Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10170
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Leonardo Araujo
dc.date.accessioned2023-12-21T18:58:25Z-
dc.date.available2023-12-21T18:58:25Z-
dc.date.issued2022-08-08
dc.identifier.citationSILVA, Leonardo Araujo. Síntese e avaliação da atividade tripanocida de novos azóis, derivados da β-lapachona. 2022. 285 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10170-
dc.description.abstractPassados mais de 100 anos desde a sua descoberta, a doença de Chagas ainda representa um desafio para a humanidade, visto que o seu tratamento apresenta sérias lacunas. Além de não serem satisfatoriamente eficazes na fase crônica da doença, os fármacos utilizados mundo à fora para o seu tratamento, nifurtimox e benznidazol, ocasionam severos efeitos colaterais aos pacientes tratados com eles. Milhares de pessoas morrem por ano devido a essa doença, que atinge principalmente regiões tropicais, como o Brasil. No Brasil, apenas o benznidazol é autorizado pela Agência Nacional de Vigilância Sanitária (ANVISA) para o tratamento da doença de Chagas. Desta forma, a busca por novos fármacos mais eficientes para o tratamento da doença de Chagas é essencial. Neste sentido, os derivados da -lapachona têm se configurado como compostos promissores, em especial os derivados azólicos. A -lapachona é uma naftoquinona, encontrada em diversas espécies arbóreas e arbustivas da família Bignoniaceae, dentre elas, o ipê. Nas últimas décadas, diversos grupos de pesquisa, em especial no Brasil, têm se dedicado a síntese de derivados da -lapachona, para o combate a diversos patógenos, inclusive contra o Trypanosoma cruzi (T. cruzi), causador da doença de Chagas. Somando-se a estes esforços, na busca de novos agentes tripanocidas, neste trabalho foram sintetizados 26 derivados imidazólicos e 2 derivados oxazólicos da -lapachona, dos quais 21 são inéditos (compostos 8 a 26 e composto 28), além de um 2-amino-oxazol derivado da 1,10- fenantrolina-5,6-diona (27). Dentre os compostos sintetizados, 16 foram avaliados in vitro quanto a atividade tripanocida, além da -lapachona, contra as formas amastigota e tripomastigota do T. cruzi. Quatro dos compostos avaliados pela primeira vez (compostos 7, 10, 12 e 22) foram mais ativos do que a -lapachona contra a forma tripomastigota do parasita, nas condições testadas, dentre os quais, dois (compostos 7 e 22) também foram mais ativos do que o próprio fármaco de referência, o benznidazol. Contra a forma amastigota, três (22, 23 e 24) dos composto inéditos foram mais ativos do que a -lapachona, dos quais, dois (22 e 23) foram mais ativos do que o benznidazol. Também foi possível verificar que os compostos 22 e 23 maior seletividade para o parasita do que para as células do hospedeiro. O composto 22 teve o seu mecanismo de ação sob o parasita investigado, ficando constatado que a mitocôndria é o seu alvo principal de ação sobre o parasito, provocando seu inchaço e um aspecto de lavagem na organela; também foram verificadas alterações morfológicas nas estruturas das células do parasito. Por estas investigações, pôde-se verificar danos ocasionados nos complexos II, III e IV dos sistemas transportadores de elétrons mitocondriais. Além dos valorosos resultados de atividade tripanocida, este trabalho também possibilitou o desenvolvimento de um novo método de síntese do 2-amino-oxazól derivado da β-lapachona, o composto 24, e a melhoria das condições reacionais do 2-amino-imidazol derivado da β-lapachona, o composto 7.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPQ - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectβ-lapachonapor
dc.subjectNaftoimidazóispor
dc.subjectNaftoxazóispor
dc.subjectSíntesepor
dc.subjectTrypanosoma cruzipor
dc.subjectβ-lapachonaeng
dc.subjectNaftoimidazoleseng
dc.subjectNaftoxazoleeng
dc.subjectSynthesiseng
dc.subjectTrypanosoma cruzieng
dc.titleSíntese e avaliação da atividade tripanocida de novos azóis, derivados da β-lapachonapor
dc.title.alternativeSynthesis and evaluation of the trypanocidal activity of new β-lapachone-derived azoleseng
dc.typeTesepor
dc.description.abstractOtherAfter more than 100 years since its discovery, Chagas disease still represents a challenge for humanity, since its treatment has serious gaps. In addition to not being satisfactorily effective in the chronic phase of the disease, the drugs used worldwide for its treatment, nifurtimox and benznidazole, cause severe side effects to patients treated with them. Thousands of people die each year due to this disease, which mainly affects tropical regions, such as Brazil. In Brazil, only benznidazole is authorized for the treatment of Chagas disease, by the National Health Surveillance Agency (ANVISA). Thus, the search for new drugs for the treatment of Chagas disease is essential. In this sense, -lapachone derivatives have emerged as promising compounds, especially the azole derivatives. -lapachone is a naphthoquinone, found in several tree and shrub species of the Bignoniaceae family, among them, ipê. In the last decades, several research groups, especially in Brazil, have been dedicated to the synthesis of -lapachone derivatives, to combat several pathogens, including Trypanosoma cruzi (T. cruzi), which causes Chagas disease. In addition to these efforts in the search for new trypanocidal agents, in this work 26 imidazole derivatives and 2 oxazole derivatives of -lapachone were synthesized, among which 21 are unpublished (compounds 8 to 26 and compound 28), in addition to a 2- amino-oxazole derived from 1,10-phenanthroline-5,6-dione (27). Among the synthesized compounds, 16 were evaluated in vitro for trypanocidal activity, in addition to -lapachone, against the amastigote and trypomastigote forms of T. cruzi. Under the conditions tested, four of the evaluated compounds for the first time (compounds 7, 10, 12 and 22) were more active than -lapachone against the trypomastigote form of the parasite, among which two (compounds 7 and 22) were also more active than the reference drug itself, benznidazole. Against the amastigote form, three (22, 23 and 24) of the novel compounds were more active than -lapachone, among which two (22 and 23) were more active than benznidazole. It was also possible to verify that compounds 22 and 23 had greater selectivity for the parasite than for the host cells. The mechanism of action of compound 22 under the parasite was investigated, and it was found that the mitochondria is its main target of action, causing its swelling and a washing aspect in the organelle; morphological changes were also observed in the structures of the parasite's cells. By these investigations, it was possible to verify damages caused in complexes II, III and IV of mitochondrial electron transport systems. In addition to the valuable results of trypanocidal activity, this work also enabled the development of a new method of synthesis of the 2-amino-oxazole derived from β-lapachone, compound 24, and the improvement of the reaction conditions of the 2-amino-imidazole derived from β-lapachone, the compound 7.eng
dc.contributor.advisor1Lima, Marco Edilson Freire de
dc.contributor.advisor1ID620.531.837-72por
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-0563-3483por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8392420706762318por
dc.contributor.advisor2Ferreira (in memorian)*, Aurélio Baird Buarque
dc.contributor.advisor2Latteshttp://lattes.cnpq.br/5526484175547597por
dc.contributor.advisor-co1Silva, Ari Miranda da
dc.contributor.advisor-co1ID075.112.367-66por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1282321674623999por
dc.contributor.referee1Lima, Marco Edilson Freire de
dc.contributor.referee1ID620.531.837-72por
dc.contributor.referee1IDhttps://orcid.org/0000-0003-0563-3483por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8392420706762318por
dc.contributor.referee2Castro, Rosane Nora
dc.contributor.referee2IDhttps://orcid.org/0000-0001-8983-3786por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5479814788308057por
dc.contributor.referee3Silva Júnior, Eufrânio Nunes da
dc.contributor.referee3IDhttps://orcid.org/0000-0003-1281-5453por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5627593695811199por
dc.contributor.referee4Silva, Andrea Rosane da
dc.contributor.referee4ID024.208.617-95por
dc.contributor.referee4Latteshttp://lattes.cnpq.br/9890558976739328por
dc.contributor.referee5Bernardes, Bauer de Oliveira
dc.contributor.referee5ID041.562.457-64por
dc.contributor.referee5Latteshttp://lattes.cnpq.br/8988332784422026por
dc.creator.ID112.783.367-70por
dc.creator.Latteshttp://lattes.cnpq.br/7137564856594035por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesABBOTT, A.; MONTGOMERY, S.; CHANCEY, R. Characteristics and Adverse Events of Patients for Whom Nifurtimox Was Released Through CDC-Sponsored Investigational New Drug Program for Treatment of Chagas Disease — United States, 2001–2021. MMWR. Morbidity and Mortality Weekly Report, v. 71, p. 371–374, 2022. ABELE, E.; ABELE, R. Recent Advances in the Synthesis of Heterocycles from Oximes. Current Organic Synthesis, v. 11, n. 3, p. 403–428, 2014. ABELE, E.; ABELE, R.; LUKEVICS, E. Oximes of five-membered heterocyclic compounds with two heteroatoms 2. Reactions and biological activity (Review). Chemistry of Heterocyclic Compounds, v. 43, n. 8, p. 945–977, 2007. AHMAD, S.; NGU, K.; COMBS, D. W.; WU, S. C.; WEINSTEIN, D. S.; LIU, W.; CHEN, B.-C.; CHANDRASENA, G.; DORSO, C. R.; KIRBY, M.; ATWAL, K. S. Aminoimidazoles as bioisosteres of acylguanidines: novel, potent, selective and orally bioavailable inhibitors of the sodium hydrogen exchanger isoform-1. Bioorganic & Medicinal Chemistry Letters, v. 14, n. 1, p. 177–180, 2004. ANNOURA, T.; NARA, T.; MAKIUCHI, T.; HASHIMOTO, T.; AOKI, T. The Origin of Dihydroorotate Dehydrogenase Genes of Kinetoplastids, with Special Reference to Their Biological Significance and Adaptation to Anaerobic, Parasitic Conditions. Journal of Molecular Evolution, v. 60, n. 1, p. 113–127, 2005. ANTINORI, S.; GALIMBERTI, L.; BIANCO, R.; GRANDE, R.; GALLI, M.; CORBELLINO, M. Chagas disease in Europe: A review for the internist in the globalized world. European Journal of Internal Medicine, v. 43, p. 6–15, 2017. APEX3. Madison, WI, USABruker AXS Inc., , 2007. BARBOSA, J. M. C.; NICOLETTI, C. D.; SILVA, P. B. Da; MELO, T. G.; FUTURO, D. O.; FERREIRA, V. F.; SALOMÃO, K. Characterization and trypanocidal activity of a β-lapachone-containing drug carrier. PLOS ONE, v. 16, n. 3, p. e0246811, 2021. BARBOSA, T. P.; DINIZ NETO, H. Preparação de derivados do lapachol em meio ácido e em meio básico: uma proposta de experimentos para a disciplina de Química Orgânica Experimental. Química Nova, v. 36, p. 331–334, 2013. BERN, C.; MESSENGER, L. A.; WHITMAN, J. D.; MAGUIRE, J. H. Chagas Disease in the United States: a Public Health Approach. Clinical Microbiology Reviews, v. 33, n. 1, p. e00023-19, 2019. BOMBAÇA, A. C. S.; SILVA, L. A.; CHAVES, O. A.; DA SILVA, L. S.; BARBOSA, J. M. C.; DA SILVA, A. M.; FERREIRA, A. B. B.; MENNA-BARRETO, R. F. S. Novel N,N-di-alkylnaphthoimidazolium derivative of β-lapachone impaired Trypanosoma cruzi mitochondrial electron transport system. Biomedicine & Pharmacotherapy, v. 135, p. 111186, 2021. 116 BOMBAÇA, A. C. S.; VIANA, P. G.; SANTOS, A. C. C.; SILVA, T. L.; RODRIGUES, A. B. M.; GUIMARÃES, A. C. R.; GOULART, M. O. F.; DA SILVA JÚNIOR, E. N.; MENNA-BARRETO, R. F. S. Mitochondrial disfunction and ROS production are essential for anti-Trypanosoma cruzi activity of β-lapachone-derived naphthoimidazoles. Free Radical Biology and Medicine, v. 130, p. 408–418, 2019. BOVERIS, A.; HERTIG, C. M.; TURRENS, J. F. Fumarate reductase and other mitochondrial activities in Trypanosoma cruzi. Molecular and Biochemical Parasitology, v. 19, n. 2, p. 163–169, 1986. BRUNORO, G. V. F.; FAÇA, V. M.; CAMINHA, M. A.; FERREIRA, A. T. da S.; TRUGILHO, M.; MOURA, K. C. G. De; PERALES, J.; VALENTE, R. H.; MENNA- BARRETO, R. F. S. Differential Gel Electrophoresis (DIGE) Evaluation of Naphthoimidazoles Mode of Action: A Study in Trypanosoma cruzi Bloodstream Trypomastigotes. PLOS Neglected Tropical Diseases, v. 10, n. 8, p. e0004951, 2016. BUCKNER, F. S.; VERLINDE, C. L.; LA FLAMME, A. C.; VAN VOORHIS, W. C. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrobial Agents and Chemotherapy, v. 40, n. 11, p. 2592–2597, 1996. CAMARGO, E. P.; GAZZINELLI, R. T.; MOREL, C. M.; PRECIOSO, A. R. Why do we still have not a vaccine against Chagas disease? Memórias do Instituto Oswaldo Cruz, v. 117, 2022. CANÇADO, J. R. Criteria of Chagas disease cure. Memórias do Instituto Oswaldo Cruz, v. 94, p. 331–335, 1999. CARVALHO, C. E. M.; FERREIRA, V. F.; PINTO, A. V.; PINTO, M. C. F. R.; HARRISON, W. T. A. Heterocyclic derivatives from natural ocurring naphthoquinones: synthesis, characterization and X-ray structure of ß-lapachone hydrazo compounds. Dyes and Pigments, v. 52, p. 209–214, 2002. CARVALHO, C. E. M.; SILVA, M. A. A.; BRINN, I. M.; PINTO, M. do C. R.; PINTO, A. V.; SCHRIPSEMA, J.; LONGO, R. L. Tautomerization in the ground and first excited singlet states of phenyl-lapimidazole. Journal of Luminescence, v. 109, n. 3, p. 207– 214, 2004. CASCABULHO, C. M.; MEUSER-BATISTA, M.; MOURA, K. C. G. De; PINTO, M. do C.; DUQUE, T. L. A.; DEMARQUE, K. C.; GUIMARÃES, A. C. R.; MANSO, P. P. de A.; PELAJO-MACHADO, M.; OLIVEIRA, G. M.; CASTRO, S. L. D.; MENNA- BARRETO, R. F. Antiparasitic and anti-inflammatory activities of ß-lapachone-derived naphthoimidazoles in experimental acute Trypanosoma cruzi infection. Memórias do Instituto Oswaldo Cruz, v. 115, 2020. CAZZULO, J. J. Intermediate metabolism inTrypanosoma cruzi. Journal of Bioenergetics and Biomembranes, v. 26, n. 2, p. 157–165, 1994. CDC - DPDx - American Trypanosomiasis. 2021. Disponível em: <https://www.cdc.gov/dpdx/trypanosomiasisamerican/index.html>. Acesso em: 1 jun. 2021. 117 CHADALAWADA, S.; SILLAU, S.; ARCHULETA, S.; MUNDO, W.; BANDALI, M.; PARRA-HENAO, G.; RODRIGUEZ-MORALES, A. J.; VILLAMIL-GOMEZ, W. E.; SUÁREZ, J. A.; SHAPIRO, L.; HOTEZ, P. J.; WOC-COLBURN, L.; DESANTO, K.; RASSI, A., Jr; FRANCO-PAREDES, C.; HENAO-MARTÍNEZ, A. F. Risk of Chronic Cardiomyopathy Among Patients With the Acute Phase or Indeterminate Form of Chagas Disease: A Systematic Review and Meta-analysis. JAMA Network Open, v. 3, n. 8, p. e2015072, 2020. CHAGAS, C. Nova tripanozomiaze humana - estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi. Memórias do Instituto Oswaldo Cruz [online]. v. 1, n. 2, p. 159–218, 1909. Chagas disease. 2021. Disponível em: <https://www.who.int/news-room/fact- sheets/detail/chagas-disease-(american-trypanosomiasis)>. Acesso em: 31 maio. 2021. COURA, J. R.; BORGES-PEREIRA, J. Chagas disease: 100 years after its discovery. A systemic review. Acta Tropica, v. 115, n. 1–2, p. 5–13, 2010. COURA, J. R.; CASTRO, S. L. De. A Critical Review on Chagas Disease Chemotherapy. Memórias do Instituto Oswaldo Cruz, v. 97, p. 3–24, 2002. CRESPILLO-ANDÚJAR, C.; VENANZI-RULLO, E.; LÓPEZ-VÉLEZ, R.; MONGE- MAILLO, B.; NORMAN, F.; LÓPEZ-POLÍN, A.; PÉREZ-MOLINA, J. A. Safety Profile of Benznidazole in the Treatment of Chronic Chagas Disease: Experience of a Referral Centre and Systematic Literature Review with Meta-Analysis. Drug Safety, v. 41, n. 11, p. 1035–1048, 2018. DA SILVA, E. N.; MENNA-BARRETO, R. F. S.; PINTO, M. do C. F. R.; SILVA, R. S. F.; TEIXEIRA, D. V.; DE SOUZA, M. C. B. V.; DE SIMONE, C. A.; DE CASTRO, S. L.; FERREIRA, V. F.; PINTO, A. V. Naphthoquinoidal [1,2,3]-triazole, a new structural moiety active against Trypanosoma cruzi. European Journal of Medicinal Chemistry, v. 43, n. 8, p. 1774–1780, 2008. DA SILVA JÚNIOR, E. N.; JARDIM, G. A. M.; JACOB, C.; DHAWA, U.; ACKERMANN, L.; DE CASTRO, S. L. Synthesis of quinones with highlighted biological applications: A critical update on the strategies towards bioactive compounds with emphasis on lapachones. European Journal of Medicinal Chemistry, v. 179, p. 863–915, 2019. DE MOURA, K. C. G.; EMERY, F. S.; NEVES-PINTO, C.; PINTO, M. do C. F. R.; DANTAS, A. P.; SALOMÃO, K.; CASTRO, S. L. De; PINTO, A. V. Trypanocidal activity of isolated naphthoquinones from Tabebuia and some heterocyclic derivatives: a review from an interdisciplinary study. Journal of the Brazilian Chemical Society, v. 12, p. 325–338, 2001. DE MOURA, K. C. G.; SALOMÃO, K.; MENNA-BARRETO, R. F. S.; EMERY, F. S.; PINTO, M. do C. F. R.; PINTO, A. V.; DE CASTRO, S. L. Studies on the trypanocidal activity of semi-synthetic pyran[b-4,3]naphtho[1,2-d]imidazoles from beta-lapachone. European Journal of Medicinal Chemistry, v. 39, n. 7, p. 639–645, 2004. 118 DEBNATH, P. Recent Advances in the Synthesis of Amides via Oxime Rearrangements and its Applications. Current Organic Synthesis, v. 15, n. 5, p. 666–706, 2018. Disponível em: <https://www.eurekaselect.com/article/89749>. Acesso em: 17 jul. 2022. DELARMELINA, M.; NICOLETTI, C. D.; DE MORAES, M. C.; FUTURO, D. O.; BÜHL, M.; DE C. DA SILVA, F.; FERREIRA, V. F.; DE M. CARNEIRO, J. W. α- and β-Lapachone Isomerization in Acidic Media: Insights from Experimental and Implicit/Explicit Solvation Approaches. ChemPlusChem, v. 84, n. 1, p. 52–61, 2019. DENICOLA-SEOANE, A.; RUBBO, H.; PRODANOV, E.; TURRENS, J. F. Succinate- dependent metabolism in Trypanosoma cruzi epimastigotes. Molecular and Biochemical Parasitology, v. 54, n. 1, p. 43–50, 1992. DI CHENNA, P. H.; BENEDETTI-DOCTOROVICH, V.; BAGGIO, R. F.; GARLAND, M. T.; BURTON, G. Preparation and Cytotoxicity toward Cancer Cells of Mono(arylimino) Derivatives of β-Lapachone. Journal of Medicinal Chemistry, v. 44, n. 15, p. 2486–2489, 2001. DIAS, J. C. P.; RAMOS JR., A. N.; GONTIJO, E. D.; LUQUETTI, A.; SHIKANAI- YASUDA, M. A.; COURA, J. R.; TORRES, R. M.; MELO, J. R. da C.; ALMEIDA, E. A. De; OLIVEIRA JR., W. De; SILVEIRA, A. C.; REZENDE, J. M. De; PINTO, F. S.; FERREIRA, A. W.; RASSI, A.; FRAGATA FILHO, A. A.; SOUSA, A. S. De; CORREIA FILHO, D.; JANSEN, A. M.; ANDRADE, G. M. Q.; BRITTO, C. F. D. P. de C.; PINTO, A. Y. das N.; RASSI JR., A.; CAMPOS, D. E.; ABAD-FRANCH, F.; SANTOS, S. E.; CHIARI, E.; HASSLOCHER-MORENO, A. M.; MOREIRA, E. F.; MARQUES, D. S. de O.; SILVA, E. L.; MARIN-NETO, J. A.; GALVÃO, L. M. da C.; XAVIER, S. S.; VALENTE, S. A. da S.; CARVALHO, N. B.; CARDOSO, A. V.; SILVA, R. A. E; COSTA, V. M. Da; VIVALDINI, S. M.; OLIVEIRA, S. M.; VALENTE, V. da C.; LIMA, M. M.; ALVES, R. V. II Consenso Brasileiro em Doença de Chagas, 2015. Epidemiologia e Serviços de Saúde, v. 25, p. 7–86, 2016. DOLOMANOV, O. V.; BOURHIS, L. J.; GILDEA, R. J.; HOWARD, J. a. K.; PUSCHMANN, H. OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, v. 42, n. 2, p. 339–341, 2009. ELATI, C. R.; KOLLA, N.; RAO CHALAMALA, S.; VANKAWALA, P. J.; SUNDARAM, V.; VURIMIDI, H.; MATHAD, V. T. New Synthesis of Donepezil Through Palladium‐Catalyzed Hydrogenation Approach. Synthetic Communications, v. 36, n. 2, p. 169–174, 2006. FERNANDES, M. C.; SILVA, E. N. D.; PINTO, A. V.; CASTRO, S. L. D.; MENNA- BARRETO, R. F. S. A novel triazolic naphthofuranquinone induces autophagy in reservosomes and impairment of mitosis in Trypanosoma cruzi. Parasitology, v. 139, n. 1, p. 26–36, 2012. FERREIRA, V. F.; JORQUEIRA, A.; LEAL, K. Z.; PIMENTEL, H. R. X.; SEIDL, P. R.; DA SILVA, M. N.; DA SOUZA, M. C. B. V.; PINTO, A. V.; WARDELL, J. L.; WARDELL, S. M. S. V. Preparation of α-diazocarbonyl compounds from β-lapachone derivatives and other 1,2-naphthoquinones: use of the 2D NMR 1H,15N and 1H,13C HMBC techniques in assigning regiochemistry. Magnetic Resonance in Chemistry, v. 44, n. 4, p. 481–490, 2006. 119 GIRARD, M.; KINDACK, D.; DAWSON, B. A.; ETHIER, J.-C.; AWANG, D. V. C.; GENTRY, A. H. Naphthoquinone Constituents of Tabebuia spp. Journal of Natural Products, v. 51, n. 5, p. 1023–1024, 1988. GLASS, R. S.; BLOUNT, J. F.; BUTLER, D.; PERROTTA, A.; OLIVETO, E. P. Nitration Studies on 2-Isopropylimidazole. Canadian Journal of Chemistry, v. 50, n. 21, p. 3472–3477, 1972. GOIJMAN, S. G.; STOPPANI, A. O. M. Effects of β-lapachone, a peroxide-generating quinone, on macromolecule synthesis and degradation in Trypanosoma cruzi. Archives of Biochemistry and Biophysics, v. 240, n. 1, p. 273–280, 1985. GOMES, C. L.; DE ALBUQUERQUE WANDERLEY SALES, V.; GOMES DE MELO, C.; FERREIRA DA SILVA, R. M.; VICENTE NISHIMURA, R. H.; ROLIM, L. A.; ROLIM NETO, P. J. Beta-lapachone: Natural occurrence, physicochemical properties, biological activities, toxicity and synthesis. Phytochemistry, v. 186, p. 112713, 2021. GÓMEZ, D. E.; FABBRIZZI, L.; LICCHELLI, M.; MONZANI, E. Urea vs. thiourea in anion recognition. Organic & Biomolecular Chemistry, v. 3, n. 8, p. 1495–1500, 2005. GONÇALVES, R. L. S.; BARRETO, R. F. S. M.; POLYCARPO, C. R.; GADELHA, F. R.; CASTRO, S. L.; OLIVEIRA, M. F. A comparative assessment of mitochondrial function in epimastigotes and bloodstream trypomastigotes of Trypanosoma cruzi. Journal of Bioenergetics and Biomembranes, v. 43, n. 6, p. 651–661, 2011. GRIBBLE, G. W. Sodium borohydride in carboxylic acid media: a phenomenal reduction system. Chemical Society Reviews, v. 27, n. 6, p. 395–404, 1998. HASHIMOTO, M.; MORALES, J.; FUKAI, Y.; SUZUKI, S.; TAKAMIYA, S.; TSUBOUCHI, A.; INOUE, S.; INOUE, M.; KITA, K.; HARADA, S.; TANAKA, A.; AOKI, T.; NARA, T. Critical importance of the de novo pyrimidine biosynthesis pathway for Trypanosoma cruzi growth in the mammalian host cell cytoplasm. Biochemical and Biophysical Research Communications, v. 417, n. 3, p. 1002–1006, 2012. JUTEAU, H.; GAREAU, Y. Preparation of Aryl Cyclobutenes Under Mild and Neutral Conditions. Synthetic Communications, v. 28, n. 20, p. 3795–3805, 1998. KADAM, V. S.; SHAIKH, S. G.; PATEL, A. L. A series of 2, 4, 5-trisubstituted oxazole: Synthesis, characterization and DFT modelling. Journal of Molecular Structure, v. 1114, p. 181–188, 2016. KHRISTICH, B. I. Tautomerism in a number of asymmetrical imidazole systems. Chemistry of Heterocyclic Compounds, v. 6, n. 12, p. 1572–1575, 1970. KROPF, S. P.; SÁ, M. R. The discovery of Trypanosoma cruzi and Chagas disease (1908- 1909): tropical medicine in Brazil. História, Ciências, Saúde-Manguinhos, v. 16, p. 13– 34, 2009. LI, D.; YANG, D.; WANG, L.; LIU, X.; WANG, K.; WANG, J.; WANG, P.; LIU, Y.; ZHU, H.; WANG, R. An Efficient Nickel-Catalyzed Asymmetric Oxazole-Forming Ugi- Type Reaction for the Synthesis of Chiral Aryl-Substituted THIQ Rings. Chemistry – A European Journal, v. 23, n. 29, p. 6974–6978, 2017. 120 MACRAE, C. F.; EDGINGTON, P. R.; MCCABE, P.; PIDCOCK, E.; SHIELDS, G. P.; TAYLOR, R.; TOWLER, M.; STREEK, J. Van de. Mercury: visualization and analysis of crystal structures. Journal of Applied Crystallography, v. 39, n. 3, p. 453–457, 2006. MAUGERI, D. A.; CANNATA, J. J. B.; CAZZULO, J.-J. Glucose metabolism in Trypanosoma cruzi. Essays in Biochemistry, v. 51, p. 15–30, 2011. MENNA-BARRETO, R. F. S.; BEGHINI, D. G.; FERREIRA, A. T. S.; PINTO, A. V.; DE CASTRO, S. L.; PERALES, J. A proteomic analysis of the mechanism of action of naphthoimidazoles in Trypanosoma cruzi epimastigotes in vitro. Journal of Proteomics, v. 73, n. 12, p. 2306–2315, 2010. MENNA-BARRETO, R. F. S.; CORRÊA, J. R.; CASCABULHO, C. M.; FERNANDES, M. C.; PINTO, A. V.; SOARES, M. J.; CASTRO, S. L. D. Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology, v. 136, n. 5, p. 499–510, 2009. MENNA-BARRETO, R. F. S.; CORRÊA, J. R.; PINTO, A. V.; SOARES, M. J.; DE CASTRO, S. L. Mitochondrial disruption and DNA fragmentation in Trypanosoma cruzi induced by naphthoimidazoles synthesized from β-lapachone. Parasitology Research, v. 101, n. 4, p. 895–905, 2007. MENNA-BARRETO, R. F. S.; HENRIQUES-PONS, A.; PINTO, A. V.; MORGADO- DIAZ, J. A.; SOARES, M. J.; DE CASTRO, S. L. Effect of a β-lapachone-derived naphthoimidazole on Trypanosoma cruzi: identification of target organelles. Journal of Antimicrobial Chemotherapy, v. 56, n. 6, p. 1034–1041, 2005. MITSCHKE, N.; ERUÇAR, G.; FSADNI, M. H.; ROBERTS, A. R.; SADEGHI, M. M.; GOLDING, B. T.; CHRISTOFFERS, J.; WILKES, H. Enantiopure 2,9-Dideuterodecane – Preparation and Proof of Enantiopurity. European Journal of Organic Chemistry, v. 2021, n. 27, p. 3854–3863, 2021. MORTIER, J. Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. John Wiley & Sons, 2015. Google-Books-ID: oEI1CAAAQBAJ. MOURA, K. C. G.; CARNEIRO, P. F.; PINTO, M. do C. F. R.; DA SILVA, J. A.; MALTA, V. R. S.; DE SIMONE, C. A.; DIAS, G. G.; JARDIM, G. A. M.; CANTOS, J.; COELHO, T. S.; DA SILVA, P. E. A.; DA SILVA, E. N. 1,3-Azoles from ortho- naphthoquinones: Synthesis of aryl substituted imidazoles and oxazoles and their potent activity against Mycobacterium tuberculosis. Bioorganic & Medicinal Chemistry, v. 20, n. 21, p. 6482–6488, 2012. MURPHY, M. P. How mitochondria produce reactive oxygen species. The Biochemical Journal, v. 417, n. 1, p. 1–13, 2009. Neglected tropical diseases. 2021. Disponível em: <https://www.who.int/news- room/questions-and-answers/item/neglected-tropical-diseases>. Acesso em: 18 abr. 2021. NICOLETTI, C. D.; FARIA, A. F. M.; DE SÁ HADDAD QUEIROZ, M.; DOS SANTOS GALVÃO, R. M.; SOUZA, A. L. A.; FUTURO, D. O.; FARIA, R. X.; FERREIRA, V. F. Synthesis and biological evaluation of β-lapachone and nor-β-lapachone complexes 121 with 2-hydroxypropyl-β-cyclodextrin as trypanocidal agents. Journal of Bioenergetics and Biomembranes, v. 52, n. 3, p. 185–197, 2020. OHTA, S.; MATSUKAWA, M.; OHASHI, N.; NAGAYAMA, K. Facile Syntheses of 2- Ethenyl-1H-imidazoles. Synthesis, v. 01, n. 1, p. 78–81, 1990. ONO, A.; MARUYAMA, T.; SUZUKI, N. Hydrogenation of Diaryl and Arylalkyl Ketones by Sodium Borohydride and Aluminum Chloride. Synthetic Communications, v. 17, n. 8, p. 1001–1005, 1987. ORTIZ, S.; ZULANTAY, I.; SOLARI, A.; BISIO, M.; SCHIJMAN, A.; CARLIER, Y.; APT, W. Presence of Trypanosoma cruzi in pregnant women and typing of lineages in congenital cases. Acta Tropica, v. 124, n. 3, p. 243–246, 2012. PASSOS, L. A. C.; GUARALDO, A. M. A.; BARBOSA, R. L.; DIAS, V. L.; PEREIRA, K. S.; SCHMIDT, F. L.; FRANCO, R. M. B.; ALVES, D. P. Sobrevivência e infectividade do Trypanosoma cruzi na polpa de açaí: estudo in vitro e in vivo. Epidemiologia e Serviços de Saúde, v. 21, n. 2, p. 223–232, 2012. PATTERSON, J. S.; GUHL, F. 5 - Geographical Distribution of Chagas Disease. Em: TELLERIA, J.; TIBAYRENC, M. (Eds.). American Trypanosomiasis. London: Elsevier, 2010. p. 83–114. PEPIN, J.; MILORD, F.; MPIA, B.; MEURICE, F.; ETHIER, L.; DEGROOF, D.; BRUNEEL, H. An open clinical trial of nifurtimox for arseno-resistant Trypanosoma brucei gambiense sleeping sickness in central Zaire. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 83, n. 4, p. 514–517, 1989. PÉREZ-MOLINA, J. A.; PÉREZ-AYALA, A.; MORENO, S.; FERNÁNDEZ- GONZÁLEZ, M. C.; ZAMORA, J.; LÓPEZ-VELEZ, R. Use of benznidazole to treat chronic Chagas’ disease: a systematic review with a meta-analysis. Journal of Antimicrobial Chemotherapy, v. 64, n. 6, p. 1139–1147, 2009. PETERS, J. W.; BERATAN, D. N.; BOTHNER, B.; DYER, R. B.; HARWOOD, C. S.; HEIDEN, Z. M.; HILLE, R.; JONES, A. K.; KING, P. W.; LU, Y.; LUBNER, C. E.; MINTEER, S. D.; MULDER, D. W.; RAUGEI, S.; SCHUT, G. J.; SEEFELDT, L. C.; TOKMINA-LUKASZEWSKA, M.; ZADVORNYY, O. A.; ZHANG, P.; ADAMS, M. W. A new era for electron bifurcation. Current Opinion in Chemical Biology, v. 47, p. 32–38, 2018. PINHEIRO, M. P.; EMERY, F. da S.; NONATO, M. C. Target Sites for the Design of Anti-trypanosomatid Drugs Based on the Structure of Dihydroorotate Dehydrogenase. Current Pharmaceutical Design, v. 19, n. 14, p. 2615–2627, 2013. PINTO, A. V.; PINTO, C. N.; PINTO, M. do C.; RITA, R. S.; PEZZELLA, C. A.; DE CASTRO, S. L. Trypanocidal activity of synthetic heterocyclic derivatives of active quinones from Tabebuia sp. Arzneimittel-Forschung, v. 47, n. 1, p. 74–79, 1997. PINTO, C. N.; DANTAS, A. P.; DE MOURA, K. C.; EMERY, F. S.; POLEQUEVITCH, P. F.; PINTO, M. C.; DE CASTRO, S. L.; PINTO, A. V. Chemical reactivity studies with naphthoquinones from Tabebuia with anti-trypanosomal efficacy. Arzneimittel- Forschung, v. 50, n. 12, p. 1120–1128, 2000. 122 RAISSI, H.; YOOSEFIAN, M.; MOLLANIA, F. Hydrogen bond studies in substituted imino-acetaldehyde oxime. Computational and Theoretical Chemistry, v. 996, p. 68– 75, 2012. RAO, K. V.; MCBRIDE, T. J.; OLESON, J. J. Recognition and Evaluation of Lapachol as an Antitumor Agent1,2. Cancer Research, v. 28, n. 10, p. 1952–1954, 1968. RASSI, A.; RASSI, A.; MARIN-NETO, J. A. Chagas disease. Lancet (London, England), v. 375, n. 9723, p. 1388–1402, 2010. RODRÍGUEZ-BECERRA, J.; OLEA-AZAR, C.; ZAPATA-TORRES, G.; MENDIZABAL, F.; GONZÁLES, M.; CERECETTO, H. Theoretical EPR study of Nitroindazoles: 3-alkoxy, 3-hydroxy and 3-oxo derivatives. Journal of the Brazilian Chemical Society, v. 21, p. 1944–2010, 2010. SADABS. Madison, WI, USABruker AXS Inc., , 2001. SAINT. Madison, WI, USABruker AXS Inc., , 2007. SALAS, C.; TAPIA, R. A.; CIUDAD, K.; ARMSTRONG, V.; ORELLANA, M.; KEMMERLING, U.; FERREIRA, J.; MAYA, J. D.; MORELLO, A. Trypanosoma cruzi: activities of lapachol and alpha- and beta-lapachone derivatives against epimastigote and trypomastigote forms. Bioorganic & Medicinal Chemistry, v. 16, n. 2, p. 668–674, 2008. SÁNCHEZ-VIESCA, F.; BERROS, M.; GÓMEZ, R. A Complete and Sustained Clemmensen Reduction Mechanism. American Journal of Chemistry, v. 8, n. 1, p. 8– 12, 2018. SANTOS, F. da S. Dos; RAMOS, K. da S.; BRUM, G. G. G.; GAIA, I. A.; PEREIRA, S. S. P. De; VIEIRA, A. da L. Doença de chagas e sua transmissão pelo açaí: Uma revisão bibliográfica. v. 2, p. 2128–2144, 2019. SANTOS, S. R. Dos. A atual classificação do antigo gênero Tabebuia (Bignoniaceae), sob o ponto de vista da anatomia da madeira. Balduinia, n. 58, p. 10–24, 2017. SANTOS, V.; MORAES, M.; PESSOA, C.; COSTA, M.; GONSALVES, A.; ARAÚJO, C. Cytotoxicity Activity of Semisynthetic Naphthoquinone-1-oximes against Cancer Cell Lines. Journal of Chemical and Pharmaceutical Research, v. 8, p. 202, 2016. SARKAR, S.; DEVI, N.; PORASHAR, B.; RUIDAS, S.; SAIKIA, A. K. Stereoselective Synthesis of 4-O-Tosyltetrahydropyrans via Prins Cyclization Reaction of Enol Ethers. SynOpen, v. 03, n. 1, p. 36–45, 2019. SHAO, Y.; MOLNAR, L. F.; JUNG, Y.; KUSSMANN, J.; OCHSENFELD, C.; BROWN, S. T.; GILBERT, A. T. B.; SLIPCHENKO, L. V.; LEVCHENKO, S. V.; O’NEILL, D. P.; DISTASIO JR, R. A.; LOCHAN, R. C.; WANG, T.; BERAN, G. J. O.; BESLEY, N. A.; HERBERT, J. M.;LIN, C. Y.; VOORHIS, T. V.; CHIEN, S. H.; SODT, A.; STEELE, R. P.; RASSOLOV, V. A.; MASLEN, P. E.; KORAMBATH, P. P.; ADAMSON, R. D.; AUSTIN, B.; BAKER, J.; BYRD, E. F. C.; DACHSEL, H.; DOERKSEN, R. J.; DREUW, A.; DUNIETZ, B. D.; DUTOI, A. D.; FURLANI, T. R.; GWALTNEY, S. R.; HEYDEN, A.; HIRATA, S.; CHAO-PING, H.; KEDZIORA, G.; 123 KHALLIULIN, R. Z.; KLUNZINGER, P.; LEE, A. M.; LEE, M. S.; LIANG, W.; LOTAN, I.; NAIR, N.; PETERS, B.; PROYNOV, E. I.; PIENIAZEK, P. A.; RHEE, Y. M.; RITCHIE, J.; ROSTA, E.; SHERRILL, C. D.; SIMMONETT, A. C.; SUBOTNIK, J. E.; WOODCOCK III, H. L.; ZHANG, W.; BELL, A. T.; CHAKRABORTY, A. K.; CHIPMAN, D. M.; KEIL, F. J.; WARSHEL, A.; HEHRE, W. J.; SCHAEFER III, H. F.; KONG, J.; KRYLOV, A. I.; GILL, P. M. W. ; HEAD-GORDON, M. Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics, v. 8, n. 27, p. 3172–3191, 2006. SHELDRICK, G. M. A short history of SHELX. Acta Crystallographica Section A: Foundations of Crystallography, v. 64, n. 1, p. 112–122, 2008. SHELDRICK, G. M. Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, v. 71, n. 1, p. 3–8, 2015. SHIKANAI-YASUDA, M. A.; CARVALHO, N. B. Oral transmission of Chagas disease. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, v. 54, n. 6, p. 845–852, 2012. SILVA, A. M. Da; ARAÚJO-SILVA, L.; BOMBAÇA, A. C. S.; MENNA-BARRETO, R. F. S.; RODRIGUES-SANTOS, C. E.; FERREIRA, A. B. B.; CASTRO, S. L. De. Synthesis and biological evaluation of N-alkyl naphthoimidazoles derived from β- lapachone against Trypanosoma cruzi bloodstream trypomastigotes. Medicinal Chemistry Communications, v. 8, n. 5, p. 952–959, 2017. SILVA, A. R. Da; SILVA, A. M. Da; FERREIRA, A. B. B.; BERNARDES, B. de O.; COSTA, R. L. Da. Synthesis of imidazole derivatives from β-lapachone and related compounds using microwave and supported reagents. Journal of the Brazilian Chemical Society, v. 19, p. 1230–1233, 2008. SILVA, L. A. Síntese de naftoimidazóis derivados de β-lapachona com potenciais atividades biológicas. 2016. Disponível em: <https://tede.ufrrj.br/handle/jspui/1713>. SILVA, L.; HOTTES, E.; DA SILVA, A.; FREIRE, L.; GUEDES, G.; FERREIRA, A. New Pair of 2-Amino-naphthoxazoles Derived from β-Lapachone: Synthesis, Spectral Evaluation and Crystal Structure. Journal of the Brazilian Chemical Society, v. 32, n. 5, p. 1009–1016, 2021. SILVERS, M. A.; DEJA, S.; SINGH, N.; EGNATCHIK, R. A.; SUDDERTH, J.; LUO, X.; BEG, M. S.; BURGESS, S. C.; DEBERARDINIS, R. J.; BOOTHMAN, D. A.; MERRITT, M. E. The NQO1 bioactivatable drug, β-lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism. The Journal of Biological Chemistry, v. 292, n. 44, p. 18203–18216, 2017. SOUZA, W. De. Doenças negligenciadas. [s.l: s.n.]. ISBN: 978-85-85761-30-1. Disponível em: <http://www.abc.org.br/IMG/pdf/doc-199.pdf> SUETH-SANTIAGO, V.; DECOTE-RICARDO, D.; MORROT, A.; FREIRE-DE- LIMA, C. G.; LIMA, M. E. F. Challenges in the chemotherapy of Chagas disease: Looking for possibilities related to the differences and similarities between the parasite and host. World Journal of Biological Chemistry, v. 8, n. 1, p. 57–80, 2017. 124 TAKASHIMA, E.; INAOKA, D. K.; OSANAI, A.; NARA, T.; ODAKA, M.; AOKI, T.; INAKA, K.; HARADA, S.; KITA, K. Characterization of the dihydroorotate dehydrogenase as a soluble fumarate reductase in Trypanosoma cruzi. Molecular and Biochemical Parasitology, v. 122, n. 2, p. 189–200, 2002. VERCESI, A. E.; BERNARDES, C. F.; HOFFMANN, M. E.; GADELHA, F. R.; DOCAMPO, R. Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ. The Journal of Biological Chemistry, v. 266, n. 22, p. 14431–14434, 1991. VERMA, G.; MARELLA, A.; SHAQUIQUZZAMAN, M.; AKHTAR, M.; ALI, M. R.; ALAM, M. M. A review exploring biological activities of hydrazones. Journal of Pharmacy & Bioallied Sciences, v. 6, n. 2, p. 69–80, 2014. VESSECCHI, R.; EMERY, F. S.; LOPES, N. P.; GALEMBECK, S. E. Electronic structure and gas-phase chemistry of protonated α- and β-quinonoid compounds: a mass spectrometry and computational study. Rapid Communications in Mass Spectrometry, v. 27, n. 7, p. 816–824, 2013. WANG, Z. Comprehensive Organic Name Reactions and Reagents. [s.l: s.n.]. ISBN: 9780470638859. Disponível em: <https://onlinelibrary.wiley.com/doi/book/10.1002/9780470638859>. World Chagas Disease Day 2021. 2021. Disponível em: <https://www.who.int/campaigns/world-chagas-disease-day/2021>. Acesso em: 1 jun. 2022. WORLD HEALTH ORGANIZATION. World health statistics 2018: monitoring health for the SDGs, sustainable development goals. World Health Organization, 2018. Disponível em: <https://apps.who.int/iris/handle/10665/272596>. Acesso em: 15 jul. 2022. ZAIDEL, E. J.; FORSYTH, C. J.; NOVICK, G.; MARCUS, R.; RIBEIRO, A. L. P.; PINAZO, M.-J.; MORILLO, C. A.; ECHEVERRÍA, L. E.; SHIKANAI-YASUDA, M. A.; BUEKENS, P.; PEREL, P.; MEYMANDI, S. K.; RALSTON, K.; PINTO, F.; SOSA- ESTANI, S. COVID-19: Implications for People with Chagas Disease. Global Heart, v. 15, n. 1, p. 69, 2020.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/74843/2022%20-%20Leonardo%20Araujo%20Silva.Pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6941
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2023-09-22T16:25:07Z No. of bitstreams: 1 2022 - Leonardo Araujo Silva.Pdf: 6583512 bytes, checksum: 01dc59cc48c623c582996724377f1518 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-09-22T16:25:07Z (GMT). No. of bitstreams: 1 2022 - Leonardo Araujo Silva.Pdf: 6583512 bytes, checksum: 01dc59cc48c623c582996724377f1518 (MD5) Previous issue date: 2022-08-08eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Leonardo Araujo Silva.Pdf2022 - Leonardo Araujo Silva6.43 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.