Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10147
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastro, Thadeu de
dc.date.accessioned2023-12-21T18:57:58Z-
dc.date.available2023-12-21T18:57:58Z-
dc.date.issued2022-02-23
dc.identifier.citationCASTRO, Thadeu de. Concentração de progesterona, metabólito de PGF2α e mudanças na expressão gênica do endométrio causado pela presença do embrião em éguas. 2022. 76 f. Tese (Doutorado em Medicina Veterinária) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Sero0pédica, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10147-
dc.description.abstractO objetivo do presente estudo foi caracterizar a relação entre as concentrações de progesterona (P4) e metabólito de PGF2α (PGFM) durante o período interovulatório em éguas não gestantes e comparar com o mesmo período em éguas gestantes, e avaliar efeitos local do embrião na expressão gênica endometrial durante o dia (dia 12, dia 0 = ovulação) de máxima mobilidade embrionária. Este estudo foi realizado em dois experimentos e é apresentado em dois capítulos respectivamente. No primeiro experimento, foram utilizadas égua não gestantes (n = 8) e éguas gestantes (n = 9) para avaliar as concentrações de P4 e PGFM. A hipótese 1 foi que as concentrações diárias de PGFM aumentam na interseção entre o final do aumento de P4 e a diminuição gradual de P4 (~ dia 6) em éguas não gestantes. A hipótese 2 foi que éguas gestantes têm pulsos de PGFM de baixa amplitude durante os dias correspondentes aos pulsos de alta amplitude na luteólise em éguas não gestantes. A concentração de P4 aumentou entre o dia da ovulação e ~ dia 6, e em seguida, diminuiu gradualmente até o início da luteólise em éguas não gestantes. Antes do início da luteólise, não houve diferença significativa na concentração de P4 entre as éguas não gestantes e gestantes. Nas éguas não gestantes, a concentração de PGFM aumentou no dia anterior ao início da luteólise (P < 0,04) e atingiu média máxima (42,9 ± 11,6 pg/mL) no dia 14. Nas éguas gestantes, um aumento inédito de PGFM ocorreu a partir do dia 12 até uma média máxima no dia 15 (16,7 ± 3,1 pg/mL). As concentrações diárias de PGFM não foram diferentes entre as éguas não gestantes e gestantes até antes da luteólise nas éguas não gestantes. Durante as sessões de 8 horas de coleta das amostras, as concentrações média e máxima de PGFM foram significativamente maiores nas éguas não gestantes do que nas éguas gestantes para cada sessão de 8 horas nos dias 13, 14 e 15. Os pulsos foram igualmente pequenos para os conjuntos de dias 4–7 e 9–11 nas éguas não gestantes e para todos os conjuntos de dias nas éguas gestantes. No segundo experimento, a expressão gênica do endométrio foi comparada entre o corno uterino com e sem o embrião de éguas gestantes (n = 13) e nos cornos uterinos de éguas não gestantes (n = 10). A hipótese 3 foi que há um aumento na produção de PGE2 e PGF2α no corno uterino adjacente ao embrião. Escova de citologia uterina foi utilizada para coletar amostras no seguimento médio de cada corno uterino no dia 12. Nas éguas não gestantes, não houve diferença na expressão gênica de qualquer gene avaliado entre os cornos uterinos ipsilateral e contralateral ao CL. Para a expressão gênica dos receptores de estrógeno, ESR1 foi menos (P < 0.03) e ESR2 foi mais (P < 0.04) expressado em éguas gestantes do que em éguas não gestantes. A expressão gênica do gene relacionado a síntese de PGE2 (PTGES) foi maior (P < 0.05) no corno uterino com (1.40 ± 0.10) do que sem (0.89 ± 0.10) o embrião e foi mais expressado (P < 0.05) no corno uterino com o embrião do que nos cornos uterinos das éguas não gestantes (1.06 ± 0.10). Conclui-se que (1) não há um aumento de PGFM na interseção entre o final do aumento de P4 e a diminuição gradual de P4 (~ dia 6); (2) éguas gestantes têm pulsos de PGFM de baixa amplitude durante os dias correspondentes aos pulsos de alta amplitude na luteólise em éguas não gestantes; (3) o embrião regula localmente a síntese de PGE2 no endométrio adjacente ao embrião.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectescova citológicapor
dc.subjectendométriopor
dc.subjectgestaçãopor
dc.subjectPGFMpor
dc.subjectPTGESpor
dc.subjectcytobrusheng
dc.subjectedometriumeng
dc.subjectpregnancyeng
dc.titleConcentração de progesterona, metabólito de PGF2α e mudanças na expressão gênica do endométrio causado pela presença do embrião em éguaspor
dc.title.alternativeConcentration of progesterone, metabolite of PGF2α, and embryomediate changes in endometrial gene expression in mareseng
dc.typeTesepor
dc.description.abstractOtherThe aim of the present study was to characterize the relationship between progesterone (P4) and the metabolite of PGF2 (PGFM) during the interovulatory interval in nonbred mares, and and evaluate the gene expression in the endometrium on a day (Day 12, Day 0 = ovulation) of maximal embryo mobility. This study was carried out in two experiments and showed in two chapters consecutively. In the first experiment, were used nonbred mares (n = 8) and pregnant mares (n = 9) to evaluate the P4 and PGFM concentrations. Hypothesis 1 was that daily PGFM concentrations in nonbred mares increase at the intersection between the end of the rapid P4 increase and the gradual P4 decrease. Hypothesis 2 was that pregnant mares have low amplitude PGFM pulses during the days of the high amplitude pulses at luteolysis in nonbred mares. The first one daily blood samples, P4 increased between the day of ovulation (Day 0) and ~Day 6 and then gradually decreased until the beginning of luteolysis in the nonbred group. Before the beginning of luteolysis, there were no significant differences in P4 concentrations between the nonbred and early pregnancy. In the nonbred, PGFM concentration on the day before the beginning of luteolysis began to increase (P < 0.04) and reached a maximum mean (42.9 ± 11.6 pg/mL) on Day 14. In pregnancy, a novel increase in PGFM occurred from Day 12 to a maximum mean on Day 15 (16.7 ± 3.1 pg/mL). Daily PGFM concentrations were not different between the two groups until the increase just before luteolysis in the nonbred mares. During 8-h sessions of hourly blood sampling, the mean and maximum PGFM concentrations were significantly greater in nonbred than in pregnancy for each 8-h session on Days 13, 14, and 15. The pulses were similarly small for day-sets 4–7 and 9–11 in the nonbred and for all day-sets in pregnancy. In the second experiment, gene expression in the endometrium was compared among uterine horn with and without the embryo in pregnant mares (n = 13) and in the uterine horns of nonbred mares (n = 10). The hypothesis 3 was that the embryo locally upregulates PGE2 and PGF2α synthesis in the endometrium adjacent to the embryo. A cytobrush was used to collect an endometrial sample from the middle of each uterine horn. In nonbred mares, there was no difference for any of the considered gene expressions between the uterine horn ipsilateral and contralateral to the CL or for side (left vs right). For endometrial estrogen receptors, ESR1 was lower (P < 0.03) and ESR2 was greater (P < 0.04) for pregnant than nonbred mares. The mRNA abundance for PGE2 synthase (PGES) was greater (P < 0.05) in the horn with (1.40 ± 0.10) than without (0.89 ± 0.10) the embryo and was greater (P < 0.05) in the horn with the embryo than in the combined horns of nonbred mares (1.06 ± 0.10). It was conclued that (1) daily PGFM concentrations do not increase at the intersection between the end of the rapid P4 increase and the gradual P4 decrease; (2) pregnant mares have low amplitude PGFM pulses during the days of the high amplitude pulses at luteolysis in the nonbred mares;(3) the embryo locally upregulates PGE2 synthesis in the endometrium adjacent to the embryo.eng
dc.contributor.advisor1Jacob, Júlio Cezar Ferraz
dc.contributor.advisor1IDCPF: 332.122.526-34por
dc.contributor.referee1Jacob, Júlio Cezar Ferraz
dc.contributor.referee2Mello, Marco Roberto Bourg de
dc.contributor.referee3Jesus, Vera Lucia Teixeira de
dc.contributor.referee4Pinna, Aline Emerim
dc.contributor.referee5Gomes, Gustavo Mendes
dc.creator.IDCPF: 099.209.407-04por
dc.creator.Latteshttp://lattes.cnpq.br/5855902424642910por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Medicina Veterinária (Patologia e Ciências Clínicas)por
dc.relation.referencesADAMS, G.P.; KASTELIC, J.P.; BERGFELT, D.R.; GINTHER, O.J. Effect of uterine inflammation and ultrasonically detected uterine pathology on fertility in the mare. Journal of Reproduction and Fertility. Supplement, v.35, p.445–454, 1987. ALBRECHT, B.A.; DAELS, P.F. Immunolocalization of 3B-hydroxysteroid dehydrogenase, cytochrome P450 17a-hydroxylase/l7,20-lyase and cytochrome P450 aromatase in the equine corpus luteum of diestrus and early pregnancy. Journal of Reproduction and Fertility, v.111, p.127–133, 1997. ALLEN, W.R. Fetomaternal interactions and influences during equine pregnancy. Reproduction, v.121, p.513–527, 2001. ALLEN, W.R.; WILSHER, S. A review of implantation and early placentation in the mare. Placenta, v.30, p.1005–1015, 2009. ARAÚJO, E.R.; SPONCHIADO, M.; PUGLIESI, G.; VAN HOECK, V.; MESQUITA, F.S.; MEMBRIVE, C.M.; ET AL. Spatio–specific regulation of endocrine–responsive gene transcription by periovulatory endocrine profiles in the bovine reproductive tract. Reproduction, Fertility and Development, v.28, p.1533–1544, 2016. ATLI, M.O.; KURAR, E.; KAYIS, S.A.; ASLAN, S.; SEMACAN, A.; CELIK, S.; et al. Evaluation of genes involved in prostaglandin action in equine endometrium during estrous cycle and early pregnancy. Animal Reproduction Science, v.122, p.124–132, 2010. AURICH, C. Reproductive cycles of horses. Animal Reproduction Science, v.124, p.220– 228, 2011. AURICH, S.; BUDIK. Early pregnancy in the horse revisited – does exception prove the rule? Journal of Animal Science and Biotechnology, v.6, p.50, 2015. BAIRD, D.T.Luteotrophic control of the corpus luteum. Animal Reproduction Science, v.28, p.95–102, 1992. BAZER, F.W.; THATCHER, W. W. Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2alpha by the uterine endometrium. Prostaglandins, v.14, p.397–401, 1977. BAZER, F.W.; SPENCER, T.E.T.; OTT, T.L.T. Interferon tau: a novel pregnancy recognition signal. American Journal of Reproductive Immunology, v.37, p.412–420, 1997. BAZER, F.W., WU G., SPENCER T. E., JOHNSON G. A., BURGHARDT R. C., AND BAYLESS K. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Molecular Human Reproduction, v. 16, p.135–152, 2010. BAZER, F.W. History of maternal recognition of pregnancy. Advances in Anatomy, Embryology and Cell Biology, v.216, p.5–25, 2015. BEHRENDT–ADAM, C.Y.; ADAMS, M.H.; SIMPSON, K.S.; MCDOWELL, K.J. Oxytocin– neurophysin I mRNA abundance in equine uterine endometrium. Domestic Animal Endocrinology, v.16, p.183–192, 1999. BERGFELT, D.R.; PIERSON, R.A.; GINTHER, O.J. Resurgence of the primary corpus luteum during pregnancy in the mare. Animal Reproduction Science, v. 21, p.261–270, 1989. BERGFELT. D.R.; GINTHER, O.J. Ovarian, uterine and embryo dynamics in horses versus ponies. Journal of Equine Veterinary Science, v.16, p.66–72, 1996. BERGFELT, D.R.; GASTAL, E.L.; GINTHER, O.J. Response of estradiol and inhibin to experimentally reduced luteinizing hormone during follicle deviation in mares. Biology of Reproduction, v.65, p.426–432, 2001. BERGLUND, L.A.; SHARP, D.C.; VERNON, M.W.; THATCHER, W.W. Effect of pregnancy and collection technique on prostaglandin F in the uterine lumen of pony mares. Journal of Reproduction and Fertility. Supplement. v.32, p.335–341, 1982. BERTAN, C.M; BINELI, M; MADUREIRA, E.H; TRALDI, A.S. Mecanismos endócrinos e moleculares envolvidos na formação do corpo lúteo e na luteólise-revisão de literatura. Brazilian Journal of Veterinary Research and Animal Science, v.43, p.824–840, 2006. BETTERIDGE, K.J.; EAGLESOME, M.D.; MITCHELL, D.; FLOOD, P.F.; BERIAULT, R. Development of horse embryos up to twenty two days after ovulation: observations on fresh specimens. Journal of Anatomy, v.135, p.191–209, 1982. BOERBOOM, D.; BROWN, K.A.; VAILLANCOURT, D.; POITRAS, P.; GOFF, A.K.; WATANABE, K.; DORÉ, M.; SIROIS, J. Expression of key prostaglandin synthases in equine endometrium during late diestrus and early pregnancy. Biology of Reproduction, v.70, p.391– 399, 2004. BUDIK, S.; LUSSY, H.; AURICH, C. Quantification of different type I interferon transcripts in equine embryos at days 10 to 16 of gestation. Animal Reproduction Science, v.121, p.307– 308, 2010. BUDIK, S.; WALTER, I.; LEITNER, M.C.; ERTL, R.; AURICH, C. Expression of enzymes associated with prostaglandin synthesis in quine conceptuses. Animals. Animals, v.11, p.1180, 2021. CARDOSO, B.; OLIVEIRA, M.L.; PUGLIESI, G.; BATISTA, E.; BINELLI, M. Cytobrush: A tool for sequential evaluation of gene expression in bovine endometrium. Reproduction in Domestic Animals, v.52, p.1153–1157, 2017. CASTRO, T.; OLIVEIRA, F.A.; SIDDIQUI, M.A.; BALDRIGHI, J.M.; WOLF, C.A.; GINTHER, O.J. Stimulation of LH, FSH, and luteal blood flow by GnRH during the luteal phase in mares. Theriogenology, v.85, p.740–746, 2016. CASTRO, T.; JACOB, J.C.; STEFANI, G.; DOMINGUES, R.R.; GINTHER, O.J. Concentrations of progesterone and a PGF2α metabolite during the interovulatory interval compared to the corresponding days of pregnancy in mares. Theriogenology, v.165, p.10–17, 2021. CHOI, I.; COLLANTE, W. R.; SIMMEN, R. C.; SIMMEN, F. A. A developmental switch in expression from blastocyst to endometrial/placental-type cytochrome P450 aromatase genes in the pig and horse. Biology of Reproduction, v.56, p.688–696, 1997. CROSS, D.T.; GINTHER, O.J. Uterine contractions in nonpregnant and early pregnant mares and jennies as determined by ultrasonography. Journal of Animal Science, v.66, p.250–254, 1988. DE RUIJTER–VILLANI, M.; VAN TOL, H.T.; STOUT, T.A. Effect of pregnancy on endometrial expression of luteolytic pathway components in the mare. Reproduction, Fertility and Development, v.27, p.834–845, 2015. DHINDSA, D. S., AND DZIUK P. J. Effect on pregnancy in the pig after killing embryos or fetuses in one uterine horn in early gestation. Journal of Animal Science, v.27, p.122–126, 1968. DOMINGUES, R.R.; GINTHER, O.J.; GOMEZ–LEÓN, V.E.; WILTBANK, M.C. Up– regulation of endometrial oxytocin receptor is associated with the timing of luteolysis in heifers with two and three follicular waves†. Biology of Reproduction, v.102, p.316–326, 2020. DOUGLAS, R.H.; GINTHER, O.J. Effect of prostaglandin-F2α on length of diestrus in mares. Prostaglandins, v.2, p.265–268, 1972. DOUGLAS, R.H.; GINTHER, O.J. Route of prostaglandin F2alpha injection and luteolysis in mares. Proceedings of the Society for Experimental Biology and Medicine, v.148, p.263– 269, 1975. DOUGLAS, R. H.; GINTHER, O. J. Concentration of prostaglandins F in uterine venous plasma of anesthetized mares during the estrous cycle and early pregnancy. Prostaglandins, v.11, p.251–260, 1976. DUONG, H.T.; VU, H.V.; BAH, M.M.; WOCLAWEK–POTOCKA, I.; DAM, T.V.; SKARZYNSKI, D.J.; OKUDA, K.; ACOSTA, T.J. Acute changes in the concentrations of prostaglandin F2α (PGF) and cortisol in uterine and ovarian venous blood during PGF–induced luteolysis in cows. Reproduction in Domestic Animals, v.47, p.238–243, 2012. DZIUK, P. J., POLGE C., ROWSON L. E., DZUIK P. J., POLGE C., AND ROWSON L. E. Intra-uterine migration and mixing of embryos in swine following egg transfer. Journal of Animal Science, v.23, p.37–42, 1964. EALY, A.D.; EROH, M.L.; SHARP, D.C. Prostaglandin H synthase Type 2 is differentially expressed in endometrium based on pregnancy status in pony mares and responds to oxytocin and conceptus secretions in explant culture. Animal Reproduction Science, v.117, p.99–105, 2010. ENMARK, E.; PELTO–HUIKKO, M.; GRANDIEN, K.; LAGERCRANTZ, S.; LAGERCRANTZ, J.; FRIED, G.; NORDENSKJÖLD, M.; GUSTAFSSON, J. Human estrogen receptor beta–gene structure, chromosomal localization, and expression pattern. Journal of Clinical Endocrinology & Metabolism, v.82, p.4258–4265, 1997. FERREIRA, J.C.; IGNÁCIO, F.S.; MEIRA, C. Doppler ultrasonography principles and methods of evaluation of the reproductive tract in mares. Acta Scientiae Veterinariae, v.39, p.105–111, 2011. FERREIRA, J.C.; BOAKARI, Y.L.; ROCHA, N.S.; IGNACIO, F.S.; DA COSTA, G.B.; DE MEIRA, C. Luteal vascularity and embryo dynamics in mares during early gestation: Effect of age and endometrial degeneration. Reproduction in Domestic Animals, v.54, p.571–579, 2019. FRANCZAK, A.; ZMIJEWSKA, A.; KUROWICKA, B.; WOJCIECHOWICZ, B.; KOTWICA, G. Interleukin 1β-induced synthesis and secretion of prostaglandin E2 in the porcine uterus during various periods of pregnancy and the estrous cycle. Journal of Physiology and Pharmacology, v.16, p.733–742, 2010. GARDNER, M. L.; FIRST, N. L.; CASIDA, L. E. Effect of exogenous estrogens on corpus luteum maintenance in gilts. Journal of Animal Science, v.22, p.132–134, 1963. GASTAL, E.L.; BERGFELT, D.R.; NOGUEIRA, G.P.; GASTAL, M.O.; GINTHER, O.J. Role of luteinizing hormone in follicle deviation based on manipulating progesterone concentrations in mares. Biology of Reproduction, v.61, p.1492–1498, 1999. GASTAL, M.O.; GASTAL, E.L.; TORRES, C.A.; GINTHER, O.J. Effect of PGE2 on uterine contractility and tone in mares. Theriogenology, v.50, p.989–999, 1998. GINTHER, O.J.; FIRST, N.L. Maintenance of the corpus luteum in hysterectomized mares. American Journal of Veterinary Research, v.32, p.1687–1691, 1971. GINTHER, O.J. Mobility of the early equine conceptus. Theriogenology, v.19, p.603–611, 1983. GINTHER, O.J. Intrauterine movement of the early conceptus in barren and postpartum mares. Theriogenology, v.21, p.633–644, 1984a. GINTHER, O.J. Mobility of twin embryonic vesicles in mares. Theriogenology, v.22, p.83– 95, 1984b. GINTHER, O.J.; PIERSON, R.A. Ultrasonic anatomy and pathology of the equine uterus. Theriogenology, v.21, p.505–516, 1984. GINTHER, O.J. Dynamic physical interactions between the equine embryo and uterus. Equine Veterinary Journal, v.17, p.41–47, 1985. GINTHER, O.J. Ultrasonic Imaging and Reproductive Events in The Mare. Cross Plains, WI: Equiservices Publishing, 1986. 378p. GINTHER, O.J. Reproductive Biology of the Mare: Basic and Applied Aspects. 2a edition. Cross Plains, WI: Equiservices Publishing, 1992. 642p. GINTHER, O.J. Ultrasonic imaging and animal reproduction: Fundamentals. book 1. Cross Plains, WI: Equiservices Publishing, 1995a. 225p. GINTHER, O.J. Ultrasonic Imaging and Animal Reproduction: Horses. Book 2. Cross Plains, WI: Equiservices Publishing, 1995b. 394p. GINTHER, O.J. Equine pregnancy: Physical interations between the uterus and conceptus. Proceeding of American Association of Equine Practitioners, v.44, p.73–104, 1998. GINTHER, O.J.; UTT, M.D. Doppler ultrasound in equine reproduction: principles, techniques, and potential. Journal of Equine Veterinary Science, v.24, p.516–526, 2004. GINTHER, O.J.; BEG, M.A.; GASTAL, E.L.; GASTAL, M.O.; BAERWALD, A.R.; PIERSON, R.A. Systemic concentrations of hormones during the development of follicular waves in mares and women: a comparative study. Reproduction, v.130, p.379–88, 2005. GINTHER, O.J.; UTT, M.D.; BERGFELT, D.R.; BEG, M.A. Controlling interrelationships of progesterone/LH and estradiol/LH in mares. Animal Reproduction Science, v.95, p.144–150, 2006. GINTHER, O.J.; GASTAL, E.L.; GASTAL, M.O.; UTT, M.D.; BEG, M.A. Luteal blood flow and progesterone production in mares. Animal Reproduction Science, v.99, p.213–220, 2007a. GINTHER, O.J. Ultrasonic Imaging and Animal Reproduction: Color-doppler Ultrasonography. Book 4. Cross Plains, WI: Equiservices Publishing, 2007. 258p. GINTHER, O.J.; SILVA, L.A.; ARAUJO, R.R.; BEG, M.A. Temporal associations among pulses of 13,14-dihydro-15-keto-PGF2alpha, luteal blood flow, and luteolysis in cattle. Biology of Reproduction, v.76, p.506–513, 2007b. GINTHER, O.J.; UTT, M.D.; BEG, M.A. Follicle deviation and diurnal variation in circulating hormone concentrations in mares. Animal Reproduction Science, v.100, p.197–203, 2007c. GINTHER, O.J.; GASTAL, E.L.; GASTAL, M.O.; BEG, M.A. Dynamics of the Equine Preovulatory Follicle and Periovulatory Hormones: What's New? Journal of Equine Veterinary Science, v.28, n.8, p.454–460, 2008a. GINTHER, O.J.; RODRIGUES, B.L.; FERREIRA, J.C.; ARAUJO, R.R.; BEG, M.A. Characterization of pulses of 13,14-dihydro-15-keto-PGF2alpha (PGFM) and relationships between PGFM pulses and luteal blood flow before, during, and after luteolysis in mares. Reproduction, Fertility and Development, v.20, p.684–293, 2008b. GINTHER, O.J. A 40-year odyssey into the mysteries of equine luteolysis. Theriogenology, v.72, p.591–598, 2009. GINTHER, O.J.; BEG, M.A. Concentrations of circulating hormones normalized to pulses of a prostaglandin F2alpha metabolite during spontaneous luteolysis in mares. Theriogenology, v.72, p.1111–1119, 2009. GINTHER, O.J.; SIDDIQUI, M.A.R.; BEG, M.A. Progesterone responses to intravenous and intrauterine infusions of prostaglandin F2α in mares. Reproduction, Fertility and Development, v.21, p.688–695, 2009. GINTHER, O.J.; SHRESTHA, H.K.; BEG, M.A. Circulating hormone concentrations within a pulse of a metabolite of prostaglandin F2α during preluteolysis and early luteolysis in heifers. Animal Reproduction Science, v.122, p.253–258, 2010a. GINTHER, O.J.; SHRESTHA, H.K.; FUENZALIDA, M.J.; SHAHIDUZZAMAN, A.K.M.; BEG, M.A. Characteristics of pulses of 13,14-dihydro-15-keto-prostaglandin F2alpha before, during, and after spontaneous luteolysis and temporal intrapulse relationships with progesterone concentrations in cattle. Biology of Reproduction, v.82, p.1049–1056, 2010b. GINTHER, O.J.; SHRESTHA, H.K.; FUENZALIDA, M.J.; SHAHIDUZZAMAN, A.K.M HANNAN, M.A.; BEG, M.A. Intrapulse temporality between pulses of a metabolite of prostaglandin F2α and circulating concentrations of progesterone before, during, and after spontaneous luteolysis in heifers. Theriogenology, v.74, p.1179–1186, 2010c. GINTHER O.J.; BEG, M.A. Hormone concentration changes temporally associated with the hour of transition from preluteolysis to luteolysis in mares. Animal Reproduction Science, v.129, p.67–72, 2011. GINTHER, O.J.; HANNAN, M.A.; BEG, M.A. Luteolysis and associated interrelationships among circulating PGF2α, progesterone, LH, and estradiol in mares. Domestic Animal Endocrinology, v.41, p.174–184, 2011a. GINTHER, O.J.; RODRIGUEZ, M.B.; BEG, M.A. Concentrations of circulating hormones during the interval between pulses of a PGF2α metabolite in mares and heifers. Animal Reproduction Science, v.128, p.22–28, 2011b. GINTHER, O.J.; BEG, M.A. Dynamics of circulating progesterone concentrations before and during luteolysis: A comparison between cattle and horses. Biology of Reproduction, v.86, p.1–12, 2012a. GINTHER, O.J.; BEG, M.A. The hour of transition into luteolysis in horses and cattle: A species comparison. Theriogenology, v.77, p.1731–1740, 2012b. GINTHER, O.J.; PINAFFI, F.L.; SILVA, L.A.; BEG, M.A. Temporal relationships of a pulse of prolactin (PRL) to a pulse of a metabolite of PGF2α in mares. Theriogenology, v.77, p.99– 107, 2012. GINTHER, O.J.; BALDRIGHI, J.M.; CASTRO, T.; WOLF, C.A.; SANTOS, V.G. Concentrations of progesterone, a metabolite of PGF2 alpha, prolactin, and luteinizing hormone during development of idiopathic persistent corpus luteum in mares. Domestic Animal Endocrinology, v.55, p.114–122, 2016a. GINTHER, O.J.; CASTRO, T.; BALDRIGHI, J.M.; WOLF, C.A.; SANTOS, V.G. Defective secretion of prostaglandin F2α during development of idiopathic persistent corpus luteum in mares. Domestic Animal Endocrinology, v.55, p.60–65, 2016b. GOLDSTEIN, J. R. Ultrasound-guided peripheral venous access. Israeli Journal of Emergency Medicine, v.6, n.4, p.46–52, 2006. GRIFFIN, P.G.; GINTHER, O.J. Uterine contractile activity in mares during the estrous cycle and early pregnancy. Theriogenology, v.34, p.47–56, 1990. GRIFFIN, P.G.; CARNEVALE, E.M.; GINTHER, O.J. Effects of the embryo on uterine morphology and function in mares. Animal Reproduction Science, v.31, p.311–29, 1993. GRIFFIN, P.G.; GINTHER, O.J. Effects of day of estrous cycle, time of day, luteolysis, and embryo on uterine contractility in mares. Theriogenology, v.39, p.997–1008, 1993. GUTHRIE, H.D.; REXROAD, C.E. Endometrial prostaglandin f release in vitro and plasma 13, 14-dihydro-15-keto-prostaglandin F2α in pigs with luteolysis blocked by pregnancy, estradiol benzoate or human chorionic gonadotropin. Journal of Animal Science, v.52, p.330– 339, 1981. HAFEZ, B.; HAFEZ, E.S.E. Reprodução Animal. 7 ed. São Paulo: Manole, 2004. 513p. HALUSKA, G.J.; CURRIE, W.B. Variation in plasma concentrations of oestradiol-17 beta and their relationship to those of progesterone, 13,14-dihydro-15-keto-prostaglandin F-2 alpha and oxytocin across pregnancy and at parturition in pony mares. Journal of Reproduction and Fertility, v.84, p.635–646, 1988. HARTT, L.S.; CARLING, S.J.; JOYCE, M.M.; JOHNSON, G.A.; VANDERWALL, D.K.; OTT, T.L. Temporal and spatial associations of oestrogen receptor alpha and progesterone receptor in the endometrium of cyclic and early pregnant mares. Reproduction, v.130, p. 241– 50, 2005. HANSEN T.R.; HENKES, L.K.; ASHLEY, R.L.; BOTT, R.C.; ANTONIAZZI, A.Q.; HAN, H. Endocrine actions of interferon-tau in ruminants. Society for Reproduction and Fertility, v.67, p.325–340, 2010. HENNEKE, D. R.; POTTER, G. D.; KREIDER, J. L.; YEATS, B. F. Relationship between body condition score, physical measurements, and body fat percentage in mares. Equine Veterinary Journal, v. 15, n. 4, p.371–372, 1983. HIROI, H.; INOUE, S.; WATANABE, T.; GOTO, W.; ORIMO, A.; MOMOEDA, M.; et al. Differential immunolocalization of estrogen receptor alpha and beta in rat ovary and uterus. Journal of Molecular Endocrinology, v.22, p.37–44, 1999. HOUSTO, P. L. Correlated Photochemistry: The Legacy of Johann Christian Doppler. Accounts of Chemical Research, v.22, p.309–314, 1989. IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Efetivo do rebanho equino 2017. Acesso em: 07 de janeiro de 2022. IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Produção de Pecuária Municipal 2020. Disponível em: http//biblioteca.ibge.gov.br/visualizacao/84/ppm_2020v48.pdf. Acesso em: 07 de janeiro de 2022. ING, N.H.; SPENCER, T.E.; BAZER, F.W. Estrogen enhances endometrial estrogen receptor gene expression by a posttranscriptional mechanism in the ovariectomized ewe. Biology of Reproduction, v.54, p.591–599, 1996. JACOB, J.C.; HAAG, K.T.; SANTOS, G.O.; OLIVEIRA, J.P.; GASTAL, M.O.; GASTAL, E.L. Effect of embryo age and recipient asynchrony on pregnancy rates in a commercial equine embryo transfer program. Theriogenology, v.77, p.1159–166, 2012. KALPOKAS, I.; MATTOS, R.C.; CAVESTANY, D.; MARTÍNEZ, M.N.; PERDIGÓN, F.; MEIKLE, A. Effect of side of the corpus luteum and pregnancy on estrogen and progesterone receptor expression and localization in the endometrium of mares. Theriogenology, v.114, p.221–228, 2018. KATILA, T. Onset and duration of uterine inflammatory response of mares after insemination with fresh semen. Biology of Reproduction, v.1, p.515–517. KELLY, C.M.; HOYER, P.B.; WISE, M.E. In-vitro and in-vivo responsiveness of the corpus luteum of the mare to gonadotrophin stimulation. Journal of Reproduction and Fertility, v.84, p.593–600, 1988. KLEIN, C.; SCOGGIN, K.E.; EALY, A.D.; TROEDSSON, M.H. Transcriptional profiling of equine endometrium during the time of maternal recognition of pregnancy. Biology of Reproduction, v.83, p.102–113, 2010. KLEIN, C.; TROEDSSON, M.H. Transcriptional profiling of equine conceptuses reveals new aspects of embryo-maternal communication in the horse. Biology of Reproduction, v.84, p.872–885, 2011. KLEIN, C.C.; TROEDSSON, M.H.T.M. Maternal recognition of pregnancy in the horse: a mystery still to be solved. Reproduction, Fertility and Development, v.23, p.952–963, 2011. KLEIN C. Novel equine conceptus-endometrial interactions on day 16 of pregnancy based on RNA sequencing. Reproduction, Fertility and Development, v.28, p.1712–1720, 2015. KLEIN, C. Early pregnancy in the mare: old concepts revisited. Domestic Animal Endocrinology, v.46, p.212–277, 2016. KLOHONATZ, K.M.; HESS, A.M.; HANSEN, T.R.; SQUIRES, E.L.; BOUMA, G.J.; BRUEMMER, J.E. Equine endometrial gene expression changes during and after maternal recognition of pregnancy. Journal of Animal Science, v.93, p.3364–3376, 2015. KOZAI, K.; TOKUYAMA, S.; SZOSTEK, AZ.; TOISHI, Y.; TSUNODA, N.; TAYA, K.; SAKATANI, M.; TAKAHASHI, M.; NAMBO, Y.; SKARZYNSKI, D.J.; YAMAMOTO, Y.; KIMURA, K.; OKUDA, K. Evidence for a PGF (2 alpha) auto-amplification system in the endometrium in mares. Reproduction, v.151, p.517–526, 2016. LEITH, G.S.; GINTHER, O.J. Characterization of intrauterine mobility of the early equine conceptus. Theriogenology, v.22, p.401–408, 1984. LEITH, G.; GINTHER, O. Mobility of the conceptus and uterine contractions in the mare. Theriogenology, v.24, p.701–711, 1985. LIVAK, K.J.; SCHMITTGEN, T.D. Analysis of relative gene expression data using real–time quantitative PCR and the 2(–Delta Delta C(T)) Method. Methods, v.25, p.402–408, 2001. LUBAHN, D.B.; MOYER, J.S.; GOLDING, T.S.; COUSE, J.F.; KORACH, K.S.; SMITHIES, O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proceedings of the National Academy of Sciences, v.90, p.11162–11166, 1993. MAPA. Ministério da Agricultura, Pecuária e Abastecimento. Revisão do Estudo do Complexo do Agronegócio do Cavalo. Disponível em: http//www.gov.br/agricultura/ptbr/ assuntos/camaras-setoriais-tematicas/documentos/camaras-setoriais/equideocultura/anosanteriores/ revisao-do-estudo-do-complexo-do-agronegocio-do-cavalo/view. Acesso em: 05 de janeiro de 2022. MCCRACKEN, J.A.; CUSTER, E.E.; LAMSA, J.C. Luteolysis: a neuroendocrine–mediated event. Physiological Reviews, v.79, p.263–323, 1999. MCDOWELL, K.J.; SHARP, D.C.; GRUBAUGH, W.; THATCHER, W.W.; WILCOX, C.J. Restricted conceptus mobility results in failure of pregnancy maintenance in mares. Biology of Reproduction, v.39, p.340–348, 1988. MCDOWELL, K.J.; ADAMS, M.H.; ADAM, C.Y.; SIMPSON, K.S. Changes in equine endometrial oestrogen receptor alpha and progesterone receptor mRNAs during the oestrous cycle, early pregnancy and after treatment with exogenous steroids. Journal of Reproduction and Fertility, v.117, p.135–142, 1999. MCDOWELL, K.; SHARP, D. Maternal recognition of pregnancy. In MC KINNON, A.O.; SQUIRES, E.L.; VAALA, W.E.; VARNER, D.D., editors. Equine Reproduction. Second edition, Oxford: Wiley-Blackwell, p.2200–2210, 2011. MCKINNON, A.O.; SQUIRES, E.L.; VAALA, W.E.; VARNER, D.D. Equine Reproduction. 2a edition, Oxford: Wiley-Blackwell, 2011. 3288p. MEZERA, M.A.; HAMM, C.S.; GAMARRA, C.A.; GENNARI, R.S.; PRATA, A.B.; SARTORI, R.; WILTBANK, M.C. Profiles of prostaglandin F2α metabolite in dairy cattle during luteal regression and pregnancy: implications for corpus luteum maintenance. Biology of Reproduction, v.101, p.76–90, 2019. MORRIS, L.H.A.; ALLEN, W.R. Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket. Equine Veterinary Journal. v.34, p.51–60, 2002 NAGY, P.; GUILLAUME, D.; DAELS, P. Seasonality in mares. Animal Reproduction Science, v.60–61, p.245–262, 2000. NEEDLEMAN, P.; JAKSCHIK, B.A.; MORRISON, A.R.; LEFKOWITH, J.B. Arachidonic acid metabolism. Annual Review of Biochemistry, v.55, p.69–102, 1986. NEELY, D.P.; KINDAHL, H.; STABENFELDT, G.H.; EDQVIST, L.E.; HUGHES, J.P. Prostaglandin release patterns in the mare: physiological, pathophysiological, and therapeutic responses. Journal of Reproduction and Fertility. Supplement, p.181–189, 1979. NIETO–OLMEDO, P.; MARTÍN–CANO, F.E.; GAITSKELL–PHILLIPS, G.; ORTIZ– RODRÍGUEZ, J.M.; PEÑA, F.J.; ORTEGA–FERRUSOLA, C. Power Doppler can detect the presence of 7–8 day conceptuses prior to flushing in an equine embryo transfer program. Theriogenology, v.145, p.1–9, 2020. NISWENDER, G.D. Molecular control of luteal secretion of progesterone. Reproduction, v.123, n.3, p.333-339, 2002. OLIVEIRA, R.A.; YAMIM, R.S.; PIVATO, I.; RAMOS, A.F. Sexagem fetal em equinos. Revista Brasileira de Reprodução Animal, v.38, p.37–42, 2014. ORIOL, J.G.J.; SHAROM, F.J.F.; BETTERIDGE, K.J.K. Developmentally regulated changes in the glycoproteins of the equine embryonic capsule. Journal of Reproduction and Fertility, v.99, p.653–664, 1993. PARKINSON, T.J.; LAMMING, G.E. Interrelationships between progesterone, 13,14- dihydro-15-keto PGF-2 alpha (PGFM) and LH in cyclic and early pregnant cows. Journal of Reproduction and Fertility, v.90, p.221–233, 1990. PINAFFI, F.L.V.; ARAUJO, E.R.; GINTHER, O.J. Concentrations of a PGF2α metabolite during pregnancy on the days that luteolysis occurs in nonbred heifers. Domestic Animal Endocrinology, v.62, p.76–82, 2018. PIOTROWSKA–TOMALA, K.K.; JONCZYK, A.W.; SKARZYNSKI, D.J.; SZÓSTEK– MIODUCHOWSKA, A.Z. Luteinizing hormone and ovarian steroids affect in vitro prostaglandin production in the equine myometrium and endometrium. Theriogenology, v.153, p.1–8, 2020. REBORDÃO, M.R.; GALVÃO, A.; PINTO–BRAVO, P.; PINHEIRO, J.; GAMBOA, S.; SILVA, E. et al. Endometrial prostaglandin synthases, ovarian steroids, and oxytocin receptors in mares with oxytocin–induced luteal maintenance. Theriogenology, v.87, p.193–204, 2017. RIGBY, S.L.; BARHOUMI, R.; BURGHARDT, R.C.; COLLERAN, P.; HOMPSON, J.A.; VARNER, D.D.; et al. Mares with delayed uterine clearance have an intrinsic defect in myometrial function. Biology of Reproduction, v.65, p.740–747, 2001. ROSS, G.T. Human chorionic gonadotropin and maternal recognition of pregnancy. Ciba Foundation Symposium, v.64, p.191–208, 1978. SANGHA, G.K; SHARMA, R.K; GURAYA, S.S. Biology of corpus luteum in small ruminants. Small Ruminant Research, v.43, p.53-64, 2002. SANTOS, V.G.; BEG, M.A.; BETTENCOURT, E.M.; GINTHER, O.J. Role of PGF2α in luteolysis based on inhibition of PGF2α synthesis in the mare. Theriogenology, v.80, p.812– 2013. SANTOS, V.G.; BETTENCOURT, E.M.; GINTHER, O.J. Hormonal, luteal, and follicular changes during initiation of persistent corpus luteum in mares. Theriogenology, v.83, p.757– 765, 2015a. SANTOS, V.G.; CASTRO, T.; BETTENCOURT, E.M.; GINTHER, O.J. Oxytocin induction of pulses of a prostaglandin metabolite and luteolysis in mares. Theriogenology, v.83, p.730– 738, 2015b. SATUÉ, K.; GARDÓN J.C. A Review of the Estrous Cycle and the Neuroendocrine Mechanisms in the Mare. Journal of Steroids and Hormonal Science, v.4, p.115, 2013. SCHULTZ, J.F.; ARMANT, D.R. Beta 1- and beta 3-class integrins mediate fibronectin binding activity at the surface of developing mouse peri- implantation blastocysts. Regulation by ligandinduced mobilization of stored receptor. Journal of Biology Chemistry, v.270, p.11522– 11531, 1995. SCHUSTER, V.L. Prostaglandin transport. Prostaglandins & Other Lipid Mediators, v.68– 69, p.633–47, 2002. SHARP, D.C.; BLACK, D.L. Changes in peripheral plasma progesterone throughout the oestrous cycle of the pony mare. Journal of Reproduction and Fertility, v.33, p.535–538, 1973. SHARP, D.C.; ZAVY, M.T.; VERNON, M.W.; BAZER, F.W.; THATCHER, W.W.; BERGLUND, L.A. The role of prostaglandins in the maternal recognition of pregnancy in mares. Animal Reproduction Science, v.7, p.269–282, 1984. SHARP, D.C.; THATCHER, M.J.; SALUTE, M.E.; FUCHS, A.R. Relationship between endometrial oxytocin receptors and oxytocin–induced prostaglandin F2 alpha release during the oestrous cycle and early pregnancy in pony mares. Journal of Reproduction and Fertility, v.109, p.137–44, 1997. SHORT, R.V. Implantation and the maternal recognition of pregnancy. In: Wolstenholme, G.E.W.; O`CONNOR (EDS), Feotal Autonomy, London, p.2–26, 1969. SHRESTHA, H.K.; BEG, M.A.; BURNETTE, R.R.; GINTHER, O.J. Plasma clearance and half-life of prostaglandin F2alpha: A comparison between mares and heifers. Biology of Reproduction, v.87, p.1–6, 2012. SILVA, E.S.; SCOGGIN, K.E.; CANISSO, I.F.; TROEDSSON, M.H.; SQUIRES, E.L.; BALL, B.A. Expression of receptors for ovarian steroids and prostaglandin E2 in the endometrium and myometrium of mares during estrus, diestrus and early pregnancy. Animal Reproduction Science, v.151, p.169–181, 2014. SILVA, L.A.; GASTAL, E.L.; BEG, M.A.; GINTHER, O.J. Changes in vascular perfusion of the endometrium in association with changes in location of the embryonic vesicle in mares. Biology of Reproduction, v.72, p.755–761, 2005. SILVA, M.S. J.; LIMA, R.S.; SILVA, M.J.S.; LUCENA, J.E.C.; CARNEIRO, G.F.; NASCIMENTO, G.; JOBIM, C.C. Avaliação comportamental de éguas estabuladas em período reprodutivo. Revista Ciência Agronômica, v.14, n.1, p.46-54, 2015. SMITH, W.L.; GARAVITO, R.M.; DEWITT, D.L. Prostaglandin endoperoxide H synthases (cyclooxygenases)–1 and –2. Journal of Biology Chemistry, v.271, p.33157–33160, 1996. SOSA, C.; ABECIA, J.A.; FORCADA, F.; VIÑOLES, C.; TASENDE, C.; VALARES, J.A.; et al. Effect of undernutrition on uterine progesterone and oestrogen receptors and on endocrine profiles during the ovine oestrous cycle. Reproduction, Fertility and Development, v.18, p.447–458 2006. SPENCER, T. E.; FORDE, N.; DORNIAK, P.; HANSEN, T. R.; ROMERO, J. J.; LONERGAN, P. Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction, v.146, p.377–387, 2013. SQUIRES, E.L.; GARCIA, M.C.; GINTHER, O.J. Effects of pregnancy and hysterectomy on the ovaries of pony mares. Journal of Animal Science, v.38, p. 823–830, 1974a. SQUIRES, E.L.; WENTWORTH, B.C.; GINTHER, O.J. Progesterone concentration in blood of mares during the estrous cycle, pregnancy and after hysterectomy. Journal of Animal Science, v.39, p.759–767, 1974b. STABENFELDT, G.H; HUGHES, J.P.; EVANS, J.W. Ovarian activity during the estrous cycle of the mare. Endocrinology, v.90, p.1379–1384, 1972. STABENFELDT, G.H.; HUGHES, J.P.; WHEAT, J.D.; EVANS, J.W.; KENNEDY, P.C.; CUPPS, P.T. The role of the uterus in ovarian control in the mare. Journal of Reproduction and Fertility, v.37, p.343–351, 1974. STARBUCK, G.R.; STOUT, T.A.; LAMMING, G.E.; ALLEN, W.R.; FLINT, A.P. Endometrial oxytocin receptor and uterine prostaglandin secretion in mares during the oestrous cycle and early pregnancy. Journal of Reproduction and Fertility, v.113, p.173–179, 1998. STEWART, F.; ALLEN, W.R. The binding of FSH, LH and PMSG to equine gonadal tissues. Journal of Reproduction and Fertility. Supplement, v.27, p.431–440, 1979. STOUT, T.A.E.; ALLEN, W.R. The role of oxytocin in luteolysis in the cycling mare. Reproduction in Domestic Animals, v.34, p.351–354, 1999. STOUT, T.A.E.; ALLEN, W.R. Prostaglandin E (2) and F (2 alpha) production by equine conceptuses and concentrations in conceptus fluids and uterine flushings recovered from early pregnant and dioestrous mares. Reproduction, v.123, p.261–268, 2002. STOUT, T.A.E. Prostaglandins. In McKinnon AO, Squires EL, Vaala WE, Varner DD, editors. Equine Reproduction. Second edition, Oxford: Wiley-Blackwell, p.1642−167, 2011. STOUT, T.A.E. Embryo–maternal communication during the first 4 weeks of equine pregnancy. Theriogenology, v.86, p.349–354, 2016. SWEGEN, A. Maternal recognition of pregnancy in the mare: does it exist and why do we care? Reproduction, v.161, p.139–155, 2021. SZÓSTEK, A.Z.; GALVÃO, A.M.; HOJO, T.; OKUDA, K.; SKARZYNSKI, D.J. Interleukins affect equine endometrial cell function: modulatory action of ovarian steroids. Mediators of Inflammation, v.2014, p.208103, 2014. TIBBETTS, T.A.; MENDOZA-MENESES, M.; O’MALLEY, B.W.; CONNEELY, O.M. Mutual and intercompartmental regulation of estrogen receptor and progesterone receptor expression in the mouse uterus. Biology of Reproduction, v.59, p.1143–1152, 1998. TROEDSSON, M.H.; LIU, I.K.; ING, M.; PASCOE, J. Smooth muscle electrical activity in the oviduct, and the effect of oxytocin, prostaglandin F2α, and prostaglandin E2 on the myometrium and the oviduct of the cycling mare. Biology of Reproduction, v.52, p.475–488, 1995. TSUMAGARI, S.; HIGASHINO, T.; TAKAGI, K.; OHBA, S.; SATOH, S.; TAKEISHI, M. Changes of plasma-concentrations of steroid-hormones, prostaglandin f-2-alpha-metabolite and pregnant mare serum gonadotropin during pregnancy in thoroughbred mares. Journal of Veterinary Medical Science, v.53, p.797–801, 1991. UTT, M.D.; ACOSTA, T.J.; WILTBANK, M.C.; GINTHER, O.J. Acute effects of prostaglandin F2α on systemic oxytocin and progesterone concentrations during the mid- or late-luteal phase in mares. Animal Reproduction Science, v.97, p.63–73, 2007. VAN NIEKERK, C.H.; MORGENTHAL, J.C.; GERNEKE, W.H. Relationship between the morphology of and progesterone production by the corpus luteum of the mare. Journal of Reproduction and Fertility. Supplement, v.23, p.171-175, 1975. VANDERWALL, D.K; WOODS, G.; WEBER, J.; LICHTENWALNER, A. PGE2 secretion by the conceptus and binding by non‐pregnant endometrium in the horse. Equine Veterinary Journal, v.25, p.24–27, 1993. VANDERWALL, D.K.; WOODS, G.L.; WEBER, J.A.; LICHTENWALNER, A.B. Corpus luteal function in nonpregnant mares following intrauterine administration of prostaglandin E2 or estradiol-17beta. Theriogenology, v.42, p.1069–1083, 1994. VANDERWALL, D.K.; SILVIA, W.J.; FITZGERALD, B.P. Concentrations of oxytocin in the intercavernous sinus of mares during luteolysis: temporal relationship with concentrations of 13,14-dihydro-15-keto-prostaglandin F2 alpha. Journal of Reproduction and Fertility, v.112, p.337–346, 1998. VANDERWALL, D.K.; BETSCHART, R.W.; SQUIRES, E.L. Effect of PGF2alpha and 13,14-dihydro-15-keto-PGF2alpha (PGFM) on corpora luteal function in nonpregnant mares. Theriogenology, v.53, p.1263–1271, 2000. WACLAWIK, A.; BLITEK, A.; KACZMAREK, M. M.; KIEWISZ, J.; ZIECIK, A. J. (2009). Antiluteolytic mechanisms and the establishment of pregnancy in the pig. Society for Reproduction and Fertility, v.66, p.307–320, 2009. WATSON, E.D.; SERTICH, P.L. Prostaglandin production by horse embryos and the effect of co–culture of embryos with endometrium from pregnant mares. Journal of Reproduction and Fertility, v.87, p. 331–336, 1989. WATSON, E.D.; COLSTON, M.; BROADLEY, C. LH and progesterone concentrations during diestrus in the mare and the effect of hCG. Theriogenology, v.43, p.1325–1337, 1995. WATSON, E.D.; SERTICH, P.L. Secretion of prostaglandins and progesterone by cells from corpora lutea of mares. Journal of Reproduction and Fertility, v.8, p.223–229, 1990. WEBER, J.A.; FREEMAN, D.A.; VANDERWALL, D.K.; WOODS, G.L. Prostaglandin E2 hastens oviductal transport of equine embryos. Biology of Reproduction, v.45, p.544–546, 1991. WEBER, J.A; WOODS, G. Influence of embryonic secretory chemicals on selective oviductal transport in mares. Equine Veterinary Journal, v.25, p.36–8, 1993. WEBER, K.S.; WAGENER, K.; BLANCO, M.; BAUERSACHS, S.; BOLLWEIN, H. A comparative analysis of the intrauterine transcriptome in fertile and subfertile mares using cytobrush sampling. BMC Genomics, v.22, p.1–19, 2021. WEIHUA, Z.; SAJI, S.; MÄKINEN, S.; CHENG, G.; JENSEN, E.V.; WARNER, M.; et al. Estrogen receptor (ER) β, a modulator of ERα in the uterus. Proceedings of the National Academy of Sciences, v.97, 5936–5941, 2000. WHITMORE, H.L.; WENTWORTH, B.C.; GINTHER, O.J. Circulating concentrations of luteinizing hormone during estrous cycle of mares as determined by radioimmunoassay. American Journal of Veterinary Research, v.34, p.631–636, 1973. WILLMANN, C.; SCHULER, G.; HOFFMANN, B.; PARVIZI, N.; AURICH, C. Effects of age and altrenogest treatment on conceptus development and secretion of LH, progesterone and eCG in early pregnant mares. Theriogenology, v.75, p.421–428, 2011. WILSHER, S.; CLUTTON-BROCK, A.; ALLEN, W.R. Successful transfer of day 10 horse embryos: influence of donor-recipient asynchrony on embryo development. Reproduction, v.139, p.575–585, 2010. WILSHER, S.; ALLEN, W. R. Intrauterine administration of plant oils inhibits luteolysis in the mare. Equine Veterinary Journal, p.99–105, 2011. WHITMORE, H.L.; WENTWORTH, B.C.; GINTHER, O.J. Circulating concentrations of luteinizing hormone during estrous cycle of mares as determined by radioimmunoassay. American Journal of Veterinary Research, v.34, p.631–636, 1973. WUTTKE, W.; THEILING, K.; HINNEY, B.; PITZEL, L. Regulation of steroid production and its function within the corpus luteum. Steroids, v.63, p.299–305, 1998. ZARCO, L.; STABENFELDT, G.H.; BASU, S.; BRADFORD, G.E.; KINDAHL, H. Modification of prostaglandin F-2 alpha synthesis and release in the ewe during the initial establishment of pregnancy. Journal of Reproduction and Fertility, v.83, p.527–536, 1988. ZAVY, J.T.; MAYER, R.; VERNON, M.W.; BAZER, F.W.; SHARP, D.C. An investigation of the uterine luminal environment of nonpregnant and pregnant pony mares. Journal of Reproduction and Fertility. Supplement, p.403–411, 1979.por
dc.subject.cnpqMedicina Veterináriapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69293/2022%20-%20Thadeu%20de%20Castro.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5650
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-05-12T19:59:41Z No. of bitstreams: 1 2022 - Thadeu de Castro.pdf: 4366497 bytes, checksum: 4259d1d0362237461499fe38edef03c5 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-05-12T19:59:41Z (GMT). No. of bitstreams: 1 2022 - Thadeu de Castro.pdf: 4366497 bytes, checksum: 4259d1d0362237461499fe38edef03c5 (MD5) Previous issue date: 2022-02-23eng
Appears in Collections:Doutorado em Medicina Veterinária (Patologia e Ciências Clínicas)

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Thadeu de Castro.pdf4.26 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.