis. The resulting thickness of the uppermost A horizons varies from 12
to 30 cm, with a mean of 22.6 cm. Georeferencing was carried using a GNSS receiver with
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Figure 3.2: Three soil spatial modellers manually drew 180 straight transects (black dotted lines) aligned
in the direction of maximum expected spatial variation of environmental conditions. They
avoided locations where it was known that geographic barriers or landowners would impede
the access to make soil observations. Twelve transects were probabilistically selected using
simple random sampling to yield n = 60 validation observations (red solid circles) separated
by equidistant intervals of 100 m. The drainage network is shown in the background (blue
dashed line) to give an idea of how the location and direction of transects is related to terrain
features.

a horizontal positional error of less than 8 m positioned at the observation location. Data are
identified in the Santa Maria dataset using the same identification that was used in the studies
from which they were compiled.

3.6 FIELD DESCRIPTION

Several environmental features were described at the observation locations. This sec-
tions present a summary description of how this description was done, specially for subsets I
and II, which have not been documented before. For subset III, a thorough explanation of how
field description was done is given by Pedron (2005) and Miguel (2010).
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Despite the different origins of the datasets, soil sampling and description guidelines
are very similar. As such, merging field descriptions from subset III with those of subset I and
II was easy, rarely requiring conceptual translations and adaptations – this practice is reported
when used.

Finally, the code used in the database to identify each of the variables described in the
field is presented between parenthesis using fixed-width or monospace font.

3.6.1 Land Use and Vegetation

Land use (LAND) was assessed at the time of sampling using data collected in the field.
Five land uses were identified using nomenclature of FAO (2006) (Figure 3.3):

animal husbandry Native grasslands used for animal husbandry.

crop agriculture Annual and biannual crop agriculture.

forestry Plantations of Eucalyptus spp. and Pinus spp..

native forest Primary or secondary native forests.

shrubland Abandoned areas with predominance of shrub-sized vegetation, known in Brazil
as capoeira.

Figure 3.3: Distribution of land use types in the Santa Maria dataset. Most soil observations were made
in areas used for animal husbandry although more that half of the area is occupied with
native forest (Section 4.9).

Other land uses are observed in the study area such as human settlements and water
bodies (Section 4.9). However, due to access constraints, soil observations were not made in
areas under these land uses.
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3.6.2 Geology

Soil parent material (PARENT) was inferred in the field from direct observation of soil
properties and local environmental features. Two classes were identified using nomenclature of
(FAO, 2006):

igneous Soil derived from the in sutu weathering of igneous rocks.

sedimentary Soil derived from the in sutu weathering of sedimentary rocks, or from sedi-
ments of igneous and/or sedimentary rocks.

Underlying geologic formation (GEO) and lithology (LITHO) were inferred based on
soil properties and environmental features observed in the field, and on existing area-class soil
maps (Section 4.6) geologic maps (Section 4.8).

3.6.3 Soil Classification

The most likely taxon (TAXON) of the Brazilian System of Soil Classification (SiBCS)
(SANTOS et al., 2013) was inferred in the field using data obtained from direct observation of
soil properties (20 cm-deep soil pits and auger holes down to the diagnostic subsurface horizon
or bedrock) and local environmental features. These data were then interpreted using the bases
and concepts of the SiBCS to identify the most likely taxon up to the second taxonomic level
of the SiBCS. Further levels of the SiBCS were not considered because making any sort of
inference would require data that were not observable in the field. Eleven taxa were identified
(Figure 3.4):

CX Cambissolo Háplico. Moderately developed soil.

GX Gleissolo Háplico. Poorly drained greyish soil with a somewhat constant clay content
throughout the profile.

PA Argissolo Amarelo. Soil with significant increase of the clay content with depth, and with
a yellowish B horizon.

PBAC Argissolo Bruno-Acinzentado. Soil with significant increase of the clay content with
depth, and with an upper B horizon slightly darker than the lower B horizons.

PV Argissolo Vermelho. Soil with significant increase of the clay content with depth, and with
a reddish B horizon.

PVA Argissolo Vermelho-Amarelo. Soil with significant increase of the clay content with
depth, and with a reddish-yellowish B horizon.

RL Neossolo Litólico. Poorly developed soil.

RQ Neossolo Quartzarênico. Deep sandy soil derived from sediments.

RR Neossolo Regolítico. Poorly to moderately developed soil.

RY Neossolo Flúvico. Poorly developed soil derived from alluvial sediments.

SX Planossolo Háplico. Poorly drained greyish soil with significant increase of the clay content
with depth.
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Figure 3.4: Distribution of soil taxa in the Santa Maria dataset. Most soil observations were classified as
Neossolo Litólico and Argissolo Bruno-Acinzentado. The proportions approximately agree
with the information conveyed by existing area-class soil maps (Figure 4.2).

3.6.4 Slope

The slope gradient (SLOPE, %) was measured using a clinometer, the observer and
target being at a constant height above the ground (Figure 3.5). The distance between observer
and target was between 30 m (dense forests) and 50 m (open fields).

3.6.5 Drainage

Soil drainage status (DRAIN) was inferred visually from soil features observed with an
auger using the classification scheme proposed by Santos et al. (2013). Four drainage classes
were identified (Figure 3.6):

poorly Water is removed from the soil so slowly that the profile remains wet for much of the
time.

somewhat poorly Water is removed slowly from the soil, so that it remains wet for a sig-
nificant period, but not during most of the year.

moderately well Water is removed from the soil somewhat slowly, so that the profile
remains wet for small but significant period of time.

well Water is removed from the soil with ease but not rapidly.
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Figure 3.5: Distribution of slope gradient in the Santa Maria dataset. Most soil observations were made
in areas with a slope gradient < 25 %.

Figure 3.6: Distribution of drainage classes in the Santa Maria dataset. Most soil observations were
made in areas with well drained soil.
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3.6.6 Coarse Fragments and Rock Outcrops

Presence of coarse fragments (FRAG) – soil material of diameter > 2 mm – was de-
scribed as a binary variable, that is, a value of 1 (one) was annotated when coarse fragments
were present, and 0 (zero) otherwise. The same approach was adopted to describe the pres-
ence of rock outcrops (ROCK). The quantity of coarse fragments (GRAVEL, %) was estimated
visually in some observation points.

It is worth noting that the approach employed to describe the presence of coarse frag-
ments and rock outcrops is not in line with the standard soil description guidelines currently
used in Brazil. The reason for recording only their presence/absence is that the actual content
was not of primary interest at the time of sampling.

3.6.7 Canopy

Soil coverage with vegetation, an estimate of the density of stand or plant cover, (CANOPY)
was inferred visually in the field using three classes:

low < 25 %

medium 25–75 %

high > 75 %

3.6.8 Additional Information

Additional information was recorded at each observation location during the field cam-
paigns. They refer to peculiarities of each observation location and were not recorded in a
systematic way.

3.7 LABORATORY ANALYSIS

Several laboratory analysis were performed with the soil samples collected in the DNOS
catchment. This sections present a summary description of how this analyses were done, spe-
cially for subsets I and II, which have not been documented before. For subset III, a thorough
explanation of how laboratory analyses were done is given by Pedron (2005) and Miguel (2010).

Despite the different origins of the datasets, laboratory analyses protocols are very sim-
ilar. As such, merging the results of laboratory analyses from subset III with those of subset I
and II was easy, rarely requiring the use of conversion factors – this practice is reported when
used. In all three datasets, soil samples were air dried, crushed and passed through a 2 mm-sieve
prior to laboratory analyses. For datasets I and II, one or more laboratory replicates were used
to enable calculating analytical errors.

The same coding standard used with field description variables is used here, i.e. the code
used in the database is presented between parenthesis using fixed-width or monospace font.

3.7.1 Soil Organic Fraction

The soil organic carbon content (ORCA, g kg−1) was determined using wet combustion
(YEOMANS; BREMNER, 1988; MEBIUS, 1960; TEDESCO et al., 1995; CLAESSEN et al.,
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1997) (Figure 3.7).
Sample aliquots of 0.050–0.500 g were placed in glass digestion tubes (80 ml). The

amount of sample used varied according to the ORCA estimated by visual interpretation of soil
colour. Every digestion tube received an aliquot of 10 ml of sulfochromic solution15 [0.067 mol L−1

potassium bichromate solution (K2Cr2O7) in the presence of concentrated sulphuric acid (H2SO4)]
and a small reflux funnel to avoid loss of reagent during digestion. A digestion block with ca-
pacity for 40 samples was used: 36 tubes with soil sample plus 3 tubes with blank plus 1 tube
with H2SO4 and a thermometer for temperature check. Digestion at 150 ◦C last 30 min. Three
blanks were prepared and set aside at room temperature to estimate the loss of reagent due to
heat in the digestion block.

After digestion the tubes were set aside at room temperature to cool down. Next, the
solution was transferred to Erlenmeyer flasks (250 ml) with 60 ml of distilled water and 2 ml of
concentrated orthophosphoric acid [H3PO4] and 3 drops of 1 % diphenylamine. The solution
was titrated using 0.1 mol L−1 ammonium ferrous sulphate (FeSO4(NH4)2·6 H2O) until persis-
tent green colour. The results were multiplied by 1.11 to correct the estimated soil organic
carbon content to the standard analytical method (dry combustion).

Figure 3.7: Distribution of organic carbon content (g kg−1) in the Santa Maria dataset.

Observations compiled from Pedron (2005) had their soil organic matter content deter-
mined instead of the soil organic carbon content. Sample aliquots of 2.5 ml were placed in Er-
lenmeyer flasks (50 ml). Every Erlenmeyer flask received an aliquot of 15 ml of 0.067 mol L−1

sulfochromic solution (Na2Cr2O7 + H2SO4). The flasks were heated in a water bath at 75–80 ◦C
during 30 min and shaken for 5 min. A water aliquot of 15 ml was added to the flask and let
overnight (15–18 h).

In the next day, an aliquot of 3.0 ml was sampled to a small plastic cup with 3.0 ml of
distilled water. The absorbency of the supernatant was measured at 645 nm. The estimated soil
organic matter content was transformed to soil organic carbon content assuming that 58 % of the

15 See a detailed description of the sulfochromic solution, or chromic acid, at Wikipedia.
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soil organic matter is composed of organic carbon. The resulting transformed ORCA value was
assumed to be equivalent to soil organic carbon content measured using the standard analytical
method (dry combustion). The results are expressed using a volume-basis and were converted
to a mass-basis using a 1:1 relation because the mass of the sample aliquot used in the analyses
is unknown.

3.7.2 Particle Size Analysis

Particle size analysis was performed using the pipette method (CLAY, < 0.002 mm,
g kg−1), with the sand fraction (SAND, 0.053–2 mm, g kg−1) determined by wet sieving, and
the silt fraction (SILT, 0.002–0.053 mm, g kg−1) calculated by difference (CLAESSEN et al.,
1997). The analytical procedure includes adaptations16 of the method of the Soil Conserva-
tion Service of the United States Department of Agriculture (SOIL CONSERVATION SER-
VICE, 1972) made by the Soil Physics Laboratory of the Universidade Federal de Santa Maria
(SUZUKI et al., 2004b; SUZUKI et al., 2004a).

Before particle size analysis, all soil samples with organic matter content > 5 % – es-
timated assuming that 58 % of the soil organic matter is composed of organic carbon – were
submitted to oxidative treatment with hydrogen peroxide (H2O2). For this end, an aliquot of
20 g of soil was placed in a 1000 ml Beaker, to which 15 ml of distilled water and 5–15 ml of
30 % H2O2 were added – the larger the ORCA, the smaller the quantity of H2O2 added to avoid
loss of material due to the strong frothing that usually takes place during the first addition of
H2O2. The mixture was homogenized and covered with a watch glass and allowed to stand for
12 h, when another 5–15 ml of H2O2 was added. The addition of 5–15 ml of H2O2 continued at
approximately regular intervals of 6 h until the mixture did not present any more effervescence
(frothing). The Beaker was transferred to hot plate at a temperature of 50 ◦C to evaporate the
excess water and remove any remaining H2O2. All H2O2-treated soil material was transferred
quantitatively to a tared 100 ml glass container and put to dry overnight in an oven at 45 ◦C.
When the soil material was completely dry, the glass container was transferred to a desicca-
tor chamber where it was let to cool for 30 min. Then, the glass container was weighted with
0.001 g accuracy to estimate quantity of soil material remaining after the H2O2 treatment.

For particle size analysis, a sample aliquot of 20 g (or approximately 20 g when the
material was submitted to oxidative treatment with H2O2) was placed in a 100 ml glass con-
tainer (height: 10.5 cm; diameter: 2.75 cm; weight: 85 g). Two nylon spheres with a diameter
of 1.71 cm and weighting 3.04 g (density: 1.11 g cm−1) were added to act as physical disag-
gregating agents. Then, an aliquot of 10 ml of 1 mol L−1 sodium hydroxide (NaOH) solution
was added to act as chemical dispersing agent along with 40 ml of distilled water. The glass
container was closed with a plastic cap, manually shaken for 10 s, and placed in a horizontal
mechanical shaker with capacity for 85 samples. The suspension was left to stand overnight
(10 h). In the next day the suspension was submitted to horizontal mechanical agitation during
4 h at 120 cycles per minute.

After horizontal agitation, the suspension was poured in a plastic graduated cylinder with
capacity for 1000 ml using a glass funnel and a metal sieve to hold the two nylon spheres. The
suspension in the graduated cylinder was completed to 1000 ml and homogenized using a hand
stirrer (30 s). The suspension was allowed to stand on a vibration-free table to settle the clay

16 As far as I know, a comprehensive description of this method has not been published so far, neither in Por-
tuguese nor in English. You can visit the homepage of the Soil Physics Laboratory of the Universidade Federal
de Santa Maria at <https://coral.ufsm.br/fisicadosolo/> to get more information about the method or contact their
developers.
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Figure 3.8: Distribution of clay content (g kg−1) in the Santa Maria dataset.

fraction (< 0.002 mm) to a depth of 5 cm. The settling time needed was calculated using the
Stokes’ law with the temperature measured in a graduated cylinder filled with distilled water.
After settling, an aliquot of 50 ml of the suspension was collected at a depth of 5 cm using a
hand volumetric pipette. The aliquot was transferred to a tared moisture Beacker and put to dry
overnight at 105 ◦C. When the material was completely dry, the Beacker was transferred to a
desiccator chamber where it was let to cool for 30 min. Then, the Beacker was weighted with
0.001 g accuracy to estimate CLAY (Figure 3.8).

The suspension remaining in the plastic graduated cylinder after the 50 ml-aliquot had
been collected was passed through a 0.053 mm sieve. The material retained in the sieve was
washed thoroughly with water tap. The remaining material was quantitatively transferred to a
tared moisture Beacker and put to dry overnight at 105 ◦C. When the material was completely
dry, the Beacker was transferred to a desiccator chamber where it was let to cool for 30 min.
Then, the Beacker was weighted with 0.001 g accuracy to estimate SAND.

3.7.3 Soil Density

The bulk soil density (BUDE, Mg m−3) at the soil surface was determined using the
core method with a metallic ring (height: 3 cm; diameter: 5 cm) (CLAESSEN et al., 1997)
(Figure 3.9).

The bulk soil density was not determined in the locations where the soil was very shallow
or stony.
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Figure 3.9: Distribution of bulk density (Mg m−3) in the Santa Maria dataset.

3.7.4 Exchangeable Bases and Acidity

The exchangeable calcium (CALC, mmol kg−1) and magnesium (MAGN, mmol kg−1)
were determined by atomic absorption spectroscopy after extraction with 1.0 mol L−1 KCl so-
lution (CLAESSEN et al., 1997). The exchangeable sodium (SODI, mmol kg−1) and potassium
(POTA, mmol kg−1) were extracted with a 0.05 mol L−1 HCl solution plus 0.025 mol L−1 H2SO
(Mehlich-1 solution). Both were quantified by means of flame atomic emission spectrometry
(TEDESCO et al., 1995).

The exchangeable acidity (EXAC, mmol kg−1) was extracted using the same 1.0 mol L−1

KCl solution used to extract the exchangeable calcium and magnesium. It was determined by
titrimetry with 0.025 mol L−1 NaOH solution (CLAESSEN et al., 1997).

The effective cation exchange capacity (ECEC, mmol kg−1) was defined as the sum of
exchangeable bases and exchangeable acidity (Figure 3.10), i.e.

ECEC = CALC + MAGN + POTA + SODI + EXAC.
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Figure 3.10: Distribution of effective cation exchange capacity (mmol kg−1) in the Santa Maria dataset.
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4 CHAPTER III

THE SANTA MARIA DATASET. PART II – COVARIATE DATA

* This chapter is based on the studies Identifying and correcting oblique striping in the Topodata digital elevation
model, presented at the XXXIV Brazilian Congress of Soil Science (SAMUEL-ROSA et al., 2013), and Evaluation
of freely available ancillary data used for detailed soil mapping in Brazil, presented at the EGU General Assembly
2014 (SAMUEL-ROSA et al., 2014a). Also collaborated in the preparation of this document: Pablo Miguel
(UFPel), Jean Michel Moura Bueno (UFSM), Ricardo Simão Diniz Dalmolin (UFSM), Lúcia Helena Cunha dos
Anjos (UFRRJ), Gustavo de Mattos Vasques (Embrapa Solos), and Gerard B. M. Heuvelink (ISRIC – World Soil
Information).
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4.1 RESUMO

O conjunto de dados de Santa Maria compreende uma lista de mais de p = 100 covariá-
veis espacialmente exaustivas produzidas nos 1980s, 1990s, and 2000s cobrindo a bacia do
reservatório do Departamento Nacional de Obras de Saneamento-Companhia Riograndense de
Saneamento (DNOS-CORSAN), localizada no estado sulista brasileiro do Rio Grande do Sul.
Essas covariáveis foram derivadas de cinco fontes disponíveis gratuitamente em dois níveis de
detalhe espacial: mapas areais de classes de solo (escala cartográfica de 1:100 000 e 1:25 000),
modelos digitais de elevação (dados orbitais de radar com resolução espacial de 90 m e dados
de curvas de nível com escala cartográfica de 1:25 000), mapas geológicos (escala cartográfica
de 1:50 000 e 1:25 000), mapas de uso da terra (escala cartográfica de 1:25 000 e 1:2000), e ima-
gens de satélite (resolução espacial de 30 e 5 m). Esses dados de covariáveis são o resultado de
projetos que visaram modelar várias características ambientais e foram realizados como parte
de iniciativas locais (solo, geologia, uso da terra), regionais (terreno, uso da terra) e globais
(terreno, uso da terra) de mapeamento. Os dados de covariáveis estão disponíveis gratuitamente
em uma base de dados do GRASS GIS hospedada nos servidores do MEGAsync, enquanto o
código-fonte utilizado na sua produção e processamento está disponível gratuitamente em um
repositório hospedado no GitHub.

Palavras-chave: Mapas areais de classes de solo. Modelos digitais de elevação. Mapas geoló-
gicos. Mapas de uso da terra. Imagens de satélite.
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4.2 ABSTRACT

The Santa Maria dataset comprises a list of more than p = 100 spatially exhaustive covari-
ates produced in the 1980s, 1990s, and 2000s covering the catchment of the reservoir of the
Departamento Nacional de Obras de Saneamento-Companhia Riograndense de Saneamento
(DNOS-CORSAN), located in the southern Brazilian state of Rio Grande do Sul. These co-
variates were derived from five sources that are freely available in two levels of spatial detail:
area-class soil maps (cartographic scale of 1:100 000 and 1:25 000), digital elevation models
(airborne radar data with 90 m spatial resolution and contour line data at a cartographic scale of
1:25 000), geological maps (cartographic scale of 1:50 000 and 1:25 000), land use maps (car-
tographic scale of 1:25 000 and 1:2000), and satellite images (30 and 5 m spatial resolution).
These covariate data are the outcome of projects that aimed at modelling various environmental
features and were carried out as part of local (soil, geology, land use), regional (terrain, land
use), and global (terrain, land use) mapping initiatives. The covariate data is freely available
in a GRASS GIS database hosted in MEGAsync servers, while the source code used in its
production and processing is freely available in a repository hosted in GitHub.

Keywords: Area-class soil maps. Digital elevation models. Geologic maps. Land use maps.
Satellite images.

43



4 Chapter III. Covariate Data

4.3 INTRODUCTION

The Santa Maria dataset is a data set comprising spatially exhaustive covariate data
produced in the 1980s, 1990s, and 2000s covering the catchment of the reservoir of the Depar-
tamento Nacional de Obras de Saneamento-Companhia Riograndense de Saneamento (DNOS-
CORSAN), henceforth called DNOS catchment, located in the southern border of the plateau
of the Paraná Sedimentary Basin, in the city of Santa Maria, state of Rio Grande do Sul, Brazil.
Most of the covariate data cover only part of the DNOS catchment, mainly the northern sector,
which has an area of ±2000 ha, corresponding to ±60 % of the entire catchment. These covari-
ate data are the outcome of projects that aimed at modelling various environmental features and
were carried out as part of local (soil, geology, land use), regional (terrain, land use), and global
(terrain, land use) mapping initiatives.

This chapter presents a thorough description of the covariate data contained in the Santa
Maria dataset. These are area-class soil maps, digital elevation models, geological maps, land
use maps, and satellite images. A thorough description of the procedures for their production,
as well as the processing methods employed is given. The original sources of the covariate data
are freely available at the producers databases or in public libraries.

The chapter is divided in seven sections. Section 4.4 presents general information about
the covariates, as well as the structure of the database where they have been stored and managed.
Next, Section 4.5 describes how ground data was collected to help processing and validating the
existing covariate data. Area-class soil maps included in the Santa Maria dataset are described
in Section 4.6, while Section 4.7 deals with the digital elevation models. Geologic maps and
land use maps are described in Section 4.8 and Section 4.9, respectively. Section 4.10 closes
the chapter with a description of the satellite images included in the Santa Maria dataset.

4.4 DATABASE STRUCTURE

Preparing the covariate data to enter the Santa Maria dataset required creating two
databases. The first contains only vector (point) data, specifically point ground control data,
as well as the code used in its processing. This database is freely available in the web-based Git
repository <https://github.com/samuel-rosa/dnos-sm-rs-general/>. This is the same repository
containing the soil data (Section 3.4). The repository has the following folder structure:

dnos-sm-rs-general
|- code/ # source code folder
| - R/ # R source code folder
| - general.R # R source code file
|
|- data/ # data folder
| - gcpData.csv # ground control data file
| - gcpMetadata.csv # ground control metadata file
|- README.md # description of the repository

Ground control data files are available as comma-separated values (CSV) files. The iden-
tification of all observation locations, their geographic coordinates, and elevation data are con-
tained in the file gcpData.csv. File gcpMetadata.csv contain the metadata. The coor-
dinate reference system (CRS) is SIRGAS 2000 / UTM zone 22S, coded EPSG:31982
by the European Petroleum Survey Group (EPSG).
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The second database contains both vector (point, line and polygon) and raster (image)
data. This database is freely available in MEGAsync servers, and is structured as a GRASS GIS
database17. The database has the following folder structure:

dbGRASS # GRASS GIS database
|- dnos-sm-rs # Santa Maria dataset
| - PERMANENT/ # general definitions folder
| - predicitons/ # data folder

All covariate data in the GRASS GIS database are harmonized to a reference grid of 5 m
grid size. The CRS is WGS1984 / UTM zone 22S, coded EPSG:32722.

4.5 GROUND CONTROL POINTS

All covariates were validated prior to their use. Horizontal (positional) validation was
performed using a set of n = 14 validation points, here called ground control points (GCP),
spread throughout and beyond the limits of the DNOS catchment (Figure 4.1). The location of
the GCPs was defined based on the existence of easily identifiable geographical markers across
the covariates, including road intersection, fence corners, and property entrances.

Positional validation was performed comparing the x- and y-coordinates of GCPs (ob-
served value) with the coordinates of the respective geographical markers visually identified
on the covariates (predicted value). The differences in the observed and predicted x- and y-
coordinates were used to calculate the mean error (ME, m), mean absolute error (MAE, m),
and mean squared error (MSE, m) to evaluate the if there were differences in the accuracy and
precision between coordinates. The error vector (or module, the euclidean distance between
two points) and its azimuth (the orientation of the error vector) were computed as well for every
point. The mean of the error vector and its azimuth give the size and orientation of the sys-
tematic error present in the covariates, while the square root of the mean squared error vector
(RMSE) is a measure of the uncertainty about the true position of the covariate in the geographic
space.

The field location of the GCPs is as follows:

GCP 01 In Santa Maria, on the right side of the concrete dam of the DNOS-CORSAN reser-
voir, 6 m before reaching the bridge over the spillway, distant 3 m from the centre of the
road that descends from the BR-158 federal highway.

GCP 02 In Itaara, at the entrance of the Estrada do Perau, Rua Gralha Azul, in the centre of
the roundabout, between the outdoor and the tree (Cedrella fissilis), close to the BR-158
federal highway.

GCP 03 In Itaara, near the speed monitoring radar of the BR-158 federal highway, distant
520 m from the UFO Museum, opposite the Fruteira da Esquina, opposite to the cell
phone tower and to the entrance of the gravel pit DallaPasqua, located 4 km away from
the site.

GCP 04 In Santa Maria, at the entrance of the street that leads to the cemetery of the Campestre
do Menino Deus neighbourhood, on the right side of Perau Road going towards the BR-
158 federal highway, aligned with the façade of the residences, 2.2 m away from the front

17 Detailed information about the structure of a GRASS GIS database can be found in GRASS GIS help pages.
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Figure 4.1: Spatial distribution of the ground control points (n = 14, red dots) used for the horizontal
positional validation of covariates included in the Santa Maria dataset. The location of the
ground control points is highly determined by the local road network (dashed grey line) sur-
rounding the northern sector of the catchment of the reservoir of the Departamento Nacional
de Obras de Saneamento-Companhia Riograndense de Saneamento (lemon chiffon-filled
polygon).

wall, 6.5 m away from the curb of the Perau Road, 50 m away from the bridge over the
Vacacaí-Mirim River.

GCP 05 In Santa Maria, at the entrance of the Rancho do Amaral, next to the gate, on the right
size, off the road, 1 m away of a palm tree and 1 m away from the stone wall.

GCP 06 In Itaara, Etelvina Avenue, on the roadside, 2.5 m away from the road centre, aligned
with the fence that separates the native forest from the Citrus sp. orchard located across
the road.

GCP 07 In Itaara, Estação Pinhal Locality, on the left side of the beginning of the road that
gives access to the DallaPasqua gravel pit, under the electricity transmission network.

GCP 08 In Santa Maria, Santo Antão District, at the beginning of the road that gives access to
the Caturrita Waste Treatment Centre, opposite the Municipal Elementary School Inten-
dente Manoel Ribas.

GCP 09 In São Martinho da Serra, Água Negra Locality, at the bifurcation of the road coming
from Santa Maria and giving access to the Campinas Locality, close to the bus stop, at the

46



4 Chapter III. Covariate Data

roundabout in the middle of bifurcation, 40 m away from the Piquete Laçador Jorge R. da
Silva, in front of Ronaldo’s Market.

GCP 10 In Santa Maria, on the road towards São Martinho da Serra, after Santo Antão Chapel,
on the outside of a curve, near two small trees, aligned with the fence that marks the
boundary between two properties occupied with native grass. In front of the property
with two houses, one with two floors and four small lakes in the backyard.

GCP 11 In Itaara, at the entrance to the Rincão dos Minello Locality, at the beginning of the
road that gives access to Brita Pinhal, next to the BR-158 federal highway, 5 m away and
in front of the road cut exposing the sandstone rocks of the Botucatu Formation, 15 m
away from the post of the electricity transmission line of the AES company.

GCP 12 In Itaara, at the federal highway BR-158, in front of the SOCEPE’s Lake, in the city
entrance, near the Ricardo’s Bar and Warehouse, shifted 1 m into the side walk in relation
to the alignment of the posts of the electrical network.

GCP 13 In Itaara, at Vila Etelvina, with a vineyard upstream, aligned with the fence that di-
vides two properties located on the opposite side of the road, the one on the left covered
with native/exotic woods and the other on the right occupied with field of annual crops.

GCP 14 In Itaara, in the road that goes towards the property of Mr. Antoninho Luccas, soon
after the steep climb, where there is only pavement on the tracks, at the end of the forest
and beginning of native grass, aligned with the fence on both sides of road, 1 m away
from the left corner fence post.

Attribute validation of soil, geologic, and land use maps, and digital elevation models
was done using a set of n = 60 validation points located along m = 12 linear transects (Sec-
tion 3.5.2). The procedures for obtaining soil, geologic, land use, and elevation data at these
validation points is described in Section 3.6. Such a validation exercise was carried out because
these maps originally had no accompanying validation information.

4.6 AREA-CLASS SOIL MAPS

Two area-class soil maps are included in the Santa Maria dataset. The first of them
(SOIL_100, Figure 4.2a) was published at a cartographic scale of 1:100 000 (AZOLIN; MUTTI,
1988). Existing area-class soil maps and technical reports (BRASIL, 1973; AZOLIN, 1977;
MACIEL FILHO et al., 1987a; MACIEL FILHO et al., 1987b; ABRÃO et al., 1988), and
sparse field observations were used to elaborate the preliminary legend of the soil map. Aerial
photographs (cartographic scale of 1:60 000) were used to produce the first draft of the soil map.
Field checks of soil polygons (i.e. mapping units) was done along the road network (i.e. by con-
venience sampling). These observations were used to estimate the composition (occurrence and
spatial distribution of soil taxa) of soil mapping units. They were also used to review the first
draft of the soil map. The final version of SOIL_100 was prepared using topographic maps
originally published at a cartographic scale of 1:50 000 and resampled to a cartographic scale
of 1:100 000. Soil classification followed the criteria adopted by the Brazilian soil science com-
munity at that time (BRASIL, 1973; CAMARGO et al., 1982; CARVALHO, 1982; LEMOS;
SANTOS, 1982; OLMOS; CAMARGO, 1982). Identification of soil taxa was performed based
on morphological features, analytical data compiled from existing technical reports, and analy-
sis of soil samples collected from soil profiles observed along the road network. Description of
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each soil mapping unit includes the estimated area (ha) and the approximate taxonomic compo-
sition (%).

(a) (b)

Figure 4.2: Area-class soil maps (a) SOIL_100 and (b) SOIL_25 used to derive indicator covariates
included in the Santa Maria dataset. Legend abbreviations and derived indicator variables
are described in the text.

The second area-class soil map (SOIL_25, Figure 4.2b) included in the Santa Maria
dataset (MIGUEL, 2010) was prepared at a cartographic scale of 1:25 000. Satellite images
of the year of 2009, with 2.4 m-spatial resolution, produced by the Digital Globe® QuickBird
satellite18, freely available for visualization in Google Earth®, were used to produce the first
draft of the soil map. Existing area-class soil maps and technical reports (PEDRON, 2005;
POELKING, 2007; STÜRMER, 2008) were used to help defining the preliminary soil map
legend. Field observations (soil pits and boreholes) were made in more than 350 locations using
a purposive sampling approach (see Chapter II and Chapter VI). These observations helped to
identify six modal (representative) soil profiles. Soil sampling and description of modal soil
profiles, and laboratory analyses of soil samples, followed the standard protocols adopted in
Brazil (CLAESSEN et al., 1997; SANTOS et al., 2005). Soil classification was performed
following the criteria of the Brazilian System of Soil Classification (SiBCS) (SANTOS et al.,
2006). The final version of the map was prepared using the same satellite images freely available
for visualization in Google Earth® and manually-digitalized topographic sheets published at a
cartographic scale of 1:25 000 (DSG, 1992b; DSG, 1992a). Description of soil mapping units
includes only the most common soil taxon, followed by morphological and laboratory data of
modal soil profiles.

The area-class soil maps went through different preprocessing routines. The original
SOIL_100 is available only in analogical format, what required its digitalization. Georeferenc-
ing was carried out using the GDAL Georeferencer plug-in in QGIS (GDAL DEVELOPMENT
TEAM, 2013; QUANTUM GIS DEVELOPMENT TEAM, 2013). Intersections between all
meridians and parallels (n = 9) were used as control points to adjust a second order polyno-
mial model. Resampling was performed using the cubic resampling method. Soil polygons

18 Detailed information about the Digital Globe® QuickBird satellite can be found in Wikipedia.
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and their attributes were also manually digitalized in QGIS. Because of the coarseness of the
cartographic map scale (cartographic scale of 1:100 000), most geographical markers used to
locate validation GCPs could not be identified and positional validation was performed using
only n = 4 GCPs. Estimated error statistics suggest that there are large positional errors in all
directions, with an RMSE of 114 m and a mean azimuth of 128° (Table 4.1).

Table 4.1: Error statistics of the horizontal positional validation of
SOIL_100 using n = 4 ground control points.

Statistics x-coord y-coord Error vector Azimuth

Mean, m 30 -36 105 128°
Absolute mean, m 58 64 - -
Squared mean, m 7241 5712 12953 -

The original SOIL_25 is available in digital format in the personal database of the
author (MIGUEL, 2010). A topology check performed using the Topology Checker plug-in
in QGIS identified that there were many gaps and overlaps between polygons. This required
a topological edition prior to the use of SOIL_25. There also was a mismatch between the
boundary of SOIL_25 and the actual boundary of the study area as estimated using ELEV_10
(Section 4.7). This occurred because the database used to produce SOIL_25 included 2.4 m-
spatial resolution Google Earth® imagery and topographic maps, which are data sources that
differ considerably in their positional accuracy (Section 4.7 and Section 4.9). To avoid data
losses, all boundary gaps were manually filled using the closest mapping unit. Boundaries of
soil polygons were defined based on land use (LU2009, Section 4.9) and topographic data (con-
tour lines, Section 4.7) as it was done for the original map (MIGUEL, 2010). New delineations
were checked and approved without modifications by the author of the original map. Because
SOIL_25 includes very few geographical markers, its positional validation was not possible
with the available GCPs. However, the RMSE is expected to vary between 8 and 114 m across
the DNOS catchment as a result of the different errors present in the data sources used in its
production.

Both SOIL_100 and SOIL_25 were cropped to the bounding box of the DNOS catch-
ment, and resampled to match the reference grid using the nearest neighbour resampling method
to maintain data integrity. Each category was named with the code of the respective mapping
unit in the original map. Prior to validation in the attribute space, class codes of SOIL_100
were changed to match soil taxa codes of the current Brazilian System of Soil Classification
using a standard correlation table (SANTOS et al., 2006). The overall purities of both soil
maps are not considerably different. A reason for this could be that validation was performed
considering only the second level of the SiBCS – it is likely that SOIL_25 would outperform
SOIL_100 if validation data included soil taxa up to the fourth level of the SiBCS. The low
overall purity of SOIL_100 and SOIL_25 (31.67 and 30.00 %, respectively) is likely due to
several sources of error. First, the small number of modal soil profiles used to produce both
maps that might have resulted in an optimistic view of the homogeneity of each mapping unit.
Second, soil classes of SOIL_100 were translated to the more recent SiBCS using only a stan-
dard correlation table (SANTOS et al., 2006) and expert knowledge because the survey report
does not include analytical soil data. Last, soil classes at the n = 60 validation sites were
inferred in the field using only morphological soil properties and the general concepts of the
SiBCS.

Five (p = 5) covariates were derived from SOIL_100 as described below (including
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the soil classes according to the original and updated classification (AZOLIN; MUTTI, 1988;
SANTOS et al., 2013), and the international classification (IUSS WORKING GROUP WRB,
2007)):

SOIL_100b Shallow soil (Re4) with low to high base saturation covering mountainous ter-
rain (Solo Litólico Eutrófico/Distrófico relevo montanhoso; Neossolo Litólico Distró-
fico/Eutrófico; Distric/Eutric Leptosol).

SOIL_100c Association (Re-C-Co) of shallow soil with high base saturation located in steep
terrain (Solo Litólico Eutrófico relevo forte ondulado; Neossolo Litólico Eutrófico; Eu-
tric Leptosol), low weathered soil (Cambissolo Eutrófico; Cambissolo Háplico Eutrófico;
Eutric Cambisol), and colluvial deposits.

SOIL_100d Association (TBa-Rd) of deep, well-structured, low base saturation soil (Terra
Bruna Estruturada álica; Nitossolo; Nitisol), and shallow soil (Solo Litólico; Neossolo
Litólico; Leptosol).

SOIL_100e Shallow soil (Rd1 and Re4) with low to high base saturation (Solo Litólico Dis-
trófico/Eutrófico; Neossolo Litólico Distrófico/Eutrófico; Distric/Eutric Leptosol) located
in undulating to mountainous terrain.

SOIL_100f This covariate includes the best soil mapping units for row crop agriculture
among those identified in the soil survey, that is TBa-Rd, described above, and C1,
which is composed of low weathered soil developed in lower landscape positions, close
to drainage channels (Cambissolo Eutrófico; Cambissolo Háplico Eutrófico; Eutric Cam-
bisol).

Covariates derived from SOIL_25 are presented below. Mapping unit RY, composed
mainly of soil developed from fluvial deposits (Neossolo Flúvico; Fluvisol) does not appear due
to the small area that it occupies.

SOIL_25a Moderately deep soil (PBAC) derived from sedimentary rocks, with abrupt textural
change and low base saturation (Argissolo Bruno-Acinzentado; Alisol).

SOIL_25b Deep soil (PV) derived from igneous rocks, with moderate textural gradient, and
low base saturation (Argissolo Vermelho; Acrisol).

SOIL_25c Low weathered soil (Cambissolo Háplico; Cambisol) and shallow soil with low
to high base saturation (Neossolo Litólico/Regolítico Eutrófico/Distrófico; Eutric/Distric
Leptosol/Regosol) (C-R).

SOIL_25d Shallow soil (RL) with low to high base saturation (Neossolo Litólico Eutró-
fico/Distrófico; Eutric/Distric Leptosol).

SOIL_25h This covariate includes the mapping units with the best soils for row crop agri-
culture among those identified in the soil survey (PBAC, PV, and SX). PBAC and PV are
as described above. SX is composed of moderately deep soil derived from sedimentary
rocks, with abrupt textural change, low base saturation, and which are saturated with
water for long periods of the year (Planossolo Háplico; Planosol).

SOIL_25i This covariate includes all three mapping units (RL, RL-RR, and RR) composed
mainly of shallow soils (Neossolo Litólico and Neossolo Regolítico; Leptosol and Regosol).
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SOIL_25j This covariate includes all four mapping units (PV, RL, RL-RR, and C-R) com-
posed mainly of soil derived from igneous rocks.

4.7 DIGITAL ELEVATION MODELS

Two digital elevation models (DEMs) are included in the Santa Maria dataset as sources
of terrain covariates. The first DEM (ELEV_10, Figure 4.3a) is the result of the interpola-
tion of the contour lines of the most recent topographic sheets produced by the Brazilian Army
(cartographic scale of 1:25 000) that cover the DNOS catchment (DSG, 1980; DSG, 1992a;
DSG, 1992b). Topographic sheets were digitalized and georeferenced using the GDAL Geo-
referencer plugin in QGIS. Intersections between all meridians and parallels (about n = 160
per topographic sheet) were used as control points to adjust a third order polynomial model.
Resampling was performed using the cubic resampling method. All contour lines, peaks, lakes
and rivers, and their respective attributes within a distance of 1000 m from the boundary of the
DNOS catchment were manually digitized and stored in vector format. After digitalization,
the original coordinate reference system (EPSG:31982 – SIRGAS2000 / UTM zone 22S) of all
vector files was transformed to WGS1984 / UTM zone 22S (EPSG:32722) using the R-package
rgdal (BIVAND et al., 2013).

The horizontal positional validation of topographic maps was performed using the n =
14 GCPs. According to Brazilian legislation, high-quality map standards require that at least
90 % of the GCPs have horizontal positional errors smaller than 13 m, and an overall horizontal
error (i.e. RMSE) smaller than 8 m at the cartographic scale of 1:25 000 (BRASIL, 1984).
Estimated validation statistics show that the overall observed horizontal error (RMSE = 65 m)
is larger than those established by current regulations (Table 4.2). The mean error vector is
larger than 60 m with an azimuth of 63°. Both x- and y-coordinates are positively biased, but
the largest error occurs in the x-coordinate (50 m). Similar ME and MAE values suggests that
there is a strong systematic positional error. An affine transformation was employed using
the R-package vec2dtransf (CARRILLO, 2012) to correct this systematic error. Model
parameters were adjusted using the same set of GCPs used for the validation in the geographic
space.

Table 4.2: Error statistics of the horizontal validation of topographic
maps (cartographic scale of 1:25 000) using n = 14
ground control points.

Statistics x-coord y-coord Error vector Azimuth

Mean, m 50 27 63 63°
Absolute mean, m 50 32 - -
Squared mean, m2 3088 1180 4268 -

Interpolation of the raster surface with 5 m grid size was performed using the function
Topo to Raster in ArcGIS® software by ESRI, which includes an interpolation method
based on ANUDEM (HUTCHINSON, 1989). Vector files of contour lines (multiline),
drainage network (multiline), lakes (polygons) and peaks (points) were used to gen-
erate a hydrologically sound DEM, that is, a DEM without spurious depressions and giving a
precise representation of the hydrological data. Next, the interpolated DEM was imported into
GRASS GIS, where a neighbourhood average filter was used to remove stair-like artefacts. A
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window of 7 × 7 pixels was used because it removed a significant amount of the artefacts and
did not affect the derived boundary of the study area (see more bellow).

The vertical datum of the DEM was transformed from the local datum to a global datum.
The geoidal models MAPGEO2010 (IBGE, 2010) and EGM1996 (LEMOINE et al., 1998)
were used to calculate the geoidal undulation for the local and global datums, respectively.
MAPGEO2010 is optimized to estimate geoidal undulations in the Brazilian territory, while
EGM1996 is a gravitational model of the Earth and is used as the vertical datum for Shuttle
Radar Topography Mission (SRTM) products. The following equation was used:

h = H +N, (4.1)

where h is the ellipsoidal height (height above the reference ellipsoid that approximates the
surface of the planet), H is the orthometric height (height above the imaginary surface called
geoid and commonly referred to as mean sea level), and N is the geoidal undulation. Ellip-
soidal heights estimated by MAPGEO2010 are referenced to the world ellipsoid of 1980, while
EGM1996 estimates ellipsoidal heights referenced to the world ellipsoid of 1984. Because the
difference between both ellipsoids is of the order of millimetres, it can be assumed that both
models estimate the same ellipsoidal height. Therefore, if hEGM1996 = hMAPGEO2010, then ortho-
metric heights referenced to the local vertical datum can be transformed to the global vertical
datum using the following equation:

HEGM1996 = HMAPGEO2010 +NMAPGEO2010 −NEGM1996. (4.2)

The difference in the geoidal undulation estimated by both models is of about 1 m in the entire
DNOS catchment. Thus, transforming the vertical datum was performed adding 1 m to the
raster surface interpolated from contour lines, yielding the first DEM included in the Santa
Maria dataset (ELEV_10).

The second DEM (ELEV_90, Figure 4.3b) is the well known SRTM DEM (3′′ ≈
90 m spatial resolution) produced by the National Aeronautics and Space Administration’s Jet
Propulsion Laboratory in collaboration with the National Geospatial/Intelligence Agency (RO-
DRÍGUEZ et al., 2006). The SRTM DEM version used here is the sink-filled SRTM version 4,
prepared by the Consultative Group for International Agricultural Research (CGIAR) using the
same hydrologically correct interpolation method that was used before to produce ELEV_10
(REUTER et al., 2007; JARVIS et al., 2008). However, the only data source used was the SRTM
DEM version 3 converted to point data.

The SRTM DEM was processed to match the reference grid using cubic resampling
(GDAL module gdalwarp and GRASS module r.resamp.interp). This resampling
method was used because it is efficient in minimizing the double-oblique stripping present in
SRTM products (SAMUEL-ROSA et al., 2013). Sinks produced during datum transformation
were filled using the GRASS module r.fill.dir. Vertical datum transformation was not
necessary because elevation values of the SRTM DEM already are referenced to the global
geoid model EGM1996 (orthometric heights).

A third DEM (not shown) was included in the Santa Maria dataset with the sole purpose
of supporting the orthorectification – removal of the effects of the perspective of the sensor
on the relative position of objects in the image – and topographic correction – removal of the
effects of the topography on the reflectance values, i.e. on the illumination of the geomorphic
surfaces – of satellite images (Section 4.10) (MATHER, 2004; SCHOWENGERDT, 2007). The
third DEM (TOPODATA) was produced by the Brazilian National Institute for Space Research
(INPE) by refining the SRTM DEM version 1 (“unfinished”) to 1′′ ≈ 30 m spatial resolution
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(a) (b)

Figure 4.3: Digital elevation models (a) ELEV_90 and (b) ELEV_10 used to derive terrain covariates
included in the Santa Maria dataset.

using ordinary kriging with a Gaussian spatial autocorrelation model (VALERIANO; ROS-
SETTI, 2012). Eight tiles were mosaicked (GDAL module gdal_translate) and the CRS
transformed from WGS1984 (EPSG:4326) to WGS1984 / UTM zone 22S (EPSG:32722) us-
ing cubic resampling (GDAL module gdalwarp), and the sinks filled using GRASS module
r.fill.dir. Before the atmospheric correction of satellite images, orthometric heights were
converted to ellipsoidal heights using Equation 4.1, the geoidal undulation calculated with the
gravitational model EGM1996. This conversion was done because orbital satellites use the
WGS1984 ellipsoid as vertical datum. For the orthorectification of satellite images, the DEM
was then processed using GRASS module r.resamp.interp with the bicubic resampling
method to match the reference grid.

The three DEMs present similar vertical accuracy (Table 4.3). In the case of ELEV_10,
which was derived from contour lines published at a cartographic scale of 1:25 000, the vertical
positional accuracy does not meet the high-quality standards of current Brazilian legislation,
which states that 90 % of the GCPs should have vertical errors smaller than 5 m, which is half
of the distance between contour lines (BRASIL, 1984). The corresponding RMSE should be
less than 3 m.

Table 4.3: Error statistics of the vertical validation of
ELEV_90, TOPODATA, and ELEV_10 using n =
60 validation points located along m = 12 linear
transects.

Statistics ELEV_90 TOPODATA ELEV_10

Mean, m -15 -17 -16
Absolute mean, m 15 17 16
Squared mean, m 350 361 374
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Despite all DEMs present a similar vertical accuracy, ELEV_10 is considered the high-
est quality DEM in the Santa Maria dataset. Because it was produced using information about
the drainage network and location of lakes and natural depressions, it is likely to provide a better
hydrological representation of the DNOS catchment. As such, ELEV_10 was used to estimate
the geographical limits (boundary) of the DNOS catchment, for which GRASS GIS modules
r.watershed and r.water.outlet were employed. Because the overall deviation be-
tween the affine-corrected coordinates of topographic maps and target coordinates of GCPs is
RMSE = 29.55 m – there still is uncertainty about the correct position of topographic maps
– a 30 m buffer was added to the estimated geographical limits of the DNOS catchment. The
water outlet point used to estimate the boundary is located on the bridge that crosses the main
drainage channel (−29.658 68°, −53.789 69°).

Eight terrain attributes were derived from each of ELEV_90 and ELEV_10 to pro-
duce the covariate data included in the Santa Maria dataset, the first of them being elevation
(ELEV). The others are slope, aspect, northernness, flow accumulation, topographic wetness
index, stream power index, and topographic position index.

Slope (SLP) and aspect (ASP) were calculated using GRASS module r.param.scale.
This module calculates terrain attributes by fitting a bivariate quadratic polynomial using least
squares (WOOD, 1996). It allows using different window sizes to fit the bivariate quadratic
polynomial, thus including the effect of scale in the calculation of terrain attributes. Seven win-
dow sizes were used (3, 7, 15, 31, 63, 127, and 255) and the results for calculated slope can
be seen in Figure 4.4. Larger window sizes result in a smoother version of the terrain attribute,
while smaller windows sizes result in raster maps with more (small-scale) details. Several flat
surfaces (slope of 0°) were produced in the slope raster maps calculated using ELEV_90 as a
result of resampling the original DEM from 90 to 5 m. A value of 0.1° was added to the rasters
to remove these flat surfaces.

Aspect values had to be corrected before use because GRASS module r.param.scale
stores aspect values in the range 0–180° from West to North to East, and 0–−180° from West to
South to East, when the standard procedure is to work with aspect values ranging from 0–360°
clockwise. This correction was done using

ASP0 =

{
ASPGRASS + 360° if ASPGRASS < 0°,
ASPGRASS else,

(4.3)

and

ASP =

{
ASP0 + 270° if ASP0 < 90°,
ASP0 − 90° else.

(4.4)

A second correction of aspect values involved their linearisation. This is necessary because
aspect is a circular variable, that is, the beginning (0°) and end (360°) of the measurement scale
have the same physical meaning. Aspect values were transformed to northernness (NOR), a
measure of the level of exposition of a given surface to the North, a linear variable, using the
equation

NOR = abs(180°− ASP). (4.5)

Flow accumulation (ACC), also known as catchment area or contributing area, was cal-
culated using GRASS module r.watershed, the resulting raster surface being multiplied by
the square of the cell size (i.e. by the cell area 25 m) to convert to areal units. This raster surface
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Figure 4.4: Slope SLP raster surfaces derived from ELEV_10 using windows of sizes (from left to right)
3× 3, 31× 31, 127× 127, and 255× 255.

was used to calculate the topographic wetness index (TWI) and the stream power index (SPI)
using

sACC =
ACC

5
, (4.6)

TWI = log
sACC

tan(SLP)
, (4.7)

and

SPI = log(sACC× tan(SLP)), (4.8)
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where sACC is the specific catchment area, 5 m is the cell size, and SLP is the slope raster
surface calculated using seven different window sizes.

The topographic position index TPIwas calculated with SAGA library ta_morphometry.
Different values of maximum radius were used to include the effect of scale, all of them related
to the window sizes used to calculate previous terrain attributes. A minimum radius value of
3 m was used in all calculations.

A total of p = 1 × ELEV + 7 × (NOR,SLP,TWI,SPI,TPI) = 36 covariates were
defined using the terrain attributes derived from ELEV_90 and ELEV_10.

4.8 GEOLOGIC MAPS

Geologic data comes from the two most recent geologic maps (GEO_50 – Figure 4.5a,
and GEO_25 – Figure 4.5b) published at the cartographic scales of 1:50 000 and 1:25 000 (GAS-
PARETTO et al., 1988; MACIEL FILHO, 1990). Both of them were produced based on the
most recent topographic sheets produced by the Brazilian Army at the cartographic scales of
1:50 000 and 1:25 000 (DSG, 1980; DSG, 1992a; DSG, 1992b). Alike topographic maps, ge-
ologic maps were available only in analogical format, and were hand digitized and georefer-
enced in QGIS. Intersections between all meridians and parallels (n = 16) were used as control
points to adjust a second order polynomial model. Resampling was performed using the cubic
resampling method. The original CRS (EPSG:31982 – SIRGAS2000 / UTM zone 22S) was
transformed to match the reference grid using the R-package rgdal (BIVAND et al., 2013).

(a) (b)

Figure 4.5: Geologic maps (a) GEO_50 and (b) GEO_25 used to derive indicator covariates included in
the Santa Maria dataset. Legend abbreviations and derived indicator variables are described
in the text.

The positional validation of geologic maps was performed using n = 8 (GEO_50) and
n = 5 (GEO_25) GCPs, respectively. Validation statistics show that the positional accuracy of
neither geologic maps meets the high-quality standards of the current Brazilian legislation (Ta-
ble 4.4). Estimated RMSE are 147 and 69 m for GEO_50 and GEO_25, respectively, when the
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maximum RMSE recommended are 25 and 13 m, respectively. For GEO_50, the lowest accu-
racy is found in the y-coordinate, while for GEO_25, the x-coordinate is the least accurate. Val-
idation statistics suggest that there is a strong systematic error, which probably was propagated
from the topographic maps used to produce the geologic maps. Therefore, the same strategy
(affine transformation) used to remove the systematic positional error of the topographic maps
was employed on geologic maps. Due to the lack of GCPs, model parameters were adjusted
using the same set of GCPs used for the validation. The estimated uncertainty (RMSE) of the
affine transformation is 86 and 22 m for GEO_50 and GEO_25, respectively.

Table 4.4: Error statistics of the horizontal validation of geologic
maps GEO_50 and GEO_25 using n = 8 and n = 5
ground control points.

Statistics x-coord y-coord Error vector Azimuth

GEO_50 (n = 8)

Mean, m 10 -102 140 169°
Absolute mean, m 43 125 - -
Squared mean, m 3431 18067 21498 -

GEO_25 (n = 5)

Mean, m 51 29 67 58°
Absolute mean, m 51 29 - -
Squared mean, m 3457 1312 4769 -

Three (p = 3) indicator covariates were derived from GEO_50:

GEO_50a Inferior Sequence of the Serra Geral Formation. Composed mainly by basic igneous
rocks (tholeiitic basalt and andesite). It is likely related to high soil clay content and
effective cation exchange capacity.

GEO_50b Superior Sequence of the Serra Geral Formation. Composed mainly by acid igneous
rocks (granophyric rhyolite and rhyodacite). It is likely related to moderate to high CLAY
and ECEC.

GEO_50c Botucatu Formation. Composed mainly by aeolian sandstones. It is likely related to
low CLAY and ECEC.

Four (p = 4) indicator covariates were derived from GEO_25, the first three of them
having the same meaning of those derived from GEO_50:

GEO_25a Inferior Sequence of the Serra Geral Formation.

GEO_25b Superior Sequence of the Serra Geral Formation.

GEO_25c Botucatu Formation.

GEO_25d Quaternary deposits of fluvial, alluvial, and colluvial origin. It can help explaining
the low clay content in areas where the soil is believed to have developed from igneous
rocks as depicted in less detailed geologic maps.
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4.9 LAND USE MAPS

The first land use map used to derive covariate data included in the Santa Maria dataset
was produced by manually digitizing land use data of 1980 (LU1980, Figure 4.6a) published
in the most recent topographic map produced by the Brazilian Army (cartographic scale of
1:25 000) (DSG, 1992b; DSG, 1992a). Most processing steps, including the correction of posi-
tional bias, are described in Section 4.7, except for the use of the nearest neighbour resampling
method to match LU1980 to the reference grid.

(a) (b)

(c)

Figure 4.6: Land use maps (a) LU1980 and (b) LU2009 used to derive indicator covariates included in
the Santa Maria dataset such as (c) LUdiff, the land use change between the years of 1980
and 2009. Legend abbreviations and derived indicator variables are described in the text.

The second land use map (LU2009, Figure 4.6b) was prepared at a cartographic scale
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of 1:2000 using high resolution (2.4 m) Digital Globe® QuickBird satellite images of 2008 and
2009, made publicly available in Google Earth® (SAMUEL-ROSA et al., 2011). Identification
of land uses and delineation of mapping units were done manually, on the computer screen,
without using any automated classification routine. Positional validation of Google Earth® im-
agery revealed that they have only minor systematic positional errors (Table 4.5). Despite of
this, the attribute validation of both land use maps, using n = 60 validation points placed along
m = 12 linear transects, showed that they have similar overall accuracy close to 70.00 %.

Table 4.5: Error statistics of the horizontal validation of Google
Earth® imagery using n = 14 ground control points.

Statistics x-coord y-coord Error vector Azimuth

Mean, m -1 3 6 184°
Absolute mean, m 3 5 - -
Squared mean, m 14 57 71 -

LU1980 was used to derive p = 2 covariates defined as indicator variables, with plan-
tation forests (PF) and human settlements (S) being grouped together due to their small im-
portance in terms of covered area (PF) and for not containing any soil observation (S). These
covariates are:

LU1980a Native forest (FS), which is likely to have soils with higher fertility.

LU1980b Animal husbandry (H), the second most important land use in the study area, which
is likely to have a soil fertility status lower than native forests.

Four (p = 4) indicator covariates were derived from LU2009, with plantation forests
(PF), human settlements (S), and other land uses (O), which comprise natural and artificial
water bodies, being grouped together due to their small importance in terms of covered area
(PF) and for not containing any soil observation (S and O). These covariates are:

LU2009a Native forest (FS), as described above.

LU2009b Shrubland (SS), which is likely to have a soil fertility level above those found in
areas used with annual crop agriculture and animal husbandry, but lower than in native
forests.

LU2009c Animal husbandry (H), as described above.

LU2009d Annual crop agriculture (AA), which is likely to present the lowest soil fertility
levels due to the usually poor management practices employed.

A seventh indicator covariate (LUdiff, Figure 4.6c) was derived using data from both
land use maps. It consists of the land use change between 1980 and 2009, computed by checking
if the land use has changed (1) or remained the same (0) in every grid cell after the 29-year
period. LUdiff can be useful, for example, to explain the low soil organic carbon content in
forest soils due to previous use with crop agriculture or animal husbandry.
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4.10 SATELLITE IMAGES

Two sources of satellite images were used to produce covariate data included in the Santa
Maria dataset. The first is the Thematic Mapper (TM) sensor aboard the longest-operating Earth
observation satellite – Landsat 5 (Figure 4.7a). The satellite image used was acquired on 26 De-
cember 2010 and is freely available in the database of the Division of Image Generation of the
Brazilian National Institute for Space Research (INPE-DGI). The image contains seven spec-
tral bands (Table 4.6) (including a thermal band that is not included in the Santa Maria dataset),
with 8 bit radiometric resolution (digital numbers from 0–255) and 30 m spatial resolution. The
satellite image was orthorectified using Geomatica® OrthoEngine® with the Landsat rigorous
model (Toutin’s Model) (TOUTIN, 2004; PCI GEOMATICS, 2007). Due to the absence of
good identifiable field GCPs, n = 28 GCPs were collected from Google Earth® imagery, which
have a high positional accuracy in the DNOS catchment (Table 4.5). GCPs were located at eas-
ily identifiable geographical markers such as road intersections and bridges, evenly distributed
throughout the image, and covering a variety of elevations, following standard recommenda-
tions (PCI GEOMATICS, 2007). The DEM used for orthorectification is TOPODATA after
preprocessing as described in Section 4.7. Resampling was done using the nearest neighbour
method to avoid changing the digital numbers.

After orthorectification, all bands were imported into GRASS GIS, where all other nec-
essary corrections were performed. Radiometric correction (conversion from digital numbers
to top-of-atmosphere reflectance) was done using GRASS module i.landsat.toar. At-
mospheric correction (removal of the effects of the atmosphere on the reflectance values) was
done with the 6S atmospheric model (VERMOTE et al., 1997) as implemented in GRASS
module i.atcorr using the tropical atmospheric model, the continental aerosols model, an
image-based visibility estimate of 20 km, and a constant elevation of 300 m.

The second source of satellite images is RapidEye (Figure 4.7b). Images are available
through the Brazilian Ministry of the Environment (BRASIL, 2012), which has a full coverage
of the Brazilian territory for 2011 and 2012. The satellite image used (tile number 2 225 403)
was acquired on 16 November 2012 (second coverage). It contains five spectral bands (Ta-
ble 4.6), featuring among them the so-called red-edge band, located between the red and the
near-infrared bands. This spectral band is the main feature distinguishing RapidEye images
from most other sources of satellite images, considered to provide additional information about
the vegetation (WEICHELT et al., 2013). The satellite image has 16 bit radiometric resolution
and 6.5 m spatial resolution, and was orthorectified at the source to 5 m spatial resolution using
the sink-filled SRTM version 4 DEM (RAPIDEYE, 2013).

Table 4.6: Comparison between satellite images produced by Landsat 5 TM and RapidEye and
the derived covariates.

Landsat 5 TM RapidEye

Band Interval, nm Covariate Band Interval, nm Covariate

1 Visible 450–520 BLUE_30 Blue 440–510 BLUE_5
2 Visible 520–600 GREEN_30 Green 520–590 GREEN_5
3 Visible 630–690 RED_30 Red 630–685 RED_5
- - - Red-edge 690–730 EDGE_5
4 Near-infrared 760–900 NIR_30a Near-infrared 760–850 NIR_5
5 Near-infrared 1550–1750 NIR_30b - - -
7 Mid-infrared 2080–2350 MIR_30 - - -
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(a) (b)

Figure 4.7: Satellite images used to derive covariates such as (a) NDVI_30 and (b) NDVI_5b included
in the Santa Maria dataset.

The RapidEye image was atmospherically corrected using the 6S atmospheric model
(VERMOTE et al., 1997) employing the Fortran code developed by Antunes & Siqueira (2013)
– GRASS module i.atcorr was not used because a bug was found when trying to correct
the RapidEye image – assuming a tropical atmospheric model, the continental aerosols model,
an image-based visibility estimate of 20 km, and a constant elevation of 300 m.

After atmospheric correction, Landsat 5 TM and RapidEye images were resampled us-
ing the nearest neighbour method to match the reference grid. Topographic correction was
performed using GRASS module i.topo.corr with TOPODATA geometrically corrected
to match the reference grid as described in Section 4.7.

Table 4.7: Error statistics of the horizontal validation of satellite im-
ages produced by Landsat 5 TM and RapidEye using
n = 14 ground control points.

Statistics x-coord y-coord Error vector Azimuth

Landsat 5 TM

Mean, m 31 -11 45 136°
Absolute mean, m 33 25 - -
Squared mean, m 1494 1223 2717 -

RapidEye

Mean, m -25 -25 36 226°
Absolute mean, m 25 25 - -
Squared mean, m 680 708 1388 -

Individual bands of both satellite images were defined as covariates, totalling p = 6
from Landsat 5 TM and p = 5 from RapidEye (Table 4.6). Another p = 6 covariates (p = 2
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from Landsat 5 TM and p = 4 from RapidEye) were defined using two vegetation indices: the
normalized difference vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI),
calculated as

NDVI =
NIR− RED
NIR + RED

(4.9)

and

SAVI = (1.0 + 0.5)× NIR− RED
NIR + RED + 0.5

, (4.10)

where NIR = NIR_30a and RED = RED_30 for the Landsat 5 TM image, and NIR = NIR_5
and RED = RED_5 or RED = EDGE_5 for RapidEye image.
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5.1 RESUMO

O presente manuscrito apresenta o modelo conceitual de pedogênese – uma descrição explí-
cita dos fatores e processos de formação do solo que determinam as características do solo e o
seu padrão de distribuição espaço-temporal – da bacia de captação do reservatório do Depar-
tamento Nacional de Obras de Saneamento-Companhia Riograndense de Saneamento (DNOS-
CORSAN), localizada no sul do Brasil. O clima é subtropical úmido sem estação seca definida.
O relevo é plano a montanhoso (variação de altitude entre 139 e 475 m acima do nível do
mar), com vales encaixados que influenciam a precipitação e o fluxo radiativo nas diferentes
superfícies geomórficas. A geologia é constituída pela sequência de três formações: rochas se-
dimentares (arenito fluvial), seguidas de rochas ígneas (basaltos-andesitos toleíticos e vitrófilos,
riólitos-riodacitos granofíricos) intercaladas por rochas sedimentares (arenito eólico). Depósi-
tos do Quaternário aparecem nas partes mais baixas. A geomorfologia atual é resultado dos
processos erosivos do Terciário e Quaternário. A dissecação atual é fraca devido ao clima que
favorece a instalação e permanência de vegetação exuberante. Três unidades morfoestruturais
são identificadas: no topo, o Planalto, com relevo suave-ondulado a ondulado, seguido pelo Re-
bordo do Planalto, com ampla variação altimétrica, declividade acentuada e escarpas abruptas;
na base, a Depressão Periférica, com formas agradacionais de planície fluvial. Nas partes altas,
a rede de drenagem apresenta padrão bem definido, geralmente retangular, determinada pelas
falhas e/ou fraturas. Já nas áreas mais baixas, devido aos processos de deposição sedimentar
e erosão fluvial, sua configuração é sinuosa. Ali encontram-se um lençol freático próximo da
superfície do solo e cursos de água perenes. O uso da terra para produção agrossilvopastoril foi
intenso em tempos pretéritos e resultou em forte degradação do solo. O abandono de muitas
áreas degradadas permitiu a regeneração da vegetação natural, resultando na atual ocupação
com florestas e vegetação secundária de ±60 %. Em geral, o solo é pouco profundo devido ao
predomínio de condições de forte declividade. É comum encontrar solo raso mesmo em áreas
de maior estabilidade como fruto da degradação pelo uso agrícola. O solo é mais profundo no
Planalto, nos terraços do Rebordo, nas coxilhas (colinas) de relevo suave-ondulado a ondulado,
e nas planícies aluviais. A textura é mais fina e homogênea ao longo do perfil quando desenvol-
vido a partir de rochas ígneas. As características do solo nas planícies aluviais são determinadas
pela presença constante de lençol freático próximo da superfície.

Palavras-chave: Província Geológica do Paraná. Bacia do DNOS. Rebordo do Planalto. Fato-
res de formação do solo. Pedogênese.
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5.2 ABSTRACT

This document presents the conceptual model of pedogenesis – an explicit description of soil-
forming factors and processes that determine the spatio-temporal distribution of soil properties
– of the catchment of the reservoir of the Departamento Nacional de Obras de Saneamento-
Companhia Riograndense de Saneamento (DNOS-CORSAN), located in southern Brazil. Cli-
mate is subtropical humid without a dry season. Relief varies between plain and mountainous,
with enclosed valleys (elevation ranging between 139 and 475 m above sea level) that deter-
mine rainfall volume and radiative flux on different surfaces. The geology is composed of a
sequence of three formations: consolidated sedimentary rocks (fluvial sandstone), followed by
basic and acid igneous rocks (andesite-basalt and rhyolite-rhyodacite), interlayered with con-
solidated sedimentary rocks (aeolian sandstone). Unconsolidated Quaternary colluvial deposits
occur in the lower portions of the landscape. Current geomorphology is a result of erosive pro-
cesses of the Tertiary and Quaternary. Landscape dissection is weak due to the current climate
that favours the installation and maintenance of an exuberant vegetation. There are three mor-
phostructural units: at the top, the Planalto (Plateau), with gently-rolling to sloping relief, fol-
lowed by the Rebordo do Planalto (Plateau Border), with wide altimetric variation, steep slopes
and abrupt cliffs; at the bottom, the Depressão Periférica (Peripheral Depression), composed
of aggradational fluvial plains. In higher altitudes, the drainage network has a well defined
pattern, generally rectangular, determined by the faults and/or fractures. In the lower areas, its
configuration is sinuous due to sediment deposition and fluvial erosion, with the presence of
water table close to the surface and perennial water streams. Land use for agrosilvopastoral
production was intense in past times, resulting in severe soil degradation. Recent abandonment
of many degraded areas allowed the regeneration of natural vegetation, resulting in ±60 % of
the area being now occupied with forest and secondary vegetation. The soil is predominantly
shallow due to the dominance of steep slopes. Even in gently-sloping terrain it is common to
find shallow soils as a result of soil degradation. Deeper soil can be found in the Planalto, in
the terraces of the Rebordo, and in the small hills with gently-rolling slopes and alluvial plains.
Soil texture is finer and more homogeneous throughout the soil profile in soil developed from
igneous rocks. Soil features in the alluvial plains are determined by the constant presence of the
water table close to the surface.

Keywords: Paraná Geological Province. DNOS Catchment. Plateau Border. Soil-forming
factors. Pedogenesis.
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5.3 APRESENTAÇÃO

A modelagem espacial do solo inicia com a definição de um modelo conceitual de pedo-
gênese. Um modelo conceitual de pedogênese constitui uma representação verbal da realidade
sob estudo que inclui a descrição explícita dos fatores e processos de formação do solo que
determinam as características do solo e o seu padrão de distribuição espaço-temporal. Isso re-
quer a reunião de toda a informação ambiental disponível e aplicação dos conceitos de relação
solo-paisagem, desenvolvimento do solo em catenas, ou outro modelo teórico de explicação da
variação espacial do solo.

O presente manuscrito apresenta o modelo conceitual de pedogênese da bacia de capta-
ção do reservatório do Departamento Nacional de Obras de Saneamento-Companhia Riogran-
dense de Saneamento (DNOS-CORSAN), localizada na divisa entre os municípios de Itaara
(ao norte) e Santa Maria (ao sul), na porção sul da Bacia Sedimentar do Paraná, estado do Rio
Grande do Sul, Brasil (Figura 5.1). A bacia de captação do reservatório do DNOS-CORSAN
corresponde à cabeceira da bacia hidrográfica do Rio Vacacaí-Mirim, tributário do Rio Jacuí e,
consequentemente, do Rio Guaíba e da Lagoa dos Patos. A bacia de captação do reservatório do
DNOS-CORSAN cobre uma área de±29 km2 e alimenta um reservatório com volume máximo
de ±3 800 000 m3 em uma área inundada de 0.74 km2. Este reservatório contribui com até 30 %
do abastecimento de água da cidade de Santa Maria (DIAS, 2003; DILL et al., 2004; MIGUEL,
2010).

Os estudos em modelagem espacial do solo na bacia do DNOS – abreviatura de bacia
de captação do reservatório do DNOS-CORSAN – iniciaram no ano de 2008 com o grupo de
pesquisa Gênese, composição e comportamento dos solos do RS19, sediado no Departamento
de Solos da Universidade Federal de Santa Maria (UFSM). Devido à limitação de recursos, o
grupo de pesquisa optou por restringir seus estudos em modelagem espacial do solo à uma parte
da bacia do DNOS. A área escolhida cobre±60 % de toda a bacia do DNOS, o que corresponde
à uma área de ±18 km2. A área de estudo foi escolhida por apresentar acesso facilitado, além
de englobar as principais formações geológicas, geoformas, usos da terra, e vegetação presentes
na bacia do DNOS (Figura 5.2).

5.4 CLIMA

O clima local é classificado como Cfa20 – subtropical úmido sem estação seca definida
–, com temperatura média anual de 19.1 ◦C. As temperaturas podem alcançar > 40 ◦C, no
verão, e valores negativos no inverno (HELDWEIN et al., 2009). A precipitação média anual
é de 1708 mm bem distribuídos ao longo do ano (MALUF, 2000). Predominam os ventos (em
ordem de frequência) do quadrante leste (frio, úmido e de intensidade fraca a moderada), oeste
(frio, seco e de intensidade fraca a moderada) e norte (quente, seco e de intensidade moderada
a forte) (HELDWEIN et al., 2009).

O padrão predominante das chuvas é o avançado, caracterizado por ter seu pico de maior
intensidade no início da precipitação (MEHL et al., 2001). As chuvas de maior intensidade
ocorrem nos meses do final da primavera, verão e início do outono (MOURA-BUENO, 2012).
Como resultado desse padrão, as chuvas de inverno são as menos erosivas, mesmo que o con-
teúdo de água do solo permaneça elevado durante todo o período. O padrão de precipitação
também é condicionado pelo relevo. Observações feitas em três locais durante o ano de 2011,
marcado por forte estiagem, mostram variação na lâmina total precipitada entre 1317 e 1411 mm

19 O grupo está registado no Diretório dos Grupos de Pesquisa no Brasil (DGP) mantido pelo CNPq.
20 Mais informações sobre o tipo climático Cfa podem ser encontrados na Wikipedia.
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Figura 5.1: Localização da bacia de captação do reservatório do Departamento Nacional de Obras de
Saneamento-Companhia Riograndense de Saneamento no Município de Santa Maria (em
azul), Estado do Rio Grande do Sul (em verde), Brasil, na porção sul da Província Geológica
do Paraná (em cinza).

(MOURA-BUENO, 2012). Assim, o relevo plano a montanhoso, com vales encaixados, parece
condicionar a formação de diferentes regiões microclimáticas, refletindo no volume e intensi-
dade das chuvas (MOURA-BUENO, 2012).

O relevo também deve condicionar o fluxo radiativo que atinge as diferentes superfí-
cies. Apesar de não haver estudos que demonstrem a efetividade desse fenômeno na área, é
reconhecido que grande parte da superfície em terrenos de topografia complexa é influenci-
ada pelo efeito de sombreamento, sobretudo nas primeiras horas da manhã e no final da tarde
(OLIPHANT et al., 2003). Além disso, a declividade do terreno possui forte influência sobre
o ângulo de interceptação da radiação solar pelas superfícies (BIRKELAND, 1999). Como
consequência, deve ocorrer variações na temperatura e conteúdo de água no solo nas diferentes
superfícies. Os meses de inverno são marcados por ainda menor disponibilidade de radiação
solar devido à alta frequência de nevoeiros, sobretudo nas partes mais baixas, com valores nor-
mais de insolação de 5.1 h d−1 (HELDWEIN et al., 2009). Além disso, devido à variação de
altitude entre 139 e 475 m, deve ocorrer diferença na temperatura da ordem de 4 ◦C entre a parte
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Figura 5.2: Localização da área de estudo (em vermelho) na bacia de captação do reservatório do De-
partamento Nacional de Obras de Saneamento-Companhia Riograndense de Saneamento
(DNOS-CORSAN) (em azul). A área de estudo, cujo relevo é bastante acidentado e o uso
da terra predominante é floresta natural, possui aproximadamente 4 km de largura e 5 km de
comprimento, o que corresponde a ±60 % da área bacia do DNOS-CORSAN.

mais baixa e a parte mais alta (HELDWEIN et al., 2009).

5.5 GEOLOGIA

A geologia é bastante complexa, sendo constituída de três formações geológicas, além
de depósitos coluviais e aluviais do Quaternário. A literatura sobre o tema é vasta (BORTO-
LUZZI, 1974; BRASIL, 1980; GASPARETTO et al., 1988; MACIEL FILHO, 1990; MA-
CHADO, 1998; PIERINI et al., 2002; MARQUES; ERNESTO, 2005; MILANI, 2005; PINTO,
2005; CPRM, 2007; PEDRON, 2007; SARTORI, 2009; NASCIMENTO; PENNA E SOUZA,
2010; WERLANG et al., 2010; PEDRON et al., 2012), e uma revisão da mesma é apresentada
aqui.

Na base da sequência estratigráfica, em elevações abaixo de ±200 m, está a Formação
Caturrita, constituída de material sedimentar depositado em ambiente fluvial no Triássico Su-
perior. Sua composição é diversa, apresentando seixos de siltito argiloso vermelho na base,
seguido de arenito avermelhado de granulometria fina à média, composição quartzosa e matriz
argilosa, podendo ainda conter considerável teor de feldspato, sobreposto por siltito e folhelho
também avermelhados. Em geral, a granulometria do arenito é mais grosseira e menos argilosa
na base da deposição. Devido à sua origem fluvial, a Formação Caturrita apresenta marcada
estratificação cruzada acanalada e tabular. A origem fluvial também resulta em significativa
variação espacial na granulometria do arenito, identificada pelo contraste entre áreas de maior
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cimentação e coesão, com outras de maior condutividade hidráulica. Imediatamente acima da
Formação Caturrita encontra-se, ora a Formação Botucatu, ora a Sequência Inferior da Forma-
ção Serra Geral.

Em elevações entre ±200 e ±350 m está a Sequência Inferior da Formação Serra Geral
(basaltos-andesitos toleíticos). As rochas básicas são de coloração cinza-escura e são cons-
tituídas de plagioclásio cálcico, clinopiroxênio, magnetita e material intersticial de quartzo e
material desvitrificado. Em elevações superiores a ±350 m está a Sequência Superior da For-
mação Serra Geral (vitrófilos, riólitos-riodacitos granofíricos). As rochas ácidas apresentam cor
cinza-clara, estrutura microcristalina e são constituídas de cristais e plagioclásio, clinopiroxê-
nios, hornblenda uralítica e magnetita. A origem desse material remonta o Cretáceo, quando
sucessivos derrames de lavas de origem vulcânica fissural ocorreram durante aproximadamente
10 milhões de anos em toda a Bacia do Paraná. Esses eventos ocorreram ao mesmo tempo em
que iniciava-se a separação das plataformas continentais que hoje constituem a América do Sul
e África, marcando o final da existência do supercontinente Pangeia.

O arenito eólico constituinte da Formação Botucatu é encontrado tanto assentado sobre
a Formação Caturrita, como no interior da Formação Serra Geral (arenito intertrap). Trata-se
de arenito quartzoso de granulometria fina à média, contendo feldspato alterado e cimentado
por sílica ou por óxido de ferro, que lhe confere a coloração rosa-avermelhada. Sua deposição
teve início no Cretáceo Inferior, período em que a Bacia do Paraná estava sob influência de
clima desértico. Essa condição climática continuou durante todo o período em que ocorreram
as dezenas de eventos de vulcanismo fissural, fazendo com que os mesmos fossem sucedidos
por deposições eólicas de duração variável. Como a duração e a quantidade de material de-
positado pelos eventos de vulcanismo fissural era variável, assim como o intervalo de tempo
entre cada novo evento e a intensidade das deposições de sedimentos eólicos, a espessura das
camadas do arenito eólico e das rochas vulcânicas é bastante variável. Além disso, devido aos
diversos eventos de subsidência que ocorreram no eixo central da Bacia do Paraná, com conse-
quente soerguimento de suas bordas, as camadas dessas rochas possuem diferentes inclinações
ao longo de sua faixa de exposição, sendo caracteristicamente ondulada e com suave tendência
de inclinação para sudoeste.

As deposições do Quaternário são constituídas por depósitos coluviais e aluviais. Em
elevações entre ±200 e ±300 m encontram-se depósitos coluviais de material proveniente de
uma ou ambas as Formações Serra Geral (fragmentos de tamanho variado) e Botucatu. Em
elevações abaixo de ±200 m são mais comuns os depósitos coluviais de uma ou ambas as
Formações Botucatu e Caturrita. Esses depósitos ocorrem de maneira descontínua nas encos-
tas. Próximo aos cursos de água na porção mais baixa da bacia e no entorno do reservatório,
encontram-se depósitos fluviais recentes, geralmente constituídos de fragmentos arredondados
(seixos) de tamanho variável e/ou sedimentos arenosos. Em pequenas áreas abaciadas e mal
drenadas, os sedimentos apresentam granulometria mais fina.

5.6 GEOMORFOLOGIA

A área de estudo está situada na porção sul da Bacia Sedimentar do Paraná. Assim, as
geoformas atuais são resultado dos processos erosivos que ocorreram durante o Terciário e o
Quaternário (SARTORI, 2009), após as últimas deposições de lavas vulcânicas e de sedimentos
eólicos. Durante esse período, a esculturação da paisagem foi determinada pelas alternações
entre climas úmidos, semiáridos e áridos (SARTORI, 2009). Atualmente, o clima subtropical
úmido favorece a instalação e permanência de vegetação mais eficiente na redução do processo
de dissecação da paisagem (SARTORI, 2009; NASCIMENTO; PENNA E SOUZA, 2010). Isso
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permite que as superfícies geomórficas atinjam maior estabilidade e maturidade, embora o uso
agrícola das terras tenha acelerado, pontualmente, os processos erosivos na área devido à limi-
tada adoção de práticas conservacionistas (Seção 5.8).

A bacia do DNOS é abrangida pela unidade morfoestrutural do Rebordo do Planalto da
Bacia do Paraná (NASCIMENTO; PENNA E SOUZA, 2010). O Rebordo do Planalto é caracte-
rizado pela ampla variação altimétrica, declividade acentuada e escarpas abruptas, apresentando
formas denudacionais com topos convexos (fluxo hídrico divergente), aguçados e em formas de
escarpas. Nesses locais, as vertentes assumem forma retilínea com grande desnível (NASCI-
MENTO; PENNA E SOUZA, 2010), muitas vezes interrompidas por degraus ou patamares, na
maioria das vezes encaixadas em falhas e/ou fraturas. Esses patamares são resultado da ação
diferencial dos processos denudacionais sobre a paisagem, geralmente condicionados pela re-
sistência do material de origem, seja ela química/mineralógica (rochas vulcânicas básicas vs.
ácidas), física/granulométrica (rochas vulcânicas versus sedimentares), ou estrutural (padrão de
diaclasamento vertical vs. horizontal das rochas vulcânicas) (HOLTZ, 2003; PEDRON, 2007;
STRECK et al., 2008). Entretanto, em algumas situações, os patamares são formados por depó-
sitos coluviais – mesmo nas partes altas do Rebordo do Planalto – resultantes de movimentos de
massa causados por eventos pluviométricos de elevada intensidade e/ou duração (PINHEIRO;
SOARES, 2004; PAISANI; GEREMIA, 2010). Nesses casos, os patamares possuem menor
dimensão e maior declividade. Em outras situações, os patamares coluviais, sobretudo aque-
les originados dos arenitos da Formação Botucatu, formam vertentes alongadas e com menor
inclinação, que chegam até a margem dos cursos de água.

Como a bacia do DNOS se encontra em uma região de transição morfoestrutural, as
características geomorfológicas das porções mais altas e mais baixas da paisagem são similares
àquelas encontradas nas unidades morfoestruturais adjacentes, respectivamente, o Planalto e a
Depressão Periférica. O Planalto é marcado pelo relevo suave-ondulado a ondulado, com for-
mas denudacionais de superfícies planas com topos convexos (fluxo hídrico divergente). Nesses
locais, as vertentes assumem forma convexa levemente ondulada, muitas vezes encaixadas em
falhas e/ou fraturas (NASCIMENTO; PENNA E SOUZA, 2010). Já a Depressão Periférica é
marcada pelo acúmulo de sedimentos provenientes do Planalto e do Rebordo do Planalto, for-
mando planícies aluviais que se intercalam entre as coxilhas (denominação regional de colinas).
Ali predominam as formas agradacionais de planície fluvial e formas denudacionais com topos
convexos e superfícies planas. As últimas correspondem às coxilhas de algumas dezenas de
metros de altitude, geralmente formadas sobre o substrato da Formação Caturrita e assentadas
na base do Rebordo do Planalto (GASPARETTO et al., 1988). Essas coxilhas constituem divi-
sores de água de pequena amplitude comumente usados na subdivisão da bacia do DNOS em
pequenas sub-bacias (MARINS, 2004; SARTORI, 2009). Nesses locais as vertentes costumam
ser alongadas e assumem a forma predominantemente côncava devido aos processos de deposi-
ção sedimentar e erosão fluvial, muito fracos sob a atual condição climática (NASCIMENTO;
PENNA E SOUZA, 2010; WERLANG et al., 2010).

A grande heterogeneidade geomorfológica da bacia do DNOS se traduz em uma grande
heterogeneidade textural do relevo, ou rugosidade, resultante da ação climática ao longo do
tempo geológico (NASCIMENTO; PENNA E SOUZA, 2010). Entretanto, em menor escala,
a ação antrópica também atuou sobre a configuração geomorfológica da área (Seção 5.8). O
principal efeito se deu pela erosão da camada superficial do solo, cultivado intensivamente
sem adoção de práticas conservacionistas ao longo de inúmeras décadas (MENEZES, 2008;
STÜRMER, 2008; MIGUEL, 2010; SAMUEL-ROSA et al., 2011). Além disso, a abertura
de caminhos para acesso às áreas de produção nos patamares do Rebordo do Planalto e nos
topos de morros proporcionou a formação de canais de concentração e escoamento dos fluxos
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hídricos superficiais, levando à formação inicial de voçorocas. Obras de maior expressividade,
como ferrovias, ruas e rodovias pavimentadas, conjuntos habitacionais e construções isoladas,
as quais envolvem operações de terraplanagem e aterramento, também resultaram em modifi-
cações localizadas na geomorfologia da área. Por fim, a construção do reservatório possibilitou
a formação de uma área de agradação da paisagem bastante estável em seu entorno, uma vez
que o sedimento removido do Planalto e do Rebordo do Planalto já não são mais transportados
a jusante.

5.7 HIDROGRAFIA

A hidrografia da área é condicionada pelas condições geomorfológicas, geológicas, pe-
dológicas e climáticas, ao mesmo tempo em que exerce forte influência sobre a modelagem
da paisagem (NASCIMENTO; PENNA E SOUZA, 2010). Como a bacia do DNOS é abran-
gida pela unidade morfoestrutural do Rebordo do Planalto da Bacia do Paraná (Seção 5.6),
a drenagem apresenta padrão bem definido, geralmente retangular, determinado pelas falhas
e/ou fraturas (BORTOLUZZI, 1974; GASPARETTO et al., 1988; NASCIMENTO; PENNA E
SOUZA, 2010). A própria formação da bacia do DNOS se deve a existência de falhas e/ou
fraturas (GASPARETTO et al., 1988). A principal e maior delas localiza-se no eixo central da
bacia, onde atualmente está localizado o leito do Rio Vacacaí-Mirim. Quanto aos tributários do
Rio Vacacaí-Mirim, a maioria possui leito assentado sobre outras falhas e/ou fraturas de menor
dimensão perpendiculares àquela do eixo central da bacia.

Nas áreas mais baixas, cujas características geomorfológicas se assemelham à Depres-
são Periférica, a drenagem apresenta configuração sinuosa, resultado dos processos de depo-
sição sedimentar e erosão fluvial (PAIVA et al., 2001; SUTILI et al., 2009). Como o relevo
é plano a suave-ondulado, e as vertentes longas e predominantemente côncavas, o lençol freá-
tico fica próximo da superfície do solo. A variação das condições meteorológicas ao longo do
ano fazem com que o lençol freático apresente flutuação significativa, mantendo o conteúdo de
água do solo elevado durante os meses mais frios (menor evapotranspiração) (HELDWEIN et
al., 2009). Isso também favorece a ocorrência de inundações, sobretudo nas proximidades dos
cursos de água e do reservatório (GOLDANI, 2006).

Muitos cursos de água localizados na áreas cujas características geomorfológicas se
assemelham ao Planalto, assim como no Rebordo do Planalto e nas coxilhas assentadas em sua
base, são sazonais. Em geral, esses cursos de água estão em atividade apenas nos meses mais
frios do ano, quando a disponibilidade de água no ambiente é maior, ou durante os eventos de
precipitação de forte intensidade, que ocorrem nos meses de verão (HELDWEIN et al., 2009;
MOURA-BUENO, 2012). Os cursos de água do Rebordo do Planalto costumam apresentar
leito raso e pedregoso, muitas vezes assentado sobre rochas da Formação Serra Geral (SUTILI
et al., 2009). Já os cursos de água localizados nos patamares e coxilhas costumam ser rasos,
se assentados sobre rochas da Formação Caturrita, ou profundos, se assentados sobre rochas
da Formação Botucatu ou depósitos coluviais, formando voçorocas. Segundo relatos de alguns
dos moradores mais antigos da bacia do DNOS, muitas nascentes e pequenos cursos de água
já perderam totalmente sua atividade, sobretudo quando localizadas no interior ou à jusante de
áreas de uso antrópico intensivo.

Dado que a declividade e o desnível entre a parte mais baixa e a parte mais alta da área
são acentuados, as cheias costumam apresentar velocidade e vazão bastante grandes (PAIVA et
al., 2001; SUTILI et al., 2009). Em média, nos 7 km de extensão do Rio Vacacaí-Mirim, da
nascente até o reservatório, a declividade média é de 0.03 m m−1. Isso representa um desnível
de ±210 m, o que resulta em um tempo de concentração da bacia estimado de 3 h (PAIVA et
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al., 2001). Essas características causam erosão severa nas margens dos cursos de água nas áreas
mais baixas (depósitos aluviais), sobretudo nos raios externos das curvas, onde a velocidade da
água é maior (SUTILI et al., 2009). Em alguns trechos, os cursos de água chegaram a ter sua
largura duplicada em menos de uma década, resultando no aumento da sinuosidade e do nível
de fundo (PAIVA et al., 2001). Esses eventos comprometem áreas de produção agrícola, bem
como a estrutura de residências e vias públicas localizadas nas margens dos cursos de água.
Grande parte do material removido das margens dos cursos de água é transportado para dentro
do reservatório, que já perdeu mais de um terço de sua capacidade inicial de armazenamento de
água (DILL et al., 2004).

5.8 USO DA TERRA E VEGETAÇÃO

A bacia do DNOS foi intensamente ocupada em tempos pretéritos para produção agros-
silvopastoril de pequeno porte (agricultura familiar) usando sistemas de cultivo convencional
com aração periódica e queimada. A grande quantidade, extensão e boa distribuição da rede
viária em toda a área é uma forte evidência dessa ocupação. A área também é cortada por
uma estrada férrea e avizinha uma rodovia federal, ambas muito movimentadas. Entretanto,
nas últimas décadas, muitos caminhos internos das propriedades rurais foram desativados, fruto
do abandono de muitas áreas de produção agrossilvopastoril, a maioria delas localizada nos
topos dos morros, patamares do Rebordo ou no fundo de vales, onde a manutenção dos ca-
minhos é muito onerosa, especialmente quando distantes da sede das propriedades (Figura 4.6
e Figura 4.7). No passado, essas estradas internas possibilitavam o trânsito de pessoas e o
transporte da produção agrossilvopastoril, a qual era usa para suprir as necessidades próprias,
sendo o excedente comercializado às margens da estrada férrea e nas áreas urbanas do muni-
cípio. Atualmente, o tráfego existente está concentrado nas estradas principais e secundárias,
enquanto alguns poucos caminhos internos ainda são utilizados para condução de rebanhos ou
acesso a pequenas áreas de produção agrossilvopastoril. A maioria dos caminhos internos ina-
tivos está localizada no interior de áreas de floresta natural regenerada, o que dificulta a sua
identificação com imagens aéreas ou orbitais. Em alguns casos, esses caminhos são utilizados
em atividades de turismo, especialmente para caminhadas a pé, ou atividades esportivas com
motocicletas (trilhas).

O abandono de muitas áreas de produção agrossilvopastoril possibilitou a regeneração
da vegetação natural em grande parte da bacia do DNOS. Atualmente, a área ocupada por flo-
restas e vegetação secundária (capoeira) representa ±60 % da área total (SAMUEL-ROSA et
al., 2011). Isso mostra que, assim como toda a região do Rebordo do Planalto da Bacia do Pa-
raná, o uso da terra para fins agrossilvopastoris na bacia do DNOS também foi desintensificado
nas últimas décadas (SEMA/UFSM, 2001; DILL et al., 2004; POELKING, 2007; MIGUEL,
2010; SAMUEL-ROSA et al., 2011; DULLIUS, 2012; TEN CATEN et al., 2012a). As áreas
de floresta são encontradas nos mais diversos estádios de desenvolvimento, com os estratos
intermediário e superior concentrando a maior parte dos indivíduos. As florestas originais, e
secundárias em estádio avançado de desenvolvimento, são encontradas, predominantemente,
em áreas de difícil acesso. Em geral, as áreas de floresta predominam nas regiões com maior
declividade e solo raso e pedregoso. Tais condições pedológicas são resultado das condições
geológicas e geomorfológicas e/ou da degradação causada pelo intenso uso da terra para pro-
dução agrossilvopastoril durante inúmeras décadas usando sistemas de cultivo convencional
(SAMUEL-ROSA et al., 2011).

A ocorrência de fragmentos florestais ao longo das margens dos cursos de água, es-
tradas e próximo de edificações é comum. Nas formações mais jovens, é comum encontrar
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fragmentos de carvão e outros sinais do uso agrossilvopastoril num passado recente. As áreas
sob vegetação secundária (capoeira) também ocorrem em toda a bacia do DNOS, predominan-
temente em locais de difícil acesso e acentuada declividade, geralmente interligados por cami-
nhos internos, indicando sua utilização agrossilvopastoril no passado (SAMUEL-ROSA et al.,
2011). Sua composição florística varia entre as áreas, predominando espécies de porte herbáceo
e arbustivo. O solo dessas áreas costuma ser menos pedregoso que nas áreas florestadas, mas
apresentam profundidade semelhante (SAMUEL-ROSA et al., 2011), possivelmente indicando
que as atividades agrossilvopastoril foram encerradas antes do solo atingir seu nível máximo de
degradação. Entretanto, a reserva de nutrientes do solo, assim como a sua fertilidade física, fo-
ram esgotadas a tal ponto que a vegetação secundária ainda não foi capaz de produzir melhorias
significativas quando comparado com as condições originais (MENEZES, 2008; ZALAMENA,
2008).

Apesar do abandono de muitas áreas de produção agrossilvopastoril nas últimas déca-
das, sobretudo aquelas com maior dificuldade de acesso, os caminhos internos utilizados para
o escoamento da produção, mesmo depois de inativos, continuam associados ao processo de
degradação do solo. Isso ocorre porque, na grande maioria dos casos, todo o fluxo da água de
escoamento superficial proveniente dos eventos de precipitação é concentrado nesses caminhos
internos, onde, geralmente, quantidade significativa de resíduos vegetais está depositada. Esse
resíduo vegetal, mais a fração mineral do solo carregada pela enxurrada, costuma chegar com
facilidade aos cursos de água. No caso dos caminhos internos ainda utilizados na condução
de rebanhos bovinos, a produção de sedimentos minerais tende a ser ainda maior, haja vista o
impacto mecânico do pisoteio animal sobre a desagregação do solo. Além disso, muitas áreas
florestadas e sob vegetação secundária ainda são utilizadas para o pastoreio de bovinos e equi-
nos (SAMUEL-ROSA et al., 2011). Isso causa a degradação da camada superficial do solo,
sobretudo pela sua compactação, dificultando a infiltração da água dos eventos de precipitação,
o que resulta na perda da serapilheira (SCHENEIDER et al., 1978). Além disso, a própria re-
generação natural é prejudicada, uma vez que plantas em estádio inicial de desenvolvimento e
raízes superficiais são destruídas (SCHENEIDER et al., 1978; HACK et al., 2005). O resultado
desse processo é a redução da capacidade do solo em suportar o desenvolvimento potencial da
floresta (KÖNIG et al., 2002).

Dado que a bacia do DNOS também possui áreas com relevo plano a suave-ondulado e
solo profundo, ±30 % de sua superfície ainda é utilizada com atividades agrossilvopastoris ao
longo de todo o ano, principalmente a pecuária bovina extensiva (SAMUEL-ROSA et al., 2011).
As áreas de produção animal extensiva predominam nas porções norte, sul e centro-oeste, ao
longo dos cursos de água e estradas. O solo é mais profundo e menos pedregoso do que em
áreas de floresta natural e vegetação secundária. É comum encontrar fragmentos de carvão e
formações de microrrelevo devido ao uso de implementos agrícolas para o revolvimento do
solo na maior parte desses locais, evidenciando seu uso agrícola num passado recente. Essas
áreas podem ser divididas entre aquelas de campo sujo (pastagens naturais mal manejadas, com
predomínio de vegetação de porte herbáceo-arbustivo) e campo limpo (pastagens naturais e
perenes bem manejadas) (SAMUEL-ROSA et al., 2011). Em geral, as áreas de campo sujo
estão próximas a áreas de vegetação secundária (capoeira), com relevo mais declivoso e solo
mais pedregoso e raso do que aquelas de campo limpo. Assim como nas áreas de floresta e sob
vegetação secundária, a dinâmica de uso dessas áreas ao longo do tempo é bastante complexa,
dificultando o estabelecimento de relações diretas com a maior parte das características do solo.
Entretanto, sob o ponto de vista da reserva de nutrientes e matéria orgânica, o solo pode ser
considerado pobre, uma vez que a exploração pecuária é totalmente extrativista e extensiva.

As atividades agrossilvopastoris que ocupam menor extensão territorial são a agricultura
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e a silvicultura. As áreas de lavoura anuais e bianuais estão dispersas em toda a área, geralmente
localizadas em terrenos de menor declividade e solo medianamente profundo. Entretanto, al-
gumas áreas de produção agrícola possuem declives superiores a 50 % e solo raso e pedregoso
(SAMUEL-ROSA et al., 2011). Em qualquer das situações, as condições de degradação do solo
costumam ser bastante avançadas devido ao emprego de sistemas convencionais de cultivo, ex-
ceto por algumas áreas de produção olerícola. As florestas plantadas (Eucalyptus spp.) são
implantadas em áreas com menor declividade e solo mais profundo, geralmente onde o acesso
com máquinas é melhor, sobretudo pela necessidade de manejo e escoamento da produção. A
área ocupada por essa atividade possui tendência de crescimento, haja vista os novos plantios
existentes e o relato de alguns moradores (SAMUEL-ROSA et al., 2011). Em geral, os novos
plantios são implantados em áreas de produção agropecuária, seja pelo elevado nível de degra-
dação do solo já atingido, seja pela redução da força de trabalho das famílias devido ao êxodo
rural, ou pela maior lucratividade dessa atividade.

Por fim, as obras de engenharia e assentamentos urbanos são aquelas que ocupam a
menor parte da bacia do DNOS. No que diz respeito à malha viária, a maior concentração
ocorre na porção sul, junto ao maior assentamento urbano, localizado no entorno do reservató-
rio. Entretanto, diversas construções são encontradas ao longo das estradas que cortam a área,
muitas das quais são pertencentes a moradores do centro da cidade de Santa Maria e são utili-
zadas apenas como sítios de final de semana. O número de sítios de final de semana aumentou
significativamente nas últimas décadas (GOLDANI, 2006), muitos dos quais construídos em
locais inapropriados, como margens dos corpos de água e áreas com forte declividade. Esse
processo de urbanização desordenada, que exigiu a realização de obras de corte e aterramento
dos terrenos, é um importante contribuinte da carga de sedimentos recebida pelo reservatório
anualmente, aos quais somam-se os resíduos domésticos e cloacais (GOLDANI, 2006; PAIVA
et al., 2001; DILL et al., 2004; MIGUEL et al., 2014). Quanto às demais obras de engenharia,
destacam-se os reservatórios de água, a maioria deles de pequena extensão, utilizados para a
dessedentação animal. Como os cursos de água de maior volume estão localizados na porção
sul da área, a maior parte dos reservatórios de água está na porção norte (SAMUEL-ROSA et
al., 2011). Além disso, a menor permeabilidade do solo e do substrato rochoso, bem como da
condição topográfica, favorecem essa característica.

5.9 PEDOLOGIA

O solo da bacia do DNOS possui características com forte dependência do material de
origem que, conforme descrito anteriormente, é um importante condicionante da geomorfolo-
gia e da hidrografia (NASCIMENTO; PENNA E SOUZA, 2010). Nas superfícies geomórficas
mais estáveis, como no topo do Planalto (rochas vulcânicas), nos terraços do Rebordo (rochas
vulcânicas e sedimentares) e nas coxilhas de relevo suave-ondulado a ondulado (rochas sedi-
mentares), as condições ambientais são mais favoráveis ao desenvolvimento do solo em profun-
didade (MOSER, 1990). O contrário ocorre nas áreas de relevo mais acidentado do Rebordo,
onde acredita-se que a taxa de formação do solo seja semelhante à taxa de remoção natural
(MOSER, 1990; DALMOLIN et al., 2006; STÜRMER, 2008; SAMUEL-ROSA et al., 2011).
Além da condição geomorfológica, a resistência da rocha ao intemperismo também condiciona
o desenvolvimento do solo em profundidade nesses locais (PEDRON, 2007). Já nas planícies
aluviais, as características do solo foram fortemente influenciadas pelo hidromorfismo e deposi-
ção sedimentar, geralmente resultando em solo de coloração acinzentada e maior profundidade
do que nas área declivosas Rebordo (MOSER, 1990; MIGUEL, 2010). A forte influência da
geologia também aparece na textura do solo (Figura 5.3). Enquanto os arenitos conferem tex-
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tura arenosa ao solo, sobretudo aqueles da Formação Botucatu, as rochas vulcânicas conferem
textura média ao solo, sobretudo os basaltos-andesitos toleíticos (Seção 4.8).
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Figura 5.3: Distribuição do conteúdo de argila (g kg−1) na camada superficial do solo (≤ 20 cm) e sua
relação com o uso da terra e vegetação (pecuária, agricultura, silvicultura, floresta e capo-
eira) e o tipo de material de origem (ígnea – rocha ígnea, ou sedimentar – rocha sedimen-
tar ou sedimentos diversos). Solo desenvolvido a partir de material de origem sedimentar
costuma apresentas conteúdo de argila inferior à solo desenvolvido a partir de material de
origem ígnea. Em geral, essa relação é pouco influenciada pelo tipo de uso da terra. A exce-
ção são as áreas destinadas à silvicultura localizadas no setor norte da bacia do DNOS, cujo
solo desenvolveu a partir de material de origem ígnea. Ali a tendência é de o solo apresentar
maior conteúdo de argila na camada superficial.

Como a bacia do DNOS possui a maior parte de sua área em condições de declividade
moderada à forte, e foi intensamente ocupada em tempos pretéritos para produção agrossilvo-
pastoril com aração e queimada periódicas (Seção 5.8), o solo é, predominantemente, pouco
profundo. Nas áreas de declividade moderada à forte o solo costuma apresentar profundidade
inferior à 50 cm até o contato lítico, sendo comum a ocorrência de pedregosidade e rochosi-
dade abundantes (MIGUEL, 2010). Assim, predominam as classes taxonômicas Neossolo Li-
tólico Distro-Úmbrico típico, Cambissolo Háplico Ta Eutrófico típico, Neossolo Litólico Eutro-
Úmbrico típico e Neossolo Regolítico Distro-Úmbrico típico (Seção 4.6). O efeito do uso ina-
propriado do solo para produção agrossilvopastoril aparece mesmo em algumas áreas de maior
estabilidade (topos de morros, patamares do Rebordo do Planalto e coxilhas) onde as condições
para o desenvolvimento pedogenético são mais favoráveis (MOSER, 1990; MOURA-BUENO,
2012). Por exemplo, alguns patamares do Rebordo, inicialmente constituídos de colúvios sedi-
mentares (arenito Botucatu) e vulcânicos (fragmentos de tamanhos variáveis), apresentam solo
com superfície recoberta por fragmentos rochosos, fruto da forte erosão a que foi submetido, li-
mitando a continuação de seu uso para atividades agrossilvopastoris (MOURA-BUENO, 2012).
Essas atividades também resultaram na depleção da fertilidade do solo, marcada atualmente pe-
los baixos conteúdo de carbono orgânico (Figura 5.4) e capacidade de troca de cátions efetiva
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(Figura 5.5).
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Figura 5.4: Distribuição do conteúdo de carbono orgânico (g kg−1) na camada superficial do solo
(≤ 20 cm) e sua relação com o uso da terra e vegetação (pecuária, agricultura, silvicul-
tura, floresta e capoeira) e o tipo de material de origem (ígnea – rocha ígnea, ou sedimentar
– rocha sedimentar ou sedimentos diversos). O conteúdo de carbono é mais elevado em
solo florestal, independente do tipo de rocha que deu origem ao solo. Contudo, o conteúdo
de carbono é notadamente maior quando o solo tem rocha ígnea como material originário,
sugerindo uma íntima relação com o conteúdo de argila do solo (Figura 5.3) e de cátions
básicos liberados durante o intemperismo do material de origem, refletido na capacidade de
troca de cátions efetiva do solo (Figura 5.5). A grande variação no conteúdo de carbono em
solo florestal reflete a ocorrência de vários estágios de sucessão florestal.

Existe consenso de que a pequena profundidade do solo na maior parte da bacia do
DNOS seja devida ao material de origem, às condições geomorfológicas e hidrológicas, bem
como aos sistemas de cultivo do solo empregados ao longo de inúmeras décadas. Contudo, a
diversidade de fatores e a escassez de estudos torna impossível isolar a contribuição individual
de cada fator. Por exemplo, não existe estimativa quantitativa do volume total de solo perdido
devido à erosão em áreas de produção agrossilvopastoril. Entretanto, acredita-se que horizontes
pedogenéticos inteiros tenham sido removidos, dando origem ao processo de retrocesso pedoge-
nético do solo (SAMUEL-ROSA et al., 2011). Esse processo reflete a involução da classificação
taxonômica do solo dentro de um determinado sistema taxonômico. A comum ocorrência do
táxon Neossolo Litólico com solum de pouco menos de 50 cm em inúmeras áreas de produção
agrícola é usada para corroborar essa hipótese. Isso porque o valor de 50 cm para o solum é
aquele usado para distinguir os taxa Neossolo Litólico e Neossolo Regolítico no Sistema Bra-
sileiro de Classificação do Solo (SANTOS et al., 2013). A mesma hipótese foi levantada em
outras regiões de topografia complexa para explicar a identificação dos taxa Cambissolo e Lu-
vissolo onde antes observava-se o táxon Chernossolo (STRECK et al., 2008). Essa involução
da classificação taxonômica seria resultado da remoção do horizonte pedogenético A cherno-
zêmico devido à erosão acelerada pelo uso agrícola extrativista e intenso praticado por várias
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décadas. Em resumo, nas áreas onde a taxa de formação do solo é semelhante à taxa de erosão
natural, o uso agrossilvopastoril da terra sem adoção de práticas conservacionistas invariavel-
mente resultaria na degradação do solo e consequente retrocesso pedogenético porque a soma
das taxas de erosão natural e erosão induzida seria maior do que a taxa de formação do solo.
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Figura 5.5: Distribuição da capacidade de troca de cátions efetiva (mmol kg−1) na camada superficial do
solo (≤ 20 cm) e sua relação com o uso da terra e vegetação (pecuária, agricultura, silvicul-
tura, floresta e capoeira) e o tipo de material de origem (ígnea – rocha ígnea, ou sedimentar –
rocha sedimentar ou sedimentos diversos). Assim como o conteúdo de carbono orgânico do
solo, a capacidade de troca de cátions é maior em solo florestal. Contudo, áreas em estádio
recente de regeneração (capoeira) e pecuária também se destacam pela elevada capacidade
de troca de cátions. O contrário ocorre em tipos de uso da terra onde ocorre significativa
exportação dos cátions do solo, caso da agricultura e silvicultura.

As áreas com maior potencial de desenvolvimento pedogenético em profundidade pos-
suem menor expressão territorial. Elas correspondem à paisagem menos declivosa do Planalto
(rochas vulcânicas), algumas coxilhas (rochas sedimentares) e depósitos aluviais (MIGUEL,
2010). Em áreas de material de origem vulcânica, sobretudo basaltos-andesitos toleíticos,
identifica-se o táxon Argissolo Vermelho Alítico típico, que caracteriza solo com horizonte
superficial de textura arenosa a média, sobrejacente a um horizonte subsuperficial de textura
média a argilosa (MIGUEL, 2010). Nas áreas do Planalto em que ocorrem riólitos-riodacitos
granofíricos, o solo costuma apresentar menor profundidade, sendo predominantemente classi-
ficado como Neossolo Litólico e Cambissolo Háplico. Em pequenas manchas, o solo é classifi-
cado como Argissolo Vermelho-Amarelo. O menor desenvolvimento do solo em profundidade
em área de riólitos-riodacitos granofíricos deve-se, em parte, à maior resistência dessas rochas
ao intemperismo, uma vez que possui maior teor de sílica, sobretudo na forma de grandes de
cristais de quartzo cristalizados a baixa temperatura (< 600 ◦C) (PEDRON, 2007). Contudo,
a pequena profundidade do solo também resulta da degradação causada pelo longo uso agros-
silvopastoril sem adoção de práticas conservacionistas. Até o momento é impossível isolar a
contribuição desses dois fatores de formação sobre as características do solo.
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Em áreas de material de origem sedimentar (Formação Caturrita), o solo costuma ser
classificado como Argissolo Bruno-Acinzentado Alítico abrúptico. Trata-se de solo com ho-
rizonte superficial de textura arenosa que transiciona de maneira abrupta para um horizonte
subsuperficial de textura argilosa (MIGUEL, 2010). Essa descontinuidade textural geralmente
é atribuída a processos pedogenéticos, sobretudo a perda (erosão lateral seletiva) e translocação
(argiluviação) das partículas mais finas. Contudo, devido à complexidade geológica e geomor-
fológica da área, outros fatores podem ter contribuído. O primeiro deles estaria relacionado
às características do próprio material de origem que, por ter sido formado em ambiente fluvial
durante um período de mudança climática no Triássico, apresenta camadas deposicionais com
granulometria diferenciada (PIERINI et al., 2002). Assim, a presença de camadas de siltitos
e folhelhos poderia ter contribuído para a formação da descontinuidade textural. Outro fator
seria uma possível contribuição dos arenitos da Formação Botucatu e intertrap na Formação
Serra Geral. Dado que esse material está localizado em posições superiores na paisagem e são
bastante suscetíveis à erosão, o mesmo poderia ter contribuído para a formação do horizonte
superficial arenoso do solo. Em ambos os casos, a descontinuidade textural seria atribuída à
ocorrência de descontinuidade litológica, com a diferença de que no primeiro caso as litologias
pertenceriam à mesma formação geológica.

Nas áreas deprimidas da paisagem do Planalto, formando pequenas bacias de acumula-
ção, ou nas áreas planas ao longo dos cursos de água da Depressão Periférica, o solo é classifi-
cado como Planossolo Háplico Alítico típico (MIGUEL, 2010). Trata-se de solo com horizonte
superficial de textura média sobre horizonte subsuperficial de textura média a argilosa, podendo
ou não apresentar horizonte intermediário eluvial. Ainda mais próximo dos cursos de água, o
solo é classificado como Neossolo Flúvico Tb Eutrófico fragmentário (MIGUEL, 2010). Como
o seu material de origem é diverso e possui arranjamento espacial discordante, a textura do solo
é variável, mas sempre arenosa ou média, nunca argilosa, mesmo quando presente em áreas do
Planalto ou do Rebordo. Por fim, com expressão territorial ainda menor, o solo é classificado
como Neossolo Quartzarênico Órtico típico em alguns patamares do Rebordo, sejam eles de
origem estrutural ou da deposição de colúvios do arenito da Formação Botucatu.

Atualmente, o aumento da área ocupada por florestas devido ao abandono de diversas
área de produção sugere que a bacia do DNOS esteja adentrando um período de redução da
degradação do solo, exceto nas áreas de expansão urbana. Os processos erosivos já apresen-
tam caráter mais pontual, onde a geomorfologia parece possuir papel preponderante. Segundo
estimativas, apenas uma pequena fração da área apresenta perdas de solo por erosão laminar
acima de valores toleráveis (MIGUEL, 2010). Algumas observações até mesmo indicam que
essas estimativas estão acima da perda real de solo por erosão laminar (MOURA-BUENO,
2012). Espera-se que a redução da degradação do solo contribua, num futuro próximo, para a
construção de um entendimento mais acurado da relação entre o solo e os demais componentes
ambientais, principalmente nas áreas florestadas recentemente abandonadas.
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DO MORE DETAILED COVARIATES DELIVER MORE ACCURATE
SOIL MAPS?

* This chapter is based on A. Samuel-Rosa, G.B.M. Heuvelink, G.M. Vasques, L.H.C. Anjos. Do more detailed
environmental covariates deliver more accurate soil maps? Geoderma, v.243–244, p.214–227, 2015. Terms and ex-
pressions have been modified to match the standard terminology used throughout the thesis without compromising
the content of the original text. Footnotes were added where a definition required correction or clarification.



6 Chapter V. Using More Detailed Covariates

6.1 RESUMO

Neste estudo nós avaliamos se investir em covariáveis espacialmente mais detalhadas aumenta
a acurácia dos mapas do solo. Nós usamos um estudo de caso no sul do Brasil para mapear o
conteúdo de argila (CLAY), o conteúdo de carbono orgânico (SOC), e capacidade de troca de
cátions efetiva (ECEC) da camada superficial do solo de uma área de ∼ 2000 ha localizada na
borda do planalto da Bacia Sedimentar do Paraná. Cinco covariáveis, cada uma com dois níveis
de detalhe espacial, foram usadas: mapa areal-categórico de solo, modelos digitais de elevação
(DEM), mapas geológicos, mapas de uso da terra, e imagens de satélite. Trinta e dois modelos
de regressão linear múltipla foram calibrados para cada propriedade do solo usando todas as
combinações de detalhe espacial das covariáveis. Para cada combinação, stepwise regression foi
usada para selecionar as variáveis preditoras incorporadas no modelo. A avaliação dos modelos
foi feita usando o R-quadrado ajustado da regressão. O modelo de referência, calibrado com
a versão menos detalhada de cada covariável, e o modelo com o melhor desempenho, foram
usados para calibrar dois modelos lineares mistos para cada propriedade do solo. Parâmetros
dos modelos foram estimados usando máxima verossimilhança restrita. Predições espaciais
foram realizadas usando o melhor preditor linear não-enviesado empírico. Validação-cruzada
foi usada para validar os modelos de regressão linear múltipla e dos modelos lineares mistos
de referência e com melhor desempenho. Os resultados mostram que para CLAY a acurácia da
predição não aumentou consideravelmente por usar covariáveis mais detalhadas. A quantidade
de variância explicada aumentou apenas∼ 2 pp (pontos percentuais), menos do que obtido pela
inclusão do passo de krigagem, que explicou 4 pp. Por outro lado, a predição de SOC e ECEC
aumentou em ∼ 13 pp quando o modelo de referência foi substituído pelo modelo com melhor
desempenho. Em geral, o aumento no desempenho preditivo foi modesto e pode não sobrepor
os custos adicionais do uso de covariáveis mais detalhadas. Pode ser mais eficiente investir
recursos adicionais na coleta de mais observações do solo, ou no aumento do detalhe apenas
da covariável que tem o efeito de aumento mais forte. Em nosso estudo, a última funcionaria
apenas para SOC e ECEC pelo investimento em um mapa de uso da terra mais detalhado e,
possivelmente, também em um mapa geológico e DEM mais detalhados.

Palavras-chave: Mapeamento Digital do Solo. Modelo Linear Misto. Informação Auxiliar.
Seleção de Variáveis. Acurácia do Modelo. Custo do Mapeamento do Solo.
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6.2 ABSTRACT

In this study we evaluated whether investing in more spatially detailed covariates improves the
accuracy of soil maps. We used a case study from Southern Brazil to map clay content (CLAY),
organic carbon content (SOC), and effective cation exchange capacity (ECEC) of the topsoil
for a ≈ 2000 ha area located on the edge of the plateau of the Paraná Sedimentary Basin. Five
covariates, each with two levels of spatial detail were used: area-class soil maps, digital eleva-
tion models (DEM), geologic maps, land use maps, and satellite images. Thirty-two multiple
linear regression models were calibrated for each soil property using all spatial detail combina-
tions of the covariates. For each combination, stepwise regression was used to select predictor
variables incorporated in the model. Model evaluation was done using the adjusted R-square of
the regression. The baseline model, calibrated with the less detailed version of each covariate,
and the best performing model were used to calibrate two linear mixed models for each soil
property. Model parameters were estimated using restricted maximum likelihood. Spatial pre-
diction was performed using the empirical best linear unbiased predictor. Validation of baseline
and best performing linear multiple regression and linear mixed models was done using cross-
validation. Results show that for CLAY the prediction accuracy did not considerably improve
by using more detailed covariates. The amount of variance explained increased only ∼ 2 per-
centage points (pp), less than that obtained by including the kriging step, which explained 4 pp.
On the other hand, prediction of SOC and ECEC improved by∼ 13 pp when the baseline model
was replaced by the best performing model. Overall, the increase in prediction performance was
modest and may not outweigh the extra costs of using more detailed covariates. It may be more
efficient to spend extra resources on collecting more soil observations, or increasing the detail
of only those covariates that have the strongest improvement effect. In our case study, the latter
would only work for SOC and ECEC, by investing in a more detailed land use map and possibly
also a more detailed geologic map and DEM.

Keywords: Digital Soil Mapping. Linear Mixed Model. Auxiliary Information. Variable Se-
lection. Model Accuracy. Soil Mapping Cost.
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6.3 INTRODUCTION

Modern soil mapping relies on the use of statistical models to produce digital representa-
tions of spatial soil distribution using point soil observations and spatially exhaustive covariates
(MCBRATNEY et al., 2003; SCULL et al., 2003; FLORINSKY, 2012). Three important weak-
nesses in the statistical soil distribution modelling approach can be pointed out. First, it requires
sufficient and appropriately distributed point soil data within the area being mapped (CARRÉ
et al., 2007). Second, the model structure explores only the empirical relationship among envi-
ronmental conditions and soil properties, being less comprehensive than soil-landscape process
models (GRUNWALD, 2009). Last, the covariates are only approximations of the true envi-
ronmental conditions that helped shape the soil. They serve only as proxies (surrogates) of
the current environmental conditions, which in many cases are different from the past condi-
tions under which pedogenesis took place (HEUVELINK; WEBSTER, 2001). In spite of these
weaknesses, modern soil mapping techniques have proven very successful in the past decades
in producing soil property maps that capture the main patterns of soil spatial variation (MOORE
et al., 1993; MCBRATNEY et al., 2000; GRUNWALD, 2009).

More recently, there has been a growing interest in understanding how the characteristics
of the covariates influence the success of soil mapping – this study contributes to this effort. It is
commonly accepted that the more resources are spent on the construction of a covariate and the
more spatial information it has, the more accurately it describes the environmental conditions
(HUPY et al., 2004; HENGL et al., 2013). It is also generally believed that such more de-
tailed covariates will be more valuable for soil mapping and lead to more accurate soil property
predictions (CAVAZZI et al., 2013; MAYNARD; JOHNSON, 2014). If these more detailed co-
variates convey more information and represent more adequately the environmental conditions
– the drivers of soil forming processes –, then it is fair to expect that they improve the accuracy
of the resulting soil maps. However, some studies have shown the contrary (THOMPSON et
al., 2001; ELDEIRY; GARCIA, 2008; KIM et al., 2014). For example, the window size at
which DEM derivatives are calculated can be more important than the spatial resolution of the
DEM (WOOD, 1996; ZHU et al., 2008; BEHRENS et al., 2010). The uncertainty about the
added value of using more detailed covariates is of concern for those seeking to use resources
efficiently, because using more detailed covariates generally increases soil mapping costs (SHI
et al., 2012).

The objective of this study was to evaluate whether investing in more detailed covariates
improves the accuracy of soil maps. The main difference of our study to previous ones is that
we use a rigorous statistical approach to assess the added value of using five more detailed
covariates simultaneously. We used a case study in Brazil to compare the accuracy of maps of
the clay content, organic carbon content and effective cation exchange capacity of the topsoil as
obtained from regression kriging on the five covariates, whereby each covariate was evaluated
on two levels of spatial detail.

6.4 MATERIAL AND METHODS

6.4.1 Study Area and Soil Data

The study area constitutes a small catchment (∼ 2000 ha) located on the southern edge
of the plateau of the Paraná Sedimentary Basin, Rio Grande do Sul, Brazil (Figure 6.1). The cli-
mate is classified as Cfa (Köppen – subtropical humid without a dry season) with mean annual
temperature of 19.3 ◦C, and mean annual precipitation of 1708 mm, well distributed throughout
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the year (MALUF, 2000). Relief varies between plain (slope between 0 and 3 %) and moun-
tainous (slope between 45 and 100 %), and elevations range between 140 and 475 m. Geology
consists of basic, intermediate and acid igneous rocks (rhyolite-rhyodacite and andesite-basalt)
of the Cretaceous period, consolidated sedimentary rocks (aeolian and fluvial sandstones) of the
Triassic and Jurassic periods, and non-consolidated (fluvial and colluvial deposits) of the Qua-
ternary period (GASPARETTO et al., 1988; MACIEL FILHO, 1990; SARTORI, 2009). Native
semi-deciduous forests occupy more than half of the area, followed by native grassland used for
animal husbandry, semi-deciduous shrubland, annual crop agriculture, forestry (Eucalyptus),
urban areas, and artificial water bodies (SAMUEL-ROSA et al., 2011).

A dataset containing n = 350 point soil observations collected between 2004 and 2011
(PEDRON et al., 2006; SAMUEL-ROSA et al., 2011; MIGUEL et al., 2011; SAMUEL-ROSA
et al., 2013) was used in this study 21. Sampling locations were selected purposively and by
convenience (SAMUEL-ROSA et al., 2014). Three soil pits were opened within an area of
±100 m at most sampling locations to obtain composite samples of the topsoil for laboratory
analysis. Soil was collected to a depth of 20 cm or less when soil depth was smaller than 20 cm.
A few observations (n = 10) correspond to individual samples collected up to 30 cm. Sampling
depth ranges from 2 to 30 cm, with a mean of 17.3 cm. We assumed that the vertical, horizontal
and temporal support differences between soil samples is negligible for the purpose of this
study.

Three soil properties (fine earth fraction, < 2 mm) were explored: clay content (CLAY,
g kg−1), organic carbon content (SOC, g kg−1), and effective cation exchange capacity (ECEC,
mmol kg−1). CLAY was determined by the pipette method. SOC was determined using wet
digestion. ECEC was calculated as the sum of exchangeable bases plus exchangeable acidity.
The soil properties selected were expected to present different patterns of spatial variation and
correlation with the most dominant factors of soil formation (JENNY, 1941) in the area: organ-
isms (O), relief (R), and parent material (P). CLAY was presumed to have a stronger relation
with P, while SOC was expected to be more correlated with O. Because the soils of the study
area were strongly eroded due to intense agriculture in the 20th century, both CLAY and SOC
were also expected to be closely related with R. Finally, ECEC was expected to be strongly
correlated with P and O, which is supported by its natural relationship with both CLAY and
SOC.

Point soil data, here denoted by Y (s), showed a positive skew (Figure 6.2) and was nor-
malized, Y ′(s), using the Box-Cox family of power transformations, where Y ′(s) = (Y (s)λ −
1)/λ, if λ > 0, and Y ′(s) = log(Y (s)), if λ = 0 (DIGGLE; RIBEIRO JR, 2007). Lambda (λ)
values were selected empirically (FOX; WEISBERG, 2011). Because the resulting distribution
of the back-transform (see Section 6.4.3.2) has no expectation when λ < 0 (RIBEIRO JR; DIG-
GLE, 2001), a logarithm transformation (λ = 0) was used when a negative λ was estimated
(SOC and ECEC).

6.4.2 Covariates

Five freely available covariates were evaluated in this study, each with two levels of
spatial detail: area-class soil maps (soil), geologic maps (geo), land use maps (land), digital
elevation models (dem), and satellite images (sat). Each pair was composed of covariates that
were produced separately from scratch using different data sources and/or production methods,
thus demanding different amounts of resources (time, workforce, budget, technology, etc.).

21 The data is available at <https://github.com/samuel-rosa/dnos-sm-rs-general>.
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Figure 6.1: Location of the study area in Santa Maria (a) and spatial distribution of the point soil obser-
vations and drainage network (b).

In this study, the level of spatial detail of a covariate is a function of the components of its
production process such as the cartographic ratio (soil, geo and land), spatial sampling
support (sat), number and diversity of data sources explored (dem), and quantity of spatial
data used (all five). Thus, the reader should bear in mind that our definition of spatial detail is
broader than spatial resolution or spatial scale. It should also not be confounded with spatial
support (WEBSTER; OLIVER, 2007) or thematic detail (ROSSITER, 2000).
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Figure 6.2: Histogram, empirical density function, and summary statistics of CLAY (a, b), SOC (c, d),
and ECEC (e, f) in the original (left) and Box-Cox feature spaces (right).

The covariates were transformed to predictor variables22 that were used in the geostatis-
tical modelling. Since the transformation is different for categorical and continuous covariates,

22 In statistical terms, the terms covariate and predictor variable are synonymous, and the reason for the use given
in this study is purely operational.
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the procedures are explained below for each type separately.

6.4.2.1 Categorical predictor variables

Area-class soil maps, geologic maps and land use maps are categorical covariates (fac-
tors). Mapping units are the k factor levels that are transformed to as many dummy (indicator,
binary) variables as there are factor levels, before model calibration. Each dummy variable re-
ceives a value equal to one (1) when a given class is present, and zero (0) otherwise (EVERITT,
2006). If the number of point soil observations falling inside the spatial domain of a map-
ping unit is too small to accurately estimate a regression coefficient (we used a threshold of
n = 15 observations), the mapping unit is merged with a similar mapping unit prior to cal-
culating dummy variables. The resulting generalized categorical covariate maps are shown in
Figure 6.3. The binary maps are the categorical predictor variables.
Soil maps. The less detailed soil map (SOIL_100) was published with a cartographic scale
of 1:100 000 and has five mapping units (AZOLIN; MUTTI, 1988) (Figure 6.3a). It was pro-
duced using existing soil maps and technical reports (cartographic scale of 1:750 000) (BRASIL,
1973), aerial photographs (cartographic scale of 1:60 000), topographic maps (cartographic
scale of 1:50 000), and sparse point soil observations along the road network. The more detailed
soil map (SOIL_25) was prepared with a cartographic scale of 1:25 000 and has eight mapping
units (MIGUEL et al., 2011) (Figure 6.3b). It was produced using high spatial resolution satel-
lite images (65 cm), existing soil maps and technical reports published with a cartographic scale
of 1:50 000 (POELKING, 2007) and 1:25 000 (PEDRON et al., 2006), topographic maps (car-
tographic scale of 1:25 000), and descriptions from ∼ 350 point soil observations. Five dummy
predictor variables were derived from SOIL_100 and seven from SOIL_25 (Table 6.1).
Geologic maps. The less detailed geologic map (GEO_50) was produced using topographic
maps with cartographic scale of 1:50 000 (GASPARETTO et al., 1988) (Figure 6.3c). The more
detailed geologic map (GEO_25) was produced using topographic maps with cartographic scale
of 1:25 000, and includes the location of overlaying Quaternary sedimentary deposits (MACIEL
FILHO, 1990) (Figure 6.3d). GEO_25 did not cover a small part in the North of the study area,
where GEO_50 was used instead (this strategy was approved by experts on the local geology).
The mapping unit of both geologic maps depicting the Caturrita Formation was used indirectly
by deriving dummy predictor variables from all other individual mapping units. Three dummy
predictor variables were derived from GEO_50 and four from GEO_25 (Table 6.2).
Land use maps. The less detailed land use map (LU1980) was produced by manually digitizing
land use data included in topographic maps with a cartographic scale of 1:25 000 (DSG, 1980;
DSG, 1992a; DSG, 1992b) (Figure 6.3e). The more detailed land use map (LU2009) was
prepared (cartographic scale of 1:2000) by manual digitization using 65 cm spatial resolution
satellite images covering the years 2008 and 2009 (SAMUEL-ROSA et al., 2011) (Figure 6.3f).
Mapping units depicting human settlements and water bodies (n = 0) were not masked out
from the prediction grid and were merged with other mapping units to derive dummy predictor
variables. Five dummy predictor variables were derived from LU2009 and two from LU1980
(Table 6.3).

6.4.2.2 Continuous predictor variables

The less detailed DEM (ELEV_90) is the hole-filled SRTM DEM version 4 (JARVIS
et al., 2008) (Figure 6.4a). The spatial sampling support of the SRTM DEM is 1′′ (∼ 30 m),
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(a) Cartographic scale: 1:100 000 (b) Cartographic scale: 1:25 000

(c) Cartographic scale: 1:50 000 (d) Cartographic scale: 1:25 000

(e) Cartographic scale: 1:500 000 (f) Cartographic scale: 1:2000

Figure 6.3: Area-class soil maps (a, b), geologic maps (c, d), and land use maps (e, f) compared in our
study. The less and more detailed version are displayed at the left and right, respectively.
Legend abbreviations are described in Tables 6.1–6.3.
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but elevation data were aggregated to 3′′ (∼ 90 m) for public release in regions outside the
United States (REUTER et al., 2007). The more detailed DEM (ELEV_10) was produced by
interpolating contour lines with vertical spacing of 10 m along with data about the drainage
network, lakes and peaks digitized from topographic maps with cartographic scale of 1:25 000
(Figure 6.4c). Interpolation to 5 m pixel size was performed using a hydrologically correct algo-
rithm implemented in ArcGIS software by ESRI (HUTCHINSON, 1989). Contour line artefacts
were minimized using a seven by seven low-pass filter (GRASS module r.neighbors). The
window size was chosen such that the smoothed DEM best matched the original contour map
while also respecting the original drainage network pattern.

Table 6.1: Description of the p = 12 dummy predictor variables derived from the two soil maps.

Code Mapping unit(s) included and Descriptiona,b

Source: Azolin & Mutti (1988). Cartographic scale: 1:100 000. Minimum Legible Delineation: 40 ha.
SOIL_100b Re4. Shallow soil with low to high base saturation covering mountainous terrain (Solo

Litólico Eutrófico/Distrófico relevo montanhoso; Neossolo Litólico Distrófico/Eutrófico;
Distric/Eutric Leptosol).

SOIL_100c Re-C-Co. Shallow soil with high base saturation located in strongly sloping terrain (Solo
Litólico Eutrófico relevo forte ondulado; Neossolo Litólico Eutrófico; Eutric Leptosol),
low weathered soil (Cambissolo Eutrófico; Cambissolo Háplico Eutrófico; Eutric Cam-
bisol), and colluvial deposits.

SOIL_100d TBa-Rd. Deep, well-structured, low base saturation soil (Terra Bruna Estruturada álica;
Nitossolo; Nitisol), and shallow soil (Solo Litólico; Neossolo Litólico; Leptosol).

SOIL_100e Rd1 and Re4. Rd1 is composed mainly of shallow soil with low to high base satu-
ration (Solo Litólico Distrófico/Eutrófico; Neossolo Litólico Distrófico/Eutrófico; Dis-
tric/Eutric Leptosol) located in slopping terrain. This dummy predictor variable is com-
posed of shallow soil in both sloping and mountainous terrain.

SOIL_100f TBa-Rd and C1. C1 is composed of low weathered soil developed in lower landscape po-
sitions, close to drainage channels (Cambissolo Eutrófico; Cambissolo Eutrófico; Eutric
Cambisol). This dummy predictor variable includes the best soil mapping units for crop
agriculture among those identified in the soil survey.

a Soil classification according to the old Brazilian classification (only for Azolin & Mutti (1988)), the current
Brazilian classification, according to Santos et al. (2013), and the international classification, following IUSS
Working Group WRB (2007).
b Minimum Legible Delineation calculated following Rossiter (2000).

Eight DEM derivatives were calculated: elevation (ELEV), slope (SLP), aspect (ASP),
northernness (NOR), flow accumulation (ACC), topographic wetness index (TWI), stream power
index (SPI), and topographic position index (TPI). SLP and ASPwere calculated using GRASS
module r.param.scale with seven window sizes (sampling support, analysis scale): 3, 7,
15, 31, 63, 127, and 255. ASP was scaled to the standard 0–360° range and orientation, and
was transformed to NOR using NOR = abs(180° − ASP). TWI and SPI were calculated us-
ing SLP calculated with different window sizes, and ACC calculated using GRASS module
r.watershed. TPI was calculated using SAGA library ta_morphometry with the same
seven window sizes. The combination of DEM derivatives (ELEV, SLP, NOR, TWI, SPI, and
TPI) and window sizes yielded p = 36 continuous predictor variables from each DEM.

The less detailed satellite image was acquired by the Landsat-5 Thematic Mapper on
December 26, 2010 (available at Instituto Nacional de Pesquisas Espaciais - Divisão de Ger-
ação de Imagens – INPE-DGI) (Figure 6.4b). It has 8 bit radiometric resolution and ∼ 30 m
spatial resolution. Spectral bands were orthorectified (Geomatica OrthoEngine) and radiomet-
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Table 6.1: Description of the p = 12 dummy predictor variables derived from the two soil maps.
(continued)

Code Mapping unit(s) included and Descriptiona,b

Source: Miguel et al. (2011). Cartographic scale: 1:25 000. Minimum Legible Delineation: 2.5 ha.
SOIL_25a PBAC. Moderately deep soil derived from sedimentary rocks, with abrupt textural change

and low base saturation (Argissolo Bruno-Acinzentado; Alisol).
SOIL_25b PV. Deep soil derived from igneous rocks, with moderate textural gradient, and low base

saturation (Argissolo Vermelho; Acrisol).
SOIL_25c C-R. Low weathered soil (Cambissolo; Cambisol) and shallow soil with low to high

base saturation (Neossolo Litólico/Regolítico Eutrófico/Distrófico; Eutric/Distric Lep-
tosol/Regosol).

SOIL_25d RL. Shallow soil with low to high base saturation (Neossolo Litólico Eutrófico/Distrófico;
Eutric/Distric Leptosol).

SOIL_25h PBAC, PV and SX. SX is composed of moderately deep soil derived from sedimentary
rocks, with abrupt textural change, low base saturation, and which is saturated with wa-
ter for long periods of the year (Planossolo Háplico; Planosol). This dummy predictor
variable includes the best soil mapping units for crop agriculture among those identified
in the soil survey.

SOIL_25i RL, RL-RR and RR. This dummy predictor variable includes all three mapping units com-
posed mainly of shallow soil (Neossolo Litólico and Neossolo Regolítico; Leptosol and
Regosol).

SOIL_25j PV, RL, RL-RR and C-R. This dummy predictor variable includes all four mapping units
composed mainly of soil derived from igneous rocks.

a Soil classification according to the old Brazilian classification (only for Azolin & Mutti (1988)), the current
Brazilian classification, according to Santos et al. (2013), and the international classification, following IUSS
Working Group WRB (2007).
b Minimum Legible Delineation calculated following Rossiter (2000).

rically corrected (GRASS module i.landsat.toar). The more detailed satellite image
comes from the RapidEye constellation (available at Ministério do Meio Ambiente – MMA)
(Figure 6.4d). It was acquired on November 16, 2012, has 16 bit radiometric resolution, 6.5 m
spatial resolution, and was orthorectified to 5 m spatial resolution. Both images were atmo-
spherically (6S atmospheric model (VERMOTE et al., 1997), GRASS module i.atcorr)
and topographically corrected (GRASS module i.topo.corr). Derived predictor variables
are the spectral bands (except the thermal band) and vegetation indices (normalized difference
vegetation index - NDVI, and soil-adjusted vegetation index - SAVI). Eight continuous predictor
variables were derived from the Landsat-5 TM image and nine from the RapidEye image.

6.4.2.3 Additional processing

Soil maps, geologic maps, land use maps, and satellite images were registered with the
prediction grid (5 m pixel size) using nearest neighbour resampling. ELEV_90 was registered
using cubic resampling (SAMUEL-ROSA et al., 2013). Systematic positional errors were cor-
rected using affine transformation (SAMUEL-ROSA et al., 2014a).
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Table 6.2: Description of the p = 7 dummy predictor variables derived from the two geologic maps.

Code Mapping unit(s) included and Descriptiona

Source: Gasparetto et al. (1988). Cartographic scale: 1:50 000. Minimum Legible Delineation: 10 ha.
GEO_50a SG-I. Inferior Sequence of the Serra Geral Formation. Composed mainly of basic igneous

rocks (tholeiitic basalt and andesite). It is likely to be related with high CLAY and ECEC.
GEO_50b SG-S. Superior Sequence of the Serra Geral Formation. Composed mainly of acid ig-

neous rocks (granophyric rhyolite and rhyodacite). It is likely to be related with moderate
to high CLAY and ECEC.

GEO_50c BT. Botucatu Formation. Composed mainly of aeolian sandstones. It is likely to be
related with low CLAY and ECEC.

Other CT depicts the Caturrita Formation, which is composed mainly of fluvial sandstones.

Source: Maciel Filho (1990). Cartographic scale: 1:25 000. Minimum Legible Delineation: 2.5 ha.
GEO_25a SG-I. Inferior Sequence of the Serra Geral Formation.
GEO_25b SG-S. Superior Sequence of the Serra Geral Formation.
GEO_25c BT. Botucatu Formation.
GEO_25d QD. Quaternary deposits of fluvial, alluvial, and colluvial origin. It can help explaining

the low CLAY of soils supposedly derived from igneous rocks.
Other CT depicts the Caturrita Formation.

a Minimum Legible Delineation calculated following Rossiter (2000).

Table 6.3: Description of the p = 7 dummy predictor variables derived from the two land use maps.

Code Mapping unit(s) included and Descriptiona

Source: DSG (1980), DSG (1992a), DSG (1992b). Cartographic scale: 1:25 000.Minimum Legible
Delineation: 2.5 ha.
LU1980a FS. Native forest, which is likely to have soil with higher fertility.
LU1980b H. Animal husbandry, which is likely to have soil fertility status lower than native forests

and is the second most important land use in the area.
Other Plantation forests (PF) and human settlements (S).

Source: Samuel-Rosa et al. (2011). Cartographic scale: 1:2000. Minimum Legible Delineation:
100 m2.
LU2009a FS. Native forest.
LU2009b SS. Shrubland, which is likely to have SOC and ECEC level above those found in areas

used with annual crop agriculture and animal husbandry, but lower than in native forests.
LU2009c H. Animal husbandry.
LU2009d AA. Annual crop agriculture, which is likely to have the lowest soil fertility due to the

usually poor management practices employed.
LUdiff Land use difference between 1980 and 2009. It can be useful to explain, for example,

low SOC in forest soil due to previous use with crop agriculture or animal husbandry.
Other Plantation forests (PF), human settlements (S), and other land uses (O), comprising nat-

ural and artificial water bodies.
a Minimum Legible Delineation calculated following Rossiter (2000).

6.4.3 Linear Mixed Model of Spatial Variation

We model each of the soil properties of interest as the outcome of a spatial stochas-
tic process. The model is composed of fixed and random effects (HEUVELINK; WEBSTER,

90



6 Chapter V. Using More Detailed Covariates

(a) Spatial resolution: 90 m (b) Spatial resolution: 30 m

(c) Vertical spacing of contours: 10 m (d) Spatial resolution: 5 m

Figure 6.4: Digital elevation models (a, c) and satellite images, depicted using the normalized difference
vegetation index (b, d), compared in our study. The less detailed version is displayed at the
top, while the more detailed version is shown on the bottom.

2001; LARK et al., 2006). We use the point soil observations and spatially exhaustive predic-
tor variables to calibrate the model and predict the outcome of the spatial stochastic process at
unobserved locations. This fixed effect (deterministic trend), m(s), describes that part of the
spatial variation of the soil property that is explained by the covariates. We assume here that is
a linear function of the predictor variables. The random effect (stochastic residuals, latent vari-
ables), e(s), describes that part of the spatial variation that cannot be explained by the covariates
(CRESSIE, 1993). It is represented by a spatially correlated, Gaussian distributed random vari-
able, that is assumed stationary in the mean and covariance. Thus, the linear mixed model of
spatial variation that we employed is given by

Y ′(s) = m(s) + e(s) =

p∑
j=0

βj ·Xj(s) + e(s), (6.1)

where Y ′(s) is the soil property after Box-Cox transformation, m(s) and e(s) are defined as
above, βj are the regression model coefficients, and Xj(s) is the regression model matrix, with
j = 0, 1, 2, . . . , p, p being the number of predictor variables. Variable X0(s) is taken as unity so
that β0 is the intercept.
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6.4.3.1 Model selection

We calibrated k = 25 = 32 multiple linear regression models for each soil property (fit-
ted using ordinary least squares, OLS) to model the deterministic trend for each combination of
the five covariates (recall from Section 6.3 that each covariate is available at two levels of spatial
detail, hence 25 combinations). The number of predictor variables used to calibrate each model
varied among combinations between p = 52 and p = 62, because more detailed covariates en-
abled the derivation of a larger number of predictor variables (except the DEM). Backward VIF
(variance inflation factor) selection followed by stepwise AIC (Akaike’s Information Criterion)
selection were used to select predictor variables to enter the models (SAMUEL-ROSA et al.,
2014b; VENABLES; RIPLEY, 2002).

The k = 32 multiple linear regression models calibrated for each soil property were
ranked using the ratio between the regression sum of squares and the total sum of squares.
Because stepwise regression results in biased models (HARRELL, 2001), the ratio of sum of
squares was adjusted (R2

adj) using the number of predictor variables initially offered to enter the
model instead of the reduced number of predictor variables that entered the model. Next, the
five covariates were ranked based on how their level of spatial detail related with the calibration
of models with improved predictive performance. The relation between the level of spatial detail
of the covariates and model performance was evaluated using a graphical output called model
series plot (R-package pedometrics, Samuel-Rosa et al. (2014b)). Pedological evaluation of
predictor variables included in the models was omitted because this was beyond our objectives.

The multiple linear regression model calibrated using only the less detailed covariates,
which we call the baseline model, and the multiple linear regression model with the high-
est R2

adj , which we call the best performing model, were extended to linear mixed models of
spatial variation (Equation 6.1) for each soil property. Estimation of the parameters of the
linear mixed models was performed using residual (restricted, marginal) maximum likelihood
(REML) (RIBEIRO JR; DIGGLE, 2001; LARK; CULLIS, 2004). The spatial correlation func-
tion adopted was the exponential function (this is equivalent to the Matérn correlation function
with smoothness parameter ν = 0.5 (STEIN, 1999)).

6.4.3.2 Model validation

Only the baseline and best performing multiple linear regression and linear mixed mod-
els calibrated for each soil property were validated. Model validation was performed using
leave-one-out cross-validation (LOO-CV) (BRUS et al., 2011). All model parameters were re-
estimated at each LOO-CV run to reduce bias (LASLETT et al., 1987). LOO-CV predicted
values were back-transformed from the Box-Cox space to the original space of soil properties
using stochastic simulation (CHRISTENSEN et al., 2001):

(I) each predicted value and associated prediction error variance were used to simulate n =
20 000 values from a Gaussian distribution;

(II) simulated values were back-transformed using Y (s) = (Y ′(s)× λ+ 1)1/λ, if λ > 0, and
Y (s) = exp(Y ′(s)), if λ = 0;

(III) the mean and variance of back-transformed simulated values were used as the predicted
value and prediction error variance in the original space of soil properties.

Five error statistics were computed from the leave-one-out cross-validation results (JANSSEN;
HEUBERGER, 1995; KEMPEN et al., 2010; BRUS et al., 2011). The mean error (ME), which
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measures the prediction bias, the mean absolute error (MAE) and the root mean squared error
(RMSE), which measure the prediction accuracy, the scaled root mean squared error (SRMSE,
also known as mean squared deviation ratio), which measures how well the prediction error
variance matches the squared differences between predicted and observed soil property, where
SRMSE > 1 indicates under-estimation, while SRMSE < 1 indicates over-estimation, and the
amount of variance explained (AVE, also known as coefficient of determination or ratio of scat-
ter), which measures the fraction of the overall spread of observed values that is explained by
the model. The AVE ranges from 0 to 100, where AVE = 100 is the optimal value.

6.4.3.3 Spatial prediction

Only the baseline and best performing linear mixed models calibrated for each soil prop-
erty were used for spatial prediction. Spatial predictions at a fine grid of ∼ 800 000 point loca-
tions were made in the Box-Cox space using the best linear unbiased predictor (BLUP) with the
empirical estimates of the random effects (EBLUP) (LARK et al., 2006). EBLUP with a fixed
effect model is conceptually equivalent to kriging with external drift and regression kriging, and
mathematically equivalent to kriging with external drift and universal kriging. Point predicted
values and prediction error variances were back-transformed to the original soil property space
using stochastic simulation as described above (Section 6.4.3.2).

6.5 RESULTS

6.5.1 Model Series Plots

The model series plot is a graphical description of the relation between the prediction
accuracy of multiple linear regression models and the covariates used to calibrate them (Fig-
ure 6.5). The magnitude of improvement in prediction accuracy is depicted in the bottom panel
with the R2

adj . The top panel is interpreted both horizontally and vertically. In the vertical direc-
tion we identify which version of each covariate was used to calibrate a given model. The less
and the more detailed versions are identified by the yellow (bright) and green (dark) colours,
respectively. The baseline model is identified by the column containing only yellow cells, while
the column with only green cells represents the model calibrated using only the more detailed
version of each covariate, which we call the most detailed model. The first important results
that we obtain from the model series plots is that a) the baseline model is not the model with
the lowest R2

adj , which we call the poorest performing model, and b) the most detailed model is
not the best performing model.

The row-wise analysis of the model series plots shows if a model calibrated with the
more detailed version of a given covariate has a higher prediction accuracy. This information
is retrieved by looking at the row-wise distribution of green cells – these cells represent the
k = 16 models calibrated using the more detailed version of a given covariate, irrespective of
the version of the other covariates. The more concentrated the green cells are in the right half of
the plot, the larger the relative benefit of using the more detailed version of that covariate. For
example, the top row of the second model series plot shows the SOC models calibrated using
the two versions of the land use map (land). All green cells are on the right half of the plot
between rankings 1 and 16 (see the x axis). The four lower rows show that the green cells of the
other four covariates are distributed along the entire ranking range (from 1 to 32). This means
that the relative benefit of calibrating a SOC model with a more detailed land use map is larger
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Figure 6.5: Model series plots for CLAY (a), SOC (b), and ECEC (c). The less and more detailed
version of each covariate are identified with the yellow (bright) and green (dark) colours,
respectively. Multiple linear regression models were ranked using their R2

adj . Triangles
show the mean ranking of the more detailed covariates.
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compared to that of using a more detailed version of the other covariates.
The centre of the row-wise distribution of the green cells for each covariate, calculated

as the mean ranking, is represented by the triangles. The mean ranking quantifies the relative
benefit of using a more detailed version of each covariate. For example, the mean ranking of
the SOC models calibrated using the more detailed land use map is about 8 (top row), while the
mean ranking of the models calibrated using the more detailed satellite image (sat) is close to
20 (bottom row). Using the more detailed DEM (dem) is almost as beneficial as using the more
detailed geologic map (geo) – the mean ranking of the SOC models calibrated using the more
detailed version of these two covariates is about 15–16 (second and third rows). Using the more
detailed version of the soil map (soil, fourth row) is not as beneficial as using land, geo
or dem, but more beneficial than using sat. Because the covariates were ranked based on the
mean rankings, the covariate displayed in the top row of each model series plot is the one which
resulted in the largest improvement of the prediction accuracy when the more detailed version
was used to calibrate the model – for SOC this is the land use map.

For CLAY, calibrating the models with the more detailed soil map resulted in the largest
improvement of the prediction accuracy relative to the other covariates. The DEM was the sec-
ond most beneficial covariate (mean ranking of 15), but the benefit of using its more detailed
version was similar to that of using the more detailed version of any other covariate (mean rank-
ings between 17 and 18). Nine models had a poorer prediction performance than the baseline
model, ranked 27th, the poorest performing model being that calibrated with the more detailed
land use map and satellite image. Despite these patterns, calibrating CLAY models with the
more detailed version of any covariate resulted in a small improvement of the prediction accu-
racy, as evidenced by the small increases of the R2

adj . The difference between the poorest and
best performing models is less than 3 pp (percentage points). In comparison, for SOC, by sim-
ply using the more detailed land use map we already obtained a model ranked 9th, an increase
of 8 pp in R2

adj compared to the baseline model, ranked 24th.
The same general pattern observed for SOC models was observed for ECEC models –

the more detailed land use map results in the largest improvement of the prediction accuracy.
The main difference is that calibrating the models with the more detailed geologic map was
slightly more beneficial for ECEC (mean ranking of 12) than for SOC (mean ranking of 14).
The poorest performing ECEC model was that calibrated with the more detailed satellite image.
Using only the more detailed land use map resulted in an improvement of 6 pp in R2

adj (model
ranked 7th), differing from the best performing model by only 2 pp. Using the more detailed
version of all covariates except the soil map or satellite image resulted in increases of about 6
and 7 pp inR2

adj , respectively. The baseline model was ranked as 28th, which is a higher ranking
than the models calibrated with all possible combinations of the more detailed satellite image
and the more detailed soil map and/or DEM.

The patterns observed in the model series plots resulted from the change (increase or de-
crease) of the importance of each covariate on explaining the variance when the more detailed
version was used (Table 6.4). We used the baseline and most detailed models to quantify this
change. Each model was refitted dropping one covariate at a time. The difference ∆ between
the R2

adj of the model calibrated with all five q covariates (R2
adjq=5) and the model calibrated

without the q-th covariate (R2
adjq=5−1) was calculated. The more positive ∆R2

adj becomes, the
more beneficial the more detailed version of the q-th covariate is for improving prediction ac-
curacy. For CLAY, dem and land were the most important covariates in the baseline model,
while geo was the least important. The importance of soil and geo increased when their
more detailed version was used (change of 0.013 pp for both), while sat, land and dem be-
came less important. For SOC and ECEC, land was not the most important covariate in the
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baseline model. But it was the covariate whose importance had the largest positive shift when
the more detailed version was used (0.085 pp for SOC and 0.045 pp for ECEC). sat became
less important when the more detailed version was used – see its low ranking in all model series
plots. The increase of the importance of geo was larger for ECEC (0.026 pp) than for SOC
(0.013 pp) – see the difference in the mean ranking of geo in the SOC (14) and ECEC (12)
model series plots.

Table 6.4: The importance of each covariatea (∆R2
adj

b) in the models calibrated
with their less and more spatially detailed version.

Covariate CLAY SOC ECEC
Less More Less More Less More

soil −0.009 0.004 −0.006 −0.008 0.011 −0.003
land 0.003 −0.002 0.003 0.088 −0.004 0.041
geo −0.019 −0.006 −0.005 0.008 0.007 0.033
sat −0.010 −0.016 0.018 −0.014 0.011 −0.029
dem 0.030 0.001 −0.009 0.016 −0.035 −0.041
a Covariate: soil - soil map, land - land use map, geo - geologic map, sat -

satellite image, and dem - digital elevation model.
b ∆R2

adj = R2
adjq=5 −R2

adjq=5−1, where q is the number of covariates included in
the model. Negative values result from adjusting the R2 using the number of
predictor variables initially offered to enter the model instead of the reduced
number of predictor variables that entered the model.

6.5.2 REML Fit of the Variogram Model

The small improvement in the prediction accuracy of the CLAY linear mixed model
calibrated with the more detailed covariates is evidenced by Figure 6.6. The shape of the exper-
imental variogram is very similar for both baseline and best performing linear mixed models,
which is also true for SOC and ECEC. However, the sill variance had a very small reduction for
CLAY compared to SOC and ECEC. The last two showed a more considerable improvement
in prediction accuracy. It can also be seen that the number of point observations separated by
short distances is very small, reducing the accuracy of the estimate of the nugget variance23.
The result is that the estimated nugget variance changes rather erratically from the baseline to
the best performing models, decreasing for CLAY and SOC, and increasing for ECEC.

6.5.3 Validation

The LOO-CV results indicate that the linear mixed models for CLAY are slightly pos-
itively biased, while those for SOC and ECEC are slightly negatively biased (Table 6.5). For
both CLAY and ECEC, the MAE shows that these models are more accurate than the multiple
linear regression models, suggesting that the kriging step improves the prediction accuracy.

Overall, all models had a moderate to poor prediction performance. The errors are, in ab-
solute values, somewhat large, mainly for ECEC. The best AVE are about 60 % for CLAY, 50 %
for SOC, and 40 % for ECEC. In general, the prediction error variance was under-estimated by

23 To be more precise, the small number of point observations separated by short distances reduces the ability of
modelling the behaviour of the variogram near the origin as a whole.
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Figure 6.6: Experimental variogram (dots) and REML fit of the linear mixed models (line) for CLAY
(a), SOC (b), and ECEC (c). Left – baseline model. Right – best performing model.

the linear mixed models and over-estimated by the multiple regression models. The best esti-
mates of the prediction error variance were obtained by both CLAY linear mixed models, and
the ECEC baseline linear regression model.

For CLAY, the increase in the AVE was larger when including a kriging step (∆AVE =
3.9 pp) than when using more detailed covariates (∆AVE = 1.6 pp). In the case of SOC, includ-
ing a kriging step reduced the AVE by 3.2 pp, and for ECEC, both strategies increased the AVE
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Table 6.5: Statisticsa of the leave-one-out cross-validation of baseline
and best performing multiple linear regression models (LM)
and linear mixed models (LMM).

Model Type ME MAE RMSE SRMSE AVE

CLAY (g kg−1)
Baseline LM 1.31 52.1 72.1 0.89 56.8

LMM 0.94 48.5 68.8 1.03 60.7
Best performing LM 1.59 51.3 70.7 0.91 58.4

LMM 1.08 47.8 68.1 1.03 61.5

SOC (g kg−1)
Baseline LM −0.30 10.9 18.9 1.22 35.8

LMM −0.39 11.0 19.4 1.43 32.5
Best performing LM −0.20 10.1 16.9 0.91 49.0

LMM −0.25 10.4 17.6 1.16 44.3

ECEC (mmol kg−1)
Baseline LM −0.88 70.6 112.4 0.97 22.3

LMM −0.32 63.3 101.1 1.32 37.1
Best performing LM −0.76 64.9 101.7 0.86 36.3

LMM −0.29 62.6 97.9 1.09 41.1
a Statistics: mean error (ME), mean absolute error (MAE), root mean squared
error (RMSE), scaled root mean squared error (SRMSE, unitless), and amount of
variance explained (AVE, percent).

(Table 6.5).

6.5.4 Spatial Prediction

Both baseline and best performing linear mixed models captured the same overall pat-
tern of spatial variation of the soil properties (Figure 6.7). The main difference is that the spatial
patterns of the different covariates used to calibrate each model produced different features in
the prediction maps. For example, the CLAY map produced by the best performing model (Fig-
ure 6.7b) displays abrupt changes in the predicted values in the north-north-east due to the use
of the more detailed soil map. Strongly-marked features following the stream network obtained
through the use of the more detailed DEM are also observed (Figure 6.7b and Figure 6.8b).

SOC maps (Figure 6.7d and Figure 6.8d) show peculiar features in the central part of
the study area, where predictions reached values as high as 507 g kg−1, while the maximum
value in the calibration data is 163 g kg−1. The extremely high predicted values resulted from
the inclusion of the topographic position index derived from the more detailed DEM, using a
window size of 15 × 15 pixels (TPI_10_15) to model the deterministic trend. TPI_10_15
values in the point calibration data range from −7 to 6 m, while in the central part of the study
area they range from 12 to 31 m. Thus, feature-space extrapolation explains the extremely high
predicted values for SOC. Abrupt changes in predicted SOC are also observed at locations with
low to moderate SOC (40 g kg−1–80 g kg−1). This is caused by using the more detailed land use
map.

Predicted ECEC (Figure 6.7e and Figure 6.7f) had a large dependency on land use and
geologic maps. Several features observed in the prediction maps derive from these two covari-
ates. The influence of land use is seen in the northern part, while in the western, central, and
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eastern parts the influence of both covariates create an irregular pattern in the spatial distribu-
tion of ECEC. It is also in these parts that the largest prediction error standard deviations occur,
following the spatial pattern of the covariates.

(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Predicted values for CLAY (g kg−1) (a, b), SOC (g kg−1) (c, d), and ECEC (mmol kg−1) (e,
f) using the baseline (left) and best performing (right) linear mixed models.

The smallest prediction error standard deviations occur at lower elevations, along the
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Prediction error standard deviations for CLAY (g kg−1) (a, b), SOC (g kg−1) (c, d), and
ECEC (mmol kg−1) (e, f) using the baseline (left) and best performing (right) linear mixed
models.

three main streams, and close to the water outlet in the southern part of the study area. These
areas have the highest density of point soil observations used to calibrate the models, and the
smallest values for all three soil properties. While the first determines the accuracy of the
EBLUP, the second influences the final accuracy through the back-transformation of predicted
values.
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6.6 DISCUSSION

Our main goal was to evaluate whether investing in more spatially detailed covariates
improves the accuracy of soil maps. We saw that calibrating the models with more detailed
covariates generally has a small to moderate, but positive, impact on the predictions. The mag-
nitude of this benefit depends on the magnitude of the increase of the spatial detail of the co-
variate, on the other covariates included in the model, and on the soil property. However, there
seems to be a limit above which the increase of spatial detail has a negative impact on the pre-
dictions. In the next two subsections we interpret the results from a pedological perspective
and assess whether the investment in more detailed covariates is worthwhile or if alternatives to
improve prediction accuracy should be favoured.

6.6.1 Spatio-Temporal Controls of Soil Properties

CLAY was moderately well predicted using less detailed covariates, with small improve-
ment when using the more detailed covariates. CLAY was expected to have a strong correlation
with topography and parent material. This correlation was already considerable when the less
detailed DEM and geologic map were used, and improved only marginally with the more de-
tailed version. One sensible explanation is that the effective (actual rather than theoretical)
spatial detail of the two geologic maps was similar, although they had a four-fold difference
in the size of the minimum legible delineation (see Hengl & Husnjak (2006) for a discussion
on effective scale). For the DEM, many studies have already suggested that its resolution may
be of secondary importance when calculating DEM derivatives for soil mapping (ZHU et al.,
2008; BEHRENS et al., 2010; MILLER et al., 2015). The influence of land use on CLAY is
currently small due to reduction of soil erosion in the first decade of the 21st century (MIGUEL
et al., 2011; TEN CATEN et al., 2012b). A moderate within-field spatial variation may exist
due to past erosional processes (MOURA-BUENO, 2012), but we lack evidence of how well
this source of variation was captured in the present-time point soil data.

It is worthwhile to consider the influence of the more detailed soil map on predicting
CLAY. Due to its production process, the more detailed soil map derives a large amount of spa-
tial detail from the geologic map, land use map and DEM – note that the second-best performing
model for CLAY included the more detailed geologic map instead of the more detailed soil map
(Figure 6.5). However, most of the additional spatial detail included in the more detailed soil
map was probably based on the spatial variation of soil texture, because this is a strongly marked
soil feature in the area (MIGUEL et al., 2011). Soil texture is one of the most important soil
properties used by soil surveyors in the field to identify mapping units (LEGROS, 2006). These
findings help explain why in the end the more detailed soil map was the most beneficial for
CLAY instead of the geologic map.

SOC and ECEC were considerably better predicted when more detailed covariates were
used. Our expectation that SOC and ECEC would have a strong correlation with land use was
confirmed by the fact that this covariate explained a large amount of the variance and was highly
beneficial for improving the predictions. Although the available point soil data are limited to
the 2004–2011 period, we believe that land use changes in the last 30 years (MIGUEL et al.,
2011; TEN CATEN et al., 2012b) strongly affected SOC and ECEC. Thus, the more detailed
land use map is likely to have considerably improved model performance because it is up-to-
date and, possibly, because it has 40 times more spatial detail than its less detailed version.
Despite the fact that the two land use maps used in this study were from different time periods,
which confounds the analysis, the results obtained indicate that a more detailed land use map
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improves the prediction of SOC. For example, the areas used for crop agriculture, which are
well known for having lower SOC and ECEC (MENEZES, 2008; MOURA-BUENO, 2012),
are not depicted in the less detailed land use map.

We expected SOC to have a stronger correlation with the DEM than with the geologic
map due to its strong dependence on erosion, but we observed the contrary. This result may be
partially explained by the fact that there is a strong relation between geology and topography in
the study area (SARTORI, 2009). Due to its production process (MACIEL FILHO, 1990), the
geologic maps can be interpreted as an aggregated version of a DEM. A second sensible expla-
nation is that the effect of erosion on SOC is not that large because erosion was considerably
reduced in the last decade (MIGUEL et al., 2011; TEN CATEN et al., 2012b). A last possible
explanation, which integrates the previous two, is the existence of a spatial relation between
SOC and CLAY, the last being strongly correlated with parent material. These relations help
explain why the more detailed DEM was almost as beneficial as the more detailed geologic map
for SOC predictions. In the case of ECEC, our expectation of a strong dependency on a more
detailed geologic map for producing more accurate predictions was confirmed.

The observed benefit of the more detailed geologic map and DEM for making more
accurate CLAY, SOC, and ECEC predictions suggests that these soil properties are spatially
related in the study area. We also hypothesize that the complexity of current land use makes
it difficult to achieve SOC and ECEC models with performances comparable to CLAY. One
important source of variation in forested areas is its use for animal grazing (SAMUEL-ROSA
et al., 2011). This influences nutrient cycling and soil nutrient availability (SCHRAMA et al.,
2013). Current remote sensing technology is unable to capture the data needed to proxy the
environmental conditions created by these processes.

6.6.2 Using More Detailed Covariates

More detailed covariates are usually expected to improve predictions in soil mapping
(CAVAZZI et al., 2013; MAYNARD; JOHNSON, 2014). However, deciding whether to invest
or not in more detailed covariates requires careful thinking and depends on case-specific ele-
ments. We generally saw improvement in the predictions in our study, but the improvement was
not large and may not outweigh the costs. Also, the models calibrated with the more detailed
versions of all covariates were not the best performing models. Using more detailed satellite im-
ages and land use maps degraded CLAY predictions. Although the more detailed soil map had
the largest benefit for CLAY, it may be too costly and impractical since its production usually
requires having available more detailed versions of all other covariates. For SOC and ECEC,
simply using a more detailed land use map resulted in considerably more accurate predictions.
However, the superior performance may not outweigh the extra costs because producing a more
detailed land use map usually requires up-to-date field observations and satellite images. Thus,
the decision to adopt a more detailed covariate for soil mapping will ultimately depend on a
trade-off between the increased accuracy and the extra budget required. It may also depend on
other potential applications of the covariates, but this is not our concern here.

One interesting observation is that if a less detailed covariate yields poor predictions, its
more detailed version has the potential to produce larger improvement in model performance.
However, this is only a potential, not a guarantee. For instance, Eldeiry & Garcia (2008) were
not able to increase the R2 = 0.31 of linear regression models of soil salinity by more than
0.07 points using 7.5 times more detailed satellite images. On the other hand, model per-
formance is likely to be hardly improved using more detailed covariates if their less detailed
version has already produced accurate predictions. This agrees with findings by Thompson et
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al. (2001) and Kim et al. (2014).
We also observed that the predictions can be degraded when using the more detailed

version of covariates. In our study, this happened with the satellite image (all three soil prop-
erties), land use map (CLAY) and soil map (SOC and ECEC). A (small) benefit was observed
only when these covariates were used along with the more detailed version of other covariates.
As pointed out above, such a small benefit may not outweigh the increase in mapping costs.
The trade-off between reducing model performance and being beneficial seems to depend on
how much more spatial detail a covariate will have and on its correlation with the soil prop-
erty. For example, the land use map was strongly correlated with SOC and ECEC, but not with
CLAY, and its more detailed version had 40 times more spatial detail. It helped improve SOC
and ECEC predictions, but degraded CLAY predictions, resulting in only a small improvement
when used along with the more detailed satellite image and geologic map.

If the influence of a more detailed covariate depends on the increase of spatial detail,
then the priority should be to improve the spatial detail of the most beneficial covariate. This
requires solid subject area knowledge because empirical evidence from the baseline model may
be insufficient. The most beneficial covariate is not necessarily that which explained the largest
part of the variance in the baseline model (see Table 6.4). This occurs because increasing the
spatial detail reduces the correlation between the covariate and the soil property. And also be-
cause there is little room to improve a correlation that is already high in the baseline model.
Cavazzi et al. (2013) suggest that the more detailed covariate has an excess of detail, a “noise”
that degrades the predictions. This could explain the results for sat: higher resolution im-
ages can resolve smaller objects (e.g. individual plants) whose spectral behaviours are highly
variable, adding noise to the sat-soil property correlation; on the other hand, lower resolu-
tion images capture collections of objects, and thus their variation is smoothed out in the pixel,
reducing noise.

According to information theory one should optimize (maximize) the correlation be-
tween the point soil data and the covariates. This was described elsewhere as matching the
“phenomenon scale” (the spatial pattern of the soil property) with the “analysis scale” (the spa-
tial pattern of the covariates) (DUNGAN et al., 2002; MILLER; SCHAETZL, 2014). Finding
the “optimum” requires evaluating the strength of the correlation using covariates with different
levels of spatial detail (DRǍGUŢ et al., 2009; CAVAZZI et al., 2013; MILLER et al., 2015).
Our results show that this approach may be too costly and impractical. Since modern soil map-
ping techniques explore only the empirical relation among environmental conditions and soil
properties (GRUNWALD, 2009), the “optimum” is a “conditional optimum” – conditional on
the point soil data available. It does not necessarily mean that the most accurate predictions
will be made, but only that there is a level of spatial detail at which the correlation between the
covariate and the point soil data is at a maximum. We suggest that instead more comprehensive
approaches should be used to explore the full potential of the available covariates (see Behrens
et al. (2010) and Miller et al. (2015) for examples).

Finally, one must still judge whether the potential improvement in predictions is suf-
ficient given the extra costs involved with using more detailed covariates. If the extra budget
is spent on deriving more detailed covariates, we suggest that it may be better to substantially
improve the detail of a less influential covariate than marginally increase the detail of the most
influential covariate. However, other means to spend the extra budget should be considered.
For instance, it may be more efficient to concentrate on obtaining more soil observations. These
may focus on better capturing the short range spatial variation (BRUS; HEUVELINK, 2007)
or improving the representation of the feature space to avoid undesirable extrapolations (MI-
NASNY; MCBRATNEY, 2006).
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6.7 CONCLUSIONS

This study has shown that:

(I) Using more detailed covariates results in only a modest increase in the prediction accuracy
of linear prediction models;

(II) A more detailed covariate has a greater potential to improve prediction accuracy when the
soil property is poorly predicted by its less detailed version;

(III) The impact on prediction accuracy when using the more detailed version of a less impor-
tant covariate may depend on which other covariates are included in the model;

(IV) Choosing whether or not to invest in more detailed covariates depends on the strength
of the relationship between the covariates and the soil property being modelled, and on
the relative difference between the less detailed and the more detailed versions of the
covariates.
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7 CHAPTER VI

SPATIAL POINT PATTERN ANALYSIS OF SOIL SURVEY
OBSERVATION LOCATIONS

* This chapter is based on the studies An approach to help formalizing the purposive sampling strategy of classical
soil surveys, presented at the 20th World Congress of Soil Science (SAMUEL-ROSA et al., 2014), and Spatial point
pattern analysis of soil survey sampling locations, presented at the 10th European Conference on Geostatistics for
Environmental Applications (SAMUEL-ROSA et al., 2014).



7 Chapter VI. Spatial Pattern of Observation Locations

7.1 RESUMO

Modeladores espaciais de campo do solo normalmente selecionam os locais de observação com
base no conhecimento tácito sobre as relações solo-paisagem. O objetivo desse estudo foi ava-
liar o potencial da análise de padrão pontual (PPA) para ajudar a compreender a estratégia de
amostragem intencional, tradicionalmente empregada por modeladores de campo do solo. Um
conjunto de dados consistindo de n = 340 observações do solo obtidas em um exercício de mo-
delagem espacial do solo realizado no Sul do Brasil entre 2008 e 2011 foi usado. PPA foi reali-
zada utilizando os pacotes spatstat e splancs do R. A intensidade de observação do solo
foi estimada utilizando um núcleo de convolução suavizador Gaussiano isotrópico. A função G
não-homogênea e simulações de Monte Carlo foram usadas para avaliar o padrão espacial dos
pontos de observação. Um modelo de processo de Poisson não-estacionário foi ajustado utili-
zando covariáveis (uso da terra e atributos do terreno) e a data de observação para avaliar como
características ambientais e outros fatores intervenientes influenciam a escolha dos locais de
observação. Comparações entre PPA e julgamentos elicitados dos modeladores do solo que re-
alizaram a modelagem do solo foram usadas para validar a análise. A PPA mostrou que os locais
de observação do solo são não-homogeneamente distribuídos na área de estudo. Duas áreas fo-
ram mais densamente amostradas (distância do vizinho mais próximo, NND < 125 m), uma no
setor Sul, a outra no setor Centro-Norte-oriental. Os pontos de observação têm uma distribuição
espacial aproximadamente aleatória nessas duas áreas, enquanto que nas zonas de baixa den-
sidade amostral eles são espaçados à distâncias aproximadamente regulares (NND > 125 m).
Uso da terra, estratos fisiográficos, e data de observação tem uma influência significativa so-
bre a distribuição espacial dos locais de observação. O uso da terra produz a maior redução
na desviância (6 %), seguido pela data de observação (4 %) e estratos fisiográficos (2 %). Es-
ses resultados estão em concordância com os julgamentos eliciados dos modeladores do solo.
De acordo com eles, as áreas mais densamente amostrados são aquelas onde eles tinham um
conhecimento menos consistente das relações solo-paisagem. Estas áreas foram visitadas nas
primeiras e nas últimas campanhas de campo, evidenciando um efeito temporal. Por outro lado,
a maioria das campanhas intermediárias foram realizadas em áreas onde eles tinham um melhor
conhecimento das relações solo-paisagem. Outras campanhas intermediárias foram realizadas
em áreas de difícil acesso, onde os modeladores do solo selecionaram os locais de observação
por conveniência. Campanhas de campo intermediárias também coincidiram com um corte no
orçamento. A interação desses fatores intervenientes reduzir a motivação dos modeladores do
solo para realizar amostragem mais intensiva. Os modeladores do solo também relataram que
eles realizaram uma estratificação mental da área de estudo antes de selecionar os locais de ob-
servação. Características do terreno compuseram a primeira variável de estratificação, ao passo
que o uso da terra foi utilizado como variável de estratificação de segundo estágio. A estreita
concordância entre a PPA e os julgamentos elicitados dos modeladores do solo sugere que PPA
pode ajudar a compreender a estratégia de amostragem utilizada por modeladores do solo.

Palavras-chave: Modelagem espacial do solo. Caminhamento livre. Análise de padrão pontual.
Julgamento especialista. Motivação.

106



7 Chapter VI. Spatial Pattern of Observation Locations

7.2 ABSTRACT

Field soil spatial modellers usually select observation locations based on tacit knowledge about
soil-landscape relationships. The aim of this study was to assess the potential of point pattern
analysis (PPA) to help understanding the purposive sampling strategy traditionally employed by
field soil modellers. A dataset consisting of n = 340 soil observations obtained in a soil spatial
modelling exercise carried out in Southern Brazil between 2008 and 2011 was used. PPA was
performed using the R-packages spatstat and splancs. Soil observation intensity was
estimated using an isotropic Gaussian kernel smoother. The inhomogeneous G function and
Monte Carlo simulations were used to evaluate the spatial pattern of the observation points. A
non-stationary Poisson point process model was fitted using covariates (land use and terrain at-
tributes) and the observation date to evaluate how environmental features and other intervening
factors influenced the choice of observation locations. Comparisons between PPA and judge-
ments elicited from the soil modellers who carried out the soil modelling were used to validate
the analysis. PPA showed that soil observation locations are inhomogeneously distributed in the
study area. Two areas were more densely sampled (nearest neighbour distance, NND < 125 m),
one in the Southern sector, the other in the Centre-North-eastern sector. Observation points
have an approximately random spatial distribution in these two areas, while in the less densely
sampled areas they are spaced at approximately regular distances (NND > 125 m). Land use,
physiographic strata, and observation date have a significant influence on the spatial distribution
of observation locations. Land use yields the largest deviance reduction (6 %), followed by ob-
servation date (4 %) and physiographic strata (2 %). These results are in close agreement with
judgements elicited from soil modellers. According to them, more densely sampled areas are
those where they had a less consistent knowledge of soil-landscape relationships. These areas
were visited in the first and last field campaigns, evidencing a temporal effect. On the other
hand, most of the intermediate campaigns were carried out in areas where they had a better
knowledge of soil-landscape relationships. Other intermediate campaigns were carried out in
areas of poor accessibility, where soil modellers selected observation locations by convenience.
Intermediate field campaigns also coincided with a budget cut. The interplay of these interven-
ing factors reduced the motivation of the soil modellers to conduct more intensive sampling.
Soil modellers also reported that they performed a mental stratification of the study area prior
to selecting observation locations. Terrain features composed the first stratification variable,
while land use was used as the stage-two stratification variable. The close agreement between
PPA and judgements elicited from soil modellers suggests that PPA can help understand the
sampling strategy used by soil modellers.

Keywords: Soil spatial modelling. Free survey. Point pattern analysis. Expert judgement.
Motivation.
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7.3 INTRODUCTION

Free survey has been successfully employed for many decades in soil spatial modelling.
It is a model-based soil sampling method that relies on the mental model of soil-landscape re-
lationships of field soil spatial modellers – also known as soil surveyors. This mental model
– or tacit knowledge – is built with the experience gained in the field and its quality gener-
ally is directly proportional to the years of field work. The main drawback is that formalising
such complex models as verbal representations – formal knowledge – is rather difficult, the
reason why it is rarely or only partially done. Thus, the tacit knowledge is at the risk of being
lost when the soil modeller deceases, hindering the transmission of soil knowledge to young
soil modellers. The present study assesses the potential of point pattern analysis (PPA) as a
tool to help understanding the purposive sampling strategy traditionally employed by field soil
modellers.

The point pattern analysis toolbox includes multiple statistical techniques devoted to the
analysis of sets of points distributed in the geographic space (DIGGLE, 2003). The main objec-
tive of these techniques is to provide empirical evidence to infer about the underlying process – a
biological or other deterministic mechanism – that generated the point pattern (BIVAND et al.,
2008). A basic assumption is that the point pattern can be treated as a realization of a spatially
homogeneous (stationary) random point process in the plane (DIGGLE, 2003). Assuming that
soil observations made using the free survey method come from a stochastic process is unreal-
istic because soil observations are made following the conceptual model of pedogenesis of soil
modellers. In other words, they are the product of an unspecified deterministic process, alike
many other biological mechanisms evaluated using point pattern analysis. Point pattern analysis
serves as an efficient exploratory tool in these circumstances and helps choosing non-stationary
models to fit spatially inhomogeneous processes (BADDELEY, 2010) alike soil observation.

Calibrating a point process model requires some knowledge of the underlying process
– the biological mechanism – that generated the point pattern. For example, such knowledge
can be obtained by eliciting the judgements of experts, a common practice in many fields of
research (O’HAGAN et al., 2006). Usually, experts are consulted when important decisions
have to be made during the development of a project or when there is great uncertainty about a
phenomenon or event (MEYER; BOOKER, 2001). An expert is every individual who has a deep
knowledge about a given theme. When trying to understand a soil observation process, an expert
is every soil modeller that helped planning and conducting field sampling. The elicitation can be
carried out in several ways (COOKE, 1991; MEYER; BOOKER, 2001; O’HAGAN et al., 2006)
but due to operational issues, individual interview is the method most commonly employed. It
also helps avoiding negative dominance effects due to eventual hierarchical relationships among
experts (COOKE, 1991). Aggregation of expert judgements can be done using behavioural
methods, where each expert evaluates the information provided by other experts until a common
point is reached (ORSI et al., 2011).

Eliciting expert judgement is a key step towards understanding the underlying process
that generated the point pattern of soil observation. Articulating expert information with psy-
chological theories can provide important insights on the structure of this process. For example,
it is agreed that the motivation to develop a series of tasks changes with time (BONEZZI et al.,
2011; TOURÉ-TILLERY; FISHBACH, 2011a) and that the architecture of the surrounding
environment influences the way space and distances are perceived (COETERIER, 1994; EP-
STEIN; KANWISHER, 1998). Taking such psychological elements into account could help
explaining the origins of any operational and conceptual tendencies noticed in the soil observa-
tion process as evidenced by the point pattern analysis and the interview of experts.
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Environmental psychology is the field of science dedicated to the study of the rela-
tionships between human behaviour and the surrounding physical environment (BONNES;
BONAIUTO, 2002). One of the recognized effects of the architecture of the surrounding phys-
ical environment on neurophysiological responses is the spatial enclosure (EPSTEIN; KAN-
WISHER, 1998). In natural landscapes, spatial enclosure expresses itself in environments sur-
rounded by elevated geomorphological features and rugged terrain such as in the valley bottom
of mountainous regions. The effect of spatial enclosure on neurophysiological responses is
complex (STAMPS; KRISHNAN, 2004), but it commonly results in the alteration of how dis-
tances are perceived (COETERIER, 1994). For instance, it can induce the perception that an
enclosed space has a size larger than what it has in reality. A good example on how the percep-
tion of distances is altered due to spatial enclosure is the sensation of having walked hundreds
of meters through a dense forest when only a few have been covered in reality.

Research on the psychology of goal pursuit and motivation has been carried out by many
decades without coming to a common conclusion (TOURÉ-TILLERY; FISHBACH, 2011a;
HULL, 1932). Modern theories claim that there are motivation shifts when a task involves the
pursuit of multiple goals and describe it as the U-shaped motivation pattern of multi-goal pursuit
(BONEZZI et al., 2011; TOURÉ-TILLERY; FISHBACH, 2011a). In the beginning of a multi-
goal project, motivation is high, and comes from the desire to accomplish all tasks using means
that follow previously established rules. This is called the means-focused motivation. With time
the motivation to pursue the main goal decreases due to one or more factors such as diminished
sense of goal achievability, decline of physiological and psychological resources (depletion)
after first tasks are completed, positive goal-related emotions that reduce the efforts toward the
main goal and shift the focus to another goal, and choosing to relax initial standards to save
time and resources. The outcome-focused motivation prevails in this phase, which is the bottom
of the U-shaped motivation curve. As the main goal becomes closer, the motivation increases
again from the desire to accomplish all tasks using means that follow previously established
rules as in the beginning of the project. Stronger adherence to previously established rules and
standards at the beginning and end of a project is possibly explained by the fact that the concerns
about the image that one makes of himself (self-signalling concerns) usually are greater in these
two phases of goal pursuit (TOURÉ-TILLERY; FISHBACH, 2011b).

7.4 CASE STUDY

A case study was conducted using a database composed of n = 340 soil observations
made between 2008 and 2011 in a small catchment (20 km2) located in the southern border of
the Plateau of the Paraná Sedimentary Basin, in the city of Santa Maria, state of Rio Grande
do Sul, Brazil (Figure 7.1). Soil observations were made for the purpose of soil and land use
mapping, as well as modelling soil carbon stocks and vulnerability to erosion (MIGUEL, 2010;
SAMUEL-ROSA, 2009; MOURA-BUENO, 2012; MIGUEL, 2013).

Local climate is classified as Cfa (Köppen climate classification – subtropical humid
without a dry season) with mean annual temperature of 19.3 ◦C, and mean annual precipitation
of 1708 mm well distributed throughout the year (MALUF, 2000). Relief varies between plain
(slope between 0 and 3 %) and mountainous (slope between 45 and 100 %), and elevations range
between 139 and 475 m above sea level. There are three main geological formations which con-
sist of (a) basic, intermediate and acid igneous rocks (rhyolite-rhyodacite and andesite-basalt)
of the Cretaceous period; (b) consolidated sedimentary rocks (aeolian and fluvial sandstones)
of the Triassic and Jurassic periods; and (c) non-consolidated (fluvial and colluvial deposits) of
the Quaternary period (GASPARETTO et al., 1988; MACIEL FILHO, 1990; SARTORI, 2009).
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(a)

(b)

Figure 7.1: Location of the study area (a) in the central region of the Southernmost Brazilian state, Rio
Grande do Sul, and the planar point pattern (b) composed of n = 340 soil observations made
between the years of 2008 and 2011.

Forest areas occupy more than half of the study area, followed by native grassland, shrubland,
farmland, forestry, urban areas and artificial water bodies (SAMUEL-ROSA et al., 2011).
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7.4.1 Elicitation of Expert Judgements

Starting knowledge to understand the soil observation process was obtained eliciting the
judgements of experts. An expert is every individual who has a deep, comprehensive knowledge
about the object under study (MEYER; BOOKER, 2001), specifically, every soil modeller that
helped planning and conducting the field campaigns that yielded the n = 340 soil observations
in the study area. Due to operational constraints, the elicitation was carried out using email-
based discussions and written narratives. First, written narratives were obtained by making a
bibliographic review of published material such as articles, reports and theses. All information
gathered was processed by the authors to yield a starting description of the soil observation
process.

In the next step, field soil modellers were asked to prepare individual written description
of the soil observation process. In their description, soil modellers were asked to point to
the aspects that influenced most the selection of observation locations, as well as describe all
important events and/or changes that might occurred in during the development of their project.
Their description was then used to improve the existing description prepared by the authors,
which was then submitted to appreciation by the field soil modellers. This step was carried
out using a behavioural method (ORSI et al., 2011), specifically, email-based group discussions
coordinated by the authors. These were responsible for aggregating expert judgements and
continuously improving the description of the soil observation process until a common point
was reached.

The resulting starting description of the soil observation process was used to define a
set of covariates that could potentially be included in the point process model. These covari-
ates are presented and described in Section 7.5.1 along with a summary description of the soil
observation process, while their use to construct the point process model is explained next in
Section 7.4.2.

7.4.2 Point Pattern Analysis

Point pattern analysis was carried out using the R-packages spatstat (BADDELEY,
2010) and splancs (ROWLINGSON; DIGGLE, 1993).

The first step consisted of estimating the observation window W , i.e. the limits of the
spatial domain where soil observation were made. This was necessary because soil observation
points are not constrained to the physical limits of the study area (Section 3.5). The estimate
of W was entirely based on the spatial point pattern assuming that the observation points have
been generated independently and uniformly distributed inside an unknown W . The maximum
likelihood estimate of the unknown W is the rescaled convex hull H ′ of the observation points,
with the scaling factor equal to 1/

√
1− m

n
, where n is the number of observation points and m

the number of vertices of the convex hull H (RIPLEY; RASSON, 1977).
The spatial distribution of observation points was investigated using two measures of

distance between observation points. The first is the empty space distance or void distance,
which measures the Euclidean distance from every single location in W to the nearest existing
observation point. The second is the nearest neighbour distance (NND), i.e. the Euclidean
distance from every existing observation point to its nearest existing observation point. The
latter was used to construct an Stienen diagram, which consists of depicting every point using
a circle with diameter and colour intensity proportional to its NND. The Stienen diagram was
visualised in Google Earth® to check for possible correlations between environmental conditions
and nearest neighbour distances.
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The temporal variation of NND was evaluated computing summary statistics based on
the order in which soil observations were made. The first of them was the auto-correlation
coefficient of first order, r(1), which measures the strength of the interaction between a soil
observation made at time t and the soil observation made at time t + 1 (PRUSCHA, 2013).
Next, a moving average with a window size of n = 34 observation points was calculated.
Finally, a third degree polynomial was adjusted to NND to describe the structure of the long-
term temporal variation.

Evaluation of the spatial distribution of observation points suggested the observation
intensity λ, i.e. the average density of observation points per unit area, to be spatially inhomo-
geneous. Contrary to the homogeneous case, where the intensity would be a function of the total
number of observation points and the area of W , the inhomogeneous case requires estimating
an intensity function that accounts for the spatial variation of the intensity of the spatial point
process. Here, the intensity function was estimated nonparametrically by kernel smoothing.
Specifically, an isotropic Gaussian kernel with edge effect correction was employed, the band-
width of the Gaussian kernel adjusted to minimize the square-mean-error criterion (DIGGLE,
1985).

The hypothesis that the spatial point pattern is completely random was tested compar-
ing the fit between observed, Ĝ, and theoretical distribution functions of the nearest neighbour
distance, G. For a spatial point pattern that conforms with the hypothesis of complete spatial
randomness (CSR), the relation between observed and theoretical distribution functions of the
nearest neighbour distance is approximately linear. Values Ĝ > G suggest a clustered (ag-
gregated) spatial point pattern, while values Ĝ < G suggest a inhibited (regular) spatial point
pattern. Monte Carlo simulations were used to assess the significance of departures from the
theoretical distribution function. The simulation consisted of creating s = 99 independent
realizations of a spatial point pattern with n = 340 observation points independently and identi-
cally distributed with inhomogeneous intensity on the observation window. Inhomogeneity was
achieved using point estimates of observation intensity calculated with a leave-one-out Gaus-
sian kernel smoother with edge effect correction (BADDELEY et al., 2000). The empirical
distribution function of the nearest neighbour distance of all s = 99 realization were then used
to compute the global upper and lower simulation envelopes. Here, we reject the null hypoth-
esis of CSR if the observed distribution function of the nearest neighbour distance lies outside
the envelope at any moment with an exact significance level α = 1/(s+ 1) = 1/100 = 0.01.

Finally, assuming that the observation points have been generated independently of each
other insideW , an inhomogeneous (non-stationary) Poisson point process model was calibrated
to estimate the intensity function. A series of spatially exhaustive covariates was used to de-
fine explanatory (deterministic) variables of the intensity function. These covariates served as
proxies of the factors that determined the selection of observation locations by field soil spatial
modellers. For that end, a generalized linear model with a log link was fitted by maximizing
the pseudolikelihood using the Berman-Turner computational approximation (BADDELEY,
2010). The quality of the fit was evaluated using an analysis of deviance table and visually by
comparing the nonparametric and parametric estimates of the intensity function.

7.5 RESULTS

7.5.1 Elicited Expert Knowledge

According to the information gathered, the soil modellers had little experience with soil
spatial modelling and this was the first time they were responsible for planning and making soil
112



7 Chapter VI. Spatial Pattern of Observation Locations

observations. Their expectation was to perform approximately n = 500 observations, given
the available infrastructure, human resources and financial resources. The goal was to obtain a
“satisfactory” coverage of both attribute and geographic spaces, with emphasis on the former. A
mental stratification of the area was made to help achieve this goal. First, the area was divided
into three strata according to geomorphological features: low elevation areas with flat and gently
sloping terrain, steep slopes, and high elevation areas with gently sloping terrain. These strata
represent three common physiographic regions of Southern Brazil called, respectively, Central
(or Peripheral) Depression, Plateau Border and Plateau.

With their goal in mind, soil modellers started field campaigns in the Southern sector of
the study area in 2008. This area represents the Central Depression, were soil modellers had
less knowledge of soil/landscape relationships. Access to most sampling sites was granted by
the absence of geographic barriers and presence of a dense road network. After a few field cam-
paigns, the soil modellers noticed that available resources and infrastructure would not allow
visiting n = 500 sites. Access restrictions were imposed by some landowners and mean access
time to observation locations was larger than expected. Besides, a budget shortage imposed
important restrictions to the continuity of the study. As a consequence, the goal and planning of
field campaigns had to be changed. The most sensible change was the decrease of observation
intensity, requiring the approximate location of observation sites to be predefined beforehand
at approximately equally spaced distances to obtain a satisfactory spatial coverage. A final
outcome of at least n = 300 soil observations became the new focal goal of the soil modellers.

Next field campaigns took place in the steepest areas of the study area. These areas
represent the Plateau Border and possess severe access restrictions due to strong slopes and
dense forest cover. Access restrictions were again imposed by some landowners. Following,
field campaigns were carried out in the Northern and North-eastern sectors of the study area.
These areas represent the Plateau, where the soil modellers had a better knowledge of soil-
landscape relationships. Overall, there were only minor access issues due to geographic barriers
and very few restrictions were imposed by landowners. More field campaigns were carried
out in the areas of the Plateau Border but avoiding difficult-to-access areas (steep slopes and
dense forests). In the last field campaigns, with a small amount of resources still available,
the soil modellers performed a few more observations in some areas of the Plateau Border and
Central Depression where their knowledge about the soil-landscape relationships was poorer.
This yielded the final outcome of n = 340 soil observations.

7.5.2 Point Pattern Analysis

7.5.2.1 Observation intensity

There are two regions where soil observation was more intense. The first and largest of
them is located in the South-western sector, while the second is located in the Middle-North-
eastern sector, with the largest values found in the South-western sector. Differences in observa-
tion intensity resulted in the occurrence of patches with poor geographic coverage (Figure 7.2).
The largest patches are located in the Middle and Middle-Eastern sectors.

The Stienen diagram (click here to download and open in Google Earth®) helped identi-
fying areas where the observation pattern is approximately regular, such as the Northern sector
where the circles are approximately aligned and have about the same size. In the Southern sec-
tor, where the size of the circles is variable, the observation process seem to be approximately
random. The relation between observation intensity and environmental features is also very
clear. There is a strong relation between nearest neighbour distance and topography. Overall,
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Figure 7.2: Estimated empty space distances. Values range from 1 to 709 m.

the smallest nearest neighbour distance values seem to occur in the Central Depression and
increase towards the Plateau Border (which has a dense forest cover) and the Plateau.

Observation intensity is also related to the temporal order in which observations were
made (Figure 7.3). First observations were made at short distances, resulting in a higher ob-
servation intensity. With time, nearest neighbour distance started to increase. This increase
occurred until about the 150th soil sample, when the nearest neighbour distance reached about
250 m and remained approximately constant until the 300th sample. After the 300th observa-
tion, the nearest neighbour distance started to decrease and reached values around 50 m.

7.5.2.2 Spatial distribution

The estimated inhomogeneous G function of the spatial distribution of the point pro-
cess is shown in Figure 7.4. The curve of the empirical point process (continuous black line)
follows a different pattern than the theoretical curve (dashed red line) of a completely random
spatial point process. This result supports the initial understanding that the point pattern under
analysis can be the realization of a deterministic process. Figure 7.4 also shows the envelope
of the estimated inhomogeneous G function built with n = 99 Monte Carlo simulations. The
global statistical test confirms that observations with a nearest neighbour distance smaller than
about 125 m have a random pattern of spatial distribution. At nearest neighbour distances above
125 m the empirical curve shows a strong deviation from the envelope, indicating that the spa-
tial distribution of the soil observations is approximately regular. Because there is a significant
difference between the empirical and theoretical curves, the point process under analysis can
be regarded as not being a realization of complete spatial randomness, but of an yet unspecified
point process (BADDELEY, 2010).

114



7 Chapter VI. Spatial Pattern of Observation Locations

Figure 7.3: Estimated nearest neighbour distances (NND) as related to the temporal order in which soil
observations were made. Twenty two field campaigns were carried out to make the n = 340
soil observations available. Deeper information about field campaigns is given in Figure 7.5.
Function rollmean from R-package zoo was used to estimate the rolling mean using a
window of n = 34 points (ZEILEIS; GROTHENDIECK, 2005).

Figure 7.4: Spatial distribution of the planar point pattern estimated with the inhomogeneous G function
and its global envelope. Note that at NND smaller than about 125 m the point pattern can be
regarded as having a random pattern of spatial distribution. These observations were made
in first and last field campaigns as shown in Figure 7.3.
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7.5.2.3 Poisson point process model

Three potentially explanatory covariates were suggested by the judgements elicited from
the experts to be included in the Poisson model to explain the point pattern: land use (seven
classes) (SAMUEL-ROSA et al., 2011), terrain attributes derived from the sink-filled Shuttle
Radar Topography Mission version 4 digital elevation model (REUTER et al., 2007), and field
campaigns (indicator variables representing the 22 campaigns, respectively). The terrain at-
tributes elevation, morphometric protection index and topographic position index were used to
stratify the area into three physiographic strata, namely Central Depression, Plateau Border,
and Plateau. A Dirichlet tessellation of the point pattern was computed to represent the field
campaigns in the space domain.

Among all covariates available, land use, physiographic strata and field campaigns (Fig-
ure 7.5) are those which better explain the spatial distribution of the point process (Table 7.1).
This corroborates the interpretation of the Stienen diagram (plotted in Google Earth®) and Fig-
ure 7.3 made above. Land use produces the largest deviance reduction, followed by field cam-
paigns and physiographic strata. The interactions between predictors also reduce the deviance
and were not included in the model to avoid increasing its complexity.

Figure 7.5: Covariates used to fit the non-stationary Poisson point process model superimposed with
the planar point pattern. Physiographic strata include (South-North aligned): Central De-
pression, Plateau Border, and Plateau. Land use includes: native forest (more than 50 % of
the area), shrubland, animal husbandry, crop agriculture, forestry, urban, and water. Field
campaigns has 22 levels represented with increasing colour heat (white to red) from the first
to the last campaign.

Estimated coefficients for predictor variables show that observation intensity has a de-
creasing tendency in the Plateau Border and Plateau (Table 7.2). The lowest observation in-
tensity occurs in areas of native forests, urban land use and water bodies. All field observation
campaigns were less intense than the first. Observation intensity reduction factor was similar
between the second and seventh field campaigns (about−0.75 times). The largest reduction oc-
curred in the 13th field campaign (−2.18 times), when observation intensity started to increase
again until the last field campaign.

The fitted non-stationary Poisson point process model gives a fine representation of the
observation intensity estimated with the isotropic Gaussian kernel (Figure 7.6). Both sectors
of high observation intensity are correctly predicted. However, relative intensity values are
strongly over-predicted in the South-western sector, while in border areas they are strongly
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Table 7.1: Analysis of deviance for the fitted non-stationary Poisson point pro-
cess model with two-tailed p-values for the chi-squared tests compar-
ing the reduction in deviance due to the inclusion of each predictor
variable. Terms were added sequentially to the model (first to last).

Predictor Df Deviance Resid. Df Resid. Dev Pr(>Chi)

Intercept only 3240 1943.05
Physiographic strata 2 38.03 3238 1905.03 5.524e-09
Land use 6 120.91 3232 1784.12 < 2.2e-16
Field campaigns 21 63.28 3211 1720.84 4.027e-06

under-predicted. These under-predicted areas seem to be correlated to estimated empty space
distances (Figure 7.2).

Figure 7.6: Relative empirical kernel density estimate (left), and relative trend (centre) and residuals
(right) of the fitted non-stationary Poisson point process model. Data shown is relative to
the largest absolute estimated value of intensity. Relative kernel density values range from
0.02 to 1.00, relative trend values range from 0.01 to 1.00, and relative residual values range
from −1 to 0.81.

7.6 DISCUSSION

The spatial distribution of the point process has features resulting from the influence
of three key factors. The first is conceptual and regards the knowledge of the soil modellers
about soil-landscape relationships. The second factor is operational and relates to the available
infrastructure, human resources and budget to make soil observations, as well to access restric-
tions imposed by landowners and geographic barriers. The last factor is psychological, which is
also affected by the first two and is related to how the soil modellers perceive their surrounding
environment and how the course of their motivation shifted during the soil observation process.
The next three sections are devoted to better understand these factors.

7.6.1 Concentrating on Problem Areas

Soil observations were made during studies organized by young soil modellers. Both
soil modellers had just started their careers and had more experience with well drained, deep
and high iron oxide content soils derived from igneous rocks and occurring on gently sloping
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Table 7.2: Estimated coefficients for the fitted non-stationary Poisson point process
model and their lower and upper limits at the 95 % confidence interval.

Predictora,b Estimate Standard error Z test Lower limit Upper limit

(Intercept) -10.37 0.24 na -10.85 -9.90
Plateau border -0.03 0.20 -0.42 0.37
Plateau -0.07 0.31 -0.67 0.53
Shrubland 1.17 0.18 *** 0.82 1.52
Animal husbandry 0.95 0.14 *** 0.67 1.23
Crop agriculture 1.59 0.19 *** 1.22 1.96
Forestry 1.10 0.28 *** 0.56 1.64
Urban -1.12 0.52 * -2.13 -0.11
Water 0.74 0.72 -0.68 2.16
Field campaign 2 -0.70 0.32 * -1.32 -0.08
Field campaign 3 -0.68 0.31 * -1.29 -0.07
Field campaign 4 -0.75 0.32 * -1.37 -0.13
Field campaign 5 -0.85 0.39 * -1.60 -0.09
Field campaign 6 -1.04 0.37 ** -1.77 -0.31
Field campaign 7 -0.74 0.43 -1.58 0.09
Field campaign 8 -1.36 0.34 *** -2.03 -0.69
Field campaign 9 -1.56 0.43 *** -2.40 -0.73
Field campaign 10 -1.49 0.38 *** -2.24 -0.75
Field campaign 11 -1.44 0.41 *** -2.24 -0.63
Field campaign 12 -1.39 0.36 *** -2.10 -0.68
Field campaign 13 -2.18 0.44 *** -3.04 -1.32
Field campaign 14 -1.64 0.45 *** -2.53 -0.75
Field campaign 15 -1.90 0.36 *** -2.61 -1.19
Field campaign 16 -1.93 0.44 *** -2.79 -1.07
Field campaign 17 -1.20 0.38 ** -1.94 -0.46
Field campaign 18 -1.25 0.41 ** -2.06 -0.45
Field campaign 19 -1.14 0.51 * -2.15 -0.13
Field campaign 20 -1.33 0.41 ** -2.13 -0.53
Field campaign 21 -1.35 0.38 *** -2.10 -0.60
Field campaign 22 -0.28 0.42 -1.10 0.54

a Physiographic strata has three levels: Central Depression, Plateau Border and Plateau. Land
use has seven levels: native forest, shrubland, animal husbandry, crop agriculture, forestry, urban
and water. Field campaigns has 22 levels represented with increasing number from the first to
the last campaign.
b Significance levels of the two-tailed Z test against the null hypothesis that each regression
coefficient is equal to zero are given for p-values of 0 (***), 0.001 (**), 0.01 (*), 0.05 ( ) and 1
(na).

to sloping relief. This is the same type of soil and relief that prevails in the Northern and
North-eastern sectors of the study area. Because the soil modellers started the study using
the free survey method, locating soil observations to test hypotheses posited according to their
mental model of soil-landscape relationships, more observations were made on the so called
“problem areas” (ROSSITER, 2000). Problem areas are those areas for which the mental model
of soil-landscape relationships is incomplete or possesses significant weaknesses, i.e. spatial
soil variation is poorly predicted. Thus, it could be expected beforehand that the soil modellers
would concentrate their efforts in Central Depression and Plateau Border areas. This is clearly
evidenced by the higher observation intensity in the Central Depression and some areas of the
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Plateau Border, while the Plateau has a lower observation intensity.

7.6.2 Managing Available Resources

Field work is the main component of any soil mapping effort (KEMPEN et al., 2012).
Therefore, it demands an efficient planning of field campaigns to guarantee that the available
infrastructure, human resources and budget are enough to accomplish the desired observation
intensity. When the free survey method is used, planning of field campaigns strongly relies
on the experience of the field soil modellers. Because the field soil modellers working in the
study area had little field experience, it soon became clear to them that field campaigns were
inefficiently planned. Overall, the field soil modellers underestimated the costs of variable com-
ponents of field campaigns. One of these variable components is the access time to observation
locations, which usually has a large impact on sampling costs (DOMBURG et al., 1997), espe-
cially in areas with many accessibility constraints.

Inefficient planning of field campaigns plus budget cuts and operational issues related
to available infrastructure and human resources lead to the need for redefining the initially
aimed total number of soil observations. Because the study started on problem areas, there is
an operational bias towards employing stronger observation efforts in these areas, adding to
the conceptual effect described above (See Section 7.6.1). However, operational issues also
lead to the reduction of the observation intensity on poorly accessible areas, such as those with
steep slopes and dense forest cover of the Plateau Border. In classical sampling theory an
observation process strongly influenced by accessibility issues is called convenience sampling
(DE GRUIJTER et al., 2006). The most extreme case occurs when soil observations are made
only along the road network (CAMBULE et al., 2013). This is not the case of the observations
made in the Plateau Border, but there is enough evidence to regard them as being the outcome
of convenience sampling. Datasets obtained through convenience sampling usually present
significant biases that affect the construction of robust soil mapping models (BRUS et al., 2011).
Therefore, it can be expected beforehand that most soil mapping models built for the study area
will have a poor performance in the Plateau Border areas.

7.6.3 Neurophysiological Responses

7.6.3.1 Spatial enclosure

When making soil observations, enclosed places can be biasedly oversampled due to
the effect of the spatial enclosure on the way that field soil modellers perceive the distances
in their surrounding environment. If this hypothesis is correct, then it can be expected that
the two soil modellers would have located soil observations at shorter distances in the Central
Depression than in the Plateau, resulting in a denser soil observation in the former. The same
explanation is valid for the denser soil observation made in the last field campaigns carried out
in a densely forested rugged terrain. Unfortunately the most expressive effect of the spatial
enclosure occurs in the same places where the soil modellers had a poorer knowledge of soil-
landscape relationships (Southern and Middle-Eastern sectors) and were not aware yet of the
incompatibility between the available resources and their goals (Southern sector).
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7.6.3.2 Motivation shifts

The U-shaped pattern of multi-goal pursuit shows a good fit to the soil observation pro-
cess carried out by the field soil modellers in the study area. A strong motivation to follow
well-known guidelines for soil observation existed in the first field campaigns. The soil mod-
ellers had the goal of obtaining a coverage of both attribute and geographic spaces to refine
their knowledge of soil-landscape relationships and obtain a dataset that provided the means to
make accurate predictions of the spatial variation of soil properties. Besides, this was one of the
first studies under their complete responsibility, powering their initial motivational status. The
possibility of understanding new soil-landscape relationships represented a pleasant challenge
for the young soil modellers. With time the soil modellers faced accessibility constraints that
started depleting their physiological and psychological resources. The situation became worst
when the soil modellers realized that the available resources and the initial goal were incom-
patible because the costs were underestimated and due to budget cuts. They were forced to
shift their focus to the outcome, i.e. obtaining a “satisfactory” coverage of the geographic space
while keeping the costs of the study below the available amount of resources available. In other
words, they had to relax their initial standards to save resources (physiological, psychological
and financial). The result was the reduction of the observation intensity. A new motivation shift
occurred when the end of the project became closer and the soil modellers perceived that their
resources were not completely depleted. Problem areas were visited again and the free survey
method used to make new soil observations in a very similar way of the first field campaigns.

7.6.4 Observation Model

The approach presented here helped formalizing a verbal representation of the mental
model of the soil scientists who produced the set of n = 340 soil observations in the study area.
Figure 7.7 shows one of the possible ways of depicting this model. Nearest neighbour distance
is used as a quantitative indicator of the progress of the observation process.

Figure 7.7: Theoretical model of soil observation depicted using the proposed approach that includes
elicitation of expert knowledge, point pattern analysis and articulation of psychological the-
ories of perception and motivation. Phases I, II and III are guided by, respectively, means-,
outcome- and means-focused motivation.
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In the first phase the soil modellers employed the free survey method in its strict sense.
The area was stratified into three primary observation units (physiographic strata) and many sec-
ondary observation units (land use type). The soil modellers were strongly motivated (means-
focused motivation) and started observing the soil in problem areas. But they were unaware
of the effects of spatial enclosure, access issues and of their inexperience which resulted in an
inadequate planning of field campaigns. When the soil modellers became aware of these effects
(after a few field campaigns had been already carried out), the main goal of the project had to be
reviewed and planning of field campaigns reformulated. This marks the end of the first phase
of the observation model, which had as outcome a point pattern covering the geographic space
in a fashion similar to that of a spatially random sample.

The second phase of the observation model starts when the soil modellers are consis-
tently less motivated than when they started the observation process. This decreased motivation
comes along with a new focal goal: making a minimum number of observations to obtain a
“satisfactory” geographic coverage of the area. This is achieved by reformulating the planning
of field campaigns. The free survey still is the observation method used but with the location
of soil observations made beforehand at approximately equally spaced intervals. In the field the
soil modellers are free to change this location according to their mental model of soil-landscape
relationships but respecting the previously established spacing between observations. They also
move from problem areas to those were the spatial soil pattern can be predicted more easily.
When strong access issues are faced, convenience sampling is employed. The objective is to
save physiological, psychological and financial resources. When the soil modellers realized that
they had reached the new focal goal and that their resources were not completely depleted yet, a
new effort was employed to better understand problem areas. This marks the end of the second
phase of the observation model, where the soil observation process was guided by an outcome-
focused motivation. The outcome of this phase is a point pattern covering the geographic space
in a similar way to that of a spatially regular sample.

The last phase of the observation model starts when the soil modellers have a renewed
motivation to make soil observations in problem areas using the free survey method in its strict
sense. Soil observations are made while there are resources available. Field campaigns are
better planned now because the soil modellers have gained field experience. But the effects
of spatial enclosure can still be present. The outcome of this phase is a point pattern which
has similar features to that produced in the first phase, i.e. covers the geographic space in a
fashion similar to that of a spatially random sample. The main difference is that the number
observations made is smaller as was the amount of resources available.

7.7 CONCLUSIONS

Several factors influence how field soil spatial modellers decide upon where to place soil
observation locations. These are of three types: conceptual, operational, and psychological. The
first concerns the knowledge of the soil spatial modellers about soil-landscape relationships, and
seems to be connected with the years of field experience. The second relates to the available
resources (infrastructure, workforce, and budget) to make soil observations, as well with access
restrictions imposed, for example, by landowners and geographic barriers. The third relates to
how the soil modellers perceive their surrounding physical environment and how the course of
their motivation shifts during the soil observation process. Point pattern analysis helped under-
standing that there is a trade-off between conceptual and operational factors, which determines
how the motivation of field soil modellers shifts towards one or another focal goal. Depending
on the focal goal, the resulting point pattern resembles a random (testing hypotheses of soil-
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landscape relationships – means-focused motivation) or a regular (maximizing the number of
observations – outcome-focused motivation) spatial sample. Understanding the reasons behind
the location of soil observations in free survey can help soil spatial modellers designing more
efficient data-driven sampling strategies.
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8 CHAPTER VII

OPTIMIZATION OF SAMPLE CONFIGURATIONS FOR SPATIAL
TREND ESTIMATION FOR SOIL MAPPING

* This chapter is based on the study spsann – optimization of sample patterns using spatial simulated anneal-
ing, presented at the EGU General Assembly 2015 (SAMUEL-ROSA et al., 2015), and Optimization of sample
configurations for spatial trend estimation, presented at Pedometrics 2015 (SAMUEL-ROSA et al., 2015). Also
collaborated in the preparation of this document: Dick J. Brus (Alterra, Wageningen University and Research Cen-
tre, the Netherlands), Gerard B. M. Heuvelink (ISRIC – World Soil Information), Gustavo M. Vasques (Embrapa
Soils, Brazil), and Lúcia Helena Cunha dos Anjos (Universidade Federal Rural do Rio de Janeiro, Brazil).
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8.1 RESUMO

A tendência espacial é a parte de um modelo espacial do solo que explica, de maneira de-
terministica, a variação espacial do solo usando covariáveis. O método de amostragem mais
comumente usado para identificar e estimar a tendência espacial é a amostragem no hipercubo
latino condicionado (CLHS). Neste estudo nós propomos melhorias conceituais e algorítmicas
no CLHS, as quais são avaliadas utilizando dados sintéticos derivados de um estudo de caso
do mundo real, em Santa Maria, sul do Brasil. As melhorias incluem: 1) usar o r de Pearson
somente quando todas as covariáveis são numéricas, e o V de Cramér quando algumas ou todas
as covariáveis são fatores, 2) definir os estratos marginais de amostragem utilizando apenas os
valores únicos dos quantis amostrais estimados com uma função descontínua, e 3) escalar as
funções objetivo para o mesmo intervalo aproximado de valores usando a abordagem do limite
superior-inferior com os valores máximo e mínimo de Pareto antes de agregá-las em uma única
função de utilidade usando uma soma ponderada. Em comparação com os CLHS original, as
modificação propostas resultaram em um algoritmo de amostragem com melhor comportamento
numérico, mas isso não se traduz necessariamente em maior acurácia na predição. O tamanho
da amostra tem uma influência maior na acurácia da predição do que o algoritmo de amostra-
gem. No entanto, otimizar configurações amostrais visando a associação/correlação entre as
covariáveis pode degradar a acurácia da predição.

Palavras-chave: Recozimento simulado. Otimização multi-objetivo. Pareto. Amostragem por
hipercubo latino condicionado. Covariáveis.
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8.2 ABSTRACT

The spatial trend is the part of a soil spatial model that deterministically explains the soil spatial
variation using covariates. The sampling method most commonly used to identify and estimate
the spatial trend is conditioned Latin hypercube sampling (CLHS). In this study we propose
conceptual and algorithmic improvements on CLHS, which are evaluated using synthetic data
derived from a real-world case study in Santa Maria, southern Brazil. The improvements in-
clude: 1) using the Pearson’s r only when all covariates are numeric, and the Cramér’s V when
some or all covariates are factors, 2) defining marginal sampling strata using only the unique
values of the sample quantiles estimated with a discontinuous function, and 3) scaling the objec-
tive functions to the same approximate range of values using the upper-lower bound approach
with the Pareto maximum and minimum before aggregating them into a single utility function
using a weighted sum. Compared to the original CLHS, our proposed modifications resulted
in a sampling algorithm with an improved numerical behaviour, but this does not necessarily
translates into improved prediction accuracy. Sample size has a larger influence on prediction
accuracy than the sampling algorithm. However, optimizing sample configurations aiming at
the association/correlation between covariates can degrade prediction accuracy.

Keywords: Simulated annealing. Multi-objective optimization. Pareto. Conditioned Latin
hypercube sampling. Covariates.
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8.3 INTRODUCTION

Modern soil mapping is based on using a model of spatial variation composed of two
terms,

Y (s) = m(s) + e(s). (8.1)

The first term in the right-hand size in Equation 8.1 is the spatial trend, which corresponds to
the spatial variation of the soil property Y (s) that is explained deterministically using spatially
exhaustive covariates; the remaining spatial variation of Y (s) is explained stochastically with
the second term (CRESSIE, 1993). Soil scientists devoted all their attention to m(s) for more
than a century (JENNY, 1961; FLORINSKY, 2012). Post-war technological developments in
the fields of mathematics, statistics, and informatics, made many soil scientists turn their focus
to e(s) (WEBSTER; OLIVER, 1990). Recent developments in remote sensing and machine-
learning algorithms made those soil scientists shift their attention back to m(s) (MOORE et
al., 1993) – but without forgetting e(s) (ODEH et al., 1994) –, which now usually explains
a considerably large proportion of the variation of Y (s) compared to e(s)24. Besides, it is in
m(s) where we can incorporate most of our pedological knowledge (LARK, 2012).

Recent studies have shown that using more detailed covariates or more complex machine-
learning algorithms can deliver more accurate soil maps, but the increase in prediction perfor-
mance may be modest (SAMUEL-ROSA et al., 2015a) and largely depends on the calibration
data (HEUNG et al., 2016). Limited to the currently available covariates and machine-learning
algorithms, and to the existing pedological knowledge, one of the major operational issues that
needs to be solved in any soil mapping project is how to design an efficient spatial sample to
estimate m(s). The sampling method most commonly used to solve this problem is the condi-
tioned Latin hypercube sampling (CLHS). The CLHS was developed by Budiman Minasny and
Alex McBratney at the University of Sydney in 2005, using an idea borrowed from the Latin
hypercube sampling (MCKAY et al., 1979; MINASNY; MCBRATNEY, 2006). The popularity
of the CLHS is due to its non-probabilistic nature, seen as a link with the sampling strategies
used in “traditional soil survey”, easiness to implement, and the high flexibility which makes
the addition of new features simple (MINASNY; MCBRATNEY, 2010; ROUDIER et al., 2012;
MULDER et al., 2013; CARVALHO JR et al., 2014; CLIFFORD et al., 2014).

The CLHS is a heuristic strategy of creating spatial samples that aim at three objec-
tives: (O1) uniform coverage of the marginal distribution of numeric covariates (continuous
and discrete data, e.g. elevation, slope, etc.), (O2) proportional sample sizes for the classes of
factor covariates (binary, categorical, and ordinal data, e.g. geology, land use, etc.), and (O3)
reproduction of the linear correlation of numeric covariates. The main idea was that if a spatial
sample reproduces the marginal distribution of the numeric and factor covariates, as well as
the correlation matrix of the numeric covariates, it will approximately cover the multivariate
distribution of the covariates – this should put us closer to identifying the “true” spatial trend if
we are (or assume to be) ignorant about its form.

Some critiques of the CLHS appeared in the literature since it was first published. Most
of them focused on operational difficulties encountered in the field. For example, Cambule
et al. (2013) argued that the CLHS is impractical in poorly-accessible areas, but Roudier et
al. (2012) and Mulder et al. (2013) showed that this is just a matter of how the algorithm is
implemented. Clifford et al. (2014) presented an algorithm for selecting an alternative sampling
point when a CLHS sample point is inaccessible. Only recently soil scientists started paying

24 Gerard Heuvelink shared the same opinion during his Richard Webster Medal speech at the conference of the
Pedometrics Commission of the IUSS, which took place from 14–18 September 2015, in Córdoba, Spain.
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more attention to the theoretical and algorithmic aspects of the CLHS. Minasny & McBratney
(2010) demonstrated that, given an assumed known linear spatial trend, the CLHS is suboptimal.
Clifford et al. (2014) questioned the importance of meeting the third objective (O3), as well as
the mathematical approach used to find a solution for all three objectives jointly (see below).
Finally, Brus (2015) proposed an alternative method for selecting Latin hypercube samples with
known inclusion probabilities so that these samples can also be used for design-based inference.

Our objective is to propose conceptual and algorithmic improvements on the CLHS, all
of which we describe in the next section. We then evaluate if the proposed improvements result
in a more accurate representation of the feature space and in more accurate spatial predictions.

8.4 PROPOSED IMPROVEMENTS

8.4.1 Defining the Marginal Sampling Strata

Given a numeric covariate, CLHS uses the sample size n to define the number of
marginal sampling strata c, i.e. c = n, and the interpolated sample quantiles to define the
breakpoints of the c marginal sampling strata. The first objective of CLHS (O1) is to have ex-
actly one sample point falling in each marginal sampling strata. However, depending on the
level of discretization of the covariate values, CLHS may produce replicated breakpoints in the
regions with a relatively high frequency of covariate values. For example, given a sample size of
n = 5 and a covariate a with (ordered integer) values a = (1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 8, 9, 9, 9, 9),
the lower and upper boundaries of the c = 5 marginal sampling strata (mss) are amss =
(1.0, 1.0, 2.6, 4.4, 9.0, 9.0). Because the marginal sampling strata in which a sample point bi
falls is evaluated using the indicator function

bsoli =


1, if amssj ≤ bi ≤ amssj+1

and j = 1

1, if amssj < bi ≤ amssj+1
and j > 1

0, otherwise

where i = 1, 2, . . . , n refers to sample point candidates, and j = 1, 2, . . . , c to marginal sam-
pling strata, the first and last marginal sampling strata (mms) of a will be empty, and the respec-
tive n′ = 2 sample points will be allocated among the other three marginal sampling strata, with
the set of allocation solutions bsol = {(0, 2, 1, 2, 0), (0, 1, 2, 2, 0), (0, 2, 2, 1, 0)}. Ergo, CLHS
will be unable to find the globally optimum allocation solution bsol = (1, 1, 1, 1, 1).

We propose defining the marginal sampling strata (mss) using only the unique values of
the sample quantiles estimated with a discontinuous function (HYNDMAN; FAN, 1996). In our
previous example, the strata boundaries would be amss = (1, 2, 4, 9). The number of sample
points that should fall in each marginal sampling stratum is directly proportional to the number
of sampling units (grids cells of a raster image) in that stratum of the covariate. For a, this is
bsol = (2, 1, 2). The direct consequence of this modification is that, given a set of p covariates,
each of them will potentially have a different number of (quasi-equal-size) marginal sampling
strata, i.e. ci ≤ n, where i = 1, 2, . . . , p. This will ultimately depend on the shape of their
empirical frequency distribution, on the level of discretization of the covariate values, and on
the sample size n.
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8.4.2 Measuring the Association/Correlation Between Covariates

Two of the objectives of CLHS (O1 and O3) are concerned with numeric covariates,
while only one (O2) focuses on factor covariates. O1 and O2 are mathematically equivalent
– they aim at the coverage of the marginal distribution of the numeric and factor covariates,
respectively –, and O3 measures the similarity between the population and sample correlation
matrices of the numeric covariates as estimated with the Pearson’s correlation coefficient r. The
CLHS ignores the association among factor covariates, as well as among factor and numeric
covariates. This means that CLHS gives more importance to numeric covariates. Such a bias
cannot be corrected by simply attributing different weights to each objective (see below).

To address the problem above we propose to replace Pearson’s r with Cramér’s V

V =

√
χ2/n

min(ncol − 1, nrow − 1)
, (8.2)

where nrow and ncol are the number of rows and columns of the bivariate contingency table, n is
the sample size, and χ2 is the chi-squared statistic

χ2 =
nrow∑
i=1

ncol∑
j=1

(Oij − Eij)2
Eij

, (8.3)

whereOij andEij are the observed and expected frequencies, respectively, the marginal propor-
tions ofO being the maximum likelihood estimates of the marginal proportions ofE (CRAMÉR,
1946; AGRESTI, 2002). The Cramér’s V is a measure of association between factor covariates
that ranges from 0 to +1: the closer to +1, the larger the association between two factor covari-
ates. Accordingly, the only requirement for using the Cramér’s V – instead of the Pearson’s r
– is that any numeric covariate be transformed into a factor covariate, with the factor levels de-
fined using the marginal sampling strata. One could still use the Pearson’s r when all covariates
are numeric because computing the Cramér’s V is more computationally demanding.

8.4.3 Aggregating the Objectives

Sampling for spatial trend estimation is a multi-objective combinatorial optimization
problem (MOCOP): the spatial sample must meet a list of objectives among an almost infinite
set of possible spatial samples. An important step for solving a MOCOP is to define each ob-
jective as a function, i.e. an objective function fi (ARORA, 2011). An fi associates a numerical
value with each candidate spatial sample as a function only of the values of the p covariates
used to describe the spatial domain – also known as design variables (ARORA, 2011) – at the
n sample points. The lower the objective function value, the closer the spatial sample is to
meeting the respective objective. Thus, when solving a MOCOP, one aims at minimizing the
vector of k objective functions (ARORA, 2011)

f(X) = (f1(X), f2(X), . . . , fk(X)), (8.4)

where X is the design matrix, a n × p matrix subject to the implicit constraints imposed by
the finiteness of the spatial domain and discreteness of the p design variables. These implicit
constraints define the set of values that can be assigned jointly to the design variables, i.e. the
p-dimensional feasible design space S, which, in turn, defines the set of numerical values that
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can be returned by the objective functions, i.e. the k-dimensional feasible objective space Z
(MARLER; ARORA, 2004).

Ideally, there is a traceable unique point cloud X∗ (i.e. a spatial sample with the values
of the covariates at its sample points) that minimizes all objective functions simultaneously
(MARLER; ARORA, 2009). However, in practice such a unique point cloud seldom exists, and
if it exists it is hard to find. In most cases there is a large set of optima point clouds that map
onto a set of optima points on Z because, for example, multiple point clouds can return the very
same objective function value (ARORA, 2011). The set of optima point clouds is commonly
defined using the concept of Pareto optimality (MARLER; ARORA, 2004): a point cloud X∗ in
S is Pareto optimum if and only if there is no other point cloud X in S that decreases the value
of at least one objective function without increasing the value of another objective function.

A reasonable strategy to find a single optimum solution is to aggregate the objective
functions into a single utility function U (MARLER; ARORA, 2005). The most common ag-
gregation method is the weighted sum method, which is used in the CLHS. It employs weights
to incorporate the a priori preferences of the user, their relative values reflecting the impor-
tance of each objective function (MARLER; ARORA, 2009). Thus, the MOCOP boils down to
minimizing the convex combination of objective functions

U =
k∑
i=1

wifi(X), (8.5)

where convex means that the weightswi are constrained towi > 0 and
∑k

i=1wi = 1 (MARLER;
ARORA, 2005; MARLER; ARORA, 2009). An important requirement of the weighted sum
method is that the objective functions be scaled to the same approximate range of values so that
any potential numerical dominance can be eliminated or minimized, and the weights can play
the desired role (MARLER; ARORA, 2005; MARLER; ARORA, 2009).

There are several methods to scale the objective functions (MARLER; ARORA, 2005).
The Fortran source code of CLHS shows that, although not mentioned in the original paper,
CLHS scales O1 and O3 using the upper-bound approach, f ′′i = fi(X)/fmaxi , where fmaxO1

=

n× pnum and fmaxO3
= 0.5pnum

2
+ pnum, pnum being the number of numerical covariates. fmax

is a rough estimate of the single worst solution for O1 and O3, called the nadir point cloud
(MARLER; ARORA, 2004). Thus, this transformation results in a non-dimensional objective
function with an upper limit around 1, and its use is imposed due to the fact that, by definition,
the three objective functions yield values of very different orders of magnitude: O1 > O3 > O2.
This is because O1 uses the number of sample points per strata (0–n), while O3 uses the linear
correlation coefficient (-1–1), and O2 uses the proportion of sample points per strata (0–1).

We believe that the upper-bound approach is insufficient for a proper scaling of the ob-
jective functions because fmax usually is unattainable – it does not correspond to any point
cloud in S and/or is too far from the Pareto optimum set (MARLER; ARORA, 2004). Defining
fmax as the median of the objective functions over multiple spatial samples generated by sim-
ple random sampling (CLIFFORD et al., 2014) is a suboptimal strategy because it only ensures
that the objective functions will have similar orders of magnitude at the beginning of the opti-
mization, which might have a negligible influence in the definition of Z (MARLER; ARORA,
2005). Besides, provided the optimization algorithm is well designed, the starting point should
not influence the solution of the MOCOP (see below).

We propose using a more robust approach, i.e. the upper-lower bound approach,

f ′′i =
fi(X)− f ◦i
fmaxi − f ◦i

, (8.6)
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where f ◦i is the utopia point, the single best solution for the ith objective function, and f ′′i is the
ith non-dimensional, scaled objective function constrained between zero and one (MARLER;
ARORA, 2005). Because of the above-mentioned problems regarding the definition of fmax,
it is more appropriate to use the Pareto maximum, fmaxi = max1≤j≤kfi(X

∗
j ), where X∗

j is the
point cloud that minimizes the jth objective function (MARLER; ARORA, 2005). In practice,
we optimize a sample configuration regarding each of the k objective functions individually so
that we end up with k optimized sample configurations. The objective function value of each of
the k optimized sample configurations is recorded and set as the diagonal entries of the Pareto
matrix Ω. Then, we take the ith optimized sample configuration and calculate the value of the
jth objective functions, where i 6= j, and use the results as the off-diagonal entries of Ω. As
such, Ω is a k × k matrix with the objective function used to optimize the spatial sample in
the columns, and the objective function used to calculate the objective function value in the
rows. Finally, we lookup the columns of Ω and record the largest absolute maximum observed
in each of them, generally an off-diagonal entry. These are the Pareto maximum values of
the k objective functions. In turn, f ◦i is replaced with the Pareto minimum, i.e. the smallest
absolute minimum value observed in each column of Ω, generally the diagonal entry. This is
because, like fmax, f ◦ exists in the objective spaceZ , but usually is unattainable, i.e. it does not
correspond to any point cloud in S (ARORA, 2011). The obvious drawback of this approach is
the extra time needed to optimize each of the k objective functions individually.

8.4.4 Resulting Problem Definition

Given the proposed modifications, the problem of sampling for spatial trend estimation
for soil mapping is redefined using two objective functions,

CORR =

p∑
i=1

p∑
j=1

|ϕij − vij|, (8.7)

where ϕij and vij are the population and sample associations (or correlations in case all covari-
ates are numeric) at the ith row and jth column of the p-dimensional population and sample
association (or correlation) matrices, and

DIST =

p∑
i=1

ci∑
j=1

|πij − γij|, (8.8)

where πij and γij are the proportion of sample and population points that fall in the jth class
(or marginal sampling strata) of the ith covariate, ci being the number of classes of the ith
covariate. With these two objective functions, we define a utility function U as in Equation 8.5
aiming at a spatial sample that reproduces an Association/Correlation measure and the marginal
Distribution of the Covariates,

ACDC = w1CORR + w2DIST, (8.9)

with w1 = w2 = 0.5 when we do not have a priori preferences towards the objective functions.
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8.5 CASE STUDY

We developed a case study to evaluate the proposed improvements and compare them
with the original CLHS. It was based on using synthetic data derived from a real-world case
study (SAMUEL-ROSA et al., 2015a). The study site is a small catchment of about 2000 ha
located on the southern edge of the Plateau of the Paraná Geologic Province, Rio Grande do
Sul, Brazil. The real-world dataset contains n = 350 point soil observations of the topsoil,
and includes several soil properties, but only bulk density data (BUDE, Mg m−1 × 100) was
used (n = 282). The dataset also includes several covariates derived from area-class soil maps,
digital elevation models, geological maps, land use maps, and satellite images. All processing
steps used to derive the covariates were described by Samuel-Rosa et al. (2015a).

8.5.1 Soil Data Generating Process

In an ideal world, we would createR ≥ 100 spatial samples ofN ≥ 2 sizes with each of
the A ≥ 2 algorithms that we want to compare. Then we would go to the field, sample the soil,
and measure a property to construct D = R×N ×A calibration datasets. The same property
would be measured at a fixed set of probabilistically selected validation sites. Each calibration
dataset would be used to calibrate a model, with which we would predict at the validation sites.
The A sampling algorithms would then be compared on how well they performed, for each
of the N sizes, using the confidence interval of a prediction error statistic over all R spatial
samples. In such an experiment, the random selection of spatial samples would be the source of
variation (DE GRUIJTER; TER BRAAK, 1990).

In the real world. . . Due to limited resources, we created only R = 1 spatial sample
with N = 3 sizes with each of the A = 4 sampling algorithms to be compared (CORR,
DIST, ACDC, and CLHS). The variation in the experiment had to come from another source:
we chose it to be the soil property data. We did so using unconditional sequential Gaussian
simulation (GOOVAERTS, 2001; PEBESMA, 2004). To start, we defined a theoretical (or
super-population) model, our soil data generating process, which should be as close to reality
as possible. Thus, the soil data generating process was defined empirically by calibrating a
(non)linear mixed model to the observed (real) BUDE data. The main calibration steps were
as follows (BREIMAN, 2001; LIAW; WIENER, 2002; DIGGLE; RIBEIRO JR, 2007; LARK,
2012):

(I) Random forest regression: grow ntrees = 500 regression trees with a maximum terminal
node size of nnode size = 5 points, each tree grown using n = 282 calibration points ran-
domly selected with replacement (bootstrap sample) from the set of n = 282 point soil
observations (about nin-bag = n ×

(
1−

(
n−1
n

)n)
= 178 unique point soil observations),

and pin-bag = 4 covariates randomly selected at each split out of a set of p = 12 covariates
(SOIL_25c, SOIL_25h, SOIL_25j, LU2009a, LU2009b, LU2009d, GEO_50c,
RED_30, ELEV_90, SLP_90_15, NOR_90_127, NOR_90_255) selected and de-
scribed as in Samuel-Rosa et al. (2015a).

(II) Out-of-bag predictions: use each of the ntrees = 500 regression trees from step (1) to
predict BUDE at the point soil observations not included (out-of-bag) in the respec-
tive calibration dataset (about nout-of-bag = n − nin-bag = 104 point soil observations),
and compute the average of the predicted BUDE at each point soil observation (about
n
B̂UDE

= ntrees ×
(
n−1
n

)n
= 184 predicted values for each out-of-bag point).
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(III) Linear mixed model: assume that the average of the out-of-bag predictions from step
(2) are linearly related to BUDE and present insignificant conditional bias, and use them
as a covariate in the fixed effects of a linear mixed model (LMM), the random effects
modelled using the Whittle-Matérn model, all parameters being estimated by Gaussian
restricted maximum likelihood (REML).

The parameters of the LMM are the coefficients β0 and β1 of the linear trend, which
correct any linear bias in the random forest regression out-of-bag predictions (LIAW; WIENER,
2002), and the nugget (τ 2), sill (σ2), and range (α) of the Whittle-Matérn model. The shape
parameter (ν) of the Whittle-Matérn model was defined separately, by choosing from a set
of discrete values ν = (0.5, 1.0, 2.0, 4.0, 8.0) based on the resulting profile likelihood for ν
and maximized restricted log-likelihood, and on the computing time (STEIN, 1999; DIGGLE;
RIBEIRO JR, 2007). The fitted LMM (β0 = 13.35 Mg m−3, β1 = 0.91, τ 2 = 349.51 Mg m−6,
σ2 = 97.24 Mg m−6, α = 210.99 m, ν = 2.0) explained 38 and 18 % of the sample variance of
BUDE with m(s) and e(s), respectively (Figure 8.1).

With the random forest regression and the LMM at hand, we produced R = 1000
equiprobable realizations of an isotropic Gaussian random field of BUDE. Each realization is
constituted of a collection of BUDE values at a fine grid of ∼ 800 000 regularly spaced (5 m)
points covering the entire study area. Because we used unconditional Gaussian simulation – a
simulation that is only globally conditioned to the histogram (and variogram) of the data ob-
served at the calibration locations (GOOVAERTS, 1997) – and a large number of realizations,
we expected to find the whole set of possible BUDE values (i.e. the global histogram) at any
point of the simulation grid, over the R = 1000 realizations. Thus, the variance – our uncer-
tainty – is the same everywhere. This is in contrast with conditional Gaussian simulation – a
simulation that is locally conditioned to the data observed at the calibration locations –, which
serves the purposes of honouring the data at the calibration locations, thus reducing the variance
of the output realizations (GOOVAERTS, 1997). In our study, conditional Gaussian simulation
is inappropriate as a model of uncertainty because the sampling algorithms that we evaluate are
designed to situations where we know very little, everywhere, about the spatial structure of the
soil data generating process.

Unconditional simulation algorithms approximate the globally conditioned distribution
of a soil variable at a given point using neighbouring simulated values as local conditioning
information (GOOVAERTS, 1997): the larger the neighbourhood, the better the approxima-
tion. A sensible criterion to select the nearest simulated values is the practical range of the
variogram model. However, as the simulation proceeds, the number of simulated values within
this neighbourhood becomes computationally prohibitive (GOOVAERTS, 1997; WEBSTER;
OLIVER, 2007; PEBESMA, 2014). Thus, we used a fixed maximum number of simulated val-
ues nmax = 100 within the practical range of the variogram model (1132.657 m) that are closest
to the point being simulated. Last, but not least, sequential simulation algorithms speed up com-
putations by using the same random path in all simulations, allowing it to reuse the “expensive
results”: neighbourhood selection and solution to the kriging equations (GOOVAERTS, 1997;
WEBSTER; OLIVER, 2007; PEBESMA, 2014). We believe that following the same random
path to generate each of the R = 1000 realizations can introduce a structural component in the
approximation errors. To avoid that, simulations were carried out in five batches of R = 250
realizations using a different seed for the pseudo-random number generators each time.
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(a)

(b)

Figure 8.1: (Non)Linear mixed model fitted to the soil bulk density data (BUDE, Mg m−3 × 100) mea-
sured at n = 282 calibration locations. (a) shows the relation between out-of-bag random re-
gression forest predictions and BUDE, here representing the deterministic component m(s).
(b) shows the restricted maximum likelihood fit of the variogram model to BUDE, i.e. the
stochastic component e(s). Exponentially spaced lags are used to depict the sample vari-
ogram along with the number of point-pairs in each lag.
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8.5.2 Spatial Sampling

We compared A = 4 criteria (CORR, DIST, ACDC, and CLHS) for optimizing sam-
ple configurations for spatial trend estimation for soil mapping using N = 3 sample sizes
n = (100, 200, 400). These sample sizes correspond to the moderately high inspection density
(1 sample point per 20, 10, and 5 ha, respectively) recommended for the production of soil maps
published at a cartographic scale of 1:25 000 (ROSSITER, 2000). Spatial sample configurations
were optimized regarding each of the four criteria using spatial simulated annealing as imple-
mented in the spsann package for R, designed specifically for the purpose of this study and
made available in The Comprehensive R Archive Network (CRAN).

8.5.2.1 Spatial simulated annealing

Simulated annealing is a popular method with widespread use to solve combinatorial
optimization problems in the soil and geosciences such as stochastic simulation (DEUTSCH,
1992; GOOVAERTS, 2000), estimation of model parameters (LARK; PAPRITZ, 2003), re-
source allocation and land use planning (MUTTIAH et al., 1996; AERTS; HEUVELINK,
2002; DUH; BROWN, 2007), and spatial sampling and monitoring (VAN GROENIGEN et
al., 1997; SIMBAHAN; DOBERMANN, 2006; BRUS; HEUVELINK, 2007; MARCHANT;
LARK, 2006; MINASNY; MCBRATNEY, 2006; MELLES et al., 2011). This is mainly due
to its robustness against local optima and easiness of implementation (METROPOLIS et al.,
1953; KIRKPATRICK et al., 1983; ČERNÝ, 1985; AARTS; KORST, 1989; VAN GROENI-
GEN, 1999).

Simulated annealing is a heuristic algorithm that sequentially searches for the optimum
solution for the problem at hand using the information “learned” from randomly trying solu-
tions out of a large set of possible solutions, i.e. by trial and error. In spatial sampling, this
means sequentially trying out randomly selected sample configurations X and checking how
well they conform to the chosen criterion. Every time the newly selected sample configuration
Xi+1 returns an improved (lower) objective function value f(Xi+1) than the previously se-
lected sample configuration Xi, the latter is immediately discarded in favour of the former. The
set of formal rules used to generate a new sample configuration Xi+1 to be compared with Xi

with respect to the chosen criterion is called the generation mechanism (VAN GROENIGEN,
1999; BRUS; HEUVELINK, 2007; WEBSTER; LARK, 2013).

The generation mechanism fundamentally works by means of randomly perturbing Xi,
specifically by adding random noise to the x- and y-coordinates of one of the sample points
of Xi. We call this process jittering. The main requirement is that the minimum (xmin and
ymin) and maximum (xmax and ymax) quantity of random noise that can be added to the x- and
y-coordinates of a sample point be specified. These will define the neighbourhood within which
a sample point can be moved around. This neighbourhood corresponds to a rectangle centred
at the sample point, with sides proportional to the sides of the rectangle that spans the sampling
region. xmax and ymax should be large enough to enable all sample points visiting (almost) any
place in the sampling region during the optimization such that the starting sample configuration
– generally obtained by simple random sampling – has no direct influence on the final sample
configuration.

Adding random noise to the x- and y-coordinates of a sample point corresponds to se-
lecting a candidate location in the neighbourhood. This can only be done after the set of effec-
tive candidate locations has been identified, i.e. after the presence of non-sampling areas (e.g.
buildings and water bodies), as well as the shape and finiteness of the sampling region have been
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taken into account. Using a finite set of candidate locations is an efficient way of achieving this
because, by definition, the candidate location will always fall within the sampling region and
out of non-sampling areas. A finite set of candidate locations is created by discretizing the
sampling region beforehand, that is, by creating a fine grid of points that serve as candidate
locations during the entire search for the optimum sample configuration. To minimize its dis-
advantages – such as the fact that not all locations in the sampling region can enter the sample
– one can see the fine grid of points as the centre nodes of a finite set of grid cells and use a
form of two-stage random sampling (WALVOORT et al., 2010): first, one of the candidate “grid
cells” is selected with replacement in the neighbourhood, i.e. independently of already being
occupied by another sample point; then, the candidate location for the sample point is selected
within that “grid cell” by simple random sampling.

However, to be able to escape from apparently optima solutions that appear too early
during the search – local optima solutions –, the newly selected sample configuration Xi+1 can
be accepted even if it returns an inferior objective function value, i.e. f(Xi+1) > f(Xi). This
means that the algorithm “understands” that taking a step back sometimes during the search can
lead to better results. The decision whether to accept or not a sample configuration is described
by the Metropolis criterion (METROPOLIS et al., 1953), used to compute the acceptance prob-
ability P (Xi →Xi+1) as

P (Xi →Xi+1) =

{
1, if f(Xi+1) ≤ f(Xi),

exp
(

f(Xi)−f(Xi+1)
T

)
, if f(Xi+1) > f(Xi),

(8.10)

where T is a positive control parameter that dictates how likely it is that an inferior sample
configuration will be accepted.

Parameter T , traditionally called the temperature parameter, is at the core of simulated
annealing. This is because simulated annealing tries to mimic the process used in metallurgy
and materials science known as annealing, by which a molten metal is scheduled to gradu-
ally cool so that its solidifications results in such an arrangement of the atoms that form a
perfect, minimum energy, mechanically resistant, crystalline structure (METROPOLIS et al.,
1953; KIRKPATRICK et al., 1983; ČERNÝ, 1985). A closer example is the formation of ex-
trusive (volcanic) igneous rocks by the cooling of effusive lava, where the cooling rate strongly
determines the size of crystals in the resulting rock (HALDAR; TIŠLJAR, 2014): sudden cool-
ing (seconds, minutes) of lava creates amorphous volcanic glass with vitreous texture such as
pumice; slower cooling (hours, weeks) enables the growth of crystals, which can sometimes be
visible to the naked eye, resulting in more mechanically resistant rocks such as basalt. Much
larger crystals will be observed in intrusive (plutonic) igneous rocks such as granite, but their
growth is due to a very slow cooling of magma, sometimes thousands or millions of years
(HALDAR; TIŠLJAR, 2014).

As the concept of temperature says, what happens at the atomic level during the cooling
process of a molten metal (or lava and magma) is the reduction of the average kinetic energy
– the energy of motion – of the particles. When optimizing spatial samples using simulated
annealing, high “kinetic energy” means that 1) considerably different sample configurations
might be tried out every time, and 2) it is very likely that inferior sample configuration will be
accepted. As the “kinetic energy” decreases, the difference between f(Xi+1) and f(Xi) will
be smaller, as well as the probability of accepting f(Xi+1) if it is inferior to f(Xi). To control
this in practice, one needs to set up an annealing schedule.

The annealing schedule corresponds to the set of formal rules that determine how the
probability of accepting inferior sample configurations is decreased as the search for the glob-
ally optimum sample configuration evolves (AARTS; KORST, 1989; VAN GROENIGEN,
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1999; WEBSTER; LARK, 2013). When optimizing the configuration of a spatial sample, we
have to decide upon a feasible annealing schedule, i.e. a schedule that enables finding the glob-
ally optimum sample configuration (or a sample configuration very close to it) in a reasonable
amount of time. For that end, a large initial value of T is chosen by trial and error so that almost
all sample configurations tried out during the first temperature step are accepted. A temperature
step, more precisely a Markov chain, corresponds to the series of tryouts made with a constant
value of T . The number of tryouts made with a constant value of T corresponds to the length
of a Markov chain chainlength, which should be long enough so that the “system” will tend to a
“kinetic equilibrium”.

In practice, the length of a Markov chain has to be limited, and the equilibrium can
only be approximated (WEBSTER; LARK, 2013). The only requirement is that every point
be jittered at least once as it would happen with the atoms in a physical system (METROPO-
LIS et al., 1953). To initiate a new Markov chain j + 1, one reduces T linearly by a control
parameter δT , with 0 < δT < 1, so that Tj+1 = δTTj (AARTS; KORST, 1989). The same
applies to the generation mechanism by using a decrement function to reduce the size of the
neighbourhood as the search for the optimum sample configuration evolves. The reason for this
is that, as the search evolves and approaches its end, it is likely that moving a sample point
over a short distance contributes more to finding the global optimum than moving it over larger
distances (VAN GROENIGEN; STEIN, 1998). The decrement function determines that the
size of the neighbourhood is reduced linearly at the end of the jth chain. For the x-axis of the
neighbourhood,

xmaxj+1
= xmaxj=0

− j

nchains
× xmaxj=0

− xmin + xdim, (8.11)

where xmaxj+1
is the dimension of the x-axis of the neighbourhood in the next chain, i.e. the

maximum allowed shift in the x-coordinate, xmaxj=0
is the dimensions of the x-axis of the neigh-

bourhood in the first chain, xmin is the minimum required shift in the x-coordinate, xdim is the
grid spacing in the x-coordinates, and nchains is the maximum affordable total number of Markov
chains (the very same applies to the y-axis of the neighbourhood). The maximum affordable
total number of Markov chains nchains has to be large enough such that the globally optimum
sample configuration can be found. Finally, one or more criteria for stopping the search can be
defined, such as the maximum affordable number of Markov chains completed without return-
ing an improved sample configuration nchain stop (VAN GROENIGEN, 1999).

All parameters of the generation mechanism (xmin, ymin, xmax and ymax) and annealing
schedule (chainlength, nchains, and nchain stop) have to be defined by trial and error, and based on the
current knowledge and available resources (WEBSTER; LARK, 2013). A useful tool is a plot
with the evolution of the objective function values as measured at the end of each Markov chain
(LARK; PAPRITZ, 2003): objective function values should present large fluctuation during the
first Markov chains, then gradually stabilize and decrease till a minimum is reached at which
they remain for nchain stop Markov chains.

8.5.2.2 Experimental design

In this study, we used an annealing schedule with a maximum affordable total number of
Markov chains nchains = 500 without imposing any stopping criterion. The initial temperature T
was set such that more than 95 % of the tryouts during the first Markov chain would be accepted.
To initiate a new Markov chain j + 1, T was linearly decreased by a factor of δT = 0.95. The
length of each Markov chain was set to chainlength = n, i.e. the sample size n = (100, 200, 400),
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with each sample point being jittered in turn.
The parameters of the generation mechanism were set such that the size of the neigh-

bourhood in the first chain is equal to half the sides of the rectangle that spans the sampling
region (xmax = 2615 m and ymax = 2985 m), and that the minimum jitter is equal to zero
(xmin = ymin = 0), i.e. that the grid cell where the sample point is located could be selected
as well. With these settings, at the end of the search, the neighbourhood of a sample point was
constrained to the set of nine grid cells composed of that in which the sample point falls and its
eight surrounding grid cells.

Each spatial sample optimized with N = 3 sample sizes using the A = 4 sampling
algorithms was used to sample from the R = 1000 simulated realities of BUDE to constitute
D = A × N × R = 12 000 calibration datasets. Sampling was performed using nearest
neighbour sampling because simulated data are available only at a finite set of regularly spaced
(5 m) grid points. This corresponds to assuming that BUDE is the same everywhere inside the
5× 5 m area surrounding every grid point.

8.5.3 Model Calibration

Each of the D = 12 000 calibration datasets was used to calibrate a (non)linear mixed
model using the same steps employed for calibrating the soil data generating process as de-
scribed in Section 8.5.1. Two important differences exist, though. First, the shape parameter,
ν, of the Whittle-Matérn model was chosen from a set of only three values instead of five
(ν = (0.5, 1.0, 2.0)) following recommendations of Moyeed & Papritz (2002). This modifi-
cation considerably reduced the computation time. Last, initial covariance parameters needed
to solve the system of nonlinear equations for the REML fit of the (non)linear mixed model
(KUENSCH et al., 2011) were chosen using a set of heuristics (pedometrics::vgmICP,
Appendix B). These heuristics involve estimating the sample variogram at a sequence of seven
exponentially spaced lag-distance classes up to half the diagonal of the rectangle that spans the
data using Genton’s robust Qn-estimator (GENTON, 1998). A minimum number of npairs = 30
point-pairs was required in a lag-distance class so that it be used for guessing the initial covari-
ance parameters.

8.5.4 Evaluation of Sampling Algorithms

The influence of sampling design and sample size on the spatial prediction accuracy
was assessed using n = 1000 validation points probabilistically selected from g = 500 quasi-
equal-area compact geographical strata. Geographic stratification was obtained using the k-
means algorithm as implemented in the R-package spcosa (WALVOORT et al., 2010). The
algorithm was run using three different seeds for the pseudo-random number generator, the
resulting stratification with the minimum value of the mean squared shortest distance (MSSD)
being selected. Each stratum has n = 2 randomly selected validation points.

We used the realization-wise mean error (ME) and mean squared error (MSE) at the
probabilistically selected validation points to evaluate the sampling designs. The ME shows
the effect of the sampling design on the accuracy of the predictions, while the MSE indicates
how the sampling design influence the calibration of the variogram model. As such, we can
use the mean ratio of (empirical and theoretical) squared errors (MRSE) to see how good our
estimate of the prediction errors are. A fourth validation measure was the amount of variance
explained (AVE). At the end, for each sampling algorithm and sample size, we aggregated these
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measures over the R = 1000 realizations using box-and-whisker plots to check visually how
one sampling design compares to the others.

8.6 RESULTS AND DISCUSSION

Figure 8.2 shows the evolution of the objective function values during the optimization
of sample configurations using all four sampling algorithms for all sample sizes. The observed
pattern is that expected from a spatial simulated annealing algorithm (LARK; PAPRITZ, 2003):
high and variable objective function values during the first Markov chains, and low and stable
values as the optimization reaches its end. The remarkably larger variation of CLHS at the
beginning of the optimization, compared to the other algorithms, is likely due to the fact that
it is composed of three objective functions. Accordingly, the ACDC algorithm, which is a
combination of the objective functions CORR and DIST, took more iterations to stabilize than
the two functions individually. It is worth pointing that the optimum sample configuration was
not found for any of the sampling algorithms after nchains = 500 of size n as indicated by the
descending behaviour of the objective function values at the end of the optimization (i.e. the
objective function values did not level off). This is also the expected behaviour for finite Markov
chains (WEBSTER; LARK, 2013).

Our expectation that the first objective of the CLHS, O1, which aims at the marginal
distribution of the numeric covariates, would have a numerical dominance over the second and
third objective functions, O2 and O3, which aim at the marginal distribution of the factor co-
variates and similarity between the population and sample correlation matrices of the numeric
covariates, respectively, was confirmed as shown in Figure 8.3. Each panel in Figure 8.3 shows
the region of the feasible objective space Z that has been jointly explored by the pairs of objec-
tive functions that compose CLHS and ACDC during the optimization of a sample configuration
of size n = 100. Function values obtained during the first Markov chains are represented by
the set of points located in the upper right corner of each panel, i.e. where a large variation is
observed (see Figure 8.2). As the optimization proceeds, the variation in the objective function
values decreases, till they reach a certain stability and concentrate in a specific region of the
criterion space Z (left bottom corner of each panel). Optimally, the bivariate distribution of
function values will follow the 45° line that crosses each panel from the top right corner to the
bottom left corner. Deviations from the 45° line are evidence of numerical dominance of one
objective function over the other.

ComparingO1 withO2 andO3, we see a strong deviation from the 45° line as evidenced
by descendent vertical point cloud on the right side of both top panels. This means that the
sample configuration is rapidly optimized with respect to O2 and O3 during the first Markov
chains. The bottom left panel suggests that O2 and O3 are optimized jointly, with a small bias
towards O3. Most of the optimization efforts are spent towards O1, as suggested by the high
point density along the horizontal axis in both top panels. Thus, the bias in the CLHS can be
ordered as O1 > O3 > O2. On the other hand, ACDC appears to be unbiased as suggested
by the bottom right panel. The sample configuration is optimized with respect to CORR and
DIST jointly, approximately following the 45° line, as expected. These results suggest that our
proposed improvements on the CLHS produced a sampling algorithm with a better numerical
behaviour. It is worth noting that the results presented in Figure 8.3 refer to the sample size of
n = 100, but the same trends were observed with the other two sample sizes.

A snapshot of the optimized sample configurations is presented in Figure 8.4. We start
by comparing the spatial samples produced using CORR and DIST regarding their geographic
distribution. For all three sample sizes, DIST produces a spatial sample with a better geographic
138



8 Chapter VII. Sampling for the Spatial Trend

Figure 8.2: Objective function values during the optimization of sample configurations of sizes n =
(100, 200, 400) using sampling algorithms CORR, DIST, ACDC, and CLHS against the
number of Markov chains of length n.

coverage, but the differences are smaller as the sample size increases. Since these algorithms
do not aim at the coverage of the geographic space, leaving large spaces unsampled can have
a negative effect on the prediction accuracy of calibrated models. CORR leaves larger empty
spaces because it creates clusters of points, many of which resemble transects. The coverage of
the geographic space of DIST samples is degraded when it is combined with CORR in ACDC.
ACDC samples have more clusters of points than DIST, which again resemble transects. Both
ACDC and CLHS samples present a similar level of coverage of the geographic space. The
difference is that CLHS places clusters of samples in different regions than those targeted by
ACDC and vice-versa. This is likely due to the numerical dominance of O1 in CLHS, which
results in a bias towards numeric covariates.

Regarding prediction accuracy, as expected, increasing the sample size resulted in more
accurate and precise predictions for all sampling algorithms (Figure 8.5). The spreads of the
empirical distributions of all validation measures, which are approximately Gaussian, become
narrower with larger sample sizes. The exception is the MRSE, whose distribution becomes
severely skewed with n = 400. DIST presents the narrower distribution of MRSE values,
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Figure 8.3: Region of the feasible objective spaceZ explored by pairs of objective functions (x vs y) that
compose CLHS (O1, O2, and O3) and ACDC (CORR and DIST) during the optimization
of a sample configuration of size n = 100 using nchains = 500 Markov chains of length n.
Darker colours indicate a higher concentration of points.

but for all four sampling algorithms MRSE is above 1, which indicates that the prediction
error variance was underestimated. This is likely because an incorrect variogram model was
estimated with, for example, a very large nugget variance.

The CORR seems to have the largest spread of MSE values, specially for n = 100,
suggesting that its predictions are the least precise. Models calibrated using spatial samples
optimized using CORR consistently underpredicted BUDE for all sample sizes. Predictions of
models calibrated with CLHS, ACDC and DIST spatial samples did not show a consistent bias.
Together, these results suggest a degrading effect of taking the association/correlation between
covariates into account when optimizing a sample configuration.

8.7 CONCLUSIONS

This study has shown that:
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Figure 8.4: Sample configurations of size n = (100, 200, 400) optimized using sampling algorithms
CORR, DIST, ACDC, and CLHS superimposing the drainage network.

(I) The proposed modifications on the CLHS resulted in a sampling algorithm with an im-
proved numerical behaviour, but this does not necessarily results in improved prediction
accuracy;

(II) Larger sample sizes improve prediction quality irrespective of the sampling optimization
algorithm that were compared;

(III) Sample configurations optimized aiming only at the association/correlation between co-
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Figure 8.5: Statistics of the independent validation of the linear mixed models calibrated with simulated
BUDE (Mg m−3 × 100) using sample configurations with sizes n = (100, 200, 400) opti-
mized using sampling algorithms CORR, DIST, ACDC, and CLHS. Statistics are the mean
error (me), mean squared error (mse), mean ratio of squared errors (mrse), and amount of
variance explained (r2).

variates can result in poorer predictions.
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9 CHAPTER VIII

SAMPLING FOR SOIL MAPPING IN TERRA INCOGNITA

* This chapter is based on the study spsann – optimization of sample patterns using spatial simulated anneal-
ing, presented at the EGU General Assembly 2015 (SAMUEL-ROSA et al., 2015), and Optimization of sample
configurations for variogram estimation, presented at Pedometrics 2015 (SAMUEL-ROSA et al., 2015b). Also
collaborated in the preparation of this document: Gerard B. M. Heuvelink (ISRIC – World Soil Information), Dick
J. Brus (Alterra, Wageningen University and Research Centre, the Netherlands), Gustavo M. Vasques (Embrapa
Soils, Brazil), and Lúcia Helena Cunha dos Anjos (Universidade Federal Rural do Rio de Janeiro, Brazil).
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9.1 RESUMO

Este estudo aborda um problema que muitos modeladores espaciais do solo enfrentam: como
chegar à uma configuração amostral espacial eficiente para (I) estimar a tendência espacial,
(II) estimar o variograma dos resíduos, e (III) fazer predições espaciais em situações onde nós
sabemos muito pouco. A solução proposta consistem em formular um sólido problema de
otimização multi-objetivo usando versões robustas de algoritmos de amostragem existentes. A
amostra espacial visada deve reproduzir a distribuição marginal das covariáveis de modo que a
tendência espacial possa ser estimada com acurácia. Ela também deve conter vários pequenos
aglomerados dispersos por toda a região de amostragem para permitir fazer estimativa acurada
do comportamento do variograma, especialmente próximo da origem. Finalmente, ela deve
cobrir a região de amostragem da forma mais uniforme de tal modo que a média da variância
do erro de predição é a menor possível. Esse problema de otimização multi-objetivo pode
ser resolvido usando o recozimento simulado espacial conforme implementado no R-package
spann.

Palavras-chave: Recozimento simulado. Otimização multi-objetivo. Estimativa do variogram.
Predição espacial.
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9.2 ABSTRACT

This study addresses a problem that many soil spatial modellers face: how to come up with
an efficient spatial sample configuration to (I) estimate the spatial trend, (II) estimate the vari-
ogram of the residuals, and (III) make spatial predictions in situations where we know very little.
The proposed solution is to formulate a sound multi-objective optimization problem using ro-
bust versions of existing sampling algorithms. The aimed spatial sample should reproduce the
marginal distribution of the covariates such that the spatial trend can be accurately estimated.
It should also contain several small clusters scattered throughout the sampling region to en-
able making an accurate estimate of the behaviour of the variogram, specially near the origin.
Finally, it should cover the sampling region in the most uniform way such that the average pre-
diction error variance is the least possible. This multi-objective optimization problem could be
solved using spatial simulated annealing as implemented in the R-package spsann.

Keywords: Simulated annealing. Multi-objective optimization. Variogram estimation. Spatial
prediction.
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9.3 INTRODUCTION

The success of soil mapping largely depends on the sampling data, which are generally
used to 1) estimate the spatial trend, 2) estimate the variogram of the residuals, and 3) make
spatial predictions by calculating conditional distributions. A poor sampling strategy is likely
to deliver a poor model and large prediction errors, resulting in a waste of financial resources,
staff and time (VAN GROENIGEN et al., 1999; DE GRUIJTER et al., 2006; LAN; LIAN,
2010). This is undesirable because sampling already is the largest contributor to the costs of
soil mapping (WEBSTER; OLIVER, 1990; VAN GROENIGEN et al., 1999; KEMPEN et al.,
2012).

This study addresses a problem that many soil spatial modellers face: how to come up
with a purposive spatial sample configuration that is effective and robust in situations where we
know very little. We explore a scenario in which a) multiple soil properties have to be mapped,
b) we are ignorant (or know very little) about the form of the model of spatial variation, and
c) the operational constraints limit sampling to a single phase. The study starts with a review
of the purposive sampling strategies employed by soil spatial modellers to meet one or more
of the three objectives for which sampling data are used under the proposed scenario, i.e. to
estimate the spatial trend and the variogram, and make spatial predictions. Based on theoretical
and operational features, we indicate the purposive sampling strategies that we believe to be
the most appropriate for each purpose and try to formulate a purposive sampling strategy that
addresses all three objectives jointly. The chapter ends with a suggestion on how to test the
performance of the proposed purposive sampling algorithms.

9.4 PURPOSIVE SAMPLING

Purposive sampling is the non-probability sampling mode by which the sampling loca-
tions are selected intentionally as to satisfy an a priori criterion. This criterion is commonly
defined based on the model that will be used to infer the structure of spatial variation of a
soil property Y (s). Compared to probability sampling, purposive sampling generally is more
efficient for model-based inference (DE GRUIJTER et al., 2006).

The criterion used to select the sampling locations can be defined based on the chosen
statistical model (DE GRUIJTER et al., 2006; MÜLLER, 2007; WEBSTER; LARK, 2013). A
set of mathematical and heuristic rules is then formalized in the form of a computer algorithm
to find the sampling locations that minimize (or maximize) that criterion. The more we know
about the structure of spatial variation of Y (s), the more likely we are to obtain the optimum
sample configuration given the chosen statistical model.

However, the statistical model is usually unknown before we sample. This is especially
common when multiple soil properties have to be mapped and the available information is
insufficient to decide on the structure of the spatial variation. Because we usually want to make
the least possible number of assumptions about the model structure, the safest solution is to
use a space filling design (HENGL et al., 2003; DE GRUIJTER et al., 2006; MÜLLER, 2007;
WALVOORT et al., 2010): the locations are selected as to generate a sample that covers the
geographic and/or feature space(s) as evenly as possible. In areas with very little information on
the spatial variation of the soil properties of interest, referred to as terra incognita by Webster
& Oliver (2007), where usually there are operational constraints that limit the sampling to a
single phase, an efficient spatial sample configuration should be optimized to identify the correct
model structure, estimate model parameters, and make spatial predictions.
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9.4.1 Sampling for Spatial Trend Estimation

The spatial trend corresponds to the spatial variation of Y (s) that is explained linearly or
non-linearly by the covariates. For a linear spatial trend, the sample should cover the extremes
of the distribution of the covariates (MÜLLER, 2007). For models with interactions and/or
higher order terms there are the response surface designs (BOX; WILSON, 1951; LESCH et
al., 1995). These approaches produce clusters of points and ignore the spatial autocorrelation
of the residuals (BRUS; HEUVELINK, 2007; MÜLLER, 2007). Optimal sampling designs for
neural nets, random forests, etc., are yet unknown.

A common solution for spatial trend estimation in terra incognita is to use a feature
space filling sample. Hengl et al. (2003) sampled along the marginal distribution of the covari-
ates using equal-range strata with weights proportional to the frequency distribution. Minasny et
al. (2007) sampled equal-variance geographic strata created using the variance of the covariates
retained in their first principal component.

A more elaborated method, formulated as a multi-objective optimization problem com-
posed of three objective functions, was developed by Minasny & McBratney (2006) based on
Latin hypercube sampling (LHS), a non purposive, probability sampling method (MCKAY et
al., 1979). The method, known as conditioned Latin hypercube sampling (CLHS), is based on
sampling along the marginal distribution of the numeric and factor covariates using equal-area
strata (quantile sampling) and proportionally to the area occupied by each level, respectively,
and reproducing the linear correlations among the numeric covariates (MINASNY; MCBRAT-
NEY, 2006). CLHS is very flexible and can be easily extended, two important reasons for its
popularity (MINASNY; MCBRATNEY, 2010; ROUDIER et al., 2012).

Recently, Samuel-Rosa et al. (2016) proposed conceptual and algorithmic improvements
on the CLHS. Algorithmic improvements concern the definition of the marginal sampling strata,
the measurement of the correlation between covariates, and the aggregation of the objective
functions. These have resulted in a more numerically stable sampling algorithm which not nec-
essarily translates into more accurate spatial predictions. Conceptually, the goal of the method
was reformulated as aiming at a spatial sample that reproduces an association/correlation mea-
sure and the marginal distribution of the covariates (ACDC). This was presented as a more
appropriate definition of the method, while the original denomination given by Minasny &
McBratney (2006) was appointed as being misleading because it can lead one to think of CLHS
as a (non purposive) probability sampling method Samuel-Rosa et al. (2016).

9.4.2 Sampling for Variogram Estimation

A variogram model explains the spatially correlated random part of the spatial varia-
tion of Y (s). Several sampling methods exist to identify and/or estimate the variogram and its
parameters (BRUS; DE GRUIJTER, 1994; DE GRUIJTER et al., 2006; MÜLLER, 2007; WEB-
STER; LARK, 2013). Modern ones focus on maximum likelihood estimators (LARK, 2002;
ZIMMERMAN, 2006; MÜLLER, 2007), their limitation being that a minimum knowledge
about the form of the variogram is required. A Bayesian approach was suggested to account
for the uncertainty of the estimated variogram (DIGGLE; LOPHAVEN, 2006; MARCHANT;
LARK, 2006; ZHU; STEIN, 2006). But it is hard to implement for multiple variables simulta-
neously, and the uncertainty is likely to increase with the number of parameters that need to be
estimated.

Sampling for variogram estimation should concentrate on relevant pairwise distances
(MÜLLER; ZIMMERMAN, 1999; LARK, 2002). But how to do that when we are ignorant

147



9 Chapter VIII. Sampling in Terra Incognita

about the shape of the variogram? Bresler & Green (1982), Russo (1984), Warrick & Myers
(1987) proposed a conservative solution: the points should be located as to match a uniform
distribution of pairwise distances. Their claim was that the sample would be globally optimal
for an infinite set of unknown variograms. This has not been proven mathematically nor corrob-
orated by empirical evidence. The resulting sample usually is redundant (poorly informative),
concentrating most of the points in a single large cluster, with a few scattered points – many of
the point-pairs are computed using the same subset of points.

Another critique to the idea of Bresler & Green (1982), Russo (1984), Warrick & Myers
(1987) is that it was rooted on the use of the method-of-moments to fit a continuous function to
the binned empirical variogram. Nowadays we recognize that the estimates of the method-of-
moments are affected by the correlation between the sequence of classes of pairwise distances
and that more robust methods exist (DIGGLE; RIBEIRO JR, 2002). Maximum likelihood meth-
ods estimate model parameters using all data points, avoiding the need for an ad hoc definition
of classes of pairwise distances that generally smooth out the structure of the spatial process
(LARK, 2000b).

9.4.3 Sampling for Spatial Interpolation

Kriging is the best unbiased linear predictor of soil properties (LARK et al., 2006).
Overall better prediction accuracy depends on spreading the sample points as uniformly as pos-
sible throughout the study area. This is because for a stationary isotropic random field the
kriging variance is a function only of the distance between sample points (CRESSIE, 1993).
Regular sampling grids are commonly used to obtain a uniform geographic coverage, although
triangular equilateral grids are more efficient (WEBSTER; OLIVER, 2007). Their main weak-
ness is the inefficient coverage of the geographic space when the sampling region is irregularly
shaped and/or contains irregularly shaped non-sampling areas (WALVOORT et al., 2010).

The regression-kriging approach for soil mapping (HENGL et al., 2007) lead to the de-
velopment of sampling methods that account for both feature and geographic spaces. Hengl et
al. (2003) proposed sampling iteratively in the feature space and keeping the sample configu-
ration with the best geographic coverage. Minasny & McBratney (2006) developed a sampling
strategy for spatial trend estimation and claimed that the geographic space could be considered
as well. Minasny et al. (2007) suggested that a geographic stratification based on the variance
of the covariates would take into consideration the geographic coverage. These methods are
suboptimal for spatial interpolation because they essentially operate in the feature space.

It has been suggested that efficient optimization of sample configurations for spatial
interpolation depends upon minimizing a distance-based metric (ROYLE; NYCHKA, 1998).
One such metric is the mean squared shortest distance (MSSD) between sample and prediction
points, which is equivalent to finding, for each point in the prediction grid, the nearest neigh-
bouring sample point (BRUS et al., 2006). Because the MSSD takes into account all points in
the prediction grid, its minimization produces a spatial sample that uniformly covers the geo-
graphic space, irrespective of the sampling region being irregularly shaped and/or containing
irregularly shaped non-sampling areas (WALVOORT et al., 2010). However, this renders the
method computationally expensive because a large distance matrix has to be computed every
time a candidate spatial sample is generated.

The problem of minimizing the MSSD can be speeded up reformulating it in terms of an
unsupervised classification problem. The objects to be classified are the points of the prediction
grid and the classification variables are the x- and y-coordinates, the cluster centers defining the
sampling locations (WALVOORT et al., 2010). This classification problem can be solved using
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the k-means clustering algorithm, which is computationally fast, but sensitive to local optima
solutions.

9.5 WHICH SAMPLING ALGORITHM?

9.5.1 Sampling for Spatial Trend Estimation

There are multiple methods for designing optimum spatial sample configurations for
spatial trend estimation in terra incognita, each with different complexity levels. The method
of Minasny & McBratney (2006) is very well suited, as indicated by its popularity. Because
Samuel-Rosa et al. (2016) produced a more numerically stable sampling algorithm, we suggest
that the improved version of the CLHS called ACDC should be used instead.

Different from CLHS, ACDC is a multi-objective optimization problem composed of
only two objective functions,

CORR =

p∑
i=1

p∑
j=1

|ϕij − vij|, (9.1)

where ϕij and vij are the population and sample associations (or correlations in case all covari-
ates are numeric) at the ith row and jth column of the p-dimensional population and sample
association (or correlation) matrices, and

DIST =

p∑
i=1

ci∑
j=1

|πij − γij|, (9.2)

where πij and γij are the proportion of sample and population points that fall in the jth class (or
marginal sampling strata) of the ith covariate, ci being the number of classes of the ith covariate.
As such, ACDC is defined as follows:

ACDC = w1CORR + w2DIST, (9.3)

with weights w1 = w2 = 0.5 when we do not have a priori preferences towards the objective
functions.

9.5.2 Sampling for Variogram Estimation

An efficient and robust method for variogram estimation in terra incognita seems to
be missing. For that end, we propose that sampling should be based on placing several small
clusters scattered throughout the spatial domain as to maximize the amount of information
carried by the sample. The most relevant pairwise distances are those that 1) enable an accurate
estimate of the behaviour of the variogram near the origin and 2) produce a low estimate of
the nugget variance. Our main concern is with the fact that the shape of the variogram and
the estimated nugget variance determine the smoothness of the spatial predictions (WEBSTER;
OLIVER, 2007).

The design of our sampling algorithm starts with the method proposed by Warrick &
Myers (1987). Instead of equidistant (Figure 9.1a), we use exponentially spaced lag-distance
classes defined up to the circumradius r of the bounding box of the area as proposed by Truong
et al. (2013). The exponential spacings are created sequentially from the largest to the smallest
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lag by halving the immediately preceding larger lag, resulting in narrower lags in the left side
of the variogram (Figure 9.1b). It works as follows:

1. Find r. Use the result to define the upper bound of the first rightmost lag.

2. Halve r. Use the result to define the lower bound of the first rightmost lag.

3. Go to the next lag.

4. Set the lower bound of the last lag as the upper bound of the current lag.

5. Halve the upper bound. Use the result to define the lower bound of the current lag.

6. Proceed as in 3–5 until the upper and lower bounds of the leftmost lag have been defined.
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Figure 9.1: Representation of sample variograms with (a) equidistant and (b) exponentially spaced lag-
distance classes. The dashed vertical lines represent the lower and upper bounds of the
lag-distance classes.

The number of lag-distance classes depends on the wanted size of the smallest lag. For
general applications, it seems appropriate to use a maximum of seven lags, where the size of the
smallest lag will be approximately 2 % of the circumradius r of the bounding box of the area.
Having defined the bounds of the lag-distance classes, our objective is to find a spatial sample
configuration such that every point forms pairs with points that are separated by distances that
fall in each of the (seven) lag-distance classes. In other words, we aim at each sample point
contributing with at least one point-pair in each lag-distance class. For example, with seven lags
and n = 100 sample points, the aimed solution is l∗ = (100, 100, 100, 100, 100, 100, 100), i.e. a
uniform distribution. When optimizing the sample configuration, the criterion to be minimized
is the sum of differences between the vectors of the aimed l∗ and observed l distributions of
unique Points Per Lag

PPL =

q∑
i=1

l∗i − li, (9.4)

where l∗ = n for a uniform distribution, n being the number of sample points. This proposed
modification differs from the original implementation of Warrick & Myers (1987) by the fact
that the later aims at a uniform distribution of the number of point-pairs per lag-distance class.
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9.5.3 Sampling for Spatial Interpolation

There are not many strategies for optimizing spatial samples for spatial interpolation in
terra incognita as there are for spatial trend estimation. Among the existing options, the MSSD
seems to be the most suited criterion. The main reasons for this are 1) its direct link with the
need for minimizing the prediction error variance when making spatial predictions, and 2) its
flexibility to deal with irregularly shaped sampling regions containing also irregularly shaped
non-sampling areas.

The MSSD is given by

MSSD =
1

N

N∑
i=1

minj(D
2
ij), (9.5)

where N is the number of points in the prediction grid, D2
ij is the squared Euclidean distance

between the i point in the prediction grid and the j sampling point computed using the x- and
y-coordinates, and minj refers to taking the minimum over all j’s for each i.

9.6 SAMPLING IN TERRA INCOGNITA

We propose a heuristic, general-purpose method to design sample configurations for soil
mapping in terra incognita. Like sampling for spatial trend estimation (ACDC), it is based on
solving a multi-objective combinatorial optimization problem (MOCOP) (Equation 8.4.3). A
utility function is defined aggregating the three criteria described above using the weighted sum
method (Equation 8.5) so that the sample points cover, extend over, spread over, SPAN the
feature, variogram and geographic spaces,

SPAN = w1CORR + w2DIST + w3PPL + w4MSSD, (9.6)

withw1 = w2 andw1+w2 = w3+w4 in the terra incognita setting. Before aggregation, each ob-
jective function is scaled to the same approximate range of values using the upper-lower bound
approach with the Pareto minimum and maximum values (Equation 8.4.3) so that any potential
numerical dominance can be eliminated or minimized, and the weights can play the desired
role (MARLER; ARORA, 2005; MARLER; ARORA, 2009). The multi-objective optimization
problem of sampling in terra incognita (SPAN) can be solved using spatial simulated annealing
as implemented in the R-package spsann (Section 8.5.2.1 and Appendix A). Simulated an-
nealing is a popular method with widespread use to solve combinatorial optimization problems
due to its robustness against local optima and easiness of implementation (METROPOLIS et al.,
1953; KIRKPATRICK et al., 1983; ČERNÝ, 1985; AARTS; KORST, 1989; VAN GROENI-
GEN, 1999).

9.7 CONCLUSIONS

This chapter presented sound strategies for optimizing spatial samples to estimate the
spatial trend and the variogram, and make spatial predictions when we know very little about
the soil spatial distribution. Overall, the main requirement is the formulation of a sound multi-
objective combinatorial optimization problem (MOCOP) using robust versions of existing sam-
pling algorithms. The aimed spatial sample should reproduce the marginal distribution of the
covariates such that the spatial trend can be accurately estimated. This can be achieved using
the recently improved version of the conditioned Latin hypercube sampling algorithm (ACDC).
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The spatial sample should also contain several small clusters scattered throughout the
sampling region, the reason being the need for an accurate estimate of the behaviour of the
variogram near the origin. An efficient metric for achieving such objective is the number of
unique points that form point-pairs in each of the exponentially spaced lag-distance classes of
the sample variogram (PPL). Optimally, every point would form point-pairs in each lag class.
Finally, the sampling region should be covered the most uniformly possible such that the aver-
age prediction error variance is the least possible. For that end, one can minimize the distance
between every prediction point and its nearest neighbouring sampling point (MSSD).

We believe that the proposed general purpose sampling strategy need to be evaluated
compared to (i) the single version of each objective function, (ii) popular sampling designs
such as regular grids, and (iii) sampling algorithms that assume the model of soil spatial varia-
tion as known. The effect of sample size need to be addressed as well. Unfortunately, resource
restrictions hinder the execution of such an evaluation using field data because sampling costs
are high. A reasonable solution is to use synthetic data derived from a real-world case study.
The first step would consist of defining soil data generating processes using existing point soil
observations and spatially exhaustive covariates. At least two generating processes should be
defined, possibly using different soil properties, such that the deterministic and random com-
ponents of soil spatial variation have different forms. For example, linear and non-linear trends
coupled with exponential and Gaussian variograms. Next, the generating processes would be
used to produce multiple realizations of the soil data, from which we would sample using the
spatial samples under comparison. Evaluation of sampling strategies would consist of measur-
ing how well the spatial samples (i) capture the true form of the soil data generating process
and (ii) make spatial predictions. The outcome of such an exercise should help us understand-
ing on how to decide upon sampling strategies when we want to learn about the soil-landscape
relationships and make accurate predictions.
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This thesis has made a pedological contribution with the development of a comprehen-
sive description of the soil-forming factors and processes that determine the spatio-temporal
distribution of soil properties in the Santa Maria case study area. The conceptual model of
pedogenesis, presented in Chapter IV, showed that the spatial distribution of soil properties is
highly variable, even when under the same land use. At coarse spatial scales, this spatial vari-
ation is determined by the geological and geomorphological diversity of the area, while at fine
spatial scales, past and current (poor) agricultural practices seem to play a major role. Along
with the conceptual model of pedogenesis, Chapter II and Chapter III constitute a technical
contribution of this thesis. These chapters provide the basis for soil spatial modelling exercises
in the study area.

Chapter V demonstrated that existing, freely available covariates are suitable for cali-
brating soil spatial models. It was shown that using more detailed covariates results in only a
modest increase in the prediction accuracy of linear soil spatial models. The observed increase
is comparable to the effect of incorporating spatial dependence in the soil spatial model, and
may not outweigh the extra costs of using more detailed covariates. In general, a more detailed
covariate has a greater potential to improve prediction accuracy when a soil property is poorly
predicted by its less detailed version. However, the magnitude of the improvement may depend
on which other covariates are included in the model. Choosing whether or not to invest in more
detailed covariates depends on the strength of the relationship between the covariates and the
soil property being modelled, and on the relative difference between the less, and more detailed
versions of the covariates. It is likely better to substantially improve the detail of a less influ-
ential covariate than marginally increase the detail of the most influential covariate. However,
one should always consider if more efficient means of increasing prediction accuracy exist (e.g.
obtaining more soil observations).

Chapter VI showed that several factors influence how field soil spatial modellers decide
upon where to place soil observation locations. These are of three types: conceptual, opera-
tional, and psychological. The first concerns the knowledge of the soil spatial modellers about
soil-landscape relationships, and seems to be connected with the years of field experience. The
second relates to the available resources (infrastructure, workforce, and budget) to make soil
observations, as well as to access restrictions imposed by landowners and geographic barriers,
for example. The third relates to how the soil modellers perceive their surrounding physical
environment and how the course of their motivation shifts during the soil observation process.
Point pattern analysis helped understanding that there is a trade-off between conceptual and
operational factors, which determines how the motivation of field soil modellers shifts focus
towards one or another immediate goal. Depending on the focal goal, the resulting sample con-
figuration resembles a random (learning/verifying soil-landscape relationships – means-focused
motivation) or a regular (maximizing the number of observations and geographic coverage –
outcome-focused motivation) point pattern.

Chapter VII showed that the conditioned Latin hypercube sampling algorithm, a popu-
lar algorithm used to optimize spatial sample configurations for spatial trend estimation, can be
considerably improved. Compared to the original CLHS, our proposed modifications resulted
in a sampling algorithm with an improved numerical behaviour, but this does not necessarily
translates into improved prediction accuracy. For instance, sample size has a larger influence
on prediction accuracy than the sampling algorithm. However, aiming only at the associa-
tion/correlation between covariates degrades prediction accuracy possibly because the coverage
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of the geographic space is poorer. As such, when optimizing a sample configuration for spatial
trend estimation, it should suffice to aim only at reproducing the marginal distribution of the
covariates. This should be done using only the non-empty marginal sampling strata.

Chapter VIII showed how to optimize sample configurations for spatial trend and vari-
ogram estimation, and spatial interpolation in situations where we know very little about the soil
spatial distribution. The only requirement is that one formulates a sound multi-objective opti-
mization problem using robust versions of existing sampling algorithms. The resulting spatial
sample should reproduce the marginal distribution of the covariates such that the spatial trend
can be accurately estimated. It should also contain several small clusters scattered throughout
the spatial domain to enable making an accurate estimate of the behaviour of the variogram,
specially near the origin. Finally, it should cover the sampling region in the most uniform way
such that the average prediction error variance is the least possible.

This thesis has also contributed with two packages for the software environment for
statistical computing and graphics R. The first package, called pedometrics (Appendix B),
contains various functions for spatial exploratory data analysis and model calibration designed
for the development of this thesis. The second package, called spsann (Appendix A), contains
functions to optimize sample configurations to identify and estimate the variogram and spatial
trend, and make spatial predictions. The latter was developed as part of Chapter VII and Chap-
ter VIII. Both are freely available and can be obtained from The Comprehensive R Archive
Network (CRAN).

Overall, this thesis showed that the complex interplay between soil and covariate data
can have a large influence on the accuracy of soil maps. A single, universal, cost-effective recipe
for reducing uncertainty in soil spatial modelling seems out of range. The case studies suggested
that solutions are case specific and primarily depend on the existing soil and covariate data.
Obtaining more soil samples showed to be an efficient strategy provided the available resources
allow extra sampling. Otherwise, deciding upon cost-effective ways of reducing uncertainty
requires, first, that we explore the full potential of existing soil and covariate data using robust
spatial modelling techniques. Such an exercise requires a comprehensive knowledge of the soil-
landscape relationships, as well as a thorough documentation of the soil and covariate data so
that their weaknesses and strengths can be easily identified. Then, the decision of whether to
invest on improving the quality of soil or covariate or both data sources will depend upon the
trade-off between the increased data/prediction quality and the amount of resources required.
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user to define his/her own objective function.
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minmaxPareto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
objSPSANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
optimACDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
optimCLHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
optimCORR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
optimDIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
optimMKV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
optimMSSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
optimPPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
optimSPAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
optimUSER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
plot.OptimizedSampleConfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
scheduleSPSANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
spJitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Index 40

spsann-package The spsann Package

Description

Optimization of sample configurations using spatial simulated annealing

Introduction

spsann is a package for the optimization of spatial sample configurations using spatial simulated
annealing. It includes multiple objective functions to optimize spatial sample configurations for
various purposes such as variogram estimation, spatial trend estimation, and spatial interpolation.
Most of the objective functions were designed to optimize spatial sample configurations when a)
multiple spatial variables must be modelled, b) we know very little about the model of spatial
variation of those variables, and c) sampling is limited to a single phase.

Spatial simulated annealing is a well known method with widespread use to solve combinatorial
optimization problems in the environmental sciences. This is mainly due to its robustness against
local optima and easiness to implement. In short, the algorithm consists of randomly changing
the spatial location of a candidate sampling point at a time and evaluating if the resulting spatial
sample configuration is better than the previous one with regard to the chosen quality criterion,
i.e. an objective function. Sometimes a worse spatial sample configuration is accepted so that the
algorithm is able to scape from local optima solutions, i.e. those spatial sample configurations that
are too good and appear to early in the optimization to be true. The chance of accepting a worse
spatial sample configuration reduces as the optimization proceeds so that we can get very close to
the optimum spatial sample configuration.

spsann also combines multiple objective functions so that spatial sample configurations can be
optimized regarding more than one modelling objective. Combining multiple objective functions
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gives rise to a multi-objective combinatorial optimization problem (MOCOP). A MOCOP usually
has multiple possible solutions. spsann finds a single solution by aggregating the objective func-
tions using the weighted-sum method. With this method the relative importance of every objective
function can be specified at the beginning of the optimization so that their relative influence on
the resulting optimized spatial sample configuration can be different. But this requires the objec-
tive functions first to be scaled to the same approximate range of values. The upper-lower bound
approach is used for that end. In this approach, every objective function is scaled using as refer-
ence the respective minimum and maximum attainable objective function values, also known as the
Pareto minimum and maximum.

Package Structure

spsann has a very simple structure composed of three families of functions. The first is the family
of optim functions. These are the functions that include the spatial simulated annealing algorithm,
that is, the functions that perform the optimization regarding the chosen quality criterion (objective
function). Every optim function is named after the objective function used as quality criterion. For
example, the quality criterion used by optimMSSD is the mean squared shortest distance (MSSD)
between sample and prediction points. As the example shows, the name of the optim functions is
composed of the string 'optim' followed by a suffix that indicates the respective objective function.
In the example this is 'MSSD'.

There currently are nine function in the optim family: optimACDC, optimCLHS, optimCORR, optimDIST,
optimMSSD, optimMKV, optimPPL, optimSPAN, and optimUSER. The latter is a general purpose func-
tion that enables to user to define his/her own objective function and plug it in the spatial simulated
annealing algorithm.

The second family of functions is the obj family. This family of functions is used to return the cur-
rent objective function value of a spatial sample configuration. Like the family of optim functions,
the name of the obj functions is composed of the string 'obj' plus a suffix that indicates the objec-
tive function being used. For example, objMSSD computes the value of the mean squared shortest
distance between sample and prediction points of any spatial sample configuration. Accordingly,
there is a obj function for every optim function, except for optimUSER. A ninth obj function,
objSPSANN, returns the objective function value at any point of the optimization, irrespective of the
objective function used.

The third family of functions implemented in spsann corresponds to a set of auxiliary functions.
These auxiliary functions can be used for several purposes, such as organizing the information
needed to feed an optim function, retrieving information from an object of class OptimizedSampleConfiguration,
i.e. an object containing an optimized sample configuration, generating plots of the spatial distri-
bution an optimized sample configuration, and so on. These functions are named after the purpose
for which they have been designed. For example: countPPL, minmaxPareto, scheduleSPSANN,
spJitter, and plot.

Despite spsann functions are classified into three general family of functions defined according
to the purpose for which they were designed, the documentation is constructed with regard to the
respective objective functions. For example, every spsann function that uses as quality criterion the
MSSD is documented in the same documentation page. The exception are the auxiliary functions,
that generally are documented separately.

Support

spsann was initially developed as part of the PhD research project entitled ‘Contribution to the
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Construction of Models for Predicting Soil Properties’, developed by Alessandro Samuel-Rosa un-
der the supervision of Lúcia Helena Cunha dos Anjos <lanjos@ufrrj.br> (Universidade Federal
Rural do Rio de Janeiro, Brazil), Gustavo de Mattos Vasques <gustavo.vasques@embrapa.br>
(Embrapa Solos, Brazil), and Gerard B. M. Heuvelink <gerard.heuvelink@wur.nl> (ISRIC –
World Soil Information, the Netherlands). The project was supported from March/2012 to Febru-
ary/2016 by the CAPES Foundation, Ministry of Education of Brazil, and the CNPq Foundation,
Ministry of Science and Technology of Brazil.

Contributors

Some of the solutions used to build spsann were found in the source code of other R-packages
and scripts developed and published by other researchers. For example, the original skeleton of the
optimization functions was adopted from the intamapInteractive package with the approval of the
package authors, Edzer Pebesma <edzer.pebesma@uni-muenster.de> and Jon Skoien <jon.skoien@gmail.com>.
The current skeleton is based on the later adoption of several solutions implemented in the script
developed and published by Murray Lark <mlark@bgs.ac.uk> as part of a short course (‘Com-
putational tools to optimize spatial sampling’) offered for the first time at the 2015 EGU General
Assembly in Vienna, Austria.

A few small solutions were adopted from the packages SpatialTools, authored by Joshua French
<joshua.french@ucdenver.edu>, clhs, authored by Pierre Roudier <roudierp@landcareresearch.co.nz>,
and spcosa, authored by Dennis Walvoort <dennis.Walvoort@wur.nl>, Dick Brus <dick.brus@wur.nl>,
and Jaap de Gruijter <Jaap.degruijter@wur.nl>.

Major conceptual contributions were made by Gerard Heuvelink <gerard.heuvelink@wur.nl>,
Dick Brus <dick.brus@wur.nl>, Murray Lark <mlark@bgs.ac.uk>, and Edzer Pebesma <edzer.pebesma@uni-muenster.de>.

Author(s)

Author and Maintainer: Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>.

minmaxPareto Pareto minimum and maximum values

Description

Compute the minimum and maximum attainable values of the objective functions that compose a
multi-objective combinatorial optimization problem.

Usage

minmaxPareto(osc, candi, covars)

Arguments

osc A list of objects of class OptimizedSampleConfiguration (OSC). Each OSC
of the list must be named after the objective function with which it has been
optimized. For example, osc = list(CORR = osc_corr, DIST = osc_dist).
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candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"] the projected x-coordinates,
and [, "y"] the projected y-coordinates.

covars Data frame or matrix with the covariates in the columns.

Details

Multi-objective combinatorial optimization problems: A method of solving a multi-objective
combinatorial optimization problem (MOCOP) is to aggregate the objective functions into a single
utility function. In spsann, the aggregation is performed using the weighted sum method, which
incorporates in the weights the preferences of the user regarding the relative importance of each
objective function.
The weighted sum method is affected by the relative magnitude of the different function values.
The objective functions implemented in spsann have different units and orders of magnitude. The
consequence is that the objective function with the largest values may have a numerical dominance
during the optimization. In other words, the weights may not express the true preferences of the
user, resulting that the meaning of the utility function becomes unclear because the optimization
will favour the objective function which is numerically dominant.
A reasonable solution to avoid the numerical dominance of any objective function is to scale the
objective functions so that they are constrained to the same approximate range of values. Several
function-transformation methods can be used for this end and spsann has four of them available.
The upper-lower-bound approach requires the user to inform the maximum (nadir point) and
minimum (utopia point) absolute function values. The resulting function values will always range
between 0 and 1.
The upper-bound approach requires the user to inform only the nadir point, while the utopia point
is set to zero. The upper-bound approach for transformation aims at equalizing only the upper
bounds of the objective functions. The resulting function values will always be smaller than or
equal to 1.
In most cases, the absolute maximum and minimum values of an objective function cannot be
calculated exactly. If the user is uncomfortable with guessing the nadir and utopia points, there
an option for using numerical simulations. It consists of computing the function value for many
random system configurations. The mean function value obtained over multiple simulations is
used to set the nadir point, while the the utopia point is set to zero. This approach is similar to the
upper-bound approach, but the function values will have the same orders of magnitude only at the
starting point of the optimization. Function values larger than one are likely to occur during the
optimization. We recommend the user to avoid this approach whenever possible because the effect
of the starting configuration on the optimization as a whole usually is insignificant or arbitrary.
The upper-lower-bound approach with the minimum and maximum attainable values of the ob-
jective functions that compose the MOCOP, also known as the Pareto minimum and maximum
values, is the most elegant solution to scale the objective functions. However, it is the most time
consuming. It works as follows:

1. Optimize a sample configuration with respect to each objective function that composes the
MOCOP;

2. Compute the function value of every objective function that composes the MOCOP for every
optimized sample configuration;

3. Record the minimum and maximum absolute function values attained for each objective func-
tion that composes the MOCOP – these are the Pareto minimum and maximum.
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For example, consider ACDC, a MOCOP composed of two objective functions: CORR and
DIST. The minimum absolute attainable value of CORR is obtained when the sample configu-
ration is optimized with respect to only CORR, i.e. when the evaluator and generator objective
functions are the same (see the intersection between the second line and second column in the
table below). This is the Pareto minimum of CORR. It follows that the maximum absolute at-
tainable value of CORR is obtained when the sample configuration is optimized with regard to
only DIST, i.e. when the evaluator function is difference from the generator function (see the
intersection between the first row and the second column in the table below). This is the Pareto
maximum of CORR. The same logic applies for finding the Pareto minimum and maximum of
DIST.

Evaluator Generator
DIST CORR

DIST 0.5 8.6
CORR 6.4 0.3

Value

A data frame with the Pareto minimum and maximum values.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Arora, J. Introduction to optimum design. Waltham: Academic Press, p. 896, 2011.

Marler, R. T.; Arora, J. S. Survey of multi-objective optimization methods for engineering. Struc-
tural and Multidisciplinary Optimization, v. 26, p. 369-395, 2004.

Marler, R. T.; Arora, J. S. Function-transformation methods for multi-objective optimization. Engi-
neering Optimization, v. 37, p. 551-570, 2005.

Marler, R. T.; Arora, J. S. The weighted sum method for multi-objective optimization: new insights.
Structural and Multidisciplinary Optimization, v. 41, p. 853-862, 2009.

See Also

optimACDC, SPAN

Examples

## Not run:
# This example takes more than 5 seconds
require(sp)
data(meuse.grid)
candi <- meuse.grid[, 1:2]
covars <- meuse.grid[, c(1, 2)]

# CORR
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schedule <- scheduleSPSANN(initial.acceptance = 0.1, chains = 1,
x.max = 1540, y.max = 2060, x.min = 0,
y.min = 0, cellsize = 40)

set.seed(2001)
osc_corr <- optimCORR(points = 10, candi = candi, covars = covars,

schedule = schedule)

# DIST
set.seed(2001)
osc_dist <- optimDIST(points = 10, candi = candi, covars = covars,

schedule = schedule)

# PPL
set.seed(2001)
osc_ppl <- optimPPL(points = 10, candi = candi, schedule = schedule)

# MSSD
set.seed(2001)
osc_mssd <- optimMSSD(points = 10, candi = candi, schedule = schedule)

# Pareto
pareto <- minmaxPareto(osc = list(DIST = osc_dist, CORR = osc_corr,

PPL = osc_ppl, MSSD = osc_mssd),
candi = candi, covars = covars)

pareto

## End(Not run)

objSPSANN Auxiliary tools

Description

Auxiliary tools used in the optimization of sample configurations using spatial simulated annealing.

Usage

objSPSANN(osc, at = "end", n = 1)

Arguments

osc Object of class OptimizedSampleConfiguration.
at Point of the optimization at which the energy state should be returned. Available

options: "start", for the start, and "end", for the end of the optimization.
Defaults to at = "end".

n Number of instances that should be returned. Defaults to n = 1.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>
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optimACDC Optimization of sample configurations for spatial trend identification
and estimation (III)

Description

Optimize a sample configuration for spatial trend identification and estimation. An utility function
U is defined so that the sample reproduces the bivariate association/correlation between the covari-
ates, as well as their marginal distribution (ACDC). The utility function is obtained aggregating two
objective functions: CORR and DIST.

Usage

optimACDC(points, candi, covars, strata.type = "area", use.coords = FALSE,
schedule = scheduleSPSANN(), plotit = FALSE, track = FALSE, boundary,
progress = "txt", verbose = FALSE, weights = list(CORR = 0.5, DIST =
0.5), nadir = list(sim = NULL, seeds = NULL, user = NULL, abs = NULL),
utopia = list(user = NULL, abs = NULL))

objACDC(points, candi, covars, strata.type = "area", use.coords = FALSE,
weights = list(CORR = 0.5, DIST = 0.5), nadir = list(sim = NULL, seeds =
NULL, user = NULL, abs = NULL), utopia = list(user = NULL, abs = NULL))

Arguments

points Integer value, integer vector, data frame or matrix. If points is an integer value,
it defines the number of points that should be randomly sampled from candi to
form the starting system configuration. If points is a vector of integer values,
it contains the row indexes of candi that correspond to the points that form the
starting system configuration. If points is a data frame or matrix, it must have
three columns in the following order: [, "id"] the row indexes of candi that
correspond to each point, [, "x"] the projected x-coordinates, and [, "y"] the
projected y-coordinates. Note that in the later case, points must be a subset of
candi.

candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"] the projected x-coordinates,
and [, "y"] the projected y-coordinates.

covars Data frame or matrix with the covariates in the columns.

strata.type Character value setting the type of stratification that should be used to create the
marginal sampling strata (or factor levels) for the numeric covariates. Available
options are "area", for equal-area, and "range", for equal-range. Defaults to
strata.type = "area".

use.coords Logical value. Should the geographic coordinates be used as covariates? De-
faults to use.coords = FALSE.

schedule List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.
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plotit Logical for plotting the optimization results, including a) the progress of the
objective function, and b) the starting (gray) and current system configuration
(black), and the maximum jitter in the x- and y-coordinates. The plots are up-
dated at each 10 jitters. Defaults to plotit = FALSE.

track Logical value. Should the evolution of the energy state be recorded and returned
with the result? If track = FALSE (the default), only the starting and ending
energy states are returned with the results.

boundary SpatialPolygon defining the boundary of the spatial domain. If missing and
plotit = TRUE, boundary is estimated from candi.

progress Type of progress bar that should be used, with options "txt", for a text progress
bar in the R console, "tk", to put up a Tk progress bar widget, and NULL to
omit the progress bar. A Tk progress bar widget is useful when using parallel
processors. Defaults to progress = "txt".

verbose Logical for printing messages about the progress of the optimization. Defaults
to verbose = FALSE.

weights List with named sub-arguments. The weights assigned to each one of the objec-
tive functions that form the multi-objective combinatorial optimization problem.
They must be named after the respective objective function to which they apply.
The weights must be equal to or larger than 0 and sum to 1. The default option
gives equal weights to all objective functions.

nadir List with named sub-arguments. Three options are available: 1) sim – the num-
ber of simulations that should be used to estimate the nadir point, and seeds –
vector defining the random seeds for each simulation; 2) user – a list of user-
defined nadir values named after the respective objective functions to which they
apply; 3) abs – logical for calculating the nadir point internally (experimental).

utopia List with named sub-arguments. Two options are available: 1) user – a list of
user-defined values named after the respective objective functions to which they
apply; 2) abs – logical for calculating the utopia point internally (experimental).

Details

The help page of minmaxPareto contains details on how spsann solves the multi-objective com-
binatorial optimization problem of finding a globally optimum sample configuration that meets
multiple conflicting objectives.

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Visit the help pages of optimCORR and optimDIST to see the details of the objective functions that
compose ACDC.

Value

optimACDC returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.

objACDC returns a numeric value: the energy state of the sample configuration – the objective
function value.
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Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

This function was derived with modifications from the method known as the conditioned Latin
Hypercube sampling originally proposed by Minasny and McBratney (2006), and implemented in
the R-package clhs by Pierre Roudier.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Minasny, B.; McBratney, A. B. A conditioned Latin hypercube method for sampling in the presence
of ancillary information. Computers & Geosciences, v. 32, p. 1378-1388, 2006.

Minasny, B.; McBratney, A. B. Conditioned Latin Hypercube Sampling for calibrating soil sensor
data to soil properties. Chapter 9. Viscarra Rossel, R. A.; McBratney, A. B.; Minasny, B. (Eds.)
Proximal Soil Sensing. Amsterdam: Springer, p. 111-119, 2010.

Roudier, P.; Beaudette, D.; Hewitt, A. A conditioned Latin hypercube sampling algorithm incorpo-
rating operational constraints. 5th Global Workshop on Digital Soil Mapping. Sydney, p. 227-231,
2012.

See Also

clhs, cramer

Examples

data(meuse.grid, package = "sp")
candi <- meuse.grid[1:1000, 1:2]
nadir <- list(sim = 10, seeds = 1:10)
utopia <- list(user = list(DIST = 0, CORR = 0))
covars <- meuse.grid[1:1000, 5]
schedule <- scheduleSPSANN(

chains = 1, initial.temperature = 5, x.max = 1540, y.max = 2060,
x.min = 0, y.min = 0, cellsize = 40)

set.seed(2001)
res <- optimACDC(

points = 10, candi = candi, covars = covars, nadir = nadir,
use.coords = TRUE, utopia = utopia, schedule = schedule)

objSPSANN(res) - objACDC(
points = res, candi = candi, covars = covars,
use.coords = TRUE, nadir = nadir, utopia = utopia)
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optimCLHS Optimization of sample configurations for spatial trend identification
and estimation (IV)

Description

Optimize a sample configuration for spatial trend identification and estimation using the method
proposed by Minasny and McBratney (2006), known as the conditioned Latin hypercube sampling.
An utility function U is defined so that the sample reproduces the marginal distribution and corre-
lation matrix of the numeric covariates, and the class proportions of the factor covariates (CLHS).
The utility function is obtained aggregating three objective functions: O1, O2, and O3.

Usage

optimCLHS(points, candi, covars, use.coords = FALSE,
schedule = scheduleSPSANN(), plotit = FALSE, track = FALSE, boundary,
progress = "txt", verbose = FALSE, weights = list(O1 = 1/3, O2 = 1/3, O3
= 1/3))

objCLHS(points, candi, covars, use.coords = FALSE, weights = list(O1 = 1/3,
O2 = 1/3, O3 = 1/3))

Arguments

points Integer value, integer vector, data frame or matrix. If points is an integer value,
it defines the number of points that should be randomly sampled from candi to
form the starting system configuration. If points is a vector of integer values,
it contains the row indexes of candi that correspond to the points that form the
starting system configuration. If points is a data frame or matrix, it must have
three columns in the following order: [, "id"] the row indexes of candi that
correspond to each point, [, "x"] the projected x-coordinates, and [, "y"] the
projected y-coordinates. Note that in the later case, points must be a subset of
candi.

candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"] the projected x-coordinates,
and [, "y"] the projected y-coordinates.

covars Data frame or matrix with the covariates in the columns.

use.coords Logical value. Should the geographic coordinates be used as covariates? De-
faults to use.coords = FALSE.

schedule List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

plotit Logical for plotting the optimization results, including a) the progress of the
objective function, and b) the starting (gray) and current system configuration
(black), and the maximum jitter in the x- and y-coordinates. The plots are up-
dated at each 10 jitters. Defaults to plotit = FALSE.
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track Logical value. Should the evolution of the energy state be recorded and returned
with the result? If track = FALSE (the default), only the starting and ending
energy states are returned with the results.

boundary SpatialPolygon defining the boundary of the spatial domain. If missing and
plotit = TRUE, boundary is estimated from candi.

progress Type of progress bar that should be used, with options "txt", for a text progress
bar in the R console, "tk", to put up a Tk progress bar widget, and NULL to
omit the progress bar. A Tk progress bar widget is useful when using parallel
processors. Defaults to progress = "txt".

verbose Logical for printing messages about the progress of the optimization. Defaults
to verbose = FALSE.

weights List with named sub-arguments. The weights assigned to each one of the objec-
tive functions that form the multi-objective combinatorial optimization problem.
They must be named after the respective objective function to which they apply.
The weights must be equal to or larger than 0 and sum to 1. The default option
gives equal weights to all objective functions.

Details

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Marginal sampling strata: #’ Reproducing the marginal distribution of the numeric covariates
depends upon the definition of marginal sampling strata. Equal-area marginal sampling strata
are defined using the sample quantiles estimated with quantile using a continuous function
(type = 7), that is, a function that interpolates between existing covariate values to estimate
the sample quantiles. This is the procedure implemented in the method of Minasny and McBrat-
ney (2006), which creates breakpoints that do not occur in the population of existing covariate
values. Depending on the level of discretisation of the covariate values, that is, how many signifi-
cant digits they have, this can create repeated breakpoints, resulting in empty marginal sampling
strata. The number of empty marginal sampling strata will ultimately depend on the frequency
distribution of the covariate and on the number of sampling points. The effect of these features on
the spatial modelling outcome still is poorly understood.

Correlation between numeric covariates: The correlation between two numeric covariates
is measured using the sample Pearson’s r, a descriptive statistic that ranges from $-1$ to $+1$.
This statistic is also known as the sample linear correlation coefficient. The effect of ignoring
the correlation among factor covariates and between factor and numeric covariates on the spatial
modelling outcome still is poorly understood.

Multi-objective combinatorial optimization: A method of solving a multi-objective combina-
torial optimization problem (MOCOP) is to aggregate the objective functions into a single utility
function U. In the spsann package, as in the original implementation of the CLHS by Minasny
and McBratney (2006), the aggregation is performed using the weighted sum method, which uses
weights to incorporate the preferences of the user about the relative importance of each objective
function. When the user has no preference, the objective functions receive equal weights.
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The weighted sum method is affected by the relative magnitude of the different objective function
values. The objective functions implemented in optimCLHS have different units and orders of
magnitude. The consequence is that the objective function with the largest values, generally
O1, may have a numerical dominance during the optimization. In other words, the weights may
not express the true preferences of the user, resulting that the meaning of the utility function
becomes unclear because the optimization will favour the objective function which is numerically
dominant.
An efficient solution to avoid numerical dominance is to scale the objective functions so that they
are constrained to the same approximate range of values, at least in the end of the optimization.
However, as in the original implementation of the CLHS by Minasny and McBratney (2006),
optimCLHS uses the naive aggregation method, which ignores that the three objective functions
have different units and orders of magnitude. The same aggregation procedure is implemented in
the clhs package. The effect of ignoring the need to scale the objective functions on the spatial
modelling outcome still is poorly understood.

Value

optimCLHS returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.

objCLHS returns a numeric value: the energy state of the sample configuration – the objective
function value.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

The (only) difference of optimCLHS to the original Fortran implementation of Minasny and McBrat-
ney (2006), and to the clhs function implemented in the clhs package by Pierre Roudier, is the
annealing schedule.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Minasny, B.; McBratney, A. B. A conditioned Latin hypercube method for sampling in the presence
of ancillary information. Computers & Geosciences, v. 32, p. 1378-1388, 2006.

Minasny, B.; McBratney, A. B. Conditioned Latin Hypercube Sampling for calibrating soil sensor
data to soil properties. Chapter 9. Viscarra Rossel, R. A.; McBratney, A. B.; Minasny, B. (Eds.)
Proximal Soil Sensing. Amsterdam: Springer, p. 111-119, 2010.

Roudier, P.; Beaudette, D.; Hewitt, A. A conditioned Latin hypercube sampling algorithm incorpo-
rating operational constraints. 5th Global Workshop on Digital Soil Mapping. Sydney, p. 227-231,
2012.

Apêndice A. Package spsann for R

198



14 optimCORR

See Also

clhs, optimACDC

Examples

data(meuse.grid, package = "sp")
candi <- meuse.grid[1:1000, 1:2]
covars <- meuse.grid[1:1000, 5]
weights <- list(O1 = 0.5, O3 = 0.5)
schedule <- scheduleSPSANN(

chains = 1, initial.temperature = 20, x.max = 1540, y.max = 2060,
x.min = 0, y.min = 0, cellsize = 40)

set.seed(2001)
res <- optimCLHS(

points = 10, candi = candi, covars = covars, use.coords = TRUE,
weights = weights, schedule = schedule)

objSPSANN(res) - objCLHS(
points = res, candi = candi, covars = covars, use.coords = TRUE,
weights = weights)

optimCORR Optimization of sample configurations for spatial trend identification
and estimation (I)

Description

Optimize a sample configuration for spatial trend identification and estimation. A criterion is de-
fined so that the sample reproduces the bivariate association/correlation between the covariates
(CORR).

Usage

optimCORR(points, candi, covars, strata.type = "area", use.coords = FALSE,
schedule = scheduleSPSANN(), plotit = FALSE, track = FALSE, boundary,
progress = "txt", verbose = FALSE)

objCORR(points, candi, covars, strata.type = "area", use.coords = FALSE)

Arguments

points Integer value, integer vector, data frame or matrix. If points is an integer value,
it defines the number of points that should be randomly sampled from candi to
form the starting system configuration. If points is a vector of integer values,
it contains the row indexes of candi that correspond to the points that form the
starting system configuration. If points is a data frame or matrix, it must have
three columns in the following order: [, "id"] the row indexes of candi that
correspond to each point, [, "x"] the projected x-coordinates, and [, "y"] the
projected y-coordinates. Note that in the later case, points must be a subset of
candi.

Apêndice A. Package spsann for R

199



optimCORR 15

candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"] the projected x-coordinates,
and [, "y"] the projected y-coordinates.

covars Data frame or matrix with the covariates in the columns.
strata.type Character value setting the type of stratification that should be used to create the

marginal sampling strata (or factor levels) for the numeric covariates. Available
options are "area", for equal-area, and "range", for equal-range. Defaults to
strata.type = "area".

use.coords Logical value. Should the geographic coordinates be used as covariates? De-
faults to use.coords = FALSE.

schedule List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

plotit Logical for plotting the optimization results, including a) the progress of the
objective function, and b) the starting (gray) and current system configuration
(black), and the maximum jitter in the x- and y-coordinates. The plots are up-
dated at each 10 jitters. Defaults to plotit = FALSE.

track Logical value. Should the evolution of the energy state be recorded and returned
with the result? If track = FALSE (the default), only the starting and ending
energy states are returned with the results.

boundary SpatialPolygon defining the boundary of the spatial domain. If missing and
plotit = TRUE, boundary is estimated from candi.

progress Type of progress bar that should be used, with options "txt", for a text progress
bar in the R console, "tk", to put up a Tk progress bar widget, and NULL to
omit the progress bar. A Tk progress bar widget is useful when using parallel
processors. Defaults to progress = "txt".

verbose Logical for printing messages about the progress of the optimization. Defaults
to verbose = FALSE.

Details

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Association/Correlation between covariates: The correlation between two numeric covariates
is measured using the Pearson’s r, a descriptive statistic that ranges from −1 to +1. This statistic
is also known as the linear correlation coefficient.
When the set of covariates includes factor covariates, all numeric covariates are transformed into
factor covariates. The factor levels are defined using the marginal sampling strata created from
one of the two methods available (equal-area or equal-range strata).
The association between two factor covariates is measured using the Cramér’s V, a descriptive
statistic that ranges from 0 to +1. The closer to +1 the Cramér’s V is, the stronger the association
between two factor covariates.
The main weakness of using the Cramér’s V is that, while the Pearson’s r shows the degree and
direction of the association between two covariates (negative or positive), the Cramér’s V only
measures the degree of association (weak or strong). The effect of replacing the Pearson’s r with
the Cramér’s V on the spatial modelling outcome still is poorly understood.
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Value

optimCORR returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.

objCORR returns a numeric value: the energy state of the sample configuration – the objective
function value.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Cramér, H. Mathematical methods of statistics. Princeton: Princeton University Press, p. 575,
1946.

Everitt, B. S. The Cambridge dictionary of statistics. Cambridge: Cambridge University Press, p.
432, 2006.

See Also

clhs, cramer, optimACDC

Examples

data(meuse.grid, package = "sp")
candi <- meuse.grid[1:1000, 1:2]
covars <- meuse.grid[1:1000, 5]
schedule <- scheduleSPSANN(

initial.temperature = 5, chains = 1, x.max = 1540, y.max = 2060,
x.min = 0, y.min = 0, cellsize = 40)

set.seed(2001)
res <- optimCORR(

points = 10, candi = candi, covars = covars, use.coords = TRUE,
schedule = schedule)

objSPSANN(res) - objCORR(
points = res, candi = candi, covars = covars, use.coords = TRUE)
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optimDIST Optimization of sample configurations for spatial trend identification
and estimation (II)

Description

Optimize a sample configuration for spatial trend identification and estimation. A criterion is de-
fined so that the sample reproduces the marginal distribution of the covariates (DIST).

Usage

optimDIST(points, candi, covars, strata.type = "area", use.coords = FALSE,
schedule = scheduleSPSANN(), plotit = FALSE, track = FALSE, boundary,
progress = "txt", verbose = FALSE)

objDIST(points, candi, covars, strata.type = "area", use.coords = FALSE)

Arguments

points Integer value, integer vector, data frame or matrix. If points is an integer value,
it defines the number of points that should be randomly sampled from candi to
form the starting system configuration. If points is a vector of integer values,
it contains the row indexes of candi that correspond to the points that form the
starting system configuration. If points is a data frame or matrix, it must have
three columns in the following order: [, "id"] the row indexes of candi that
correspond to each point, [, "x"] the projected x-coordinates, and [, "y"] the
projected y-coordinates. Note that in the later case, points must be a subset of
candi.

candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"] the projected x-coordinates,
and [, "y"] the projected y-coordinates.

covars Data frame or matrix with the covariates in the columns.

strata.type Character value setting the type of stratification that should be used to create the
marginal sampling strata (or factor levels) for the numeric covariates. Available
options are "area", for equal-area, and "range", for equal-range. Defaults to
strata.type = "area".

use.coords Logical value. Should the geographic coordinates be used as covariates? De-
faults to use.coords = FALSE.

schedule List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

plotit Logical for plotting the optimization results, including a) the progress of the
objective function, and b) the starting (gray) and current system configuration
(black), and the maximum jitter in the x- and y-coordinates. The plots are up-
dated at each 10 jitters. Defaults to plotit = FALSE.
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track Logical value. Should the evolution of the energy state be recorded and returned
with the result? If track = FALSE (the default), only the starting and ending
energy states are returned with the results.

boundary SpatialPolygon defining the boundary of the spatial domain. If missing and
plotit = TRUE, boundary is estimated from candi.

progress Type of progress bar that should be used, with options "txt", for a text progress
bar in the R console, "tk", to put up a Tk progress bar widget, and NULL to
omit the progress bar. A Tk progress bar widget is useful when using parallel
processors. Defaults to progress = "txt".

verbose Logical for printing messages about the progress of the optimization. Defaults
to verbose = FALSE.

Details

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Marginal distribution of covariates: Reproducing the marginal distribution of the numeric
covariates depends upon the definition of marginal sampling strata. These marginal sampling
strata are also used to define the factor levels of all numeric covariates that are passed together
with factor covariates. Two types of marginal sampling strata can be used: equal-area and equal-
range.

Equal-area marginal sampling strata are defined using the sample quantiles estimated with quantile
using a discontinuous function (type = 3). Using a discontinuous function avoids creating break-
points that do not occur in the population of existing covariate values.

Depending on the level of discretization of the covariate values, quantile produces repeated
breakpoints. A breakpoint will be repeated if that value has a relatively high frequency in the
population of covariate values. The number of repeated breakpoints increases with the number
of marginal sampling strata. Repeated breakpoints result in empty marginal sampling strata. To
avoid this, only the unique breakpoints are used.

Equal-range marginal sampling strata are defined by breaking the range of covariate values into
pieces of equal size. Depending on the level of discretization of the covariate values, this method
creates breakpoints that do not occur in the population of existing covariate values. Such break-
points are replaced with the nearest existing covariate value identified using Euclidean distances.

Like the equal-area method, the equal-range method can produce empty marginal sampling strata.
The solution used here is to merge any empty marginal sampling strata with the closest non-empty
marginal sampling strata. This is identified using Euclidean distances as well.

The approaches used to define the marginal sampling strata result in each numeric covariate having
a different number of marginal sampling strata, some of them with different area/size. Because the
goal is to have a sample that reproduces the marginal distribution of the covariate, each marginal
sampling strata will have a different number of sample points. The wanted distribution of the
number of sample points per marginal strata is estimated empirically as the proportion of points
in the population of existing covariate values that fall in each marginal sampling strata.
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Value

optimDIST returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.

objDIST returns a numeric value: the energy state of the sample configuration – the objective
function value.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Hyndman, R. J.; Fan, Y. Sample quantiles in statistical packages. The American Statistician, v. 50,
p. 361-365, 1996.

Everitt, B. S. The Cambridge dictionary of statistics. Cambridge: Cambridge University Press, p.
432, 2006.

See Also

clhs, optimACDC

Examples

require(sp)
data(meuse.grid)
candi <- meuse.grid[, 1:2]
covars <- meuse.grid[, 5]
schedule <- scheduleSPSANN(initial.temperature = 1, chains = 1,

x.max = 1540, y.max = 2060, x.min = 0,
y.min = 0, cellsize = 40)

set.seed(2001)
res <- optimDIST(points = 10, candi = candi, covars = covars,

use.coords = TRUE, schedule = schedule)
objSPSANN(res) -

objDIST(points = res, candi = candi, covars = covars, use.coords = TRUE)
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optimMKV Optimization of sample configurations for spatial interpolation (II)

Description

Optimize a sample configuration for spatial interpolation with a known linear model. A criterion is
defined so that the sample configuration minimizes the mean or maximum kriging variance (MKV).

Usage

optimMKV(points, candi, covars, eqn = z ~ 1, vgm, krige.stat = "mean", ...,
schedule = scheduleSPSANN(), plotit = FALSE, track = FALSE, boundary,
progress = "txt", verbose = FALSE)

objMKV(points, candi, covars, eqn = z ~ 1, vgm, krige.stat = "mean", ...)

Arguments

points Integer value, integer vector, data frame or matrix. If points is an integer value,
it defines the number of points that should be randomly sampled from candi to
form the starting system configuration. If points is a vector of integer values,
it contains the row indexes of candi that correspond to the points that form the
starting system configuration. If points is a data frame or matrix, it must have
three columns in the following order: [, "id"] the row indexes of candi that
correspond to each point, [, "x"] the projected x-coordinates, and [, "y"] the
projected y-coordinates. Note that in the later case, points must be a subset of
candi.

candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"] the projected x-coordinates,
and [, "y"] the projected y-coordinates.

covars Data frame or matrix with the covariates in the columns.

eqn Formula string that defines the dependent variable z as a linear model of the
independent variables contained in covars. Defaults to eqn = z ~ 1, that
is, ordinary kriging. See the argument formula in the function krige for more
information.

vgm Object of class variogramModel. See the argument model in the function krige
for more information.

krige.stat Character value defining the statistic that should be used to summarize the krig-
ing variance. Available options are "mean" and "max" for the mean and maxi-
mum kriging variance, respectively. Defaults to krige.stat = "mean".

... further arguments passed to krige.

schedule List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.
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plotit Logical for plotting the optimization results, including a) the progress of the
objective function, and b) the starting (gray) and current system configuration
(black), and the maximum jitter in the x- and y-coordinates. The plots are up-
dated at each 10 jitters. Defaults to plotit = FALSE.

track Logical value. Should the evolution of the energy state be recorded and returned
with the result? If track = FALSE (the default), only the starting and ending
energy states are returned with the results.

boundary SpatialPolygon defining the boundary of the spatial domain. If missing and
plotit = TRUE, boundary is estimated from candi.

progress Type of progress bar that should be used, with options "txt", for a text progress
bar in the R console, "tk", to put up a Tk progress bar widget, and NULL to
omit the progress bar. A Tk progress bar widget is useful when using parallel
processors. Defaults to progress = "txt".

verbose Logical for printing messages about the progress of the optimization. Defaults
to verbose = FALSE.

Details

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Value

optimMKV returns an object of class OptimizedSampleConfiguration: the optimized sample con-
figuration with details about the optimization.

objMKV returns a numeric value: the energy state of the sample configuration – the objective function
value.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

This function is based on the method originally proposed by Heuvelink, Brus and de Gruijter (2006)
and implemented in the R-package intamapInteractive by Edzer Pebesma and Jon Skoien.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Brus, D. J.; Heuvelink, G. B. M. Optimization of sample patterns for universal kriging of environ-
mental variables. Geoderma. v. 138, p. 86-95, 2007.
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Heuvelink, G. B. M.; Brus, D. J.; de Gruijter, J. J. Optimization of sample configurations for digital
mapping of soil properties with universal kriging. In: Lagacherie, P.; McBratney, A. & Voltz, M.
(Eds.) Digital soil mapping - an introductory perspective. Elsevier, v. 31, p. 137-151, 2006.

Examples

## Not run:
data(meuse.grid, package = "sp")
candi <- meuse.grid[1:1000, 1:2]
covars <- as.data.frame(meuse.grid)[1:1000, ]
vgm <- gstat::vgm(psill = 10, model = "Exp", range = 500, nugget = 8)
schedule <- scheduleSPSANN(

initial.temperature = 10, chains = 1, x.max = 1540, y.max = 2060,
x.min = 0, y.min = 0, cellsize = 40)

set.seed(2001)
res <- optimMKV(

points = 10, candi = candi, covars = covars, eqn = z ~ dist,
vgm = vgm, schedule = schedule)

objSPSANN(res) - objMKV(
points = res, candi = candi, covars = covars, eqn = z ~ dist,
vgm = vgm)

## End(Not run)

optimMSSD Optimization of sample configurations for spatial interpolation (I)

Description

Optimize a sample configuration for spatial interpolation. The criterion used is the mean squared
shortest distance (MSSD) between sample points and prediction points.

Usage

optimMSSD(points, candi, schedule = scheduleSPSANN(), plotit = FALSE,
track = FALSE, boundary, progress = "txt", verbose = FALSE)

objMSSD(points, candi)

Arguments

points Integer value, integer vector, data frame or matrix. If points is an integer value,
it defines the number of points that should be randomly sampled from candi to
form the starting system configuration. If points is a vector of integer values,
it contains the row indexes of candi that correspond to the points that form the
starting system configuration. If points is a data frame or matrix, it must have
three columns in the following order: [, "id"] the row indexes of candi that
correspond to each point, [, "x"] the projected x-coordinates, and [, "y"] the
projected y-coordinates. Note that in the later case, points must be a subset of
candi.
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candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"] the projected x-coordinates,
and [, "y"] the projected y-coordinates.

schedule List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

plotit Logical for plotting the optimization results, including a) the progress of the
objective function, and b) the starting (gray) and current system configuration
(black), and the maximum jitter in the x- and y-coordinates. The plots are up-
dated at each 10 jitters. Defaults to plotit = FALSE.

track Logical value. Should the evolution of the energy state be recorded and returned
with the result? If track = FALSE (the default), only the starting and ending
energy states are returned with the results.

boundary SpatialPolygon defining the boundary of the spatial domain. If missing and
plotit = TRUE, boundary is estimated from candi.

progress Type of progress bar that should be used, with options "txt", for a text progress
bar in the R console, "tk", to put up a Tk progress bar widget, and NULL to
omit the progress bar. A Tk progress bar widget is useful when using parallel
processors. Defaults to progress = "txt".

verbose Logical for printing messages about the progress of the optimization. Defaults
to verbose = FALSE.

Details

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Spatial coverage sampling: Spatial coverage sampling is based on the knowledge that the
kriging variance depends upon the distance between sample points. As such, the better the spread
of the sample points in the spatial domain, the smaller the kriging variance. This is similar to
using a regular grid of sample points. However, a regular grid usually is suboptimal for irregularly
shaped areas.

Value

optimMSSD returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.

objMSSD returns a numeric value: the energy state of the sample configuration – the objective
function value.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.
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This function was derived with modifications from the method known as spatial coverage sampling
originally proposed by Brus, de Gruijter and van Groenigen (2006), and implemented in the R-
package spcosa by Dennis Walvoort, Dick Brus and Jaap de Gruijter.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Brus, D. J.; de Gruijter, J. J.; van Groenigen, J.-W. Designing spatial coverage samples using the
k-means clustering algorithm. In: P. Lagacherie,A. M.; Voltz, M. (Eds.) Digital soil mapping – an
introductory perspective. Elsevier, v. 31, p. 183-192, 2006.

de Gruijter, J. J.; Brus, D.; Bierkens, M.; Knotters, M. Sampling for natural resource monitoring.
Berlin: Springer, p. 332, 2006.

Walvoort, D. J. J.; Brus, D. J.; de Gruijter, J. J. An R package for spatial coverage sampling and
random sampling from compact geographical strata by k-means. Computers and Geosciences. v.
36, p. 1261-1267, 2010.

See Also

distanceFromPoints, stratify.

Examples

require(sp)
data(meuse.grid)
candi <- meuse.grid[, 1:2]
schedule <- scheduleSPSANN(chains = 1, initial.temperature = 5000000,

x.max = 1540, y.max = 2060, x.min = 0,
y.min = 0, cellsize = 40)

set.seed(2001)
res <- optimMSSD(points = 10, candi = candi, schedule = schedule)
objSPSANN(res) - objMSSD(candi = candi, points = res)

optimPPL Optimization of sample configurations for variogram identification
and estimation

Description

Optimize a sample configuration for variogram identification and estimation. A criterion is defined
so that the optimized sample configuration has a given number of points or point-pairs contributing
to each lag-distance class (PPL).
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Usage

optimPPL(points, candi, lags = 7, lags.type = "exponential",
lags.base = 2, cutoff, criterion = "distribution", distri,
pairs = FALSE, schedule = scheduleSPSANN(), plotit = FALSE,
track = FALSE, boundary, progress = "txt", verbose = FALSE)

objPPL(points, candi, lags = 7, lags.type = "exponential", lags.base = 2,
cutoff, distri, criterion = "distribution", pairs = FALSE, x.max, x.min,
y.max, y.min)

countPPL(points, candi, lags = 7, lags.type = "exponential",
lags.base = 2, cutoff, pairs = FALSE, x.max, x.min, y.max, y.min)

Arguments

points Integer value, integer vector, data frame or matrix. If points is an integer value,
it defines the number of points that should be randomly sampled from candi to
form the starting system configuration. If points is a vector of integer values,
it contains the row indexes of candi that correspond to the points that form the
starting system configuration. If points is a data frame or matrix, it must have
three columns in the following order: [, "id"] the row indexes of candi that
correspond to each point, [, "x"] the projected x-coordinates, and [, "y"] the
projected y-coordinates. Note that in the later case, points must be a subset of
candi.

candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"] the projected x-coordinates,
and [, "y"] the projected y-coordinates.

lags Integer value, the number of lag-distance classes. Alternatively, a vector of
numeric values with the lower and upper bounds of each lag-distance class, the
lowest value being larger than zero (e.g. 0.0001). Defaults to lags = 7.

lags.type Character value, the type of lag-distance classes, with options "equidistant"
and "exponential". Defaults to lags.type = "exponential".

lags.base Numeric value, base of the exponential expression used to create exponentially
spaced lag-distance classes. Used only when lags.type = "exponential".
Defaults to lags.base = 2.

cutoff Numeric value, the maximum distance up to which lag-distance classes are cre-
ated. Used only when lags is an integer value. If missing, it is set to be equal to
the length of the diagonal of the rectagle with sides x.max and y.max as defined
in scheduleSPSANN.

criterion Character value, the feature used to describe the energy state of the system con-
figuration, with options "minimum" and "distribution". Defaults to objective = "distribution".

distri Numeric vector, the distribution of points or point-pairs per lag-distance class
that should be attained at the end of the optimization. Used only when criterion = "distribution".
Defaults to a uniform distribution.

pairs Logical value. Should the sample configuration be optimized regarding the num-
ber of point-pairs per lag-distance class? Defaults to pairs = FALSE.
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schedule List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

plotit Logical for plotting the optimization results, including a) the progress of the
objective function, and b) the starting (gray) and current system configuration
(black), and the maximum jitter in the x- and y-coordinates. The plots are up-
dated at each 10 jitters. Defaults to plotit = FALSE.

track Logical value. Should the evolution of the energy state be recorded and returned
with the result? If track = FALSE (the default), only the starting and ending
energy states are returned with the results.

boundary SpatialPolygon defining the boundary of the spatial domain. If missing and
plotit = TRUE, boundary is estimated from candi.

progress Type of progress bar that should be used, with options "txt", for a text progress
bar in the R console, "tk", to put up a Tk progress bar widget, and NULL to
omit the progress bar. A Tk progress bar widget is useful when using parallel
processors. Defaults to progress = "txt".

verbose Logical for printing messages about the progress of the optimization. Defaults
to verbose = FALSE.

x.max Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The minimum quantity should
be equal to, at least, the minimum distance between two neighbouring candidate
locations. The units are the same as of the projected x- and y-coordinates. If
missing, they are estimated from candi.

x.min Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The minimum quantity should
be equal to, at least, the minimum distance between two neighbouring candidate
locations. The units are the same as of the projected x- and y-coordinates. If
missing, they are estimated from candi.

y.max Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The minimum quantity should
be equal to, at least, the minimum distance between two neighbouring candidate
locations. The units are the same as of the projected x- and y-coordinates. If
missing, they are estimated from candi.

y.min Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The minimum quantity should
be equal to, at least, the minimum distance between two neighbouring candidate
locations. The units are the same as of the projected x- and y-coordinates. If
missing, they are estimated from candi.

Details

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Lag-distance classes: Two types of lag-distance classes can be created by default. The first are
evenly spaced lags (lags.type = "equidistant"). They are created by simply dividing the
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distance interval from 0.0001 to cutoff by the required number of lags. The minimum value of
0.0001 guarantees that a point does not form a pair with itself. The second type of lags is defined
by exponential spacings (lags.type = "exponential"). The spacings are defined by the base
b of the exponential expression bn, where n is the required number of lags. The base is defined
using the argument lags.base. See vgmLags for other details.
Using the default uniform distribution means that the number of point-pairs per lag-distance class
(pairs = TRUE) is equal to n × (n − 1)/(2 × lag), where n is the total number of points and
lag is the number of lags. If pairs = FALSE, then it means that the number of points per lag is
equal to the total number of points. This is the same as expecting that each point contributes to
every lag. Distributions other than the available options can be easily implemented changing the
arguments lags and distri.
There are two optimizing criteria implemented. The first is called using criterion = "distribution"
and is used to minimize the sum of the absolute differences between a pre-specified distribution
and the observed distribution of points or point-pairs per lag-distance class. The second criterion
is called using criterion = "minimum". It corresponds to maximizing the minimum number of
points or point-pairs observed over all lag-distance classes.

Value

optimPPL returns an object of class OptimizedSampleConfiguration: the optimized sample con-
figuration with details about the optimization.

objPPL returns a numeric value: the energy state of the sample configuration – the objective function
value.

countPPL returns a data.frame with three columns: a) the lower and b) upper limits of each lag-
distance class, and c) the number of points or point-pairs per lag-distance class.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Bresler, E.; Green, R. E. Soil parameters and sampling scheme for characterizing soil hydraulic
properties of a watershed. Honolulu: University of Hawaii at Manoa, p. 42, 1982.

Pettitt, A. N.; McBratney, A. B. Sampling designs for estimating spatial variance components.
Applied Statistics. v. 42, p. 185, 1993.

Russo, D. Design of an optimal sampling network for estimating the variogram. Soil Science Society
of America Journal. v. 48, p. 708-716, 1984.

Truong, P. N.; Heuvelink, G. B. M.; Gosling, J. P. Web-based tool for expert elicitation of the
variogram. Computers and Geosciences. v. 51, p. 390-399, 2013.
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Warrick, A. W.; Myers, D. E. Optimization of sampling locations for variogram calculations. Water
Resources Research. v. 23, p. 496-500, 1987.

Examples

## Not run:
# This example takes more than 5 seconds
require(sp)
data(meuse.grid)
candi <- meuse.grid[, 1:2]
schedule <- scheduleSPSANN(chains = 1, initial.temperature = 30,

x.max = 1540, y.max = 2060, x.min = 0,
y.min = 0, cellsize = 40)

set.seed(2001)
res <- optimPPL(points = 10, candi = candi, schedule = schedule)
objSPSANN(res) - objPPL(points = res, candi = candi)
countPPL(points = res, candi = candi)

## End(Not run)

optimSPAN Optimization of sample configurations for variogram and spatial trend
identification and estimation, and for spatial interpolation

Description

Optimize a sample configuration for variogram and spatial trend identification and estimation, and
for spatial interpolation. An utility function U is defined so that the sample points cover, extend
over, spread over, SPAN the feature, variogram and geographic spaces. The utility function is
obtained aggregating four objective functions: CORR, DIST, PPL, and MSSD.

Usage

optimSPAN(points, candi, covars, strata.type = "area", use.coords = FALSE,
lags = 7, lags.type = "exponential", lags.base = 2, cutoff,
criterion = "distribution", distri, pairs = FALSE,
schedule = scheduleSPSANN(), plotit = FALSE, track = FALSE, boundary,
progress = "txt", verbose = FALSE, weights = list(CORR = 1/6, DIST =
1/6, PPL = 1/3, MSSD = 1/3), nadir = list(sim = NULL, seeds = NULL, user =
NULL, abs = NULL), utopia = list(user = NULL, abs = NULL))

objSPAN(points, candi, covars, strata.type = "area", use.coords = FALSE,
lags = 7, lags.type = "exponential", lags.base = 2, cutoff,
criterion = "distribution", distri, pairs = FALSE, x.max, x.min, y.max,
y.min, weights = list(CORR = 1/6, DIST = 1/6, PPL = 1/3, MSSD = 1/3),
nadir = list(sim = NULL, seeds = NULL, user = NULL, abs = NULL),
utopia = list(user = NULL, abs = NULL))
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Arguments

points Integer value, integer vector, data frame or matrix. If points is an integer value,
it defines the number of points that should be randomly sampled from candi to
form the starting system configuration. If points is a vector of integer values,
it contains the row indexes of candi that correspond to the points that form the
starting system configuration. If points is a data frame or matrix, it must have
three columns in the following order: [, "id"] the row indexes of candi that
correspond to each point, [, "x"] the projected x-coordinates, and [, "y"] the
projected y-coordinates. Note that in the later case, points must be a subset of
candi.

candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"] the projected x-coordinates,
and [, "y"] the projected y-coordinates.

covars Data frame or matrix with the covariates in the columns.
strata.type Character value setting the type of stratification that should be used to create the

marginal sampling strata (or factor levels) for the numeric covariates. Available
options are "area", for equal-area, and "range", for equal-range. Defaults to
strata.type = "area".

use.coords Logical value. Should the geographic coordinates be used as covariates? De-
faults to use.coords = FALSE.

lags Integer value, the number of lag-distance classes. Alternatively, a vector of
numeric values with the lower and upper bounds of each lag-distance class, the
lowest value being larger than zero (e.g. 0.0001). Defaults to lags = 7.

lags.type Character value, the type of lag-distance classes, with options "equidistant"
and "exponential". Defaults to lags.type = "exponential".

lags.base Numeric value, base of the exponential expression used to create exponentially
spaced lag-distance classes. Used only when lags.type = "exponential".
Defaults to lags.base = 2.

cutoff Numeric value, the maximum distance up to which lag-distance classes are cre-
ated. Used only when lags is an integer value. If missing, it is set to be equal to
the length of the diagonal of the rectagle with sides x.max and y.max as defined
in scheduleSPSANN.

criterion Character value, the feature used to describe the energy state of the system con-
figuration, with options "minimum" and "distribution". Defaults to objective = "distribution".

distri Numeric vector, the distribution of points or point-pairs per lag-distance class
that should be attained at the end of the optimization. Used only when criterion = "distribution".
Defaults to a uniform distribution.

pairs Logical value. Should the sample configuration be optimized regarding the num-
ber of point-pairs per lag-distance class? Defaults to pairs = FALSE.

schedule List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

plotit Logical for plotting the optimization results, including a) the progress of the
objective function, and b) the starting (gray) and current system configuration
(black), and the maximum jitter in the x- and y-coordinates. The plots are up-
dated at each 10 jitters. Defaults to plotit = FALSE.
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track Logical value. Should the evolution of the energy state be recorded and returned
with the result? If track = FALSE (the default), only the starting and ending
energy states are returned with the results.

boundary SpatialPolygon defining the boundary of the spatial domain. If missing and
plotit = TRUE, boundary is estimated from candi.

progress Type of progress bar that should be used, with options "txt", for a text progress
bar in the R console, "tk", to put up a Tk progress bar widget, and NULL to
omit the progress bar. A Tk progress bar widget is useful when using parallel
processors. Defaults to progress = "txt".

verbose Logical for printing messages about the progress of the optimization. Defaults
to verbose = FALSE.

weights List with named sub-arguments. The weights assigned to each one of the objec-
tive functions that form the multi-objective combinatorial optimization problem.
They must be named after the respective objective function to which they apply.
The weights must be equal to or larger than 0 and sum to 1. The default option
gives equal weights to all objective functions.

nadir List with named sub-arguments. Three options are available: 1) sim – the num-
ber of simulations that should be used to estimate the nadir point, and seeds –
vector defining the random seeds for each simulation; 2) user – a list of user-
defined nadir values named after the respective objective functions to which they
apply; 3) abs – logical for calculating the nadir point internally (experimental).

utopia List with named sub-arguments. Two options are available: 1) user – a list of
user-defined values named after the respective objective functions to which they
apply; 2) abs – logical for calculating the utopia point internally (experimental).

x.max, x.min, y.max, y.min

Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The minimum quantity should
be equal to, at least, the minimum distance between two neighbouring candidate
locations. The units are the same as of the projected x- and y-coordinates. If
missing, they are estimated from candi.

Details

The help page of minmaxPareto contains details on how spsann solves the multi-objective com-
binatorial optimization problem of finding a globally optimum sample configuration that meets
multiple conflicting objectives.

Details about the mechanism used to generate a new sample configuration out of the current sample
configuration by randomly perturbing the coordinates of a sample point are available in the help
page of spJitter.

Visit the help pages of optimCORR, optimDIST, optimPPL, and optimMSSD to see the details of the
objective functions that compose SPAN.

Value

optimSPAN returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.
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objSPAN returns a numeric value: the energy state of the sample configuration – the objective
function value.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

optimCORR, optimDIST, optimPPL, optimMSSD

Examples

## Not run:
# This example takes more than 5 seconds to run!
require(sp)
data(meuse.grid)
candi <- meuse.grid[, 1:2]
nadir <- list(sim = 10, seeds = 1:10)
utopia <- list(user = list(DIST = 0, CORR = 0, PPL = 0, MSSD = 0))
covars <- meuse.grid[, 5]
schedule <- scheduleSPSANN(chains = 1, initial.temperature = 1,

x.max = 1540, y.max = 2060, x.min = 0,
y.min = 0, cellsize = 40)

set.seed(2001)
res <- optimSPAN(points = 10, candi = candi, covars = covars, nadir = nadir,

use.coords = TRUE, utopia = utopia, schedule = schedule)
objSPSANN(res) -

objSPAN(points = res, candi = candi, covars = covars, nadir = nadir,
use.coords = TRUE, utopia = utopia)

## End(Not run)

optimUSER Optimization of sample configurations using a user-defined objective
function

Description

Optimize a sample configuration using a user-defined objective function.
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Usage

optimUSER(points, candi, fun, ..., schedule = scheduleSPSANN(),
plotit = FALSE, track = FALSE, boundary, progress = "txt",
verbose = FALSE)

Arguments

points Integer value, integer vector, data frame or matrix. If points is an integer value,
it defines the number of points that should be randomly sampled from candi to
form the starting system configuration. If points is a vector of integer values,
it contains the row indexes of candi that correspond to the points that form the
starting system configuration. If points is a data frame or matrix, it must have
three columns in the following order: [, "id"] the row indexes of candi that
correspond to each point, [, "x"] the projected x-coordinates, and [, "y"] the
projected y-coordinates. Note that in the later case, points must be a subset of
candi.

candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"] the projected x-coordinates,
and [, "y"] the projected y-coordinates.

fun A function defining the objective function that should be used to evaluate the en-
ergy state of the system configuration at each random perturbation of a candidate
sample point. See ‘Details’ for more information.

... Other arguments passed to the objective function. See ‘Details’ for more infor-
mation.

schedule List with 11 named sub-arguments defining the control parameters of the cooling
schedule. See scheduleSPSANN.

plotit Logical for plotting the optimization results, including a) the progress of the
objective function, and b) the starting (gray) and current system configuration
(black), and the maximum jitter in the x- and y-coordinates. The plots are up-
dated at each 10 jitters. Defaults to plotit = FALSE.

track Logical value. Should the evolution of the energy state be recorded and returned
with the result? If track = FALSE (the default), only the starting and ending
energy states are returned with the results.

boundary SpatialPolygon defining the boundary of the spatial domain. If missing and
plotit = TRUE, boundary is estimated from candi.

progress Type of progress bar that should be used, with options "txt", for a text progress
bar in the R console, "tk", to put up a Tk progress bar widget, and NULL to
omit the progress bar. A Tk progress bar widget is useful when using parallel
processors. Defaults to progress = "txt".

verbose Logical for printing messages about the progress of the optimization. Defaults
to verbose = FALSE.

Details

The user-defined objective function fun must be an object of class function and include the ar-
gument points. The argument points is defined in optimUSER as a matrix with three columns:
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[, 1] the identification of each sample point given by the respective row indexes of candi, [, 2]
the x-coordinates, and [, 3] the y-coordinates. The identification is useful to retrieve information
from any data matrix used by the objective function defined by the user.

Value

optimUSER returns an object of class OptimizedSampleConfiguration: the optimized sample
configuration with details about the optimization.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

Examples

## Not run:
# This example takes more than 5 seconds
require(sp)
require(SpatialTools)
data(meuse.grid)
candi <- meuse.grid[, 1:2]
schedule <- scheduleSPSANN(chains = 1, initial.temperature = 30,

x.max = 1540, y.max = 2060, x.min = 0,
y.min = 0, cellsize = 40)

# Define the objective function - number of points per lag distance class
objUSER <-

function (points, lags, n_lags, n_pts) {
dm <- SpatialTools::dist1(points[, 2:3])
ppl <- vector()
for (i in 1:n_lags) {

n <- which(dm > lags[i] & dm <= lags[i + 1], arr.ind = TRUE)
ppl[i] <- length(unique(c(n)))

}
distri <- rep(n_pts, n_lags)
res <- sum(distri - ppl)

}
lags <- seq(1, 1000, length.out = 10)

# Run the optimization using the user-defined objective function
set.seed(2001)
timeUSER <- Sys.time()
resUSER <- optimUSER(points = 10, fun = objUSER, lags = lags, n_lags = 9,

n_pts = 10, candi = candi, schedule = schedule)
timeUSER <- Sys.time() - timeUSER

# Run the optimization using the respective function implemented in spsann
set.seed(2001)
timePPL <- Sys.time()
resPPL <- optimPPL(points = 10, candi = candi, lags = lags,

schedule = schedule)
timePPL <- Sys.time() - timePPL
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# Compare results
timeUSER
timePPL
lapply(list(resUSER, resPPL), countPPL, candi = candi, lags = lags)
objSPSANN(resUSER) - objSPSANN(resPPL)

## End(Not run)

plot.OptimizedSampleConfiguration

Plot an optimized sample configuration

Description

Plot the evolution of the energy state and the optimized sample configuration

Usage

## S3 method for class 'OptimizedSampleConfiguration'
plot(x, which = 1:2, boundary, ...)

Arguments

x Object of class OptimizedSampleConfiguration returned by one of the optim-
functions.

which Which plot should be produced: evolution of the energy state (1), optimized
sample configuration (2), or both (1:2)? Defaults to which = 1:2.

boundary Object of class Spatial defining the boundary of the sampling region.

... Other options passed to plot.

Examples

require(sp)
data(meuse.grid)
candi <- meuse.grid[, 1:2]
covars <- meuse.grid[, 5]
schedule <- scheduleSPSANN(initial.temperature = 5, chains = 1,

x.max = 1540, y.max = 2060, x.min = 0,
y.min = 0, cellsize = 40)

set.seed(2001)
res <- optimCORR(points = 10, candi = candi, covars = covars,

use.coords = TRUE, schedule = schedule)
plot(res)

Apêndice A. Package spsann for R

219



scheduleSPSANN 35

scheduleSPSANN spsann annealing schedule

Description

Set the control parameters for the annealing schedule of spsann functions.

Usage

scheduleSPSANN(initial.acceptance = 0.95, initial.temperature = 0.001,
temperature.decrease = 0.95, chains = 500, chain.length = 1,
stopping = 10, x.max, x.min = 0, y.max, y.min = 0, cellsize)

Arguments

initial.acceptance

Numeric value between 0 and 1 defining the initial acceptance probability, i.e.
the proportion of proposed system configurations that should be accepted in the
first chain. The optimization is stopped and a warning is issued if this value is
not attained. Defaults to initial.acceptance = 0.95.

initial.temperature

Numeric value larger than 0 defining the initial temperature of the system. A
low initial.temperature, combined with a low initial.acceptance result
in the algorithm to behave as a greedy algorithm, i.e. only better system config-
urations are accepted. Defaults to initial.temperature = 0.001.

temperature.decrease

Numeric value between 0 and 1 used as a multiplying factor to decrease the tem-
perature at the end of each Markov chain. Defaults to temperature.decrease = 0.95.

chains Integer value defining the maximum number of chains, i.e. the number of cycles
of jitters at which the temperature and the size of the neighbourhood should be
kept constant. Defaults to chains = 500.

chain.length Integer value defining the length of each Markov chain relative to the number
of sample points. Defaults to chain.length = 1, i.e. one time the number of
sample points.

stopping Integer value defining the maximum allowable number of Markov chains with-
out improvement of the objective function value. Defaults to stopping = 10.

x.max, x.min, y.max, y.min

Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The units are the same as of
the projected x- and y-coordinates. If missing, they are estimated from candi,
x.min and y.min being set to zero, and x.max and y.max being set to half the
maximum distance in the x- and y-coordinates, respectively.

cellsize Vector with two numeric values defining the horizontal (x) and vertical (y) spac-
ing between the candidate locations in candi. A single value can be used if the
spacing in the x- and y-coordinates is the same.
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Value

A list with a set of control parameters of the annealing schedule.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Aarts, E. H. L.; Korst, J. H. M. Boltzmann machines for travelling salesman problems. European
Journal of Operational Research, v. 39, p. 79-95, 1989.

Černý, V. Thermodynamical approach to the travelling salesman problem: an efficient simulation
algorithm. Journal of Optimization Theory and Applications, v. 45, p. 41-51, 1985.

Brus, D. J.; Heuvelink, G. B. M. Optimization of sample patterns for universal kriging of environ-
mental variables. Geoderma, v. 138, p. 86-95, 2007.

Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Optimization by simulated annealing. Science, v. 220,
p. 671-680, 1983.

Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equation of state
calculations by fast computing machines. The Journal of Chemical Physics, v. 21, p. 1087-1092,
1953.

van Groenigen, J.-W.; Stein, A. Constrained optimization of spatial sampling using continuous
simulated annealing. Journal of Environmental Quality. v. 27, p. 1078-1086, 1998.

Webster, R.; Lark, R. M. Field sampling for environmental science and management. London:
Routledge, p. 200, 2013.

See Also

optimACDC, optimCORR, optimDIST, optimMKV, optimMSSD, optimPPL, optimSPAN, optimUSER.

Examples

schedule <- scheduleSPSANN()

spJitter Random perturbation of spatial points

Description

Randomly perturb (‘jitter’) the coordinates of spatial points.

Usage

spJitter(points, candi, x.max, x.min, y.max, y.min, which.point, cellsize)
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Arguments

points Integer value, integer vector, data frame or matrix. If points is an integer value,
it defines the number of points that should be randomly sampled from candi to
form the starting system configuration. If points is a vector of integer values,
it contains the row indexes of candi that correspond to the points that form the
starting system configuration. If points is a data frame or matrix, it must have
three columns in the following order: [, "id"] the row indexes of candi that
correspond to each point, [, "x"] the projected x-coordinates, and [, "y"] the
projected y-coordinates. Note that in the later case, points must be a subset of
candi.

candi Data frame or matrix with the candidate locations for the jittered points. candi
must have two columns in the following order: [, "x"] the projected x-coordinates,
and [, "y"] the projected y-coordinates.

x.max, x.min, y.max, y.min

Numeric value defining the minimum and maximum quantity of random noise
to be added to the projected x- and y-coordinates. The minimum quantity should
be equal to, at least, the minimum distance between two neighbouring candidate
locations. The units are the same as of the projected x- and y-coordinates. If
missing, they are estimated from candi.

which.point Integer values defining which point should be perturbed.

cellsize Vector with two numeric values defining the horizontal (x) and vertical (y) spac-
ing between the candidate locations in candi. A single value can be used if the
spacing in the x- and y-coordinates is the same.

Details

Jittering methods: There are multiple mechanism to generate a new sample configuration out of
the current sample configuration. The main step consists of randomly perturbing the coordinates
of a sample point, a process known as ‘jittering’. These mechanisms can be classified based
on how the set of candidate locations is defined. For example, one could use an infinite set of
candidate locations, that is, any location in the sampling region can be selected as the new location
of a jittered point. All that is needed is a polygon indicating the boundary of the sampling region.
This method is the most computationally demanding because every time a point is jittered, it is
necessary to check if the point falls in sampling region.
Another approach consists of using a finite set of candidate locations for the jittered points. A
finite set of candidate locations is created by discretising the sampling region, that is, creating
a fine grid of points that serve as candidate locations for the jittered point. This is the least
computationally demanding jittering method because, by definition, the jittered point will always
fall in the sampling region.
Using a finite set of candidate locations has two important inconveniences. First, not all locations
in the sampling region can be selected as the new location for a jittered point. Second, when
a point is jittered, it may be that the new location already is occupied by another point. If this
happens, another location has to be iteratively sought for, say, as many times as the number of
points in the sample. In general, the more points there are in the sample, the more likely it is that
the new location already is occupied by another point. If a solution is not found in a reasonable
time, the point selected to be jittered is kept in its original location. Such a procedure clearly is
suboptimal.
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spsann uses a more elegant method which is based on using a finite set of candidate locations
coupled with a form of two-stage random sampling as implemented in spsample. Because the
candidate locations are placed on a finite regular grid, they can be seen as the centre nodes of a
finite set of grid cells (or pixels of a raster image). In the first stage, one of the “grid cells” is
selected with replacement, i.e. independently of already being occupied by another sample point.
The new location for the point chosen to be jittered is selected within that “grid cell” by simple
random sampling. This method guarantees that virtually any location in the sampling region can
be selected. It also discards the need to check if the new location already is occupied by another
point, speeding up the computations when compared to the first two approaches.

Value

A matrix with the jittered projected coordinates of the points.

Note

The distance between two points is computed as the Euclidean distance between them. This compu-
tation assumes that the optimization is operating in the two-dimensional Euclidean space, i.e. the co-
ordinates of the sample points and candidate locations should not be provided as latitude/longitude.
spsann has no mechanism to check if the coordinates are projected: the user is responsible for
making sure that this requirement is attained.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Edzer Pebesma, Jon Skoien with contributions from Olivier Baume, A. Chorti, D.T. Hristopulos,
S.J. Melles and G. Spiliopoulos (2013). intamapInteractive: procedures for automated interpola-
tion - methods only to be used interactively, not included in intamap package. R package version
1.1-10.

van Groenigen, J.-W. Constrained optimization of spatial sampling: a geostatistical approach. Wa-
geningen: Wageningen University, p. 148, 1999.

Walvoort, D. J. J.; Brus, D. J.; de Gruijter, J. J. An R package for spatial coverage sampling and
random sampling from compact geographical strata by k-means. Computers & Geosciences. v. 36,
p. 1261-1267, 2010.

See Also

ssaOptim, zerodist, jitter, jitter2d.

Examples

require(sp)
data(meuse.grid)
meuse.grid <- as.matrix(meuse.grid[, 1:2])
meuse.grid <- matrix(cbind(1:dim(meuse.grid)[1], meuse.grid), ncol = 3)
pts1 <- sample(c(1:dim(meuse.grid)[1]), 155)
pts2 <- meuse.grid[pts1, ]
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pts3 <- spJitter(points = pts2, candi = meuse.grid, x.min = 40,
x.max = 100, y.min = 40, y.max = 100,
which.point = 10, cellsize = 40)

plot(meuse.grid[, 2:3], asp = 1, pch = 15, col = "gray")
points(pts2[, 2:3], col = "red", cex = 0.5)
points(pts3[, 2:3], pch = 19, col = "blue", cex = 0.5)

# Cluster of points
pts1 <- c(1:55)
pts2 <- meuse.grid[pts1, ]
pts3 <- spJitter(points = pts2, candi = meuse.grid, x.min = 40,

x.max = 80, y.min = 40, y.max = 80,
which.point = 1, cellsize = 40)

plot(meuse.grid[, 2:3], asp = 1, pch = 15, col = "gray")
points(pts2[, 2:3], col = "red", cex = 0.5)
points(pts3[, 2:3], pch = 19, col = "blue", cex = 0.5)
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∗Topic iteration
optimACDC, 8
optimCLHS, 11
optimCORR, 14
optimDIST, 17
optimMKV, 20
optimMSSD, 22
optimPPL, 24
optimSPAN, 28
optimUSER, 31

∗Topic optimize
optimACDC, 8
optimCLHS, 11
optimCORR, 14
optimDIST, 17
optimMKV, 20
optimMSSD, 22
optimPPL, 24
optimSPAN, 28
optimUSER, 31

∗Topic spatial
optimACDC, 8
optimCLHS, 11
optimCORR, 14
optimDIST, 17
optimMKV, 20
optimMSSD, 22
optimPPL, 24
optimSPAN, 28
optimUSER, 31

ACDC (optimACDC), 8

CLHS (optimCLHS), 11
clhs, 10, 13, 14, 16, 19
CORR (optimCORR), 14
countPPL, 3
countPPL (optimPPL), 24
cramer, 10, 16

DIST (optimDIST), 17
distanceFromPoints, 24

function, 32

jitter, 38
jitter2d, 38

krige, 20

minmaxPareto, 3, 4, 9, 30
MKV (optimMKV), 20
MSSD (optimMSSD), 22

objACDC (optimACDC), 8
objCLHS (optimCLHS), 11
objCORR (optimCORR), 14
objDIST (optimDIST), 17
objMKV (optimMKV), 20
objMSSD, 3
objMSSD (optimMSSD), 22
objPPL (optimPPL), 24
objSPAN (optimSPAN), 28
objSPSANN, 3, 7
optimACDC, 3, 6, 8, 14, 16, 19, 36
optimCLHS, 3, 11
optimCORR, 3, 9, 14, 30, 31, 36
optimDIST, 3, 9, 17, 30, 31, 36
optimMKV, 3, 20, 36
optimMSSD, 3, 22, 30, 31, 36
optimPPL, 3, 24, 30, 31, 36
optimSPAN, 3, 28, 36
optimUSER, 3, 31, 36

plot, 3
plot

(plot.OptimizedSampleConfiguration),
34

plot.OptimizedSampleConfiguration, 34
PPL (optimPPL), 24

40
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quantile, 12, 18

scheduleSPSANN, 3, 8, 11, 15, 17, 20, 23, 25,
26, 29, 32, 35

SPAN, 6
SPAN (optimSPAN), 28
spcosa, 24
spJitter, 3, 9, 12, 15, 18, 21, 23, 26, 30, 36
spsample, 38
spsann (spsann-package), 2
spsann-package, 2
SPSANNtools (objSPSANN), 7
stratify, 24

USER (optimUSER), 31

vgmLags, 27

zerodist, 38
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Package ‘pedometrics’
December 3, 2015

Version 0.6-6

Date 2015-12-03

Title Pedometric Tools and Techniques

Description Functions to employ many of the tools and techniques used in the
field of pedometrics.

URL https://github.com/samuel-rosa/pedometrics

BugReports https://github.com/samuel-rosa/pedometrics/issues

Depends R (>= 3.2.0)

Imports lattice, latticeExtra, Rcpp (>= 0.12.0)

LinkingTo Rcpp

Suggests car, geoR, georob, grDevices, grid, gstat, MASS, methods,
moments, pbapply, plyr, randomForest, sp, SpatialTools,
spsurvey, xtable

License GPL (>= 2)

Encoding UTF-8

Repository CRAN

RoxygenNote 5.0.1

NeedsCompilation yes

Author Alessandro Samuel-Rosa [aut, cre],
Lúcia Anjos [ths],
Gustavo Vasques [ths],
Gerard Heuvelink [ths],
Tony Olsen [ctb],
Tom Kincaid [ctb],
Juan Carlos Ruiz Cuetos [ctb],
Maria Eugenia Polo Garcia [ctb],
Pablo Garcia Rodriguez [ctb],
Joshua French [ctb],
Ken Kleinman [ctb],
Dick Brus [ctb],
Frank Harrell Jr [ctb],
Ruo Xu [ctb]

1
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2 pedometrics-package

Maintainer Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

Date/Publication 2015-12-03 23:20:20

R topics documented:
pedometrics-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
adjR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
bbox2sp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
buildMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
cdfPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
cdfStats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
cdfTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
checkGMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
cont2cat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
coordenadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
cramer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
gcpDiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
gcpVector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
isNumint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
optimRandomForest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
plotESDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
plotHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
plotMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
rowMinCpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
statsMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
stepVIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
trend.terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
vgmICP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
vgmLags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
vgmSCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Index 43

pedometrics-package Pedometric Tools and Techniques

Description

This package contains many tools and techniques used in the field of pedometrics (see http://en.wikipedia.org/wiki/Pedometrics
for a definition of pedometrics). These tools and techniques were developed to fulfil the demands
created by the PhD research project (2012-2016) entitled “Contribution to the Construction of Mod-
els for Predicting Soil Properties”, developed by Alessandro Samuel-Rosa under the supervision of
Dr Lúcia HC Anjos (Universidade Federal Rural do Rio de Janeiro, Brazil), Dr Gustavo M Vasques
(Embrapa Solos, Brazil), and Dr Gerard B M Heuvelink (ISRIC - World Soil Information, the
Netherlands). The project is/was funded by the CNPq Foundation (Process 140720/2012-0), Min-
istry of Science and Technology of Brazil, Brasília, DF, 70040-020, Brazil, phone +55 (61) 2022
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6002, and the CAPES Foundation (Process ID BEX 11677/13-9), Ministry of Education of Brazil,
Brasília, DF, 70040-020, Brazil, phone: +55 (61) 2022 6210.

Details

Several functions simply extend the functionalities of other functions commonly used for the anal-
ysis of pedometric data. It should be noted that changes are likely to occur quite often and the use
of this package as a dependency for other packages is strongly discouraged.

Package: pedometrics
Type: Package
Version: 0.6-6
Date: 2015-12-03
License: GPL (>= 2)

Author(s)

Author and Maintainer: Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

adjR2 Adjusted coefficient of determination

Description

Calculates the adjusted coefficient of determination of a multiple linear regression model.

Usage

adjR2(r2, n, p)

Arguments

r2 Numeric vector with the coefficient of determination to be adjusted.

n Numeric vector providing the number of observations used to fit the multiple
linear regression model.

p Numeric vector providing the number of parameters included in the multiple
linear regression model.

Details

Details will be added later.

Value

A numeric vector with the adjusted coefficient of determination.
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Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Coefficient of determination. Wikipedia, The Free Encyclopedia. Available at http://en.wikipedia.
org/wiki/Coefficient_of_determination. [Online; accessed 31-July-2014].

Examples

adjR2(r2 = 0.95, n = 100, p = 80)

bbox2sp Create Spatial object from a bounding box

Description

This function takes the bounding box of a Spatial* object and creates a SpatialPoints* or Spa-
tialPolygons* object from it.

Usage

bbox2sp(obj, sp = "SpatialPolygons", keep.crs = TRUE)

Arguments

obj Object of class Spatial*.

sp Class of the resulting object. Available options are "SpatialPoints", "SpatialPointsDataFrame",
"SpatialPolygons" and "SpatialPolygonsDataFrame".

keep.crs Logical for assigning the same coordinate reference system to the resulting Spa-
tial* object.

Value

An object of class SpatialPoints* or SpatialPolygons*.

Note

Some of the solutions used to build this function were found in the source code of the R-package in-
tamapInteractive. As such, the authors of that package, Edzer Pebesma <<edzer.pebesma@uni-muenster.de>>
and Jon Skoien <<jon.skoien@gmail.com>>, are entitled ‘contributors’ to the R-package pedo-
metrics.

Author(s)

Alessandro Samuel-Rosa <<alessandrosamuelrosa@gmail.com>>
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References

Edzer Pebesma, Jon Skoien with contributions from Olivier Baume, A. Chorti, D.T. Hristopulos,
S.J. Melles and G. Spiliopoulos (2013). intamapInteractive: procedures for automated interpola-
tion - methods only to be used interactively, not included in intamap package. R package version
1.1-10. http://CRAN.R-project.org/package=intamapInteractive

Examples

require(sp)
data(meuse)
coordinates(meuse) <- ~ x + y
bbox2sp(meuse, keep.crs = FALSE)

buildMS Build a series of linear models using automated variable selection

Description

This function allows building a series of linear models (lm) using one or more automated variable
selection implemented in function stepVIF and stepAIC.

Usage

buildMS(formula, data, vif = FALSE, vif.threshold = 10,
vif.verbose = FALSE, aic = FALSE, aic.direction = "both",
aic.trace = FALSE, aic.steps = 5000, ...)

Arguments

formula A list containing one or several model formulas (a symbolic description of the
model to be fitted).

data Data frame containing the variables in the model formulas.
vif Logical for performing backward variable selection using the Variance-Inflation

Factor (VIF). Defaults to VIF = FALSE.
vif.threshold Numeric value setting the maximum acceptable VIF value. Defaults to vif.threshold = 10.
vif.verbose Logical for printing iteration results of backward variable selection using the

VIF. Defaults to vif.verbose = FALSE.
aic Logical for performing variable selection using Akaike Information Criterion

(AIC). Defaults to aic = FALSE.
aic.direction Character string setting the direction of variable selection when using AIC.

Available options are "both", "forward", and "backward". Defaults to aic.direction = "both".
aic.trace Logical for printing iteration results of variable selection using the AIC. Defaults

to aic.trace = FALSE.
aic.steps Integer value setting the maximum number of steps to be considered for variable

selection using the AIC. Defaults to aic.steps = 5000.
... Further arguments passed to the function stepAIC.
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Details

This function was devised to deal with a list of linear model formulas. The main objective is to bring
together several functions commonly used when building linear models, such as automated variable
selection. In the current implementation, variable selection can be done using stepVIF or stepAIC
or both. stepVIF is a backward variable selection procedure, while stepAIC supports backward,
forward, and bidirectional variable selection. For more information about these functions, please
visit their respective help pages.

An important feature of buildMS is that it records the initial number of candidate predictor variables
and observations offered to the model, and adds this information as an attribute to the final selected
model. Such feature was included because variable selection procedures result biased linear models
(too optimistic), and the effective number of degrees of freedom is close to the number of candi-
date predictor variables initially offered to the model (Harrell, 2001). With the initial number of
candidate predictor variables and observations offered to the model, one can calculate penalized or
adjusted measures of model performance. For models built using builtMS, this can be done using
statsMS.

Some important details should be clear when using buildMS:

1. this function was originally devised to deal with a list of formulas, but can also be used with a
single formula;

2. in the current implementation, stepVIF runs before stepAIC;

3. function arguments imported from stepAIC and stepVIF were named as in the original func-
tions, and received a prefix (aic or vif) to help the user identifying which function is affected
by a given argument without having to go check the documentation.

Value

A list containing the fitted linear models.

TODO

Add option to set the order in which stepAIC and stepVIF are run.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Harrell, F. E. (2001) Regression modelling strategies: with applications to linear models, logistic
regression, and survival analysis. First edition. New York: Springer.

Venables, W. N. and Ripley, B. D. (2002) Modern applied statistics with S. Fourth edition. New
York: Springer.

See Also

stepAIC, stepVIF, statsMS.

Apêndice B. Package pedometrics for R

233



cdfPlot 7

Examples

## Not run:
# based on the second example of function stepAIC
require(MASS)
cpus1 <- cpus
for(v in names(cpus)[2:7])

cpus1[[v]] <- cut(cpus[[v]], unique(stats::quantile(cpus[[v]])),
include.lowest = TRUE)

cpus0 <- cpus1[, 2:8] # excludes names, authors' predictions
cpus.samp <- sample(1:209, 100)
cpus.form <- list(formula(log10(perf) ~ syct + mmin + mmax + cach + chmin +

chmax + perf),
formula(log10(perf) ~ syct + mmin + cach + chmin + chmax),
formula(log10(perf) ~ mmax + cach + chmin + chmax + perf))

data <- cpus1[cpus.samp,2:8]
cpus.ms <- buildMS(cpus.form, data, vif = TRUE, aic = TRUE)

## End(Not run)

cdfPlot Plot estimated cumulative distribution function with confidence limits

Description

This function is a modified version of cdf.plot() of spsurvey-package including new argument
options.

Usage

cdfPlot(obj, ind, units.cdf = "percent", type.plot = "s",
type.cdf = "continuous", logx = "", xlbl = NULL, ylbl = "Percent",
ylbl.r = NULL, figlab = NULL, legloc = "BR", confcut = 5,
show.conflev = TRUE, conflev = 95, show.param = TRUE, round = 0,
col.param = "black", ...)

Arguments

obj Object with the estimated CDF. The resulting object of cont.analysis() of
spsurvey-package.

ind Indicator variable. The name of the variable as displayed in the resulting object
of cont.analysis().

units.cdf Indicator for the type of units in which the CDF is plotted, where “percent”
means the plot is in terms of percent of the population, and “units” means the
plot is in terms of units of the population. Defaults to units.cdf = "percent".

type.plot Type of plot. Desired type of plot to be produced, with options type.plot = "l",
for ‘line’, and type.plot = "s" for ‘stair’. See ‘Details’. Defaults to type.plot =
"s".
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type.cdf Character string consisting of the value “continuous” or “ordinal” that controls
the type of CDF plot for each indicator. Defaults to type.cdf = "continuous".

logx Character string consisting of the value "" or "x" that controls whether the x
axis uses the original scale ("") or the base 10 logarithmic scale ("x"). Defaults
to logx = "".

xlbl Character string providing the x-axis label. If this argument equals NULL, then
the indicator name is used as the label. Defaults to xlbl = NULL.

ylbl Character string providing the the y-axis label. Defaults to ylbl = "Percent".

ylbl.r Character string providing the label for the right side y-axis, where ylbl.r = NULL
means a label is not created, and ylbl.r = "Same" means the label is the same
as the left side label (i.e., argument ylbl). Defaults to ylbl.r = NULL.

figlab Character string providing the plot title. Defaults to figlab = NULL.

legloc Indicator for location of the plot legend, where legloc = "BR" means bottom
right, legloc = "BL" means bottom left, legloc = "TR" means top right, and
legloc = "TL" means top left. Defaults to legloc = "BR".

confcut Numeric value that controls plotting confidence limits at the CDF extremes.
Confidence limits for CDF values (percent scale) less than confcut or greater
than 100 minus confcut are not plotted. A value of zero means confidence
limits are plotted for the complete range of the CDF. Defaults to confcut = 5.

show.conflev Logical for showing the confidence limits of the CDF. Defaults to show.conflev = TRUE.

conflev Numeric value of the confidence level used for confidence limits. Defaults to
conflev = 95.

show.param Logical for showing the parameters of the CDF. Available parameters are the
mean, the median, and a percentile defined by the argument conflev. The leg-
end displays de actual values of all three parameters, including the standard devi-
ation of the mean. The percentile value is calculated using spsurvey::interp.cdf().

round Numeric to set the rounding level of the parameters of the CDF.

col.param Color of the lines showing the parameters of the CDF. Defaults to col.param = "black".

... Additional arguments passed to plot(). See ‘Details’.

Details

Parameter type.plot is used only when type.cdf = "Continuous".

Care should be taken with possible conflicts between the arguments of the original function cdf.plot
and those passed to plot() using .... The existence of conflicts between these two functions was
one of the reasons for creating this new implementation.

Value

A plot of the estimated cumulative distribution function with confidence limits.
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Note

Most of the source code that constitutes this function was originaly published in the spsurvey-
package, version 2.6 (2013-09-20). The authors were asked to include a few new functionalities,
but did not seem to be interested in doing so, since no reply was obtained. This implementation
is a way of including such functionalities. When using this function, credit should be given to the
authors of the original implementation in the spsurvey-package.

Author(s)

Tony Olsen <Olsen.Tony@epa.gov>
Tom Kincaid <Kincaid.Tom@epa.gov>
Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Brus, D. J., Kempen, B. and Heuvelink, G. B. M. (2011). Sampling for validation of digital soil
maps. European Journal of Soil Science, v. 62, p. 394-407.

Diaz-Ramos, S., D.L. Stevens, Jr., and A.R. Olsen. (1996). EMAP Statistical Methods Manual.
EPA/620/R-96/XXX. Corvallis, OR: U.S. Environmental Protection Agency, Office of Research and
Development, National Health Effects and Environmental Research Laboratory, Western Ecology
Division.

Kincaid, T. M. and Olsen, A. R. (2013) spsurvey: Spatial Survey Design and Analysis. R package
version 2.6. URL: http://www.epa.gov/nheerl/arm/.

See Also

cdf.plot.

Examples

## Not run:
## Estimate the CDF
my.cdf <- spsurvey::cont.analysis(spsurvey.obj = my.spsurvey)

## See indicator levels in the resulting object
levels(my.cdf$Pct$Indicator)

## Plot CDF
cdfPlot(obj = my.cdf, ind = "dz", figlab = "",

xlbl = "Difference (m)", xlim = c(-30, 10), type.plot = "s")

## End(Not run)
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cdfStats Descriptive statistics of the cumulative distribution function of a con-
tinuous variable

Description

This function returns summary statistics of the cumulative distribution function of a continuous
variable estimated with spsurvey-package.

Usage

cdfStats(obj, ind, all = TRUE)

Arguments

obj Object containing the estimated cumulative distribution function of the continu-
ous variable. The resulting object of cont.analysis() of spsurvey-package.

ind Indicator variable. The name of the continuous variable as displayed in the
resulting object of cont.analysis().

all Summary statistics to be returned. The default option (all = TRUE) returns all
summary statistics available. If all = FALSE, then only estimated population
mean and standard deviation are returned. See ‘Details’.

Details

The function cont.analysis() of spsurvey-package estimates the population total, mean, vari-
ance, and standard deviation of a continuous variable. It also estimates the standard error and
confidence bounds of these population estimates. In some cases it may be interesting to see all
estimates, for which one uses all = TRUE. However, in other circumstances there might be interest
only in taking a look at the estimated population mean and standard deviation. Then the argument
all has to be set to FALSE.

Value

A data.frame containing summary statistics of the cumulative distribution function of a continuous
variable.

Author(s)

Alessandro Samuel-Rosa <<alessandrosamuelrosa@gmail.com>>

References

Kincaid, T. M. and Olsen, A. R. (2013). spsurvey: Spatial Survey Design and Analysis. R package
version 2.6. URL: <http://www.epa.gov/nheerl/arm/>.
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See Also

cont.analysis.

Examples

## Not run:
## Estimate the CDF
my.cdf <- spsurvey::cont.analysis(spsurvey.obj = my.spsurvey)

## See indicator levels in the resulting object
levels(my.cdf$Pct$Indicator)

## Return all summary statistics of indicator variable 'dx'
cdfStats(my.cdf, "dx", all = TRUE)

## End(Not run)

cdfTable Table with descriptive statistics of an estimated cumulative distribu-
tion function

Description

This function returns a table containing the descriptive statistics of the cumulative distribution func-
tion of a set of continuous variables. TeX code is printed to copy and paste in a document.

Usage

cdfTable(x, type = "xy", rounding = 0, tex = FALSE, data.frame = FALSE)

Arguments

x Object with the estimated cumulative distribution function of the set of continu-
ous variables. The resulting object of cont.analysis() of spsurvey-package.

type Type of data under analysis. Defaults to type = "xy". See ‘Details’.

rounding Rounding level of the data in the output table. Defaults to rounding = 0.

tex Logical for creating TeX code. Defaults to tex = FALSE.

data.frame Logical for returning a data.frame object. Defaults to data.frame = FALSE.
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Details

Summary statistics included in the table (estimated population mean and standard deviation) are ob-
tained from the resulting object of cont.analysis() by internally using the function cdfStats().

There are two types of data that can be submitted to function cdfTable(). The first (type = "xy")
is composed by two instances (‘x’ and ‘y’) and is produced during horizontal (positional) valida-
tion exercises (validation in the geographic space). Thus, ‘x’ and ‘y’ represent, respectively, the
horizontal displacement (error) in ‘x’ and ‘y’ coordinates.

The second type of data (type = "z") is composed by only one instance (‘z’) and is generated
by vertical validation exercises (validation in the attribute space). Thus, ‘z’ represents the vertical
displacement (error) of the attribute ‘z’ being measured.

Value

Returned value depends on how arguments type and tex are set.

list("type") If type = "xy", then the function returns a table with estimated population
mean and standard deviation of error statistics for ‘x’ and ‘y’ coordinates. These
error statistics include the mean error, mean absolute error, and mean square
error. It also returns the estimated mean and mean square error vector (module),
and the estimated mean azimuth. The number of ground control points used to
make the estimates is printed by default.
If type = "z", then the function returns a table with estimated population mean
and standard deviation of error statistics for ‘z’, the attribute under analysis.
These error statistics include the mean error, mean absolute error, and mean
square error. The number of ground control points used to make the estimates is
printed by default.

list("tex") If tex = TRUE, them the function prints the TeX code for the table defined by
the argument type. Otherwise the TeX code is not generated.

Author(s)

Alessandro Samuel-Rosa <<alessandrosamuelrosa@gmail.com>>

References

Kincaid, T. M. and Olsen, A. R. (2013). spsurvey: Spatial Survey Design and Analysis. R package
version 2.6. URL: <http://www.epa.gov/nheerl/arm/>.

See Also

cdfStats, cont.analysis.

Examples

## Not run:
## Estimate the CDF
my.cdf <- cont.analysis(spsurvey.obj = my.spsurvey)
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## Print table and TeX code
cdfTable(my.cdf)

## End(Not run)

checkGMU Evaluation of geostatistical models of uncertainty

Description

Evaluate the local quality of a geostatistical model of uncertainty (GMU) using summary measures
and graphical displays.

Usage

checkGMU(observed, simulated, pi = seq(0.01, 0.99, 0.01), symmetric = TRUE,
plotit = TRUE)

Arguments

observed Vector of observed values at the validation points. See ‘Details’ for more infor-
mation.

simulated Data frame or matrix with simulated values (columns) for each validation point
(rows). See ‘Details’ for more information.

pi Vector defining the width of the series of probability intervals. Defaults to
pi = seq(0.01, 0.99, 0.01). See ‘Details’ for more information.

symmetric Logical for choosing the type of probability interval. Defaults to symmetric = TRUE.
See ‘Details’ for more information.

plotit Logical for plotting the results. Defaults to plotit = TRUE.

Details

There is no standard way of evaluating the local quality of a GMU. The collection of summary
measures and graphical displays presented here is far from being comprehensive. A few definitions
are given bellow.

Error statistics: Error statistics measure how well the GMU predicts the measured values at the
validation points. Four error statistics are presented:

Mean error (ME) Measures the bias of the predictions of the GMU, being defined as the mean
of the differences between the average of the simulated values and the observed values, i.e.
the average of all simulations is taken as the predicted value.

Mean squared error (MSE) Measures the accuracy of the predictions of the GMU, being de-
fined as the mean of the squared differences between the average of the simulated values and
the observed values.
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Scaled root mean squared error (SRMSE) Measures how well the GMU estimate of the pre-
diction error variance (PEV) approximates the observed prediction error variance, where the
first is given by the variance of the simulated values, while the second is given by the squared
differences between the average of the simulated values, i.e. the squared error (SE). The
SRMSE is computed as the average of SE / PEV, where SRMSE > 1 indicates underestima-
tion, while SRMSE < 1 indicates overestimation.

Pearson correlation coefficient Measures how close the GMU predictions are to the observed
values. A scatter plot of the observed values versus the average of the simulated values
can be used to check for possible unwanted outliers and non-linearities. The square of the
Pearson correlation coefficient measures the fraction of the overall spread of observed values
that is explained by the GMU, that is, the amount of variance explained (AVE), also known
as coefficient of determination or ratio of scatter.

Coverage probabilities: The coverage probability of an interval is given by the number of times
that that interval contains its parameter over several replications of an experiment. For example,
consider the interquartile range IQR = Q3 − Q1 of a Gaussian distributed variable with mean
equal to zero and variance equal to one. The nominal coverage probability of the IQR is 0.5, i.e.
two quarters of the data fall within the IQR. Suppose we generate a Gaussian distributed random
variable with the same mean and variance and count the number of values that fall within the IQR
defined above: about 0.5 of its values will fall within the IQR. If we continue generating Gaussian
distributed random variables with the same mean and variance, on average, 0.5 of the values will
fall in that interval.
Coverage probabilities are very useful to evaluate the local quality of a GMU: the closer the
observed coverage probabilities of a sequence of probability intervals (PI) are to the nominal
coverage probabilities of those PIs, the better the modelling of the local uncertainty.
Two types of PIs can be used here: symmetric, median-centred PIs, and left-bounded PIs. Papritz
& Dubois (1999) recommend using left-bounded PIs because they are better at evidencing devi-
ations for both large and small PIs. The authors also point that the coverage probabilities of the
symmetric, median-centred PIs can be read from the coverage probability plots produced using
left-bounded PIs.
In both cases, the PIs are computed at each validation location using the quantiles of the condi-
tional cumulative distribution function (ccdf) defined by the set of realizations at that validation
location. For a sequence of PIs of increasing width, we check which of them contains the ob-
served value at all validation locations. We then average the results over all validation locations to
compute the proportion of PIs (with the same width) that contains the observed value: this gives
the coverage probability of the PIs.
Deutsch (1997) proposed three summary measures of the coverage probabilities to assess the
local goodness of a GMU: accuracy ($A$), precision ($P$), and goodness ($G$). According to
Deutsch (1997), a GMU can be considered “good” if it is both accurate and precise. Although
easy to compute, these measures seem not to have been explored by many geostatisticians, except
for the studies developed by Pierre Goovaerts and his later software implementation (Goovaerts,
2009). Richmond (2001) suggests that they should not be used as the only measures of the local
quality of a GMU.

Accuracy An accurate GMU is that for which the proportion p∗ of true values falling within the
$p$ PI is equal to or larger than the nominal probability $p$, that is, when p∗ ≥ p. In the
coverage probability plot, a GMU will be more accurate when all points are on or above the
1:1 line. The range of $A$ goes from 0 (lest accurate) to 1 (most accurate).
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Precision The precision, $P$, is defined only for an accurate GMU, and measures how close p∗

is to $p$. The range of $P$ goes from 0 (lest precise) to 1 (most precise). Thus, a GMU will
be more accurate when all points in the PI-width plot are on or above the 1:1 line.

Goodness The goodness, $G$, is a measure of the departure of the points from the 1:1 line in the
coverage probability plot. $G$ ranges from 0 (minimum goodness) to 1 (maximum good-
ness), the maximum $G$ being achieved when p∗ = p, that is, all points in both coverage
probability and interval width plots are exactly on the 1:1 line.

It is worth noting that the coverage probability and PI-width plots are relevant mainly to GMU
created using conditional simulations, that is, simulations that are locally conditioned to the data
observed at the validation locations. Conditioning the simulations locally serves the purposes of
honouring the available data and reducing the variance of the output realizations. This is why one
would like to find the points falling above the 1:1 line in both coverage probability and PI-width
plots. For unconditional simulations, that is, simulations that are only globally conditioned to the
histogram (and variogram) of the data observed at the validation locations, one would expect to
find that, over a large number of simulations, the whole set of possible values (i.e. the global
histogram) can be generated at any node of the simulation grid. In other words, it is expected to
find all points on the 1:1 line in both coverage probability and PI-width plots. Deviations from
the 1:1 line could then be used as evidence of problems in the simulation.

Note

Comments by Pierre Goovaerts <pierre.goovaerts@biomedware.com> were important to de-
scribe how to use the coverage probability and PI-width plots when a GMU is created using un-
conditional simulations.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Deutsch, C. Direct assessment of local accuracy and precision. Baafi, E. Y. & Schofield, N. A.
(Eds.) Geostatistics Wollongong ’96. Dordrecht: Kinwer Academic Publishers, v. I, p. 115-125,
1997.

Papritz, A. & Dubois, J. R. Mapping heavy metals in soil by (non-)linear kriging: an empirical
validation. Gómez-Hernández, J.; Soares, A. & Froidevaux, R. (Eds.) geoENV II – Geostatistics
for Environmental Applications. Springer, p. 429-440, 1999.

Goovaerts, P. Geostatistical modelling of uncertainty in soil science. Geoderma. v. 103, p. 3 - 26,
2001.

Goovaerts, P. AUTO-IK: a 2D indicator kriging program for the automated non-parametric model-
ing of local uncertainty in earth sciences. Computers & Geosciences. v. 35, p. 1255-1270, 2009.

Richmond, A. J. Maximum profitability with minimum risk and effort. Xie, H.; Wang, Y. & Jiang,
Y. (Eds.) Proceedings 29th APCOM. Lisse: A. A. Balkema, p. 45-50, 2001.

Ripley, B. D. Stochastic simulation. New York: John Wiley & Sons, p. 237, 1987.
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Examples

## Not run:
set.seed(2001)
observed <- round(rnorm(100), 3)
simulated <- t(

sapply(1:length(observed), function (i) round(rnorm(100), 3)))
resa <- checkGMU(observed, simulated, symmetric = T)
resb <- checkGMU(observed, simulated, symmetric = F)
resa$error;resb$error
resa$goodness;resb$goodness

## End(Not run)

cont2cat Stratification and categorization of continuous data

Description

Compute break points and marginal strata proportions, stratify and convert continuous data (nu-
meric) into categorical data (factor or integer).

Usage

cont2cat(x, breaks, integer = FALSE)

breakPoints(x, n, type = "area", prop = FALSE)

stratify(x, n, type = "area", integer = FALSE)

Arguments

x Vector, data frame or matrix; the continuous data to be processed.

breaks Vector or list; the lower and upper limits that should be used to break the con-
tinuous data into categories. See ‘Details’ for more information.

integer Logical value; should the categorical data be returned as integers? Defaults to
integer = FALSE.

n Integer value; the number of strata that should be created.

type Character value; the type of strata, with options "area", for equal-area, and
"range", for equal-range strata. Defaults to type = "area".

prop Logical value; should the marginal strata proportions be returned? Defaults to
prop = FALSE.

Details

Breaks must be a vector if x is a vector, but a list if x is a data frame or matrix. Using a list allows
breaking the data into a different number of classes.
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Value

A vector, data frame, or matrix, depending on the class of x.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

cut2

Examples

## Compute the break points of marginal strata
x <- data.frame(x = round(rnorm(10), 1), y = round(rlnorm(10), 1))
x <- breakPoints(x = x, n = 4, type = "area", prop = TRUE)
x

## Convert continuous data into categorical data
# Matrix
x <- y <- c(1:10)
x <- cbind(x, y)
breaks <- list(c(1, 2, 4, 8, 10), c(1, 5, 10))
y <- cont2cat(x, breaks)
y
# Data frame
x <- y <- c(1:10)
x <- data.frame(x, y)
breaks <- list(c(1, 2, 4, 8, 10), c(1, 5, 10))
y <- cont2cat(x, breaks, integer = TRUE)
y
# Vector
x <- c(1:10)
breaks <- c(1, 2, 4, 8, 10)
y <- cont2cat(x, breaks, integer = TRUE)
y

## Stratification
x <- data.frame(x = round(rlnorm(10), 1), y = round(rnorm(10), 1))
x <- stratify(x = x, n = 4, type = "area", integer = TRUE)
x

coordenadas Prepare object for argument design of spsurvey.analysis()

Description

This function returns an object to feed the argument design when creating an object of class
spsurvey.analysis.
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Usage

coordenadas(x)

Arguments

x Object of class SpatialPointsDataFrame from which site ID and XY coordi-
nates are to be returned.

Details

The argument design used to create object of class spsurvey.analysis requires a series of inputs.
However, it can be fed with data about site ID and coordinates. coordenadas() returns a data frame
that provides this information, assuming that all other design variables are provided manually in the
arguments list.

Value

An object of class data.frame containing three columns with names siteID, xcoord, and ycoord.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Kincaid, T. M. and Olsen, A. R. (2013). spsurvey: Spatial Survey Design and Analysis. R package
version 2.6. URL: <http://www.epa.gov/nheerl/arm/>.

See Also

gcpDiff, cont.analysis.

Examples

## Not run:
## Create an spsurvey.analysis object
my.spsurvey <-

spsurvey.analysis(design = coordenadas(my.data),
data.cont = delta(ref.data, my.data),
popcorrect = TRUE, pcfsize = length(my.data$id),
support = rep(1, length(my.data$id)),
wgt = rep(1, length(my.data$id)), vartype = "SRS")

## End(Not run)
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cramer Association between categorical variables

Description

Compute the Cramer’s V, a descriptive statistic that measures the association between categorical
variables.

Usage

cramer(x)

Arguments

x Data frame or matrix with a set of categorical variables.

Details

Any integer variable is internally converted to a factor.

Value

A matrix with the Cramer’s V between the categorical variables.

Note

The original code is available at http://sas-and-r.blogspot.nl/, Example 8.39: calculat-
ing Cramer’s V, posted by Ken Kleinman on Friday, June 3, 2011. As such, Ken Kleinman
<<Ken_Kleinman@hms.harvard.edu>> is entitled a ‘contributor’ to the R-package pedometrics.

The function bigtabulate used to compute the chi-squared test is the main bottleneck in the current
version of cramer. Ideally it will be implemented in C++.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Cramér, H. Mathematical methods of statistics. Princeton: Princeton University Press, p. 575,
1946.

Everitt, B. S. The Cambridge dictionary of statistics. Cambridge: Cambridge University Press, p.
432, 2006.

See Also

assocstats
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Examples

## Not run:
data <- read.csv("http://www.math.smith.edu/r/data/help.csv")
data <- data[, c("female", "homeless", "racegrp")]
str(data)
test <- cramer(data)
test

## End(Not run)

gcpDiff Difference on xyz coordinates between ground control points

Description

This function estimates the difference, absolute difference, and squared difference on x, y and z
coordinates of two sets of ground control points (GCP). It also estimates the module (difference
vector), its square and azimuth. The result is a data frame ready to be used to define a object of
class spsurvey.object.

Usage

gcpDiff(measured, predicted, type = "xy", aggregate = FALSE, rounding = 0)

Arguments

measured Object of class SpatialPointsDataFrame with the reference GCP. A column
named ‘siteID’ giving case names is mandatory. See ‘Details’, item ‘Type of
data’.

predicted An object of class SpatialPointsDataFrame with the point data being vali-
dated. A column named ‘siteID’ giving case names is mandatory. See ‘Details’,
item ‘Type of data’.

type Type of data under analysis. Defaults to type = "xy". ‘Details’, item ‘Type of
data’.

aggregate Logical for aggregating the data when it comes from cluster sampling. Used
only when type = "z". Defaults to aggregate = FALSE. See ‘Details’, item
‘Data aggregation’.

rounding Rounding level of the data in the output data frame.

Details

Type of data: Two types of validation data that can be submitted to function gcpDiff(): those
coming from horizontal (positional) validation exercises (type = "xy"), and those coming from
vertical validation exercises (type = "z").
Horizontal (positional) validation exercises compare the position of measured point data with the
position of predicted point data. Horizontal displacement (error) is measured in both ‘x’ and

Apêndice B. Package pedometrics for R

247



gcpDiff 21

‘y’ coordinates, and is used to calculate the error vector (module) and its azimuth. Both objects
measured and predicted used with function gcpDiff() must be of class SpatialPointsDataFrame.
They must have at least one column named ‘siteID’ giving the identification of every case. Match-
ing of case IDs is mandatory. Other columns are discarded.
Vertical validation exercises are interested in comparing the measured value of a variable at a
given location with that predicted by some model. In this case, error statistics are calculated
only for the the vertical displacement (error) in the ‘z’ coordinate. Both objects measured and
predicted used with function gcpDiff() must be of class SpatialPointsDataFrame. They
also must have a column named ‘siteID’ giving the identification of evary case. Again, matching
of case IDs is mandatory. However, both objects must have a column named ‘z’ which contains
the values of the ‘z’ coordinate. Other columns are discarded.

Data aggregation: Validation is sometimes performed using cluster or transect sampling. Before
estimation of error statistics, the data needs to be aggregated by cluster or transect. The function
gcpDiff() aggregates validation data of type = "z" calculating the mean value per cluster.
Thus, aggregation can only be properly done if the ‘siteID’ column of both objects measured
and predicted provides the identification of clusters. Setting aggregate = TRUE will return
aggregated estimates of error statistics. If the data has been aggregated beforehand, the parameter
aggregate can be set to FALSE.

Case matching: There are circumstances in which the number of cases in the object measured
is larger than that in the object predicted. The function gcpDiff() compares the number of
cases in both objects and automatically drops those cases of object measured that do not match
the cases of object predicted. However, case matching can only be done if case IDs are exactly
the same for both objects. Otherwise, estimated error statistics will have no meaning at all.

Value

An object of class data.frame ready to be used to feed the argument data.cont when creating a
spsurvey.analysis object.

Note

Data of type = "xy" cannot be submitted to cluster aggregation in the present version.

Author(s)

Alessandro Samuel-Rosa <<alessandrosamuelrosa@gmail.com>>

References

Kincaid, T. M. and Olsen, A. R. (2013). spsurvey: Spatial Survey Design and Analysis. R package
version 2.6. URL: http://www.epa.gov/nheerl/arm/.

See Also

coordenadas, gcpVector, spsurvey.analysis.
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Examples

## Not run:
## Create an spsurvey.analysis object
my.spsurvey <-

spsurvey.analysis(design = coordenadas(my.data),
data.cont = delta(ref.data, my.data),
popcorrect = TRUE, pcfsize = length(my.data$id),
support = rep(1, length(my.data$id)),
wgt = rep(1, length(my.data$id)), vartype = "SRS")

## End(Not run)

gcpVector Calculate module and azimuth

Description

This function calculates the module and azimuth of the difference on x and y coordinates between
two sets of ground control points (GCP).

Usage

gcpVector(dx, dy)

Arguments

dx Numeric vector containing the difference on the ‘x’ coordinate between two sets
of GCP.

dy Numeric vector containing the difference on the ‘y’ coordinate between two sets
of GCP.

Details

This function is suited to perform calculations for topographical coordinates only. The origin is set
in the y coordinate, and rotation performed clockwise.

Value

An object of the class data.frame containing the module, its square and azimuth. These three
columns are named ‘module’, ‘sq.module’ and ‘azimuth’.

Note

This function was addapted from LoadData.
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Author(s)

Juan Carlos Ruiz Cuetos <bilba_t@hotmail.com>
Maria Eugenia Polo Garcia <mepolo@unex.es>
Pablo Garcia Rodriguez <pablogr@unex.es>
Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Ruiz-Cuetos J.C., Polo M.E. and Rodriguez P.G. (2012). VecStatGraphs2D: Vector analysis using
graphical and analytical methods in 2D. R package version 1.6. http://CRAN.R-project.org/
package=VecStatGraphs2D

See Also

LoadData, gcpDiff

Examples

## Not run:
gcpVector(dx = rnorm(3, 5, 10), dy = rnorm(3, 5, 10))

## End(Not run)

isNumint Tests for data types

Description

Evaluate the data type contained in an object.

Usage

isNumint(x)

allNumint(x)

anyNumint(x)

whichNumint(x)

allInteger(x)

anyInteger(x)

whichInteger(x)
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allFactor(x)

anyFactor(x)

whichFactor(x)

allNumeric(x)

anyNumeric(x)

whichNumeric(x)

uniqueClass(x)

Arguments

x Object to be tested.

Value

TRUE or FALSE depending on whether x contains a given data type.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

is.numeric, is.integer, is.factor.

Examples

# Vector of integers
x <- 1:10
isNumint(x) # FALSE

# Vector of numeric integers
x <- as.numeric(x)
isNumint(x) # TRUE

# Vector of numeric values
x <- c(1.1, 1, 1, 1, 2)
isNumint(x) # FALSE
allNumint(x) # FALSE
anyNumint(x) # TRUE
whichNumint(x)

# Single numeric integer
isNumint(1) # TRUE
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# Single numeric value
isNumint(1.1) # FALSE

optimRandomForest Optimum number of iterations to de-bias a random forest regression

Description

Compute the optimum number of iterations needed to de-bias a random forest regression.

Usage

optimRandomForest(x, y, niter = 10, nruns = 100, ntree = 500,
ntrain = 2/3, nodesize = 5, mtry = max(floor(ncol(x)/3), 1),
profile = TRUE, progress = TRUE)

Arguments

x Data frame or matrix of covariates (predictor variables).

y Numeric vector with the response variable.

niter Number of iterations. Defaults to niter = 10.

nruns Number of simulations to be used in each iteration. Defaults to nruns = 100.

ntree Number of trees to grow. Defaults to ntree = 500.

ntrain Number (or proportion) of observation to be used as training cases. Defaults to
2/3 of the total number of observations.

nodesize Minimum size of terminal nodes. Defaults to nodesize = 5.

mtry Number of variables randomly sampled as candidates at each split. Defaults to
1/3 of the total number of covariates.

profile Should the profile of the standardized mean squared prediction error be plotted
at the end of the optimization? Defaults to profile = TRUE.

progress Should a progress bar be displayed. Defaults to progress = TRUE.

Details

A fixed proportion of the total number of observations is used to calibrate (train) the random forest
regression. The set of calibration observations is randomly selected from the full set of observations
in each simulation. The remaining observations are used as test cases (validation). In general, the
smaller the calibration dataset, the more simulation runs are needed to obtain stable estimates of the
mean squared prediction error (MSPE).

The optimum number of iterations needed to de-bias the random forest regression is obtained ob-
serving the evolution of the MSPE as the number of iterations increases. The MSPE is defined as
the mean of the squared differences between predicted and observed values.
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Note

The original function was published as part of the dissertation of Ruo Xu, which was devel-
oped under the supervision of Daniel S Nettleton <dnett@iastate.edu> and Daniel J Nordman
<dnordman@iastate.edu>.

Author(s)

Ruo Xu <xuruo.isu@gmail.com>, with improvements by Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Breiman, L. Random forests. Machine Learning. v. 45, p. 5-32, 2001.

Breiman, L. Using adaptive bagging to debias regressions. Berkeley: University of California, p.
16, 1999.

Liaw, A. & Wiener, M. Classification and regression by randomForest. R News. v. 2/3, p. 18-22,
2002.

Xu, R. Improvements to random forest methodology. Ames, Iowa: Iowa State University, p. 87,
2013.

See Also

randomForest

plotESDA Plots for exploratory spatial data analysis (ESDA)

Description

This function creates four plots for exploratory spatial data analysis (ESDA): histogram + density
plot, bubble plot, variogram plot, and variogram map.

Usage

plotESDA(z, lat, lon, lags, cutoff, width = c(cutoff/20))

Arguments

z Vector of numeric values of the variable for with ESDA plots should be created.

lat Vector of numeric values containing the y coordinate (latitude) of the point lo-
cations where the z variable was observed.

lon Vector of numeric values containing the x coordinate (longitude) of the point
locations where the z variable was observed.

lags Numerical vector; upper boundaries of lag-distance classes. See argument boundaries
of variogram for more info.
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cutoff Integer value defining the spatial separation distance up to which point pairs are
included in semi-variance estimates. Defaults to the length of the diagonal of
the box spanning the data divided by three.

width Integer value specifying the width of subsequent distance intervals into which
data point pairs are grouped for semi-variance estimates. Defaults to width = cutoff / 20.

Details

The user should visit the help pages of variogram, plotHD, bubble and spplot to obtain more
details about the main functions used to built plotESDA.

Value

Four plots: histogram and density plot, bubble plot, empirical variogram, and variogram map.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Cressie, N.A.C. (1993) Statistics for Spatial Data. New York: John Wiley \& Sons, p.900, 1993.

Pebesma, E.J. (2004) Multivariable geostatistics in S: the gstat package. Computers \& Geo-
sciences, 30:683-691, 2004.

Webster, R. \& Oliver, M.A. Geostatistics for environmental scientists. Chichester: John Wiley \&
Sons, p.315, 2007.

See Also

variogram, plotHD, bubble, spplot.

Examples

# require(gstat)
# data(meuse)
# plotESDA(z = meuse$zinc, lat = meuse$y, lon = meuse$x)

plotHD Histogram and density plot

Description

This function plots a histogram and a density plot of a single variable using the R-package lattice.
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Usage

plotHD(x, HD = "over", nint = 20, digits = 2, stats = TRUE,
BoxCox = FALSE, col = c("lightgray", "black"), lwd = c(1, 1),
lty = "dashed", xlim, ylim, ...)

Arguments

x Vector of numeric values of the variable for which the histogram nd density plot
should be created.

HD Character value indicating the type of plot to be created. Available options are
"over", to create a histogram superimposed by the theoretical density plot of a
normally distributed variable, and "stack", to create a histogram and an empir-
ical density plot in separated panels. Defaults to HD = "over".

nint Integer specifying the number of histogram bins. Defaults to nint = 20.

digits Integer indicating the number of decimal places to be used when printing the
statistics of the variable x. Defaults to digits = 2.

stats Logical to indicate if descriptive statistics of the variable x should be added to
the plot. Available only when HD = "over". The function tries to automati-
cally find the best location to put the descriptive statistics given the shape of the
histogram. Defaults to stats = TRUE.

BoxCox Logical to indicate if the variable x should be transformed using the Box-Cox
family of power transformations. The estimated lambda value of the Box-Cox
transform is printed in the console. It is set to zero when negative. Defaults to
BoxCox = FALSE.

col Vector of two elements, the first indicating the colour of the histogram, the sec-
ond indicating the colour of the density plot. Defaults to col = c("lightgray", "black").

lwd Vector of two elements, the first indicating the line width of the histogram, the
second indicating the line width of the density plot. Defaults to lwd = c(1, 1).

lty Character value indicating the line type for the density plot. Defaults to lty = "dashed".

xlim Vector of two elements defining the limits of the x axis. The function automati-
cally optimizes xlim based on the density plot.

ylim Vector of two elements defining the limits of the y axis. The function automati-
cally optimizes ylim based both histogram and density plot.

... Other arguments that can be passed to lattice functions. There is no guarantee
that they will work.

Details

The user should visit the help pages of histogram, densityplot, panel.mathdensity, powerTransform
and bcPower to obtain more details about the main functions used to built plotHD.

Value

An object of class "trellis". The update.trellis method can be used to update components
of the object and the print.trellis print method (usually called by default) will plot it on an
appropriate plotting device.
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Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R, Springer. http://
lmdvr.r-forge.r-project.org/

See Also

histogram, densityplot, panel.mathdensity, powerTransform, bcPower.

Examples

x <- rnorm(100, 10, 2)
plotHD(x, HD = "stack")
plotHD(x, HD = "over")

plotMS Model series plot

Description

This function produces a graphical output that allows the examination of the effect of using different
model specifications (design) on the predictive performance of these models (a model series). It
generally is used to access the results of functions buildMS and statsMS, but can be easily adapted
to work with any model structure and performance measure.

Usage

plotMS(obj, grid, line, ind, type = c("b", "g"), pch = c(20, 2),
size = 0.5, arrange = "desc", color = NULL, xlim = NULL,
ylab = NULL, xlab = NULL, at = NULL, ...)

Arguments

obj Object of class data.frame, generally returned by statsMS, containing a 1)
series of performance statistics of several models, and 2) the design information
of each model. See ‘Details’ for more information.

grid Vector of integer values or character strings indicating the columns of the data.frame
containing the design data which will be gridded using the function levelplot.
See ‘Details’ for more information.

line Character string or integer value indicating which of the performance statistics
(usually calculated by statsMS) should be plotted using the function xyplot.
See ‘Details’ for more information.
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ind Integer value indicating for which group of models the mean rank is to be cal-
culated. See ‘Details’ for more information.

type Vector of character strings indicating some of the effects to be used when plot-
ting the performance statistics using xyplot. Defaults to type = c("b", "g").
See panel.xyplot for more information on how to set this argument.

pch Vector with two integer values specifying the symbols to be used to plot points.
The first sets the symbol used to plot the performance statistic, while the second
sets the symbol used to plot the mean rank of the indicator set using argument
ind. Defaults to pch = c(20, 2). See points for possible values and their
interpretation.

size Numeric value specifying the size of the symbols used for plotting the mean
rank of the indicator set using argument ind. Defaults to size = 0.5. See
grid.points for more information.

arrange Character string indicating how the model series should be arranged, which can
be in ascending (asc) or descending (desc) order. Defaults to arrange = "desc".
See arrange for more information.

color Vector defining the colors to be used in the grid produced by function levelplot.
If NULL, defaults to color = cm.colors(n), where n is the number of unique
values in the columns defined by argument grid. See cm.colors to see how to
use other color palettes.

xlim Numeric vector of length 2, giving the x coordinates range. If NULL (which is
the recommended value), defaults to xlim = c(0.5, dim(obj)[1] + 0.5).
This is, so far, the optimum range for adequate plotting.

ylab Character vector of length 2, giving the y-axis labels. When obj is a data.frame
returned by statsMS, and the performance statistic passed to argument line
is one of those calculated by statsMS ("candidates", "df", "aic", "rmse",
"nrmse", "r2", "adj_r2" or "ADJ_r2"), the function tries to automatically
identify the correct ylab.

xlab Character vector of length 1, giving the x-axis labels. Defaults to xlab = "Model ranking".

at Numeric vector indicating the location of tick marks along the x axis (in native
coordinates).

... Other arguments for plotting, although most of these have no been tested. Argu-
ment asp, for example, is not effective since the function automatically identifies
the best aspect for plotting based on the dimensions of the design data.

Details

This section gives more details about arguments obj, grid, line, arrange, and ind.

obj: The argument obj usually constitutes a data.frame returned by statsMS. However, the user
can use any data.frame object as far as it contains the two basic units of information needed:

1. design data passed with argument grid
2. performance statistic passed with argument line

grid: The argument grid indicates the design data which is used to produce the grid output in
the top of the model series plot. By design we mean the data that specify the structure of each
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model and how they differ from each other. Suppose that eight linear models were fit using three
types of predictor variables (a, b, and c). Each of these predictor variables is available in two
versions that differ by their accuracy, where 0 means a less accurate predictor variable, while 1
means a more accurate predictor variable. This yields 2^3 = 8 total possible combinations. The
design data would be of the following form:
> design
a b c

1 0 0 0
2 0 0 1
3 0 1 0
4 1 0 0
5 0 1 1
6 1 0 1
7 1 1 0
8 1 1 1

line: The argument line corresponds to the performance statistic that is used to arrange the
models in ascending or descending order, and to produce the line output in the bottom of the model
series plot. For example, it can be a series of values of adjusted coefficient of determination, one
for each model:
adj_r2 <- c(0.87, 0.74, 0.81, 0.85, 0.54, 0.86, 0.90, 0.89)

arrange: The argument arrange automatically arranges the model series according to the per-
formance statistics selected with argument line. If obj is a data.frame returned by statsMS(),
then the function uses standard arranging approaches. For most performance statistics, the models
are arranged in descending order. The exception is when "r2", "adj_r2" or "ADJ_r2" are used,
in which case the models are arranged in ascending order. This means that the model with lowest
value appears in the leftmost side of the model series plot, while the models with the highest value
appears in the rightmost side of the plot.
> arrange(obj, adj_r2)
id a b c adj_r2

1 5 1 0 1 0.54
2 2 0 0 1 0.74
3 3 1 0 0 0.81
4 4 0 1 0 0.85
5 6 0 1 1 0.86
6 1 0 0 0 0.87
7 8 1 1 1 0.89
8 7 1 1 0 0.90
This results suggest that the best performing model is that of id = 7, while the model of id = 5
is the poorest one.

ind: The model series plot allows to see how the design influences model performance. This is
achieved mainly through the use of different colours in the grid output, where each unique value
in the design data is represented by a different colour. For the example given above, one could try
to see if the models built with the more accurate versions of the predictor variables have a better
performance by identifying their relative distribution in the model series plot. The models placed
at the rightmost side of the plot are those with the best performance.
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The argument ind provides another tool to help identifying how the design, more specifically
how each variable in the design data, influences model performance. This is done by simply
calculating the mean ranking of the models that were built using the updated version of each
predictor variable. This very same mean ranking is also used to rank the predictor variables and
thus identify which of them is the most important.

After arranging the design data described above using the adjusted coefficient of determination,
the following mean rank is obtained for each predictor variable:
> rank_center

a b c
1 5.75 6.25 5.25

This result suggests that the best model performance is obtained when using the updated version
of the predictor variable b. In the model series plot, the predictor variable b appears in the top
row, while the predictor variable c appears in the bottom row.

Value

An object of class "trellis" consisting of a model series plot.

Warning

Use the original functions xyplot and levelplot for higher customization.

Note

Some of the solutions used to build this function were found in the source code of the R-package
mvtsplot. As such, the author of that package, Roger D. Peng <<rpeng@jhsph.edu>>, is entitled
‘contributors’ to the R-package pedometrics.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Deepayan Sarkar (2008). Lattice: Multivariate Data Visualization with R. Springer, New York.
ISBN 978-0-387-75968-5.

Roger D. Peng (2008). A method for visualizing multivariate time series data. Journal of Statistical
Software. v. 25 (Code Snippet), p. 1-17.

Roger D. Peng (2012). mvtsplot: Multivariate Time Series Plot. R package version 1.0-1. http:
//CRAN.R-project.org/package=mvtsplot.

See Also

levelplot, xyplot, mvtsplot.
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Examples

# This example follows the discussion in section "Details"
# Note that the data.frame is created manually
id <- c(1:8)
design <- data.frame(a = c(0, 0, 1, 0, 1, 0, 1, 1),

b = c(0, 0, 0, 1, 0, 1, 1, 1),
c = c(0, 1, 0, 0, 1, 1, 0, 1))

adj_r2 <- c(0.87, 0.74, 0.81, 0.85, 0.54, 0.86, 0.90, 0.89)
obj <- cbind(id, design, adj_r2)
p <- plotMS(obj, grid = c(2:4), line = "adj_r2", ind = 1,

color = c("lightyellow", "palegreen"),
main = "Model Series Plot")

print(p)

rowMinCpp Return the minimum value in each row of a numeric matrix

Description

This function returns the minimum value in each row of a numeric matrix.

Usage

rowMinCpp(x)

Arguments

x Numeric matrix with two or more rows and/or columns.

Details

This function is implemented in C++ to speed-up the computation time for large matrices.

Value

A numeric vector with the minimum value of each row if the matrix.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

rowMins

Examples

x <- matrix(rnorm(20), nrow = 5)
rowMinCpp(x)
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statsMS Obtain performance statistics of a series of linear models

Description

This function returns several statistics measuring the performance of a series of linear models built
using the function buildMS, with an option to rank the models based on one of the returned perfor-
mance statistics.

Usage

statsMS(model, design.info, arrange.by, digits)

Arguments

model A list of linear models returned by buildMS.

design.info Extra information about the linear models in the series.

arrange.by Character string defining if the table with the performance statistics of the linear
models should be arranged, and which column should be used. Available op-
tions are "candidates", "df", "aic", "rmse", "nrmse", "r2", "adj_r2", and
"ADJ_r2". Descending order is used by default and cannot be changed in the
current implementation. See ‘Value’ for more information.

digits Integer or vector with six integers indicating the number of decimal places to be
used to round the performance statistics. If a vector is passed to the function,
the number of decimal places should be in the following order:
c("aic", "rmse", "nrmse", "r2", "adj_r2", "ADJ_r2").

Details

This function was devised to deal with a list of linear models generated by the function buildMS.
The main objective is to compare several linear models using several performance statistics. Such
statistics can then be used to rank the linear models and identify, for example, the best performing
model, given the selected performance statistics.

An important feature of statsMS is that it uses the information about the initial number of candidate
predictor variables offered to the build the model to calculate penalized or adjusted measures of
model performance. Such information is recorded as an attribute of the final model selected by
buildMS. This feature was included in statsMS because data-driven variable selection results biased
linear models (too optimistic), and the effective number of degrees of freedom is close to the number
of candidate predictor variables initially offered to the model (Harrell, 2001).

Value

A data frame with several performance statistics:

id Identification of the model.

candidates Number of candidate predictor variables initially offered to the model.
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df Number of degrees of freedom of the final selected model.

aic Akaike’s Information Criterion (AIC). Obtained using extractAIC.

rmse Root-mean squared error, calculated based on the number of candidate predictor variables
initially offered to the model.

nrmse Normalized Root-mean squared error, calculated as the ratio between the RMSE and the
standard deviation of the observed values of the dependent variable.

r2 Multiple coefficient of determination.

adj_r2 Adjusted multiple coefficient of determination.

ADJ_r2 Adjusted multiple coefficient of determination. Calculations are done based on the num-
ber of candidate predictor variables initially offered to the model.

TODO

1. Include other performance statistics such as: PRESS, BIC, Mallow’s Cp, max(VIF);

2. Add option to select which performance statistics should be returned.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Harrell, F. E. (2001) Regression modelling strategies: with applications to linear models, logistic
regression, and survival analysis. First edition. New York: Springer.

Venables, W. N. and Ripley, B. D. (2002) Modern applied statistics with S. Fourth edition. New
York: Springer.

See Also

buildMS, plotMS.

Examples

## Not run:
# based on the second example of function stepAIC
require(MASS)
cpus1 <- cpus
for(v in names(cpus)[2:7])

cpus1[[v]] <- cut(cpus[[v]], unique(quantile(cpus[[v]])),
include.lowest = TRUE)

cpus0 <- cpus1[, 2:8] # excludes names, authors' predictions
cpus.samp <- sample(1:209, 100)
cpus.form <- list(formula(log10(perf) ~ syct + mmin + mmax + cach + chmin +

chmax + perf),
formula(log10(perf) ~ syct + mmin + cach + chmin + chmax),
formula(log10(perf) ~ mmax + cach + chmin + chmax + perf))

data <- cpus1[cpus.samp,2:8]
cpus.ms <- buildMS(cpus.form, data, vif = TRUE, aic = TRUE)
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cpus.des <- data.frame(a = c(0, 1, 0), b = c(1, 0, 1), c = c(1, 1, 0))
stats <- statsMS(cpus.ms, design.info = cpus.des, arrange.by = "aic")

## End(Not run)

stepVIF Variable selection using the variance-inflation factor

Description

This function takes a linear model and selects the subset of predictor variables that meet a user-
specific collinearity threshold measured by the variance-inflation factor (VIF).

Usage

stepVIF(model, threshold = 10, verbose = FALSE)

Arguments

model Linear model (object of class ’lm’) containing collinear predictor variables.

threshold Positive number defining the maximum allowed VIF. Defaults to threshold = 10.

verbose Logical for indicating if iteration results should be printed. Defaults to verbose = FALSE.

Details

stepVIF starts computing the VIF of all predictor variables in the linear model. Because some
predictor variables can have more than one degree of freedom, such as categorical variables, gener-
alized variance-inflation factors (Fox and Monette, 1992) are calculated instead using vif. General-
ized variance-inflation factors (GVIF) consist of VIF corrected to the number of degrees of freedom
(df) of the predictor variable:

GV IF = V IF 1/(2×df)

GVIF are interpretable as the inflation in size of the confidence ellipse or ellipsoid for the coeffi-
cients of the predictor variable in comparison with what would be obtained for orthogonal data (Fox
and Weisberg, 2011).

The next step is to evaluate if any of the predictor variables has a VIF larger than the specified
threshold. Because stepVIF estimates GVIF and the threshold corresponds to a VIF value, the
last is transformed to the scale of GVIF by taking its square root. If there is only one predictor
variable that does not meet the VIF threshold, it is automatically removed from the model and no
further processing occurs. When there are two or more predictor variables that do not meet the
VIF threshold, stepVIF fits a linear model between each of them and the dependent variable. The
predictor variable with the lowest adjusted coefficient of determination is dropped from the model
and new coefficients are calculated, resulting in a new linear model.

This process lasts until all predictor variables included in the new model meet the VIF threshold.

Nothing is done if all predictor variables have a VIF value inferior to the threshold, and stepVIF
returns the original linear model.
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Value

A linear model (object of class ‘lm’) with low collinearity.

TODO

Include other criteria (RMSE, AIC, etc) as option to drop collinear predictor variables.

Note

The function name stepVIF is a variant of the widely used function stepAIC.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

References

Fox, J. and Monette, G. (1992) Generalized collinearity diagnostics. JASA, 87, 178–183.

Fox, J. (2008) Applied Regression Analysis and Generalized Linear Models, Second Edition. Sage.

Fox, J. and Weisberg, S. (2011) An R Companion to Applied Regression, Second Edition. Thousand
Oaks: Sage.

Hair, J. F., Black, B., Babin, B. and Anderson, R. E. (2010) Multivariate data analysis. New Jersey:
Pearson Prentice Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

vif, stepAIC.

Examples

require(car)
fit <- lm(prestige ~ income + education + type, data = Duncan)
fit <- stepVIF(fit, threshold = 10, verbose = TRUE)

trend.terms Extract spatial trend data

Description

Extract spatial trend data from an object of class likfit.

Usage

trend.terms(x)

trend.matrix(x)
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Arguments

x Object of class likfit.

Details

trend.terms is similar to terms.

trend.matrix is similar to model.frame.

Author(s)

Alessandro Samuel-Rosa <alessandrosamuelrosa@gmail.com>

See Also

likfit

vgmICP Initial covariance parameters (ICP)

Description

Guess the initial values for the covariance parameters required to fit a variogram model.

Usage

vgmICP(z, coords, lags, cutoff = 0.5, method = "a", min.npairs = 30,
model = "matern", nu = 0.5, estimator = "qn", plotit = FALSE)

Arguments

z Numeric vector with the values of the response variable for which the initial
values for the covariance parameters should be guessed.

coords Data frame or matrix with the projected x- and y-coordinates.

lags Numeric scalar defining the width of the lag-distance classes, or a numeric vec-
tor with the lower and upper bounds of the lag-distance classes. If missing,
the lag-distance classes are computed using vgmLags. See ‘Details’ for more
information.

cutoff Numeric value defining the fraction of the diagonal of the rectangle that spans
the data (bounding box) that should be used to set the maximum distance up to
which lag-distance classes should be computed. Defaults to cutoff = 0.5, i.e.
half the diagonal of the bounding box.

method Character keyword defining the method used for guessing the initial covariance
parameters. Defauls to method = "a". See ‘Details’ for more information.

min.npairs Positive integer defining the minimum number of point-pairs required so that
a lag-distance class is used for guessing the initial covariance parameters. De-
faults to min.npairs = 30.
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model Character keyword defining the variogram model that will be fitted to the data.
Currently, most basic variogram models are accepted. See cov.spatial for
more information. Defaults to model = "matern".

nu numerical value for the additional smoothness parameter ν of the correlation
function. See RMmodel and argument kappa of cov.spatial for more informa-
tion.

estimator Character keyword defining the estimator for computing the sample variogram,
with options "qn", "mad", "matheron", and "ch". Defaults to estimator = "qn".
See sample.variogram for more details.

plotit Should the guessed initial covariance parameters be plotted along with the sam-
ple variogram? Defaults to plotit = FALSE.

Details

There are five methods two guess the initial covariance parameters (ICP). Two of them ("a" and
"b") rely a sample variogram with exponentially spaced lag-distance classes, while the other three
("b", "d", and "e") use equidistant lag-distance classes (see vgmLags). All of them are heuristic.

Method "a" was developed in-house, and is the most elaborated of them, specially for guessing
the nugget variance. Method "c" is implemented in the automap-package and was developed by
Hiemstra et al. (2009).

Method "b" was proposed by Jian et al. (1996) and is implemented in SAS/STAT(R) 9.22. Method
"d" was developed by Desassis & Renard (2012). Method "e" was proposed by Larrondo et al.
(2003) and is implemented in the VARFIT module of GSLIB.

Value

A vector of numeric values: the guesses for the covariance parameters nugget, partial sill, and range.

Author(s)

Alessandro Samuel-Rosa <<alessandrosamuelrosa@gmail.com>>

References

Desassis, N. & Renard, D. Automatic variogram modelling by iterative least squares: univariate
and multivariate cases. Mathematical Geosciences. Springer Science + Business Media, v. 45, p.
453-470, 2012.

Hiemstra, P. H.; Pebesma, E. J.; Twenhöfel, C. J. & Heuvelink, G. B. Real-time automatic interpo-
lation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers
& Geosciences. Elsevier BV, v. 35, p. 1711-1721, 2009.

Jian, X.; Olea, R. A. & Yu, Y.-S. Semivariogram modelling by weighted least squares. Computers
& Geosciences. Elsevier BV, v. 22, p. 387-397, 1996.

Larrondo, P. F.; Neufeld, C. T. & Deutsch, C. V. VARFIT: a program for semi-automatic variogram
modelling. Edmonton: Department of Civil and Environmental Engineering, University of Alberta,
p. 17, 2003.
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See Also

vgmLags, sample.variogram, autofitVariogram

Examples

data(meuse, package = "sp")
icp <- vgmICP(z = log(meuse$copper), coords = meuse[, 1:2])

vgmLags Lag-distance classes for variogram estimation

Description

Computation of lag-distance classes for variogram estimation.

Usage

vgmLags(coords, n.lags = 7, type = "exp", cutoff = 0.5, base = 2,
zero = 0.001, count = "pairs")

Arguments

coords Data frame or matrix with the projected x- and y-coordinates.

n.lags Integer value defining the number of lag-distance classes that should be com-
puted. Defaults to n = 7.

type Character value defining the type of lag-distance classes that should be com-
puted, with options "equi" (equidistant) and "exp" (exponential). Defaults to
type = "exp".

cutoff Numeric value defining the fraction of the diagonal of the rectangle that spans
the data (bounding box) that should be used to set the maximum distance up to
which lag-distance classes should be computed. Defaults to cutoff = 0.5, i.e.
half the diagonal of the bounding box.

base Numeric value defining the base of the exponential expression used to create
exponentially spaced lag-distance classes. Used only when type = "exp".
Defaults to base = 2, i.e. the width of the rightmost lag-distance classes is
equal to half the diagonal of cutoff, and so on.

zero Numeric value setting the minimum pair-wise separation distance that should be
used to compute the lag-distance classes. Defaults to zero = 0.0001.

count Should the number of points ("points") or point-pairs ("pairs") per lag-distance
class be computed? Defaults to count = "pairs".

Value

Vector of numeric values with the lower and upper boundaries of the lag-distance classes. The
number of points or point-pairs per lag-distance class is returned as an attribute.

Apêndice B. Package pedometrics for R

267



vgmSCV 41

Author(s)

Alessandro Samuel-Rosa <<alessandrosamuelrosa@gmail.com>>

References

Truong, P. N.; Heuvelink, G. B. M.; Gosling, J. P. Web-based tool for expert elicitation of the
variogram. Computers and Geosciences. v. 51, p. 390-399, 2013.

See Also

optimPPL

Examples

data(meuse, package = "sp")
lags_points <- vgmLags(coords = meuse[, 1:2], count = "points")
lags_pairs <- vgmLags(coords = meuse[, 1:2], count = "pairs")

vgmSCV Spatially correlated variance (SCV)

Description

Compute the proportion of the variance that is spatially correlated.

Usage

## S3 method for class 'variomodel'
vgmSCV(obj, digits = 4)

## S3 method for class 'variogramModel'
vgmSCV(obj, digits = 4)

## S3 method for class 'georob'
vgmSCV(obj, digits = 4)

Arguments

obj Variogram model fitted with available function in geostatistical packages such
as gstat, geoR, and georob.

digits Integer indicating the number of decimal places to be used.

Value

Numeric value indicating the proportion of the variance that is spatially correlated.
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Author(s)

Alessandro Samuel-Rosa <<alessandrosamuelrosa@gmail.com>>

See Also

vgmLags
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LoadData, 22, 23

model.frame, 38
mvtsplot, 32

optimPPL, 41
optimRandomForest, 25

panel.mathdensity, 28, 29
panel.xyplot, 30
pedometrics (pedometrics-package), 2
pedometrics-package, 2
plotESDA, 26
plotHD, 27, 27
plotMS, 29, 35
points, 30
powerTransform, 28, 29
print.trellis, 28

randomForest, 26
RMmodel, 39
rowMinCpp, 33
rowMins, 33

sample.variogram, 39, 40
spplot, 27
spsurvey.analysis, 21
statsMS, 6, 29, 34
stepAIC, 6, 37
stepVIF, 6, 36
stratify (cont2cat), 16

terms, 38
trend.matrix (trend.terms), 37
trend.terms, 37

uniqueClass (isNumint), 23
update.trellis, 28

variogram, 26, 27
vgmICP, 38
vgmLags, 38–40, 40, 42
vgmSCV, 41
vif, 36, 37

whichFactor (isNumint), 23
whichInteger (isNumint), 23
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xyplot, 29, 32

Apêndice B. Package pedometrics for R

271



Apêndice B. Package pedometrics for R

272



APÊNDICE C – INTRODUÇÃO GERAL

A modelagem espacial do solo moderna é baseada na utilização de modelos estatísticos
para explorar a relação empírica entre as condições ambientais e as propriedades do solo. Estes
modelos espaciais do solo, como qualquer outro modelo, não são nada mais do que uma sim-
plificação da realidade. A menos que observemos o solo em todos os lugares – o que destruiria
o solo e tornaria as observações inúteis –, não importa quão grande seja o volume de dados, ou
quão abrangente o nosso conhecimento for, nunca será possível construir um modelo que expli-
que toda a complexidade do solo. Assim, o resultado de um modelo espacial do solo, ou seja,
um mapa do solo, sempre desviará da “verdade” – esse desvio da “verdade” é o que chamamos
de error. O que um mapa do solo transmite é o que esperamos que o solo seja, reconhecendo
que há incerteza sobre ele.

Dado que modeladores espaciais do solo procuram utilizar os recursos disponíveis para
produzir a representação mais precisa do solo, um programa de pesquisa sensível é investigar as
principais causas para os mapas do solo serem mais ou menos incertos. Existem muitas fontes
de incerteza na modelagem espacial do solo, tais como os erros que resultam da utilização
de um modelo estatístico deficiente ou de fazer interpolações e extrapolações para predizer as
propriedades do solo em locais não visitados. Outra importante fonte de incerteza é os dados
utilizados para avaliar a relação empírica entre as condições ambientais e as propriedades do
solo: dados de covariáveis e solo.

O objetivo geral dessa tese é avaliar importantes fontes de incerteza na modelagem espa-
cial do solo com ênfase em dados de solo e de covariáveis. Este objetivo geral pode ser dividido
em objetivos específicos e suas respectivas questões de pesquisa:

(I) Determinar a aptidão de covariáveis disponíveis gratuitamente para calibrar modelos es-
paciais do solo.

(a) Será que o uso de covariáveis mais detalhadas resulta em mapas consideravelmente
mais precisos do solo?

(b) Como é que a incorporação de dependência espacial em um modelo espacial do solo
se compara ao ganho na acurácia de predição obtido pelo uso de covariáveis mais
detalhadas?

(c) As respostas a essas questões de pesquisa são consistentes entre propriedades do
solo?

(II) Identificar os fatores que determinam como modeladores espaciais de campo do solo
selecionam os locais de observação do solo.

(a) Quais fatores são considerados para decidir sobre a localização das observações do
solo? Eles têm uma origem pedológica?

(b) Será que os fatores desempenham o mesmo papel ao longo do curso do processo de
observação do solo?

(c) Pode a análise de padrão pontual ajudar a compreender a estratégia de amostragem
intencional tradicionalmente empregada por modeladores espaciais de campo do
solo?
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(III) Identificar tamanhos e delineamentos amostrais de calibração apropriados para a mode-
lagem espacial do solo.

(a) Pode o algoritmo de amostragem hipercubo Latino condicionado ser melhorado?
Será que essa melhoria resulta em pedições espaciais do solo mais acuradas?

(b) Quais são os algoritmos de amostragem teoricamente mais sólidos para estimativa
da espacial tendência, estimativa do variograma, e predição espacial quando sabe-
mos muito pouco sobre a variação espacial do solo?

(c) Podem esses algoritmos de amostragem ser usados para construir um algoritmo ge-
nérico de amostragem intencional?

A tese é composta por oito capítulos, onde cada um dos objetivos mencionados acima
são cumpridos. Embora haja uma sequência lógica na sua apresentação, todos os capítulos
foram planejadas para que pudessem ser lidos separadamente. Isto significa que existe uma
certa sobreposição entre eles, isto é, informações repetidas. As referências a seções específicas
de outros capítulos utilizando hiperlinks coloridos (azul) são comuns.

Capítulo I é uma revisão comentada da literatura sobre modelagem espacial do solo e
suas principais fontes de incerteza. A revisão começa com uma discussão sobre os esforços
envidados pelos modeladores espaciais do solo para aumentar a conscientização sobre a impor-
tância da informação espacial do solo. Esses esforços parecem ter impulsionado uma demanda
científica global por informação espacial do solo atualizada e em alta resolução. O capítulo
continua com uma descrição da modelagem espacial do solo ao longo da história humana, su-
gerindo que o objetivo de produzir mapas do solo permanece mais ou menos o mesmo desde a
Revolução Neolítica (ca. 10 000 anos). O capítulo termina com as principais fontes de incerteza.

Capítulo II descreve os dados do solo incluídos no conjunto de dados de Santa Maria,
que foi usado para desenvolver os estudos de caso apresentados nesta tese. O conjunto de
dados de Santa Maria é composto de n = 410 observações do solo compiladas de estudos
realizados entre 2004 e 2013. Esses estudos visavam a geração de mapas semi-detalhados do
solo e uso da terra, e a modelagem do estoque de carbono na camada superficial do solo e
da vulnerabilidade à erosão. Uma descrição detalhada dos dados de covariáveis incluídos no
conjunto de dados de Santa Maria, e seu processamento, é dada no Capítulo III. Capítulo IV
apresenta o modelo conceitual de pedogênese (em português), que consiste numa descrição
da área de estudo que inclui uma descrição explícita dos fatores de formação do solo (clima,
geologia, geomorfologia, hidrologia, uso da terra e vegetação) e processos que determinam a
distribuição espaço-temporal do solo. Além de descrever os dados utilizados na tese, o objetivo
desses capítulos, juntamente com o modelo conceitual de pedogênese, é fornecer a base para
futuros exercícios de modelagem espacial do solo na área de estudo, e servir como exemplo
para novas estudos de modelagem espacial do solo desenvolvidos em outros lugares.

Baseado em um artigo publicado na revista avaliada por pares Geoderma, Capítulo V
serve o propósito de atingir o primeiro objetivo da tese e responder a suas respectivas ques-
tões de pesquisa. O desempenho preditivo de modelos lineares espaciais do solo calibrados
utilizando covariáveis (mapas do solo área de classe, mapas de uso da terra, mapas geológicos,
modelos digitais de elevação, e imagens de satélite) disponíveis em dois níveis de detalhe é ava-
liado. A influência de levar em conta a dependência espacial dos resíduos também é avaliada.

Capítulo VI apresenta uma abordagem que visa ajudar a compreender a estratégia de
amostragem intencional tradicionalmente empregada por modeladores de campo do solo, ou
seja, caminhamento livre. Isso é importante porque muitos projetos de modelagem espacial do
solo dependem de dados legados, ou seja, dados do solo produzidos previamente e disponibili-
zados (publicamente ou não), cujos locais de observação foram selecionados intencionalmente
274
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por modeladores espaciais do solo usando regras tácitas mal documentadas. O capítulo foi
concebido para responder às questões de pesquisa do segundo objetivo da tese. Análise de pa-
drão pontual é utilizada para caracterizar a configuração espacial da amostra, enquanto teorias
emprestadas da Psicologia são usados para elaborar sobre os fatores subjetivos envolvidos na
seleção de locais de observação do solo.

O objetivo 3 e suas questões de pesquisa são abordados no Capítulo VII e Capítulo VIII.
No Capítulo VII, três algoritmos de amostragem aperfeiçoados são comparados com o algo-
ritmo original de amostragem hipercubo Latino condicionado em como eles afetam a cobertura
geográfica, os parâmetros estimados do modelo e a acurácia preditiva. A influência do tamanho
da amostra também é discutida. Capítulo VIII apresenta as estratégias de amostragem mais
eficientes para estimativa da tendência espacial, estimativa do variograma, e predição espacial
quando sabemos muito pouco sobre a variação espacial do solo. O capítulo termina com um
novo algoritmo genérico de amostragem que visa os três objetivos conjuntamente.

A sequência de oito capítulos é encerrada com Conclusões Gerais onde destaco os prin-
cipais resultados da pesquisa e contribuições do estudo. Em seguida, há dois apêndices, am-
bos dedicados à descrição dos dois pacotes para R desenvolvidos para apoiar a tese: spsann
(Apêndice A) e pedometria (Apêndice B). O primeiro foi projetado para a otimização de
configurações amostrais usando o recozimento simulado espacial. O segundo inclui funções
auxiliares que foram colocadas juntas para facilidade de uso. Todas as referências da literatura
são apresentadas sob uma lista única de Referências Bibliográficas no final da tese.
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Esta tese fez uma contribuição pedológica com o desenvolvimento de uma descrição
abrangente dos fatores e processos de formação do solo que determinam a distribuição espaço-
temporal das propriedades do solo na área de estudo de Santa Maria. O modelo conceitual de
pedogênese, apresentado em Capítulo IV, mostrou que a distribuição espacial das propriedades
do solo é muito variável, mesmo quando sob o mesmo uso da terra. Em escalas espaciais
maiores, essa variação espacial é determinada pela diversidade geológica e geomorfológica da
área, enquanto que em escalas espaciais menores, as práticas agrícolas usadas no passado e no
presente parecem desempenhar papel preponderante. Juntamente com o modelo conceitual de
pedogênese, Capítulo II e Capítulo III constituem uma contribuição técnica dessa tese. Esses
capítulos fornecem a base para exercícios de modelagem espacial do solo na área de estudo.

Capítulo V demonstrou que as covariáveis existentes, gratuitamente disponíveis, são
adequadas para calibrar modelos espaciais do solo. Foi demonstrado que a utilização de cova-
riáveis mais detalhadas resulta apenas em pequeno aumento na acurácia da predição de modelos
lineares espaciais do solo. O aumento observado é comparável ao efeito da incorporação de de-
pendência espacial no modelo espacial do solo, e pode não compensar os custos adicionais de
usar covariáveis mais detalhados. Em geral, uma covariável mais detalhada tem maior potencial
de melhorar a acurácia da predição quando uma propriedade do solo é pobremente predita pela
sua versão menos detalhada. No entanto, a magnitude da melhoria pode depender das outras
covariáveis incluídas no modelo. Decidir se deve-se ou não investir em covariáveis mais deta-
lhados depende da força da relação entre as covariáveis e a propriedade do solo que está sendo
modelada, e da diferença relativa entre as versões menos e mais detalhadas das covariáveis. É
provavelmente melhor aumentar substancialmente o detalhe de uma covariável menos influente
do que aumentar marginalmente o detalhe da covariável mais influente. No entanto, deve-se
sempre considerar se meios mais eficientes de aumentar a acurácia da predição existem (por
exemplo, a obtenção de mais observações do solo).

Capítulo VI mostrou que vários fatores influenciam o modo como modeladores espaci-
ais de campo do solo escolhem os locais de observação do solo. Esses fatores são de três tipos:
conceituais, operacionais e psicológicos. O primeiro diz respeito ao conhecimento dos modela-
dores espacial do solo sobre as relações solo-paisagem, e parece estar relacionado com os anos
de experiência de campo. O segundo refere-se aos recursos disponíveis (infra-estrutura, força
de trabalho e do orçamento) para fazer observações do solo, bem como a restrições ao acesso
impostas por proprietários de terras e barreiras geográficas, por exemplo. O terceiro refere-se à
forma como os modeladores do solo percebem seu ambiente físico circundante e como o curso
de sua motivação muda durante o processo de observação do solo. A análise de padrão pon-
tual ajudou a compreender que existe um balanço entre os fatores conceituais e operacionais, o
qual determina como a motivação dos modeladores de campo do solo muda o foco para um ou
outro objetivo imediato. Dependendo do objetivo focal, a configuração amostral resultante se
assemelha a um padrão pontual aleatório (aprendizagem/verificação das relações solo-paisagem
– motivação focada nos meios) ou regular (maximizar o número de observações e a cobertura
geográfica – motivação focada no resultado).

Capítulo VII mostrou que o algoritmo de amostragem no hipercubo latino condicionado
(CLHS), um algoritmo popular usado para otimizar configurações amostrais espaciais para a
estimativa da tendência espacial, pode ser consideravelmente aperfeiçoado. Em comparação
com o CLHS original, as modificações propostas resultaram em um algoritmo de amostragem
com um comportamento numérico superior, mas isso não se traduz necessariamente em maior



Apêndice D. Conclusão Geral

acurácia da predição. Por exemplo, o tamanho da amostra tem uma influência maior na acurácia
da predição do que o algoritmo de amostragem. No entanto, ter em vista a associação/correlação
entre covariáveis degrada a acurácia da predição, possivelmente porque a cobertura do espaço
geográfico é mais pobre. Como tal, ao otimizar uma configuração amostral para a estimativa de
tendência espacial, deveria ser suficiente visar apenas a reprodução da distribuição marginal das
covariáveis. Isso deve ser feito usando apenas os estratos marginais de amostragem não vazios.

Capítulo VIII mostrou como otimizar configurações amostrais para estimativa da ten-
dência espacial e do variograma, e interpolação espacial em situações em que sabemos muito
pouco sobre a distribuição espacial do solo. A única exigência é que seja formulado um sólido
problema de otimização multi-objetivo usando versões robustas de algoritmos de amostragem
existentes. A amostra espacial resultante deve reproduzir a distribuição marginal das covariá-
veis de modo que a tendência espacial possa ser estimada com acurácia. Ela também deve
conter vários pequenos aglomerados dispersos por todo o domínio espacial para permitir fazer
uma estimativa acurada do comportamento do variograma, especialmente próximo da origem.
Finalmente, ela deve cobrir a região de amostragem da forma mais uniforme de tal modo que a
média da variância do erro de predição é a menor possível.

Essa tese também contribuiu com dois pacotes para o ambiente de computação esta-
tística e gráficos R. O primeiro pacote, chamado pedometrics (Apêndice B), contém várias
funções para a análise exploratória de dados espaciais e calibração de modelos projetadas para o
desenvolvimento dessa tese. O segundo pacote, chamado spsann (Apêndice A), contém fun-
ções para otimizar configurações amostrais para identificar e estimar o variograma e a tendência
espacial, e fazer predições espaciais. O último foi desenvolvido como parte do Capítulo VII e
Capítulo VIII. Ambos estão disponíveis gratuitamente e podem ser obtidos no The Comprehen-
sive R Archive Network (CRAN).

No geral, essa tese mostrou que o complexa interação entre o solo e os dados covariá-
veis pode ter uma grande influência sobre a acurácia dos mapas do solo. Uma receita única,
universal, de baixo custo para reduzir a incerteza na modelagem espacial do solo parece fora
de alcance. Os estudos de caso sugeriram que soluções são específicas para cada caso e depen-
dem principalmente dos dados do solo e covariáveis existentes. A obtenção de mais amostras
do solo mostrou ser uma estratégia eficiente, desde que os recursos disponíveis permitam a
amostragem extra. Caso contrário, decidir sobre formas rentáveis de reduzir a incerteza requer,
em primeiro lugar, que exploremos todo o potencial dos dados do solo e covariáveis existen-
tes usando técnicas robustas de modelagem espaciais. Tal exercício exige um conhecimento
abrangente das relações solo-paisagem, bem como uma minuciosa documentação dos dados do
solo e covariáveis para que os seus pontos fracos e fortes possam ser facilmente identificados.
Então, a decisão sobre investir na melhoria da qualidade dos dados do solo ou covariáveis ou
ambos dependerá do balanço entre o aumento da qualidade dos dados/predição e da quantidade
de recursos necessários.

278

http://cran.us.r-project.org/

	 GENERAL INTRODUCTION
	 Chapter I. MODERN SOIL SPATIAL MODELLING AND ITS SOURCES OF UNCERTAINTY
	RESUMO
	ABSTRACT
	DEMAND FOR SOIL SPATIAL INFORMATION
	MODERN SOIL SPATIAL MODELLING
	Discrete Model of Spatial Variation
	Continuous Model of Spatial Variation
	Mixed Model of Spatial Variation
	Spatial Soil Modelling Steps

	SOURCES OF UNCERTAINTY IN SOIL SPATIAL MODELLING
	Soil Data
	Covariate Data
	Model Structure

	FINAL CONSIDERATIONS

	 Chapter II. THE SANTA MARIA DATASET. PART I – SOIL DATA
	RESUMO
	ABSTRACT
	INTRODUCTION
	DATABASE STRUCTURE
	FIELD SAMPLING
	Subset I
	Subset II
	Subset III

	FIELD DESCRIPTION
	Land Use and Vegetation
	Geology
	Soil Classification
	Slope
	Drainage
	Coarse Fragments and Rock Outcrops
	Canopy
	Additional Information

	LABORATORY ANALYSIS
	Soil Organic Fraction
	Particle Size Analysis
	Soil Density
	Exchangeable Bases and Acidity


	 Chapter III. THE SANTA MARIA DATASET. PART II – COVARIATE DATA
	RESUMO
	ABSTRACT
	INTRODUCTION
	DATABASE STRUCTURE
	GROUND CONTROL POINTS
	AREA-CLASS SOIL MAPS
	DIGITAL ELEVATION MODELS
	GEOLOGIC MAPS
	LAND USE MAPS
	SATELLITE IMAGES

	 Capítulo IV. MODELO CONCEITUAL DE PEDOGÊNESE DA BACIA DO DNOS
	RESUMO
	ABSTRACT
	APRESENTAÇÃO
	CLIMA
	GEOLOGIA
	GEOMORFOLOGIA
	HIDROGRAFIA
	USO DA TERRA E VEGETAÇÃO
	PEDOLOGIA

	 Chapter V. DO MORE DETAILED COVARIATES DELIVER MORE ACCURATE SOIL MAPS?
	RESUMO
	ABSTRACT
	INTRODUCTION
	MATERIAL AND METHODS
	Study Area and Soil Data
	Covariates
	Categorical predictor variables
	Continuous predictor variables
	Additional processing

	Linear Mixed Model of Spatial Variation
	Model selection
	Model validation
	Spatial prediction


	RESULTS
	Model Series Plots
	REML Fit of the Variogram Model
	Validation
	Spatial Prediction

	DISCUSSION
	Spatio-Temporal Controls of Soil Properties
	Using More Detailed Covariates

	CONCLUSIONS

	 Chapter VI. SPATIAL POINT PATTERN ANALYSIS OF SOIL SURVEY OBSERVATION LOCATIONS
	RESUMO
	ABSTRACT
	INTRODUCTION
	CASE STUDY
	Elicitation of Expert Judgements
	Point Pattern Analysis

	RESULTS
	Elicited Expert Knowledge
	Point Pattern Analysis
	Observation intensity
	Spatial distribution
	Poisson point process model


	DISCUSSION
	Concentrating on Problem Areas
	Managing Available Resources
	Neurophysiological Responses
	Spatial enclosure
	Motivation shifts

	Observation Model

	CONCLUSIONS

	 Chapter VII. OPTIMIZATION OF SAMPLE CONFIGURATIONS FOR SPATIAL TREND ESTIMATION FOR SOIL MAPPING
	RESUMO
	ABSTRACT
	INTRODUCTION
	PROPOSED IMPROVEMENTS
	Defining the Marginal Sampling Strata
	Measuring the Association/Correlation Between Covariates
	Aggregating the Objectives
	Resulting Problem Definition

	CASE STUDY
	Soil Data Generating Process
	Spatial Sampling
	Spatial simulated annealing
	Experimental design

	Model Calibration
	Evaluation of Sampling Algorithms

	RESULTS AND DISCUSSION
	CONCLUSIONS

	 Chapter VIII. SAMPLING FOR SOIL MAPPING IN TERRA INCOGNITA
	RESUMO
	ABSTRACT
	INTRODUCTION
	PURPOSIVE SAMPLING
	Sampling for Spatial Trend Estimation
	Sampling for Variogram Estimation
	Sampling for Spatial Interpolation

	WHICH SAMPLING ALGORITHM?
	Sampling for Spatial Trend Estimation
	Sampling for Variogram Estimation
	Sampling for Spatial Interpolation

	SAMPLING IN TERRA INCOGNITA
	CONCLUSIONS

	 GENERAL CONCLUSIONS
	 Referências bibliográficas
	 Apêndice

