Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10195
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCruz, Wellington Oliveira da
dc.date.accessioned2023-12-21T18:58:57Z-
dc.date.available2023-12-21T18:58:57Z-
dc.date.issued2019-08-06
dc.identifier.citationCRUZ, Wellington Oliveira. Caracterização bioquímica de proteases digestivas em larvas de Alphitobius diaperinus (Coleoptera: Tenebrionidae). 2019. 168 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10195-
dc.description.abstractO Alphitobius diaperinus é considerado uma praga importante em ambiente aviário. O estudo do seu comportamento, hábitos alimentares e enzimas digestivas, podem indicar alvos importantes no seu controle. O controle do A. diaperinus é considerado difícil, seus inimigos naturais são pouco conhecidos e sendo o uso de inseticidas químico o principal método de controle. Proteases digestivas de insetos catalisam a produção de peptídeos e aminoácidos a partir de uma dieta protéica e são encontradas na região do intestino médio dos insetos. As atividades proteolíticas no trato digestivo das larvas e adultos de A. diperinus foram determinadas utilizando azocaseína e substratos especificos após alimentarem-se de diferentes dietas. O extrato bruto do homogeneizado do trato digestivo das larvas A. diaperinus mostrou atividade sobre azocaseína e Abz-Phe-Arg-MCA e foi inibida em mais de 50% pelo inibidor da cisteíno protease E-64 e foi ativado por DTT 2,0 mM em pH ácido. Nove bandas foram detectadas com atividade proteolítica e massa molecular na faixa 10 kDa – 100 kDa através de zimograma, utilizando gelatina 0,1% como substrato. Diferentes classes de proteases foram identificadas na presença de inibidores de proteases clássicos como E-64, iodoacetamida e ácido iodoacético, PMSF, SBTI, aprotinina e TLCK. Foi observado maior nível de atividade proteolítica em pHs entre 5 e 6. Embora tenham sido observadas combinações de proteases de serina e cisteína, as proteases ácidas apresentaram níveis mais altos de atividade proteolítica. O cálcio aumentou a atividade proteasica em concentrações maiores que 2,0 mM. Análises de nano-HPLC bidimensional e ESI-MS/MS resultaram na identificação de proteases como tripsina, catepsinas, metaloproteases, aminopeptidases, peptidases e dipeptidases. Foi observado alto potencial inibitório de diferentes séries de imidazolonas sobre atividade cisteíno proteases, a qual pode ser utilizada como ferramentas de controle do A. diaperinus.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectInsetopor
dc.subjectDietaspor
dc.subjectProteasespor
dc.subjectAlphitobius diaperinuspor
dc.subjectInsecteng
dc.subjectDietseng
dc.subjectProteaseseng
dc.titleCaracterização bioquímica de proteases digestivas em larvas de Alphitobius diaperinus (Coleoptera: Tenebrionidae)por
dc.title.alternativeBiochemical caracterization of digestive proteases in Alphitobius diaperinus (Coleoptera: Tenebrionidae) larvaeeng
dc.typeTesepor
dc.description.abstractOtherAlphitobius diaperinus is considered an important issue in the avian environment. Studying your behavior, eating habits and digestive enzymes may indicate important targets in your control. Control of A. diaperinus is considered difficult, its natural enemies are little known, and the use of chemical insecticides is the main method of control. Insect digestive proteases catalyze the production of peptides and amino acids from a protein diet and they are found in the midgut region of insects. Proteolytic activities in the digestive tract of A. diperínus larvae and adults were determined using azocasein and specific substrates after feeding on different diets. The crude extract of the digestive tract of A. diaperinus larvae showed activity on azocasein and Abz-Phe-Arg-MCA. It was inhibited by more than 50% by E-64 and activated by 2.0 mM DTT at acid pH. Nine bands were detected with proteolytic activity and molecular mass in the range 10 kDa - 100 kDa through zymogram, using 0.1% gelatin as substrate. Different classes of proteases were identified in the presence of classical protease inhibitors such as E-64, iodoacetamide and iodoacetic acid, PMSF, SBTI, aprotinin and TLCK. A higher level of proteolytic activity was observed at pHs between 5 and 6. Although combinations of serine and cysteine proteases have been observed, acid proteases showed higher levels of proteolytic activity. Calcium ion increased the protease activity at concentrations greater than 2.0 mM. Two-dimensional nano-HPLC and ESI-MS / MS analyzes resulted in the identification of proteases such as tripine, cathepsins, metalloproteases, aminopeptidases, peptidases and dipeptidases. High inhibitory potential of different series of imidazolone on cysteine protease was observed, what can be used as control tools of A. diaperinus.eng
dc.contributor.advisor1Pontes, Emerson Guedes
dc.contributor.advisor1ID045.534.107-96por
dc.contributor.referee1Pontes, Emerson Guedes
dc.contributor.referee2Souza, Cristiane Martins de
dc.contributor.referee3Santos, Danielle M. P. de Oliveira
dc.contributor.referee4Mesquita, Rafael Dias
dc.contributor.referee5Sant`Anna, Carlos Mauricio
dc.creator.ID075.736.047-50por
dc.creator.Latteshttp://lattes.cnpq.br/5335761763028967por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesAHMAD, Z.; SALEEMUDDIN, M.; SIDDI, M. Purification and characterization of three alkaline proteases from the gut of the larva of army worm, Spodoptera litura. Insect Biochemistry, v. 10, n. 6, p. 667–673, 1980. AHMEDANI, M. S.; HAQUE, M. I.; AFZAL, S. N.; ASLAM, M.; NAZ, S. Varietal changes in nutritional composition of wheat kernel (Triticum aestivum L.) caused by khapra beetle infestation. Pak. J. Bot. 41 (3), pp: 1511-1519. 2009. ALARCÓN F. J.; MARTÍNEZ, T. F.; BARRANCO, P. Digestive proteases during development of larvae of red palm weevil, Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). Insect Biochemistry and Molecular Biology, v. 32, n. 3, p. 265–274, 2002. ALBRECHT, J.; TALBOT, M.; KIMELBERG, H. K.; ASCHNER, M. The role of sulfhydryl groups and calcium in the mercuric chloride-induced inhibition of glutamate uptake in rat primary astrocyte cultures. Brain Research, v. 607, n. 1, p. 249–254, 1993. ALFONSO-RUBÍ, J.; ORTEGO, F.; CASTAÑERA, P.; CARBONERO, P.; DÍAZ, I. Transgenic Expression of Trypsin Inhibitor CMe from Barley in Indica and Japonica Rice, Confers Resistance to the Rice Weevil Sitophilus Oryzae. Transgenic Research, v. 12, n. 1, p. 23–31, 2003. AMARAL, P. F. G. Novas adequações avícolas sugeridas pelo Ministério de Estado da Agricultura, Pecuária e Abastecimento. Umuarama, Informativo Técnico, 8. ed. Agro Industrial Parati Ltda, 4 p, 2010. ARENDS, J. J. Control, management of the litter beetle. Poult. Dig., p. 172–176, 1987. AXTELL, R. C. Poultry Integrated Pest Management: Status and Future. Integrated Pest Management Reviews, v. 4, n. 1, p. 53–73, 1999. AZEVEDO, L. L. DE. Síntese e avaliação farmacológica de novas imidazolonas planejadas como inibidoras de cisteíno proteases para o tratamento da leucemia. , 2013. Disponível em: <https://tede.ufrrj.br/handle/jspui/2747>. Acesso em: 22/8/2019. BAKER, B. R.; HURLBUT, J. A. Irreversible enzyme inhibitors. CXIV. Proteolytic enzymes. 4. Additional active-site-directed irreversible inhibitors of .alpha.- chymotrypsin derived from phenoxyacetamides bearing a terminal sulfonyl fluoride. Journal of Medicinal Chemistry, v. 11, n. 2, p. 241–245, 1968. BAKER, J. E.; WOO, S. M. Properties and specificities of a digestive aminopeptidase from larvae of Attagenus megatoma (Coleoptera: dermestidae). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, v. 69, n. 2, p. 189–193, 1981. BAKER, J. E.; WOO, S. M.; MULLEN, M. A. Distribution of proteinases and carbohydrases in the midgut of larvae of the sweetpotato weevil Cylas formicarius elegantulus and response of proteinases to inhibitors from sweet potato. Entomologia Experimentalis et Applicata, v. 36, n. 2, p. 97–105, 1984. BARRETT, A. J. Classification of peptidases: Proteolytic enzymes: Serine and Cysteine Peptidases. In: Methods in Enzymology. (ed. BARRETT AJ). Academic Press, San Diego. 244: p.1-15, 1994. BARRETT. A. J.; Proteolytic enzyme: nomenclature and classification. In BEYNON, R., BONDE, J. S. Proteolytic enzyme: a practical approach (2ª ed). Oxford University Press, Oxford, 1-21, 2001. BARRETT, A. J.; WOESSNER, J. F.; RAWLINGS, N. D. Handbook of Proteolytic Enzymes. Elsevier, 2012. BARTH, R. Estudos anatômicos e histológicos sôbre a subfamília Triatominae (Heteroptera, Reduviidae): IV. parte: o complexo das glândulas salivares de Triatoma infestans. Memórias do Instituto Oswaldo Cruz, v. 52, n. 3–4, p. 517–583, 1954. BAYÉS, A.; SONNENSCHEIN, A.; DAURA, X.; VENDRELL, J.; AVILES, F. X. Procarboxypeptidase A from the insect pest Helicoverpa armigera and its derived enzyme. Two forms with new functional properties. European Journal of Biochemistry, v. 270, n. 14, p. 3026–3035, 2003. BAYER HEALTH CARE, Manual de Biossegurança Bayer. 2010. BAZAN, J. F., FLETTERICK, R. J. Structural and catalytic models of trypsin-like viral proteases. Semin. Vir. vol.1, p:311-322, 1990. BEN-MAHMOUD, S.; RAMOS, J. E.; SHATTERS, R. Gl. Cloning and characterization of a basic cysteine-like protease (cathepsin L1) expressed in the gut of larval Diaprepes abbreviatus L. (Coleoptera: Curculionidae). Journal of Insect Physiology, v. 72, p. 1–13, 2015. BODE, W., SCHWAGER, P. The Refined Crystal Structure of Bovine beta- Tripsin at 1.8 A Resolution II. Crystallographic Refinement, Calcium Binding Site, Benzamide Binding Site and Active Site at pH 7.0. FEBS Letters, 56, pp: 139- 143, (1975). BOLTER, C. J.; LATOSZEK‐GREEN, M. Effect of chronic ingestion of the cysteine proteinase inhibitor, E-64, on Colorado potato beetle gut proteinases. Entomologia Experimentalis et Applicata, v. 83, n. 3, p. 295–303, 1997. BONATTI, A. R., MONTEIRO, M. C. G. B. Biosseguridade em granjas avícolas de matrizes. INTELLECTUS – Revista Acadêmica Digital do Grupo POLIS Educacional, Ano-04, Número 05. Jaguariúna, SP, 2008. BOOTH, N. H., MCDONALD L., E. Farmacologia e Terapêutica em Veterinária, Rio de Janeiro, ed. Guanabara Koogan, p. 997,. 1988. BOOTH, R. G.; COX, M. L.; MADGE, R. B. Q. G. IIE guides to insects of importance to man. 3. Coleoptera. CAB International, 1990. BORZOUI, E.; NASERI, B.; RAHIMI NAMIN, F. Different diets affecting biology and digestive physiology of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). Journal of Stored Products Research, v. 62, p. 1–7, 2015. BOTOS, I.; MEYER, E.; NGUYEN, M. The structure of an insect chymotrypsin. Journal of Molecular Biology, v. 298, n. 5, p. 895–901, 2000. BOUAYAD, N.; RHARRABE, K.; NOUROUTI, N.; SAYAH, F. Effects of different food commodities on larval development and α-amylase activity of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Journal of Stored Products Research, v. 44, p. 373–378, 2008. BOWN, D. P.; WILKINSON, H. S.; GATEHOUSE, J. A. Regulation of expression of genes encoding digestive proteases in the gut of a polyphagous lepidopteran larva in response to dietary protease inhibitors. Physiological Entomology. v. 29, n. 3, p. 278– 290, 2004a. BOWN, D. P.; WILKINSON, H. S.; JONGSMA, M. A.; GATEHOUSE, J. A. Characterisation of cysteine proteinases responsible for digestive proteolysis in guts of larval western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris. Insect Biochemistry and Molecular Biology, v. 34, n. 4, p. 305–320, 2004b. BOZIC, N.; DOJNOV, B.; MARGETIC, A. Characterization of endopeptidases from the midgut of Morimus funereus (Coleoptera : Cerambycidae) larvae. Archives of Biological Sciences, v. 60, p. 403–409, 2008. BOZIĆ, N.; VUJCIĆ, Z.; NENADOVIĆ, V.; IVANOVIĆ, J. Partial purification and characterization of midgut leucyl aminopeptidase of Morimus funereus (Coleoptera: Cerambycidae) larvae. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, v. 134, n. 2, p. 231–241, 2003. BREDDAM, K. Serine carboxypeptidases. A review. Carlsberg Research Communications, v. 51, n. 2, p. 83, 1986. BRIEGEL, HANS; LEA, ARDEN O. Relationship between protein and proteolytic activity in the midgut of mosquitoes. Journal of Insect Physiology, v. 21, n. 9, p. 1597- 1604, 1975. BRIOSCHI, D.; NADALINI, L. D.; BENGTSON, M. H. General up regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor. Insect Biochemistry and Molecular Biology, v. 37, n. 12, p. 1283–1290, 2007. BROADWAY, R. M. Dietary regulation of serine proteinases that are resistant to serine proteinase inhibitors. Journal of Insect Physiology, v. 43, n. 9, p. 855–874, 1997. BROADWAY, R. M.; DUFFEY, S. S. The effect of dietary protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. Journal of Insect Physiology, v. 32, n. 8, p. 673–680, 1986. BROMME, D.; NALLASETH, F. S.; TURK, B. Production and activation of recombinant papain-like cysteine proteases. Methods (San Diego, Calif.), v. 32, n. 2, p. 199–206, 2004. BRUNE, A.; DIETRICH, C. The Gut Microbiota of Termites: Digesting the Diversity in the Light of Ecology and Evolution. Annual Review of Microbiology, v. 69, p. 145– 166, 2015. BRYANT, D. T.; ANDREWS, P. High-affinity binding of Ca2+ to bovine alphalactalbumin in the absence and presence of EGTA. Biochemical Journal, v. 220, n. 2, p. 617–620, 1984. BUCHON, N.; OSMAN, D. All for one and one for all: Regionalization of the Drosophila intestine. Insect Biochemistry and Molecular Biology, v. 67, p. 2–8, 2015. BUISSON, G.; DUÉE, E.; HASER, R.; PAYAN, F. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. The EMBO journal, v. 6, n. 13, p. 3909–3916, 1987. BURMEISTER GETZ, E.; XIAO, M.; CHAKRABARTY, T.; COOKE, R.; SELVIN, P. R. A Comparison between the Sulfhydryl Reductants Tris(2-carboxyethyl) phosphine and Dithiothreitol for Use in Protein Biochemistry. Analytical Biochemistry 273,p.73– 80, 1999. BLAKEMORE, D.; WILLIAMS, S.; LEHANE, M. J. Protein stimulation of trypsin secretion from the opaque zone midgut cells of Stomoxys calcitrans. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, v. 110, n. 2, p. 301-307, 1995. BLOW, D. M.; BIRKTOFT, J. J.; HARTLEY, B. S. Role of a Buried Acid Group in the Mechanism of Action of Chymotrypsin. Nature, v. 221, n. 5178, p. 337–340, 1969. BLUNDELL, T. L.; COOPER, J. B.; ŠALI, A.; ZHU, Z. Comparisons of the Sequences, 3-D Structures and Mechanisms of Pepsin-Like and Retroviral Aspartic Proteinases. In: B. M. Dunn (Org.); Structure and Function of the Aspartic Proteinases: Genetics, Structures, and Mechanisms, Advances in Experimental Medicine and Biology. p.443–453, 1991. Boston, MA: Springer US. Disponível em: <https://doi.org/10.1007/978-1-4684-6012-4_57>. Acesso em: 22/8/2019. CADEL, S.; FOULON, T.; VIRON, A. Aminopeptidase B from the rat testis is a bifunctional enzyme structurally related to leukotriene-A4 hydrolase. Proceedings of the National Academy of Sciences, v. 94, n. 7, p. 2963–2968, 1997. CAMPOS, F. A. P.; XAVIER-FILHO, J.; SILVA, C. P.; ARY, M. B. Resolution and partial characterization of proteinases and α-amylases from midguts of larvae of the bruchid beetle Callosobruchus maculatus (F.). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, v. 92, n. 1, p. 51–57, 1989. CASSIA, S. D., SAKAUCHI, D., ANTONIA, P. E. A., LIMA, S. N., IOURTOV, D., RAW, I., SALDANHA, F. K. Purification and characterization of aprotinin from porcine lungs. Biotechnol Lett 30, pp: 807–812, 2008. CHAPMAN, R. F. Structure of the digestive system. In Comprehensive Insect Physiology. Comprehensive Insect Physiology, Volume 4: Regulation: Digestion, Nutrition, Excretion. Elsevier, 1985. CHAPMAN, R. F.; CHAPMAN, REGINALD FREDERICK. The Insects: Structure and Function. Cambridge University Press, 1998. CHARLES, J. L., BONADÈ, M. B., AUGUSTIN, S., PILATE, G., DUMANOIS, V. L.T., DELPLANQUE, A., CORNU, D., JOUANIN, L. Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Molecular Breeding 1, pp: 319-328, 1995. CHERNAKY, A. M., ALMEIDA, L. M. Morfologia dos Estágios Imaturos e do Adulto de Alphitobius diaperinus (Panzer) (Coleoptera:Tenebrionidea). Revista brasileira zoologia, vol. 18, n.2, p.351-363, 2001. CHERNAKI-LEFFER, A. M.; BIESDORF, S. M.; ALMEIDA, L. M.; LEFFER, E. V. B.; VIGNE, F. Isolamento de enterobactérias em Alphitobius diaperinus e na cama de aviários no oeste do estado do Paraná, Brasil. Brazilian Journal of Poultry Science, v. 4, n. 3, p. 243–247, 2002. CHERNAKI-LEFFER, A. M.; SOSA-GÓMEZ, D. R.; ALMEIDA, L. M.; LOPES, I. DE O. N. Susceptibility of Alphitobius diaperinus (Panzer) (Coleoptera, Tenebrionidae) to cypermethrin, dichlorvos and triflumuron in southern Brazil. Revista Brasileira de Entomologia, v. 55, n. 1, p. 125–128, 2011. CHIANCONE, E.; DRAKENBERG, T.; TELEMAN, O.; FORSÉN, S. Dynamic and structural properties of the calcium binding site of bovine serine proteases and their zymogens: A multinuclear nuclear magnetic resonance and stopped-flow study. Journal of Molecular Biology, v. 185, n. 1, p. 201–207, 1985. CHOE, Y.; LEONETTI, F.; GREENBAUM, D. C. Substrate Profiling of Cysteine Proteases Using a Combinatorial Peptide Library Identifies Functionally Unique Specificities. Journal of Biological Chemistry, v. 281, n. 18, p. 12824–12832, 2006. CHO, W. L.; TSAO, S. M.; HAYS, A. R., WALTER, R.; CHEN, J. S.; SNIGIREVSKAYA, E. S.; RAIKHEL, A. S. Mosquito cathepsin B-like protease involved in embryonic degradation of vitellin is produced as a latent extraovarian precursor. Journal of Biological Chemistry, 274 (19), 13311-13321, 1999. CHOUGULE, N. P.; DOYLE, E.; FITCHES, E.; GATEHOUSE, J. A. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays. Journal of Insect Physiology, v. 54, n. 3, p. 563–572, 2008. CHRISTELLER, J. T.; SHAW, B. D.; GARDINER, S. E.; DYMOCK, J. Partial purification and characterization of the major midgut proteases of grass grub larvae (Costelytra zealandica, Coleoptera: Scarabaeidae). Insect Biochemistry, v. 19, n. 3, p. 221–231, 1989. COELHO, F. S.; SANCHES, A. P. C.; PINTO, F. C. R.; CARVALHO, T.; KIYOTA, S. Identificação de inibidores de serinoproteases nas frações protéicas de sementes de Senna occidentalis como os prováveis fatores antinutricionais tóxicos para animais. São Paulo, p. 6, 2006. COLLINS, P. R.; STACK, C. M.; O’NEILL, S. M. Cathepsin L1, the major protease involved in liver fluke (Fasciola hepatica) virulence: propetide cleavage sites and autoactivation of the zymogen secreted from gastrodermal cells. The Journal of Biological Chemistry, v. 279, n. 17, p. 17038–17046, 2004. CONESA, A.; GÖTZ, S.; GARCÍA-GÓMEZ, J. M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, v. 21, n. 18, p. 3674–3676, 2005. COOPER, J. B. Aspartic proteinases in disease: a structural perspective. Current Drug Targets, v. 3, n. 2, p. 155–173, 2002. COSTA, I. A.; SAMUELS, R. I.; BIFANO, T. D.; TERRA, W. R.; SILVA, C. P. Purification and partial characterization of an aminopeptidase from the midgut tissue of Dysdercus peruvianus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, v. 158, n. 3, p. 235–241, 2011. CRISTOFOLETTI, P. T.; R. TERRA, W. Specificity, anchoring, and subsites in the active center of a microvillar aminopeptidase purified from Tenebrio molitor (Coleoptera) midgut cells. Insect Biochemistry and Molecular Biology, v. 29, n. 9, p. 807–819, 1999. CRISTOFOLETTI, P. T.; RIBEIRO, A. F.; TERRA, W. R. The cathepsin L-like proteinases from the midgut of Tenebrio molitor larvae: sequence, properties, immunocytochemical localization and function. Insect Biochemistry and Molecular Biology, v. 35, n. 8, p. 883–901, 2005. CRISTOFOLETTI, P. T.; DE SOUSA, F. A. M.; RAHBÉ, Y.; TERRA, W. R. Characterization of a membrane-bound aminopeptidase purified from Acyrthosiphon pisum midgut cells. A major binding site for toxic mannose lectins. The FEBS journal, v. 273, n. 24, p. 5574–5588, 2006. CROWSON, R. A. The biology of the coleoptera. London ; New York : Academic Press, 1981. DANGLES, O.; MESÍAS, V.; CRESPO‐PEREZ, V.; SILVAIN, J. F. Crop damage increases with pest species diversity: evidence from potato tuber moths in the tropical Andes.Journal of Applied Ecology, 46(5), 1115-1121, 2009. DAVIES, D. R. The structure and function of the aspartic proteinases. Annual Review of Biophysics and Biophysical Chemistry, v. 19, p. 189–215, 1990. DE MEESTER, P.; BRICK, P.; LLOYD, L. F.; BLOW, D. M.; ONESTI, S. Structure of the Kunitz-type soybean trypsin inhibitor (STI): implication for the interactions between members of the STI family and tissue-plasminogen activator. Acta Crystallographica. Section D, Biological Crystallography, v. 54, n. Pt 4, p. 589–597, 1998. DEL LAMA, M.; MARIA BEZERRA, R.; SOARES, E.; CLAUDIA COLLA RAVOLO-TAKASUSUKI, M. Genetic, ontogenetic, and tissue-specific variation of aminopeptidases of Apis mellifera. Apidologie, v. 32, p. 25–35, 2001. DESPINS, J. L.; AXTELL, R. C. Feeding behavior and growth of broiler chicks fed larvae of the darkling beetle, Alphitobius diaperinus. Poultry Science, v. 74, n. 2, p. 331–336, 1995. DESPINS, J. L.; TURNER, E. C.; RUSZLER, P. L. Construction Profiles of High Rise Caged Layer Houses in Association with Insulation Damage Caused by the Lesser Mealworm, Alphitobius diaperinus (Panzer) in Virginia. Poultry Science, v. 66, n. 2, p. 243–250, 1987. DI CERA, E. Serine Proteases. IUBMB life, v. 61, n. 5, p. 510–515, 2009. DIAS, C. L.; ROGANA, E. Autolysis of beta-trypsin at pH 3.0. Brazilian Journal of Medical and Biological Research = Revista Brasileira De Pesquisas Medicas E Biologicas, v. 19, n. 1, p. 11–18, 1986. DOYEN, J. T. Reconstitution of Coelometopini, Tenebrionini and Related Tribes of America North of Colombia (Coleoptera: Tenebrionidae). Journal of the New York Entomological Society., v. 97, p. 277–304, 1989. DUNFORD, J. C.; KAUFMAN, P. E.; DUNFORD, J. C.; KAUFMAN, P. E. EENY- 367 Lesser Mealworm, Litter Beetle,Alphitobius diaperinus(Panzer) (Insecta: Coleoptera: 2011. EDWARDS, M. G.; GATEHOUSE, J. A.; GATEHOUSE, A. M. R. Molecular and biochemical characterisation of a dual proteolytic system in vine weevil larvae (Otiorhynchus sulcatus Coleoptera: Curculionidae). Insect Biochemistry and Molecular Biology, v. 40, n. 11, p. 785–791, 2010. EDWARDS, M. J.; LEMOS, F. J.; DONNELLY-DOMAN, M.; JACOBS-LORENA, M. Rapid induction by a blood meal of a carboxypeptidase gene in the gut of the mosquito Anopheles gambiae. Insect Biochemistry and Molecular Biology, v. 27, n. 12, p. 1063–1072, 1997. ELPIDINA, E. N.; GOPTAR, I. A. Digestive peptidases in Tenebrio molitor and possibility of use to treat celiac disease. Entomological Research, v. 37, n. 3, p. 139– 147, 2007. ELPIDINA, E. N.; TSYBINA, T. A.; DUNAEVSKY, Y. E. A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae. Biochimie, v. 87, n. 8, p. 771– 779, 2005. ERLANDSON, M. A.; HEGEDUS, D. D.; BALDWIN, D.; NOAKES, A.; TOPRAK, U. Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species, and protease inhibitor. Archives of Insect Biochemistry and Physiology, v. 75, n. 2, p. 70– 91, 2010. ERTHAL, M.; PERES SILVA, C.; IAN SAMUELS, R. Digestive enzymes in larvae of the leaf cutting ant, Acromyrmex subterraneus (Hymenoptera: Formicidae: Attini). Journal of Insect Physiology, v. 53, n. 11, p. 1101–1111, 2007. FABRES, A.; DE CAMPOS MACEDO DA SILVA, J.; FERNANDES, K. V. S.; et al. Comparative performance of the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae) on different plant diets. Journal of Pest Science, v. 87, n. 3, p. 495– 506, 2014. FABRICK, J.; BEHNKE, C.; CZAPLA, T.; et al. Effects of a potato cysteine proteinase inhibitor on midgut proteolytic enzyme activity and growth of the southern corn rootworm, Diabrotica undecimpunctata howardi (Coleoptera: Chrysomelidae). Insect Biochemistry and Molecular Biology, v. 32, n. 4, p. 405–415, 2002. FAHRNEY, D. E.; GOLD, A. M. Sulfonyl Fluorides as Inhibitors of Esterases. I. Rates of Reaction with Acetylcholinesterase, α-Chymotrypsin, and Trypsin. Journal of the American Chemical Society, v. 85, n. 7, p. 997–1000, 1963. FALOMO, A. A. The Pheromone Biology of the Lesser Mealworm, Alphitobius Diaperinus (Panzer), (Coleoptera: Tenebrionidae). University of Wisconsin-- Madison, 1986. FARIA FILHO, D. E.; FARIA, D. E.; JUNQUEIRA, O. M.; et al. Avaliação da Farinha de Carne e Ossos na Alimentação de Frangos de Corte. Brazilian Journal of Poultry Science, v. 4, n. 1, p. 00–00, 2002. FERREIRA, C.; BELLINELLO, G. L.; RIBEIRO, A. F.; TERRA, W. R. Digestive enzymes associated with the glycocalyx, microvillar membranes and secretory vesicles from midgut cells of Tenebrio molitor larvae. Insect Biochemistry, v. 20, n. 8, p. 839– 847, 1990. FERREIRA, C.; REBOLA, K. G. O.; CARDOSO, C.; et al. Insect midgut carboxypeptidases with emphasis on S10 hemipteran and M14 lepidopteran carboxypeptidases. Insect Molecular Biology, v. 24, n. 2, p. 222–239, 2015. FERREIRA, C.; RIBEIRO, A. F.; GARCIA, E. S.; TERRA, W. R. Digestive enzymes trapped between and associated with the double plasma membranes of Rhodnius prolixus posterior midgut cells. Insect Biochemistry, v. 18, n. 6, p. 521–530, 1988. FINGERMAN, M. Recent Advances in Marine Biotechnology, Vol. 6: Bio-Organic Compounds: Chemistry and Biomedical Applications. CRC Press, 2002. FONSECA, F. P. P.; SOARES-COSTA, A.; RIBEIRO, A. F. Recombinant expression, localization and in vitro inhibition of midgut cysteine peptidase (Sl-CathL) from sugarcane weevil, Sphenophorus levis. Insect Biochemistry and Molecular Biology, v. 42, n. 1, p. 58–69, 2012. FRANCO, O. L., RIGDEN, D. J., MELO, F. R., BLOCH JR, C., SILVA, C. P., GROSSI DE SÁ, M. F. Resistências de planta a insetos. Plant Mol. Biol, (1999). FRANCO, O. L.; DOS SANTOS, R. C.; BATISTA, J. A. N. Effects of black-eyed pea trypsin/chymotrypsin inhibitor on proteolytic activity and on development of Anthonomus grandis. Phytochemistry, v. 63, n. 3, p. 343–349, 2003. FRITZ, H.; WUNDERER, G. Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Arzneimittel-Forschung, v. 33, n. 4, p. 479–494, 1983. GALI, R. R.; BOARD, P. G. Identification of an essential cysteine residue in human glutathione synthase. Biochemical Journal, v. 321, n. Pt 1, p. 207–210, 1997. GATEHOUSE, A. M. R.; NORTON, E.; DAVISON, G. M.; et al. Digestive proteolytic activity in larvae of tomato moth, Lacanobia oleracea; effects of plant protease inhibitors in vitro and in vivo. Journal of Insect Physiology, v. 45, n. 6, p. 545–558, 1999. GATEHOUSE, J. A. Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects. Current Protein & Peptide Science, v. 12, n. 5, p. 409–416, 2011. GAZARA, R. K.; CARDOSO, C.; BELLIENY-RABELO, D. De novo transcriptome sequencing and comparative analysis of midgut tissues of four non-model insects pertaining to Hemiptera, Coleoptera, Diptera and Lepidoptera. Gene, v. 627, p. 85–93, 2017. GAZONI, F. L.; FLORES, F.; BAMPI, R. A. Avaliação da resistência do cascudinho (Alphitobius diaperinus) (Panzer) (Coleoptera: Tenebrionidae) a diferentes temperaturas. Arquivos do Instituto Biológico, v. 79, n. 1, p. 69–74, 2012. GIRARD, C.; BONADE-BOTTINO, M.; PHAM-DELEGUE, M.H.; JOUANIN, L. Two strains of cabbage seed weevil (Coleoptera: Curculionidae) exhibit differential susceptibility to a transgenic oilseed rape expressing oryzacystatin I. Journal of Insect Physiology 44, pp.569-577, 1998. GILLIKIN, J. W.; BEVILACQUA, S.; GRAHAM, J. S. Partial characterization of digestive tract proteinases from western corn rootworm larvae, Diabrotica virgifera. Archives of Insect Biochemistry and Physiology, v. 19, n. 4, p. 285–298, 1992. GOMES, E. M., EVANGELISTA, L. V., CRISTINA, N. S. C., RAINHA F. R., ANTÔNIO, J. O., GORETI, M. A. O. Enzymatic characterization of cysteine protease isoforms of Anticarsia gemmatalis (Hübner, 1818). Ciênc. Agrotec, Lavras, v. 35, n.3 p. 446-454, 2011. GOLD, A. M.; FAHRNEY, D. Sulfonyl Fluorides as Inhibitors of Esterases. II. Formation and Reactions of Phenylmethanesulfonyl α-Chymotrypsin*. Biochemistry, v. 3, n. 6, p. 783–791, 1964. GOODWIN, M. A.; WALTMAN, W. D. Transmission of Eimeria, Viruses, and Bacteria to Chicks: Darkling Beetles (Alphitobius diaperinus) as Vectors of Pathogens. The Journal of Applied Poultry Research, v. 5, n. 1, p. 51–55, 1996. GRAF, R.; RAIKHEL, A. S.; BROWN, M. R.; LEA, A. O.; BRIEGEL, H. Mosquito trypsin: immunocytochemical localization in the midgut of blood-fed Aedes aegypti (L.). Cell and Tissue Research, v. 245, n. 1, p. 19–27, 1986. GREENBERG, B.; PARETSKY, D. Proteolytic Enzymes in the House Fly, Musca Domestica (L.). Annals of the Entomological Society of America, v. 48, n. 1–2, p. 46–50, 1955. GRUDEN, K.; STRUKELJ, B.; POPOVIC, T. The cysteine protease activity of Colorado potato beetle (Leptinotarsa decemlineata Say) guts, which is insensitive to potato protease inhibitors, is inhibited by thyroglobulin type-1 domain inhibitors. Insect Biochemistry and Molecular Biology, v. 28, n. 8, p. 549–560, 1998. GURD, F. R. N. [34a] Carboxymethylation. Methods in Enzymology, Enzyme Structure, Part B. v. 25, p.424–438, 1972. Academic Press. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0076687972250388>. Acesso em: 23/8/2019. HAARD, N. F.; SIMPSON, B. K. Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality. CRC Press, 2000. HABIB, H.; MAJID, K. Plant protease inhibitors: a defense strategy in plants. Biotechnology and Molecular Biology Review Vol. 2 (3), pp. 068-085, v. 2, p. 68–85, 2007. HARPER, J. W.; POWERS, J. C. Reaction of serine proteases with substituted 3- alkoxy-4-chloroisocoumarins and 3-alkoxy-7-amino-4-chloroisocoumarins: new reactive mechanism-based inhibitors. Biochemistry, v. 24, n. 25, p. 7200–7213, 1985. HAWKES, S. P.; LI, H.; TANIGUCHI, G. T. Zymography and reverse zymography for detecting MMPs and TIMPs. Methods in Molecular Biology (Clifton, N.J.), v. 622, p. 257–269, 2010. HEDSTROM, L.; SZILAGYI, L.; RUTTER, W. J. Converting trypsin to chymotrypsin: the role of surface loops. Science (New York, N.Y.), v. 255, n. 5049, p. 1249–1253, 1992. HEGEDUS, D.; BALDWIN, D.; O’GRADY, M.; et al. Midgut proteases from Mamestra configurata (Lepidoptera: Noctuidae) larvae: characterization, cDNA cloning, and expressed sequence tag analysis. Archives of Insect Biochemistry and Physiology, v. 53, n. 1, p. 30–47, 2003. HERNÁNDEZ, C. A.; PUJOL, M.; ALFONSO-RUBÍ, J.; et al. Proteolytic gut activities in the rice water weevil, Lissorhoptrus brevirostris Suffrian (Coleoptera: Curculionidae). Archives of Insect Biochemistry and Physiology, v. 53, n. 1, p. 19– 29, 2003. HOOPER, N. M. Proteolytic enzymes: A practical approach Edited by R J Beynon and J S Bond. pp 259. IRL Press at Oxford University Press, Oxford. 1989. £29 (spiral bound)/£19 (paper) ISBN 0-19-963058-5/963059-3. Biochemical Education, v. 18, n. 1, p. 55–55, 1990. HOOPER, N. M.; TURNER, A. J. Ectoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochemical Journal, v. 250, n. 3, p. 865–869, 1998. HOSSEININAVEH, V.; BANDANI, A.; AZMAYESHFARD, P.; HOSSEINKHANI, S.; KAZZAZI, M. Digestive proteolytic and amylolytic activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). Journal of Stored Products Research, v. 43, n. 4, p. 515–522, 2007. HOSSEININAVEH, V.; BANDANI, A.; HOSSEININAVEH, F. Digestive proteolytic activity in the Sunn pest, Eurygaster integriceps. Journal of Insect Science (Online), v. 9, p. 1–11, 2009. HOUSEMAN, JON G.; MORRISON, P. E.; DOWNE, A. E. R. Cathepsin B and aminopeptidase in the posterior midgut of Phymata wolffii Stål (Hemiptera: Phymatidae). Canadian Journal of Zoology, v. 63, n. 6, p. 1288-1291, 1985. HOUSEMAN, JON G.; MACNAUGHTON, W. K.; DOWNE, A. E. R. Cathepsin B and aminopeptidase activity in the posterior midgut of Euschistus euschistoides (Hemiptera: Pentatomidae). The Canadian Entomologist, v. 116, n. 10, p. 1393-1396, 1984. HOUSEMAN, J. G.; PHILOGÈNE, B. J. R.; DOWNE, A. E. R. Partial characterization of proteinase activity in the larval midgut of the European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae). Canadian Journal of Zoology, v. 67, n. 4, p. 864– 868, 1989. HU, G.; LEGER, R. J. S. A phylogenomic approach to reconstructing the diversification of serine proteases in fungi. Journal of Evolutionary Biology, v. 17, n. 6, p. 1204– 1214, 2004. HUA, G.; TSUKAMOTO, K.; TAGUCHI, R.; et al. Characterization of aminopeptidase N from the brush border membrane of the larvae midgut of silkworm, Bombyx mori as a zinc enzyme. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, v. 1383, n. 2, p. 301–310, 1998. ISOE, J.; ZAMORA, J.; MIESFELD, R. L. Molecular Analysis of the Aedes aegypti Carboxypeptidase Gene Family. Insect biochemistry and molecular biology, v. 39, n. 1, p. 68–73, 2009. JAMES, C. P., JULIANA, L. A., OZLEM, D. E., KAREN, E. J. Irreversible Inhibitors of Serine, Cysteine, and Threonine Proteases. Chemical Reviews, Vol. 102, No. 12, pp.4639−4750, (2002). JAPP, A. K.; BICHO, C. DE L.; SILVA, A. V. F. DA. Importance and measures of control for Alphitobius diaperinus in poultry houses. Ciência Rural, v. 40, n. 7, p. 1668–1673, 2010. JIA, Z.; HASNAIN, S.; HIRAMA, T.; et al. Crystal structures of recombinant rat cathepsin B and a cathepsin B-inhibitor complex. Implications for structure-based inhibitor design. The Journal of Biological Chemistry, v. 270, n. 10, p. 5527–5533, 1995. JONHSTON, K. A., GATEHOUSE, J. A., ANSTEE, J. H. The partial Purification and Characterization of serine protease activity in midgut of larval Helicoverpa armigera, Insect Biochemistry. 21: p. 389-397. (1991). JOHNSTON, K. A.; LEE, M. J.; BROUGH, C.; et al. Protease activities in the larval midgut of Heliothis virescens: Evidence for trypsin and chymotrypsin-like enzymes. Insect Biochemistry and Molecular Biology, v. 25, n. 3, p. 375–383, 1995. JOHNSTON, K. A.; LEE, M. J.; GATEHOUSE, J. A.; ANSTEE, J. H. The partial purification and characterisation of serine protease activity in midgut of larval Helicoverpa armigera. Insect Biochemistry, v. 21, n. 4, p. 389–397, 1991. KAISER-ALEXNAT, R. Protease activities in the midgut of Western corn rootworm (Diabrotica virgifera virgifera LeConte). Journal of Invertebrate Pathology, v. 100, n. 3, p. 169–174, 2009. KALLIES, B.; MITZNER, R. Substrate Specifity of Chymotrypsin. Study of Induced Strain by Molecular Mechanics. Molecular modeling annual, v. 2, n. 6, p. 149–159, 1996. KAUFMAN, P.; STRONG, C.; A RUTZ, D. Susceptibility of lesser mealworm (Coleoptera: Tenebrionidae) adults and larvae exposed to two commercial insecticides on unpainted plywood panels. Pest management science, v. 64, p. 108–11, 2008. KARAS, M.; HILLENKAMP, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical chemistry, 60 (20), 2299-2301, 1988. KEIL, B.; DLOUHÁ, V.; HOLEYŠOVSKÝ, V.; ŠORM, F. Hypothesis of threedimensional arrangement of polypeptide chain in trypsin. Collection of Czechoslovak Chemical Communications, v. 33, n. 7, p. 2307–2315, 1968. KNIGHT, P. J.; KNOWLES, B. H.; ELLAR, D. J. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. The Journal of Biological Chemistry, v. 270, n. 30, p. 17765–17770, 1995. KOIWA, H.; SHADE, R. E.; ZHU-SALZMAN, K.; et al. A plant defensive cystatin (soyacystatin) targets cathepsin L-like digestive cysteine proteinases (DvCALs) in the larval midgut of western corn rootworm (Diabrotica virgifera virgifera). FEBS Letters, v. 471, n. 1, p. 67–70, 2000. KOTKAR, H. M.; SARATE, P. J.; TAMHANE, V. A.; GUPTA, V. S.; GIRI, A. P. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. Journal of Insect Physiology, v. 55, n. 8, p. 663–670, 2009. KRAUT, J. 5 Chymotrypsinogen: X-Ray Structure. In: P. D. Boyer (Org.); The Enzymes, Hydrolysis: Peptide Bonds. v. 3, p.165–183, 1971. Academic Press. Disponível: <http://www.sciencedirect.com/science/article/pii/S1874604708603960>. Acesso em: 23/8/2019. KUWAR, S. S.; PAUCHET, Y.; VOGEL, H.; HECKEL, D. G. Adaptive regulation of digestive serine proteases in the larval midgut of Helicoverpa armigera in response to a plant protease inhibitor. Insect Biochemistry and Molecular Biology, v. 59, p. 18–29, 2015. LAEMMLI, U. K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, v. 227, n. 5259, p. 680–685, 1970. LABREMONT, E. N., FISK, F. W. ASHRAFI, S. Pepsin-like enzyme in larvae of stable flies. Science 129, p:1484-1485, (1959). LAM, W.; COAST, G. M.; C. RAYNE, R. Isolation and characterisation of two chymotrypsins from the midgut of Locusta migratoria. Insect Biochemistry and Molecular Biology, v. 29, n. 7, p. 653–660, 1999. LAM, W.; COAST, G. M.; RAYNE, R. C. Characterisation of multiple trypsins from the midgut of Locusta migratoria. Insect Biochemistry and Molecular Biology, v. 30, n. 1, p. 85–94, 2000. LAMONICA, S., IDE S., Principais Grupos de Insetos Pragas em Plantas de Interessse Econômico. Biológico, São Paulo, v.64, n.2. p: 235-238, (2002). LASKOWISKI, M.; KATO, I. Protein inhibitors of proteinases. Annual Review of Biochemistry, v. 49, p. 593–626, 1980. LAVAZEC, C.; BONNET, S.; THIERY, I.; BOISSON, B.; BOURGOUIN, C. cpbAg1 encodes an active carboxypeptidase B expressed in the midgut of Anopheles gambiae. Insect Molecular Biology, v. 14, n. 2, p. 163–174, 2005. LAWRENCE, P. K.; KOUNDAL, K. R. Plant protease inhibitors in control of phytophagous insects. Electronic Journal of Biotechnology, v. 5, n. 1, p. 5–6, 2002. LEE, M. J.; ANSTEE, J. H. Characterization of midgut exopeptidase activity from larval Spodoptera littoralis. Insect Biochemistry and Molecular Biology, v. 25, n. 1, p. 63–71, 1995a. LEE, M. J.; ANSTEE, J. H. Endoproteases from the midgut of larval Spodoptera littoralis include a chymotrypsin-like enzyme with an extended binding site. Insect Biochemistry and Molecular Biology, v. 25, n. 1, p. 49–61, 1995b. LEE W.C., KATERYN R.,, ADRIAN J.D., JOHN F., ROBERTO B., NAN-Y. S., ALEC C.G., PETER J.O., JAMES F.C., TIM J.L., SANDRA A.A. Arthropod Surveillance Programs: Basic Components, Strategies and Analysis, Ann Entomol Soc Am. March ; 105 (2): 135–149 (2012). LEHANE, M.; BILLINGSLEY, P. (ORGS.). Biology of the Insect Midgut. Springer Netherlands, 1996. LEMOS, F. J. A.; CAMPOS, F. A. P.; SILVA, C. P.; XAVIER-FILHO, J. Proteinases and amylases of larval midgut of Zabrotes subfasciatus reared on cowpea (Vigna unguiculata) seeds. Entomologia Experimentalis et Applicata, v. 56, n. 3, p. 219–227, 1987. LESCHEN, R. A. B., STEELMAN, C. D. Alphitobius diaperinus (Coleoptera: tenebrionidea), larva and adult mouthparts. Entomological News: v. 99, n. 4, p. 221- 224, 1988. LETH-LARSEN, R.; ÁSGEIRSSON, B.; THÓRÓLFSSON, M.; NØRREGAARDMADSEN, M.; HØJRUP, P. Structure of chymotrypsin variant B from Atlantic cod, Gadus morhua. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, v. 1297, n. 1, p. 49–56, 1996. LEVINSKY, H.; BIRK, Y.; APPLEBAUM, S. W. Isolation and characterization of a new trypsin-like enzyme from Tenebrio molitor L. larvae. International Journal of Peptide and Protein Research, v. 10, n. 3, p. 252–264, 1977. LI, H.-M.; BUCZKOWSKI, G.; MITTAPALLI, O.; et al. Transcriptomic profiles of Drosophila melanogaster third instar larval midgut and responses to oxidative stress. Insect Molecular Biology, v. 17, n. 4, p. 325–339, 2008. LIMA, A. P.; DOS REIS, F. C.; SERVEAU, C.; et al. Cysteine protease isoforms from Trypanosoma cruzi, cruzipain 2 and cruzain, present different substrate preference and susceptibility to inhibitors. Molecular and Biochemical Parasitology, v. 114, n. 1, p. 41–52, 2001. LIU, F.; LIU, C.; ZENG, F. Effects of an artificial diet on development, reproduction and digestive physiology of Chrysopa septempunctata. BioControl, v. 58, n. 6, p. 789– 795, 2013. LIU, H.-W.; LI, Y.-S.; TANG, X.; et al. A midgut-specific serine protease, BmSP36, is involved in dietary protein digestion in the silkworm, Bombyx mori. Insect Science, v. 24, n. 5, p. 753–767, 2017. LIU, Y.; SALZMAN, R. A.; PANKIW, T.; ZHU-SALZMAN, K. Transcriptional regulation in southern corn rootworm larvae challenged by soyacystatin N. Insect Biochemistry and Molecular Biology, v. 34, n. 10, p. 1069–1077, 2004. LIVELY, M. O.; POWERS, J. C. Specificity and reactivity of human granulocyte elastase and cathepsin G, porcine pancreatic elastase, bovine chymotrypsin and trypsin toward inhibition with sulfonyl fluorides. Biochimica Et Biophysica Acta, v. 525, n. 1, p. 171–179, 1978. LOMATE, P. R.; HIVRALE, V. K. Partial purification and characterization of Helicoverpa armigera (Lepidoptera: Noctuidae) active aminopeptidase secreted in midgut. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, v. 155, n. 2, p. 164–170, 2010. LONCAR, N.; BOZIC, N.; NENADOVIC, V.; IVANOVIC, J.; VUJČIĆ, Z. Characterization of Trypsin-Like Enzymes from the Midgut of Morimus Funereus (Coleoptera: Cerambycidae) Larvae. Archives of Biological Sciences, v. 61, p. 713– 718, 2010. LOPES, A. R.; JULIANO, M. A.; MARANA, S. R.; JULIANO, L.; TERRA, W. R. Substrate specificity of insect trypsins and the role of their subsites in catalysis. Insect Biochemistry and Molecular Biology, v. 36, n. 2, p. 130–140, 2006. LORINI, I., KRZYZANOWSKI, F. C., FRANÇA-NETO, J. B., HENNING, A. A., HENNING, F. A. Manejo integrado de pragas de grãos e sementes armazenadas. Brasília: Embrapa, 2010. LORINI, I. Principais pragas e métodos de controle em sementes durante o armazenamento-Série sementes. Londrina: Embrapa Soja, 12p. (Circular Técnica. Embrapa Soja. ISSN 1516-7860, n. 73), 2008. LOWRY, O. H.; ROSEBROUGH, N. J.; FARR, A. L.; RANDALL, R. J. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, v. 193, n. 1, p. 265–275, 1951. MACEDO, M. L. R.; FREIRE, M. DAS G. M.; FRANCO, O. L.; MIGLIOLO, L.; DE OLIVEIRA, C. F. R. Practical and theoretical characterization of Inga laurina Kunitz inhibitor on the control of Homalinotus coriaceus. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, v. 158, n. 2, p. 164–172, 2011. MAHDAVI, A.; GHADAMYARI, M.; SAJEDI, R. H.; SHARIFI, M.; KOUCHAKI, B. Identification and partial characterization of midgut proteases in the lesser mulberry pyralid, Glyphodes pyloalis. Journal of Insect Science (Online), v. 13, p. 81, 2013. MARCH, J. Advanced Organic Chemistry. 3rd edition ed. New York: John Wiley & Sons Inc, 1992. MARCHETTI, S.; CHIABÀ, C.; CHIESA, F.; BANDIERA, A.; PITOTTI, A. Isolation and partial characterization of two trypsins from the larval midgut of Spodoptera littoralis (Boisduval). Insect Biochemistry and Molecular Biology, v. 28, n. 7, p. 449– 458, 1998. MARTYNOV, A. G.; ELPIDINA, E. N.; PERKIN, L.; OPPERT, B. Functional analysis of C1 family cysteine peptidases in the larval gut of Тenebrio molitor and Tribolium castaneum. BMC genomics, v. 16, p. 75, 2015. MATHUR, L. M. L. Digestive Physiology of Tur Pod Bug Clavigralla gibbosa. Ind. J. Ent. 31 (3): 251 – 257, 1969. MATSUMOTO, I.; EMORI, Y.; ABE, K.; ARAI, S. Characterization of a gene family encoding cysteine proteinases of Sitophilus zeamais (maize weevil), and analysis of the protein distribution in various tissues including alimentary tract and germ cells. Journal of Biochemistry, v. 121, n. 3, p. 464–476, 1997. MCGRATH, M. E. The lysosomal cysteine proteases. Annual Review of Biophysics and Biomolecular Structure, v. 28, p. 181–204, 1999. MCKAY, T.; STEELMAN, C. D.; BRAZIL, S. M.; SZALANSKI, A. L. Sustained Mass Release of Pupal Parasitoids (Hymenoptera: Pteromalidae) for Control of Hydrotaea aenescens and Musca domestica (Diptera: Muscidae) in Broiler-Breeder Poultry Houses in Arkansas. Journal of Agricultural and Urban Entomology, v. 24, n. 2, p. 67–85, 2007. MCPHALEN, C. A., STRYNADKA, N. C. J.,JAMES, M. N. G. Calcium-binding sites in proteins: a structural perspective. Adv. Protein Chem. 42, pp:77–144, 1991. MEDEL, V.; PALMA, R.; MERCADO, D.; et al. The Effect of Protease Inhibitors on Digestive Proteolytic Activity in the Raspberry Weevil, Aegorhinus superciliosus (Guérin) (Coleoptera: Curculionidae). Neotropical Entomology, v. 44, n. 1, p. 77–83, 2015. MEHRABADI, M., FRANCO, L. O., BANDANI, R. A. Plant Proteinaceous α-Amylase and Proteinase Inhibitors and Their Use in Insect Pest Control. New Perspectives in Plant Protection. Bandani (Ed.), ISBN: 978-953-51, 2012. MÉNARD, R.; CARMONA, E.; PLOUFFE, C.; et al. The specificity of the S1’ subsite of cysteine proteases. FEBS Letters, v. 328, n. 1–2, p. 107–110, 1993. MENDONÇA, E. G.; OLIVEIRA, M. G. A.; VISÔTTO, L. E.; GUEDES, R. N. C. Midgut cysteine-proteinase activity in the velvetbean caterpillar (Anticarsia gemmatalis (Hübner)). Journal of Pest Science, v. 85, n. 1, p. 117–123, 2012. MICHAUD, DOMINIQUE; BERNIER-VADNAIS, N.; OVERNEY, S.; YELLE, S. Constitutive expression of digestive cysteine proteinase forms during development of the colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Insect Biochemistry and Molecular Biology, v. 25, n. 9, p. 1041–1048, 1995a. MICHAUD, D.; CANTIN, L.; VRAIN, T. C. Carboxy-terminal truncation of oryzacystatin II by oryzacystatin-insensitive insect digestive proteinases. Archives of Biochemistry and Biophysics, v. 322, n. 2, p. 469–474, 1995b. MOCHIZUKI, A. Characteristics of digestive proteases in the gut of some insect orders. Applied Entomology and Zoology, v. 33, n. 3, p. 401–407, 1998. MONTESDEOCA, M.; LOBO, M. G.; CASAÑAS, N.; et al. Partial characterization of the proteolytic enzymes in the gut of the banana weevil, Cosmopolites sordidus, and effects of soybean Kunitz trypsin inhibitor on larval performance. Entomologia Experimentalis et Applicata, v. 116, n. 3, p. 227–236, 2005. MONICA, F. P., BRAD, S. C., CHRISTOPHER, P. C., ADALBERTO, A. P., JAY, D. E., KEVIN H., DE WAYNE, S., Agricultural applications of insect ecological genomics. Current Opinion in Insect Science , 13, p: 61–69, (2016). MOSOLOV, V. V.; GRIGOR’EVA, L. I.; VALUEVA, T. A. Plant Proteinase Inhibitors as Multifunctional Proteins (Review). Applied Biochemistry and Microbiology, v. 37, n. 6, p. 545–551, 2001. MURDOCK, L. L.; BROOKHART, G.; DUNN, P. E.; et al. Cysteine digestive proteinases in Coleoptera. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, v. 87, n. 4, p. 783–787, 1987. NAGRADOVA, N.K. D-Glyceraldehyde-3-phosphate dehydrogenase purified from rabbit muscle. Methods Enzymol., v. 41, pp: 264-267, 1992. NANUS, D. M.; ENGELSTEIN, D.; GASTL, G. A.; et al. Molecular cloning of the human kidney differentiation antigen gp160: human aminopeptidase A. Proceedings of the National Academy of Sciences of the United States of America, v. 90, n. 15, p. 7069–7073, 1993. NASERI, B.; FATHIPOUR, Y.; MOHARRAMIPOUR, S.; HOSSEININAVEH, V.; GATEHOUSE, A. M. R. Digestive proteolytic and amylolytic activities of Helicoverpa armigera in response to feeding on different soybean cultivars. Pest Management Science, v. 66, n. 12, p. 1316–1323, 2010. NELSON, D. L.; COX, M. M. Princípios de Bioquímica de Lehninger - 5.ed. Artmed Editora, 2011. NEURATH, H. Evolution of proteolytic enzymes. Science (New York, N.Y.), v. 224, n. 4647, p. 350–357, 1984. NEURATH, H.; DIXON, G. H. Structure and activation of trypsinogen and chymotrypsinogen. Federation Proceedings, v. 16, n. 3, p. 791–801, 1957. NOGUEIRA, F. C.; SILVA, C. P.; ALEXANDRE, D.; SAMUELS, R. I.; SOARES, E. L.; ARAGÃO, F. J.; CAMPOS, F. A. Global proteome changes in larvae of Callosobruchus maculatus Coleoptera: Chrysomelidae: Bruchinae) following ingestion of a cysteine proteinase inhibitor. Proteomics, 12 (17), 2704-2715, 2012. NORÉN, O.; SJÖSTRÖM, H.; NORÉN, O. The enzymes of the enterocyte plasma membrane. In: Molecular and cellular basis of digestion. Amsterdam; New York: Elsevier, 1986. NORMAN, M. R., HOUSEMAN, G. Cysteine and Serine Proteolytic Activities In Larval Midgut of Yellow Mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae). Insect Biochem. Vol. 20, No. 7, pp. 741-744, 1990. NOVILLO, C.; CASTAÑERA, P.; ORTEGO, F. Characterization and distribution of chymotrypsin-like and other digestive proteases in Colorado potato beetle larvae. Archives of Insect Biochemistry and Physiology, v. 36, n. 3, p. 181–201, 1997. NWILENE, F. E.; NWANZE, K. F.; YOUDEOWEI, A. Impact of integrated pest management on food and horticultural crops in Africa. Entomologia experimentalis et applicata, v. 128, n. 3, p. 355-363, 2008. OAKLEY, BERL R.; KIRSCH, DONALD R.; MORRIS, N. RONALD. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Analytical biochemistry, v. 105, n. 1, p. 361-363, 1980. OLIVEIRA, A. A. DE; GOMES, A. V. DA C.; OLIVEIRA, G. R. DE; et al. Desempenho e características da carcaça de frangos de corte alimentados com rações de diferentes formas físicas. Revista Brasileira de Zootecnia, v. 40, n. 11, p. 2450–2455, 2011. OLIVEIRA, M. G. A.; DE SIMONE, S. G.; XAVIER, L. P.; GUEDES, R. N. C. Partial purification and characterization of digestive trypsin-like proteases from the velvet bean caterpillar, Anticarsia gemmatalis. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, v. 140, n. 3, p. 369–380, 2005. OPPERT, B.; ELPIDINA, E. N.; TOUTGES, M.; MAZUMDAR-LEIGHTON, S. Microarray analysis reveals strategies of Tribolium castaneum larvae to compensate for cysteine and serine protease inhibitors. Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics, v. 5, n. 4, p. 280–287, 2010. OPPERT, B.; HARTZER, K.; SMITH, C. Digestive Proteinases of Alfalfa Weevil, Hypera postica, (Gyllenhal) (Coleoptera: Curculionidae). Trans Kansas Acad Sci, v. 1003, 2000. OPPERT, B.; HARTZER, K.; ZUERCHER, M. Digestive proteinases in Lasioderma serricorne (Coleoptera: Anobiidae). Bulletin of Entomological Research, v. 92, n. 4, p. 331–336, 1999. OPPERT, B.; MORGAN, T. D.; HARTZER, K.; et al. Effects of proteinase inhibitors on digestive proteinases and growth of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Comparative biochemistry and physiology. Toxicology & pharmacology: CBP, v. 134, n. 4, p. 481–490, 2003. OPPERT, B.; MORGAN, T. D.; HARTZER, K.; KRAMER, K. J. Compensatory proteolytic responses to dietary proteinase inhibitors in the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comparative biochemistry and physiology. Toxicology & pharmacology: CBP, v. 140, n. 1, p. 53–58, 2005. OPPERT, B.; WALTERS, P.; ZUERCHER, M. Digestive proteinases of the larger black flour beetle, Cynaeus angustus (Coleoptera: Tenebrionidae). Bulletin of entomological research, v. 96, p. 167–72, 2006. ORTEGO, F.; FARINOS, G. P.; RUÍZ, M.; MARCO-MANCEBÓN, V.; CASTAÑERA, P. Characterization of digestive proteases in the weevil Aubeonymus mariafranciscae and effects of proteinase inhibitors on larval development and survival. Entomologia Experimentalis et Applicata, v. 88, p. 265–274, 1998. OTÍN, C.; BOND, J. S. Proteases: multifunctional enzymes in life and disease. The Journal of Biological Chemistry, v. 283, n. 45, p. 30433–30437, 2008. OSUALA, C. I.; DONNER, R. L.; NIELSEN, S. S. Partial purification and characterization of an aminopeptidase from the bean weevil larvae Acanthoscelides obtectus Say (Coleoptera, Bruchidae). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, v. 107, n. 2, p. 241–248, 1994. OURO FINO SAÚDE ANIMAL. Programa de manejo integrado para controle de cascudinho (Alphitobius diaperinus) em aviários. Disponível em: http://www.ourofino.com/saude-animal/aves-e-suinos/programas-sanitarios/>. Acesso em: 26 nov, 2013. PAGE, M. J.; DI CERA, E. Serine peptidases: classification, structure and function. Cellular and molecular life sciences: CMLS, v. 65, n. 7–8, p. 1220–1236, 2008. PAINE, T. D. Insects colonizing eucalypts in California. In: Insects and Diseases of Mediterranean Forest Systems. Springer, Cham, p. 711-730, 2016. PARDE, V. D. Inhibition of Helicoverpa armigera gut zymogen activation by plant protease inhibitors, 2009. phd, Dr. Babasaheb Ambedkar Marathwada University. Disponível em: <http://oar.icrisat.org/128/>. Acesso em: 24/8/2019. PASCUAL-RUIZ, S.; CARRILLO, L.; ÁLVAREZ-ALFAGEME, F.; et al. The effects of different prey regimes on the proteolytic digestion of nymphs of the spined soldier bug, Podisus maculiventris (Hemiptera: Pentatomidae). Bulletin of Entomological Research, v. 99, n. 5, p. 487–491, 2009. PATANKAR, A. G.; GIRI, A. P.; HARSULKAR, A. M.; et al. Complexity in specificities and expression of Helicoverpa armigera gut proteinases explains polyphagous nature of the insect pest. Insect Biochemistry and Molecular Biology, v. 31, n. 4–5, p. 453–464, 2001. PAUCHET, Y.; MUCK, A.; SVATOS, A.; HECKEL, D. G. Chromatographic and electrophoretic resolution of proteins and protein complexes from the larval midgut microvilli of Manduca sexta. Insect Biochemistry and Molecular Biology, v. 39, n. 7, p. 467–474, 2009. PAUCHET, Y.; MUCK, A.; SVATOŠ, A.; HECKEL, D. G.; PREISS, S. Mapping the Larval Midgut Lumen Proteome of Helicoverpa armigera, a Generalist Herbivorous Insect. Journal of Proteome Research, v. 7, n. 4, p. 1629–1639, 2007. PEER, W. A. The role of multifunctional M1 metallopeptidases in cell cycle progression. Annals of Botany, v. 107, n. 7, p. 1171–1181, 2011. PEREIRA, M. E.; DÖRR, F. A.; PEIXOTO, N. C.; et al. Perspectives of digestive pest control with proteinase inhibitors that mainly affect the trypsin-like activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae). Brazilian Journal of Medical and Biological Research, v. 38, n. 11, p. 1633–1641, 2005. PEREIRA, M. H.; SOUZA, M. E.; VARGAS, A. P.; et al. Anticoagulant activity of Triatoma infestans and Panstrongylus megistus saliva (Hemiptera/Triatominae). Acta Tropica, v. 61, n. 3, p. 255–261, 1996. PERUTZ, M. F. Stereochemistry of Cooperative Effects in Haemoglobin: Haem–Haem Interaction and the Problem of Allostery. Nature, v. 228, n. 5273, p. 726–734, 1970. PIMENTEL, A. C.; FUZITA, F. J.; PALMISANO, G.; FERREIRA, C.; TERRA, W. R. Role of cathepsins D in the midgut of Dysdercus peruvianus. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, v. 204, p. 45–52, 2017. PIASECKA-KWIATKOWSKA, D.; NAWROT, J.; GAWLAK, M.; ZIELIŃSKADAWIDZIAK, M. Applicability of zymograms for detection of granary weevil (Sitophilus granarius L.) α-amylases left on grain after insects infestation. Progress in Plant Protection, 53(1), 70-73, 2013. PLAPP, B. V. Application of affinity labeling for studying structure and function of enzymes. Methods in Enzymology, v. 87, p. 469–499, 1982. POOTANAKIT, K.; ANGSUTHANASOMBAT, C.; PANYIM, S. Identification of two isoforms of aminopeptidase N in Aedes aegypti larval midgut. Journal of Biochemistry and Molecular Biology, v. 36, n. 5, p. 508–513, 2003. POWELL, S.; FORSLUND, K.; SZKLARCZYK, D.; et al. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Research, v. 42, n. Database issue, p. D231-239, 2014. PREISS, F. J.; DAVIDSON, J. A. Characters for Separating Late-Stage Larvae, Pupae, and Adults of Alphitobius diaperinus and A. laevigatus (Coleoptera: Tenebrionidae),,. Annals of the Entomological Society of America, v. 63, n. 3, p. 807–808, 1970. PURCELL, J. P.; GREENPLATE, J. T.; DOUGLAS SAMMONS, R. Examination of midgut luminal proteinase activities in six economically important insects. Insect Biochemistry and Molecular Biology, v. 22, n. 1, p. 41–47, 1992. RANJBAR, M.; ZIBAEE, A.; SENDI, J. J. A trypsin-like proteinase in the midgut of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae): purification, characterization, and host plant inhibitors. Archives of Insect Biochemistry and Physiology, v. 85, n. 1, p. 1–12, 2014. RAWLINGS N.D, BARRETT A.J. Introduction: the clans and families of cysteine peptidases. In: BARRETT A.J, RAWLINGS N.D, WOESSNER J.F, editors. Handbook of proteolytic enzymes, vol. II. Amsterdam: Elsevier. p 1051–1071, (2004). RAWLINGS, N. D.; BARRETT, A. J.; BATEMAN, A. MEROPS: the peptidase database. Nucleic Acids Research, v. 38, n. Database issue, p. D227-233, 2010. REECK, G. R.; OPPERT, B.; DENTON, M. (ORGS.). Insect proteinases. In: Proteases New Perspectives. Birkhäuser Basel, 1999. RENARD, G.; LARA, F. A.; DE CARDOSO, F. C.; MIGUENS, F. C.; DANSAPETRETSKI, M.; TERMIGNONI, C.; MASUDA, A. Expression and immunolocalization of a Boophilus microplus cathepsin L‐like enzyme. Insect molecular biology, 11(4), 325-328, 2002 RIBEIRO, A. F.; FERREIRA, C.; TERRA, W. R. Morphological basis of insect digestion. Animal nutrition and transport processes. 1. Nutrition in wild and domestic animals., p. 96–105, 1990. RUEDA, L. M.; AXTELL, R. C. Temperature-dependent development and survival of the lesser mealworm, Alphitobius diaperinus. Medical and Veterinary Entomology, v. 10, n. 1, p. 80–86, 1998. RUKAZAMBUGA, N. D. T. M.; GOLD, C. S.; GOWEN, S. R. Yield loss in East African highland banana (Musa spp., AAA-EA group) caused by the banana weevil, Cosmopolites sordidus Germar. Crop Protection, v. 17, n. 7, p. 581–589, 1998. RYAN, C. A. Protease Inhibitors in Plants: Genes for Improving Defenses Against Insects and Pathogens. Annual Review of Phytopathology, v. 28, n. 1, p. 425–449, 1990. SABOROWSKI, R.; SAHLING, G.; NAVARETTE DEL TORO, M. A.; WALTER, I.; GARCÍA-CARREÑO, F. L. Stability and effects of organic solvents on endopeptidases from the gastric fluid of the marine crab Cancer pagurus. Journal of Molecular Catalysis B: Enzymatic, v. 30, n. 3, p. 109–118, 2004. SAJID, M.; MCKERROW, J. H. Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology, v. 120, n. 1, p. 1–21, 2002. SARATH, G.; LA MONTE, S. L., W., F. W. (ORGS.). Protease assay methods. In: Proteolytic enzymes: a practical approach. Oxford ; New York: IRL Press at Oxford University Press, 1996. SCHECHTER, I.; BERGER, A. On the size of the active site in proteases. I. Papain. Biochemical and Biophysical Research Communications, v. 27, n. 2, p. 157–162, 1967. SCHAFER, S. Ciclo biológico do cascudinho Alphitobius diaperinus em laboratório. Acta Scientiae Veterinariae, v.33, n.2, p.177-181, 2005. SHEWRY, P. R.; CASEY, R. Seed proteins. In: Seed proteins. Springer, Dordrecht. p. 1-10, 1999 SCHLERETH, A.; BECKER, C.; HORSTMANN, C.; TIEDEMANN, J.; MÜNTZ, K. Comparison of globulin mobilization and cysteine proteinases in embryonic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.). Journal of Experimental Botany, v. 51, n. 349, p. 1423–1433, 2000. SCHOWALTER, T. D. Insect ecology: an ecosystem approach. Academic Press, 2016 SEMASHKO, T. A.; VOROTNIKOVA, E. A.; SHARIKOVA, V. F.; et al. Selective chromogenic and fluorogenic peptide substrates for the assay of cysteine peptidases in complex mixtures. Analytical Biochemistry, v. 449, p. 179–187, 2014. SELLAMI, S., JAMOUSSI, K. Investigação de larvas digestivas β-glicosidase e proteases da praga de tomate Tuta absoluta para inibir o desenvolvimento de insetos. Boletim de pesquisa entomológica , v. 106, n. 3, p. 406-414, (2016). SHARIFI, M.; CHITGAR, M. G.; GHADAMYARI, M.; AJAMHASANI, M. Identification and characterization of midgut digestive proteases from the rosaceous branch borer, Osphranteria Coerulescens red tenbacher (coleoptera: cerambycidae). , 2012. SHARMA, P.; NATH, A. K.; KUMARI, R.; BHARDWAJ, S. V. Purification, characterization and evaluation of insecticidal activity of trypsin inhibitor from Albizia lebbeck seeds. Journal of Forestry Research, v. 23, n. 1, p. 131–137, 2012. SHAW, B. D.; CHRISTELLER, J. T. Characterization of the proteases in the midgut of the xylophagous larvae of Oemona hirta (Coleoptera: Cerambycidae). Insect Science, v. 16, n. 5, p. 381–386, 2009. SHAW, E.; MARES-GUIA, M.; COHEN, W. Evidence for an Active-Center Histidine in Trypsin through Use of a Specific Reagent, 1-Chloro-3-tosylamido-7-amino-2- heptanone, the Chloromethyl Ketone Derived from Nα-Tosyl-L-lysine*. Biochemistry, v. 4, n. 10, p. 2219–2224, 1965. SHIU, H.-Y.; CHAN, T.-C.; HO, C.-M.; et al. Electron-Deficient Alkynes as Cleavable Reagents for the Modification of Cysteine-Containing Peptides in Aqueous Medium. Chemistry – A European Journal, v. 15, n. 15, p. 3839–3850, 2009. SIGHINOLFI, L.; FEBVAY, G.; DINDO, M. L. Biological and biochemical characteristics for quality control of Harmonia axyridis (Pallas) (Coleoptera, Coccinellidae) reared on a liver-based diet. Archives of Insect Biochemistry and Physiology, v. 68, n. 1, p. 26–39, 2008. SIMONE, S. G., SILVA, J. F. P. Biotecnologia Ciências e Desenvolvimento n.22, 12 2001. SILVA, A. S. DA; HOFF, G.; DOYLE, R. L.; SANTURIO, J. M.; MONTEIRO, S. G. Ciclo biológico do cascudinho Alphitobius diaperinus em laboratório. Acta Scientiae Veterinariae, v. 33, n. 2, p. 177–181, 2005. SILVA, C. P.; TERRA, W. R.; LIMA, R. M. Differences in midgut serine proteinases from larvae of the bruchid beetles Callosobruchus maculatus and Zabrotes subfasciatus. Archives of Insect Biochemistry and Physiology, v. 47, n. 1, p. 18–28, 2001. SILVA, F. C. B. L.; ALCAZAR, A.; MACEDO, L. L. P. Digestive enzymes during development of Ceratitis capitata (Diptera:Tephritidae) and effects of SBTI on its digestive serine proteinase targets. Insect Biochemistry and Molecular Biology, v. 36, n. 7, p. 561–569, 2006. SILVA, L. B.; REIS, A. P.; PEREIRA, E. J. G.; OLIVEIRA, M. G. A.; GUEDES, R. N. C. Partial purification and characterization of trypsin-like proteinases from insecticideresistant and -susceptible strains of the maize weevil, Sitophilus zeamais. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, v. 155, n. 1, p. 12–19, 2010a. SILVA, L. B.; REIS, A. P.; PEREIRA, E. J. G.; OLIVEIRA, M. G. A.; GUEDES, R. N. C. Altered cysteine proteinase activity in insecticide-resistant strains of the maize weevil: purification and characterization. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, v. 157, n. 1, p. 80–87, 2010b. SILVA, C. P.; LEMOS, F. J.; SILVA, J. R. Digestão em Insetos: Topicos Avançados em Entomologia Molecular: Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Itabajara da Silva Vaz Junior, 2012. SNEDEKER, C.; WILLS, F. K.; MOULTHROP, I. M. Some studies on the infectious bursal agent. Avian Diseases, v. 11, n. 4, p. 519–528, 1967. SOARES-COSTA, A.; B DIAS, A.; DELLAMANO, M.; et al. Digestive physiology and characterization of digestive cathepsin L-like proteinase from the sugarcane weevil Sphenophorus levis. Journal of insect physiology, v. 57, p. 462–8, 2011. SOCORRO, M.; CAVALCANTI, M.; OLIVA, M. L. V.; FRITZ, H. Characterization of a Kunitz trypsin inhibitor with one disulfide bridge purified from Swartzia pickellii. Biochemical and Biophysical Research Communications, v. 291, n. 3, p. 635–639, 2002 SOLOMON, M.; BELENGHI, B.; DELLEDONNE, M.; MENACHEM, E.; LEVINE, A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. The Plant Cell, v. 11, n. 3, p. 431–444, 1999. SOUZA, D. X., LIFSCHITZ, S. A avaliação do e-value para execução do BLAST sobre bases de dados fragmentadas. Monografias em Ciência da Computação. PUC 17/07 15, 2007. SREEDHARAN, S. K.; VERMA, C.; CAVES, L. S. Demonstration that 1-transepoxysuccinyl- L-leucylamido-(4-guanidino) butane (E-64) is one of the most effective low Mr inhibitors of trypsin-catalysed hydrolysis. Characterization by kinetic analysis and by energy minimization and molecular dynamics simulation of the E-64-betatrypsin complex. The Biochemical Journal, v. 316 ( Pt 3), p. 777–786, 1996. SRINIVASAN, A.; GIRI, A. P.; GUPTA, V. S. Structural and functional diversities in lepidopteran serine proteases. Cellular & Molecular Biology Letters, v. 11, n. 1, p. 132–154, 2006. STACHOWIAK, K.; TOKMINA, M.; KARPIŃSKA, A.; SOSNOWSKA, R.; WICZK, W. Fluorogenic peptide substrates for carboxydipeptidase activity of cathepsin B. Acta Biochimica Polonica, v. 51, n. 1, p. 81–92, 2004. STEELMAN, C. Comparative Susceptibility of Adult and Larval Lesser Mealworms, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), Collected from Broiler Houses in Arkansas to Selected Insecticides. Journal of Agricultural and Urban Entomology, v. 25, p. 111–125, 2008. STOREY, R.D., WAGNER, F.W. Plant proteases: a need for uniformity. Phytochemistry 25, 2701–2709, 1986. SUMANTHA, A.; LARROCHE, C.; PANDEY, A. Microbial and industrial biotechnology of food-grade proteases: a perspective. Food Technology and Biotechnology, v. 44, p. 211–220, (2006). SZECSI, P. B. The aspartic proteases. Scandinavian Journal of Clinical and Laboratory Investigation. Supplementum, v. 210, p. 5–22, 1992. TABATABAEI, P. R.; HOSSEININAVEH, V.; GOLDANSAZ, S. H.; TALEBI, K. Biochemical characterization of digestive proteases and carbohydrases of the carob moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae). Journal of Asia- Pacific Entomology, v. 14, n. 2, p. 187–194, 2011. TAYLOR, A. Aminopeptidases: structure and function. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, v. 7, n. 2, p. 290–298, 1990. TERRA, W.; FERREIRA, C. Biochemistry of digestion. Comprehensive Molecular Insect Science, v. 4, p. 171–224, 2005. TERRA, W. R.; CRISTOFOLETTI, P. T. Midgut proteinases in three divergent species of Coleoptera. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, v. 113, n. 4, p. 725–730, 1996. TERRA, W. R.; FERREIRA, C. Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, v. 109, n. 1, p. 1–62, 1994. TERRA, W. R., FERREIRA, C. Biochemistry and molecular biology of digestion. In: Gilbert, L.I. (Ed.), Insect Molecular Biology and Biochemistry. Academic Presse Elsevier, pp. 365-418, 2012. TERRA, W. R.; FERREIRA, C.; BASTOS, F. Phylogenetic considerations of insect digestion: Disaccharidases and the spatial organization of digestion in the Tenebrio molitor larvae. Insect Biochemistry, v. 15, n. 4, p. 443–449, 1985. TERRA, W. Evolution of digestive systems of insects. Annu. Rev. Entomol. 35, 181– 200, (1990). TERRA, W. R.; FERREIRA, C., JORDÃO, B. P.; DILLON, R. J. Digestive enzymes. In: Biology of the Insect Midgut. Edited by LEHANE, M. J.; BILLINGSLEY, P. F. Chapman and Hall: London, pp. 153–194, 1996. THIE, N. M. R.; HOUSEMAN, J. G. Cysteine and serine proteolytic activities in larval midgut of yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae). Insect Biochemistry, v. 20, n. 7, p. 741–744, 1990. THOMAS, M. B. Ecological approaches and the development of “truly integrated” pest management.Proceedings of the National Academy of Sciences, v. 96, n. 11, p. 5944- 5951, 1999. TIMOTIJEVIC, G.;MILISAVLJEVIĆ, M.; R RADOVIĆ, S.; M KONSTANTINOVIĆ, M.; MAKSIMOVIC, V. Ubiquitous aspartic proteinase as an actor in the stress response in buckwheat. Journal of plant physiology, v. 167, p. 61–8, 2010. TRIBOLIUM GENOME SEQUENCING CONSORTIUM. The genome of the model beetle and pest Tribolium castaneum. Nature, v. 452, n. 7190, p. 949–955, 2008. TURK, D.; GUNCAR, G.; PODOBNIK, M.; TURK, B. Revised definition of substrate binding sites of papain-like cysteine proteases. Biological Chemistry, v. 379, n. 2, p. 137–147, 1998. TURK, V.; STOKA, V.; VASILJEVA, O.; et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochimica Et Biophysica Acta, v. 1824, n. 1, p. 68–88, 2012. VAJDA, T.; GARAI, A. Comparison of the effect of calcium(II) and manganese(II) ions on trypsin autolysis. Journal of Inorganic Biochemistry, v. 15, n. 4, p. 307–315, 1981. VALAITIS, A. P.; AUGUSTIN, S.; CLANCY, K. M. Purification and characterization of the western spruce budworm larval midgut proteinases and comparison of gut activities of laboratory-reared and field-collected insects. Insect Biochemistry and Molecular Biology, v. 29, n. 5, p. 405–415, 1999. VAZQUEZ-ARISTA, M.; SMITH, R. H.; MARTÍNEZ-GALLARDO, N. A.; BLANCO-LABRA, A. Enzymatic differences in the digestive system of the adult and larva of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). Journal of Stored Products Research, v. 35, n. 2, p. 167–174, 1999. VENANCIO, T.; CRISTOFOLETTI, P.; FERREIRA, C.; VERJOVSKI-ALMEIDA, S.; TERRA, W. The Aedes aegypti larval transcriptome: A comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect molecular biology, v. 18, p. 33–44, 2009. VERHOEF, H. A. Soil Moisture and the Population Dynamics of Coexisting Collembola. Ecological Bulletins, , n. 25, p. 480–482, 1977. VINOKUROV, KONSTANTIN S.; ELPIDINA, E. N.; OPPERT, B.; et al. Diversity of digestive proteinases in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, v. 145, n. 2, p. 126–137, 2006a. VINOKUROV, K. S.; ELPIDINA, E. N.; OPPERT, B.; et al. Fractionation of digestive proteinases from Tenebrio molitor (Coleoptera: Tenebrionidae) larvae and role in protein digestion. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, v. 145, n. 2, p. 138–146, 2006b. VINOKUROV, K. S.; ELPIDINA, E. N.; ZHUZHIKOV, D. P.; et al. Digestive proteolysis organization in two closely related Tenebrionid beetles: red flour beetle (Tribolium castaneum) and confused flour beetle (Tribolium confusum). Archives of Insect Biochemistry and Physiology, v. 70, n. 4, p. 254–279, 2009. VISOTTO, L. E.; OLIVEIRA, M. G. A.; GUEDES, R. N. C.; RIBON, A. O. B.; GOOD-GOD, P. I. V. Contribution of gut bacteria to digestion and development of the velvetbean caterpillar, Anticarsia gemmatalis. Journal of Insect Physiology, v. 55, n. 3, p. 185–191, 2009. VOLPICELLA, M.; CECI, L. R.; CORDEWENER, J.; et al. Properties of purified gut trypsin from Helicoverpa zea, adapted to proteinase inhibitors. European Journal of Biochemistry, v. 270, n. 1, p. 10–19, 2003. VOLPICELLA, M., LEONI, C., COSTANZA, A., DE LEO, F., GALLERANI, R., CECI, L. R. Cystatins, serpins and other families of protease inhibitors in plants.Current Protein and Peptide Science, 12(5), 386-398, (2011). VYAS, N. K.; VYAS, M. N.; QUIOCHO, F. A. A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis. Nature, v. 327, n. 6123, p. 635–638, 1987. WAGNER, W.; MÖHRLEN, F.; SCHNETTER, W. Characterization of the proteolytic enzymes in the midgut of the European Cockchafer, Melolontha melolontha (Coleoptera: Scarabaeidae). Insect Biochemistry and Molecular Biology, v. 32, n. 7, p. 803–814, 2002. WANG, P.; ZHANG, X.; ZHANG, J. Molecular characterization of four midgut aminopeptidase N isozymes from the cabbage looper, Trichoplusia ni. Insect Biochemistry and Molecular Biology, v. 35, n. 6, p. 611–620, 2005. WEIDLICH, S.; HUSTER, J.; HOFFMANN, K. H.; WOODRING, J. Environmental control of trypsin secretion in the midgut of the two-spotted field cricket, Gryllus bimaculatus. Journal of Insect Physiology, v. 58, n. 11, p. 1477–1484, 2012. WHITAKER, J. R. Principles of Enzymology for the Food Sciences. Routledge, 1994. WHITWORTH, S. T.; BLUM, M. S.; TRAVIS, J. Proteolytic enzymes from larvae of the fire ant, Solenopsis invicta. Isolation and characterization of four serine endopeptidases. The Journal of Biological Chemistry, v. 273, n. 23, p. 14430–14434, 1998. WHITEHOUSE, C. M.; DREYER, R. N.; YAMASHITA, M.; FENN, J. B. Electrospray interface for liquid chromatographs and mass spectrometers. Analytical chemistry, 57(3), 675-679, 1985. WIELKOPOLAN, B.; OBRĘPALSKA-STĘPLOWSKA, A. Three-way interaction among plants, bacteria, and coleopteran insects. Planta, v. 244, n. 2, p. 313–332, 2016. WIELKOPOLAN, B.; WALCZAK, F.; PODLEŚNY, A.; NAWROT, R.; OBRĘPALSKA-STĘPLOWSKA, A. Identification and partial characterization of proteases in larval preparations of the cereal leaf beetle (Oulema melanopus, Chrysomelidae, Coleoptera). Archives of Insect Biochemistry and Physiology, v. 88, n. 3, p. 192–202, 2015. WIENS, J. J.; LAPOINT, R. T.; WHITEMAN, N. K. Herbivory increases diversification across insect clades.Nature communications, v. 6, p. 8370, 2015. WIEMAN, K. F.; NIELSEN, S. S. Isolation and partial characterization of a major gut proteinase from larval Acanthoscelides obtecus say (Coleoptera, Bruchidae). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, v. 89, n. 2, p. 419–426, 1988. WIGGLESWORTH, V. B. The Principles of Insect Physiology. Springer Netherlands, 1972. WILHITE, S. E.; ELDEN, T. C.; BRZIN, J.; SMIGOCKI, A. C. Inhibition of cysteine and aspartyl proteinases in the alfalfa weevil midgut with biochemical and plant-derived proteinase inhibitors. Insect Biochemistry and Molecular Biology, v. 30, n. 12, p. 1181–1188, 2000. WILLOCQUET, L.; AUBERTOT, J. N.; LEBARD, S.; ROBERT, C.; LANNOU, C.; SAVARY, S. Simulating multiple pest damage in varying winter wheat production situations. Field Crops Research, 107(1), 12-28, 2008. WILSON, T. H.; MINER, F. D. Influence of Temperature on Development of the Lesser Mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Journal of the Kansas Entomological Society, v. 42, n. 3, p. 294–303, 1968. WOLFSON, J. L.; MURDOCK, L. L. Diversity in digestive proteinase activity among insects. Journal of Chemical Ecology, v. 16, n. 4, p. 1089–1102, 1990. WOOL, D.; NAMIR, Z.; BERGERSON, O. Dietary Regulation of Amylase Activity Levels in Flour Beetles (Coleoptera: Tenebrionidae): (Tribolium). Annals of the Entomological Society of America, v. 79, n. 3, p. 407–413, 1986. XAVIER, L. P.; ALMEIDA OLIVEIRA, M. G.; GUEDES, R. N. C.; SANTOS, A. V.; DE SIMONE, S. G. Trypsin-like activity of membrane-bound midgut proteases from Anticarsia gemmatalis (Lepidoptera: Noctuidae). EJE, v. 102, n. 2, p. 147–153, 2005. YAN, X. H.; DE BONDT, H. L.; POWELL, C. C.; BULLOCK, R. C.; BOROVSKY, D. Sequencing and characterization of the citrus weevil, Diaprepes abbreviatus, trypsin cDNA. Effect of Aedes trypsin modulating oostatic factor on trypsin biosynthesis. European Journal of Biochemistry, v. 262, n. 3, p. 627–636, 1999. YAMAJI, K.; TSUJI, N.; MIYOSHI, T.; ISLAM, M. K.; HATTA, T.; ALIM, M. A.; FUJISAKI, K. A salivary cystatin, HlSC-1, from the ixodid tick Haemaphysalis longicornis play roles in the blood-feeding processes. Parasitology research, 106(1), 61-68, 2009. YI, L.; VAN BOEKEL, M. A. J. S.; BOEREN, S.; LAKEMOND, C. M. M. Protein identification and in vitro digestion of fractions from Tenebrio molitor. European Food Research and Technology, v. 242, n. 8, p. 1285–1297, 2016. ZHANG, S., XU, Y., FU, Q., JIA, L., XIANG, Z. H., HE, N. J. Proteomic Analysis of Larval Midgut from the Silkworm (Bombyx mori). Comparative and Functional Genomics, 2011. ZHAO, Y.; BOTELLA, M. A.; SUBRAMANIAN, L.; et al. Two wound-inducible soybean cysteine proteinase inhibitors have greater insect digestive proteinase inhibitory activities than a constitutive homolog. Plant Physiology, v. 111, n. 4, p. 1299–1306, 1996. ZHU-SALZMAN, K.; KOIWA, H.; SALZMAN, R. A.; SHADE, R. E.; AHN, J.-E. Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Molecular Biology, v. 12, n. 2, p. 135–145, 2003. ZHU, Y. C.; BAKER, J. E. Characterization of midgut trypsin-like enzymes and three trypsinogen cDNAs from the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bostrichidae). Insect biochemistry and molecular biology,29(12), 1053-1063, 1999. ZINKLER, D.; POLZER, M. Identification and characterization of digestive proteinases from the firebrat thermobia domestica. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, v. 103, n. 3, p. 669–673, 1992.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/70053/2019%20-%20Wellington%20Oliveira%20da%20Cruz.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5822
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-07-27T16:56:46Z No. of bitstreams: 1 2019 - Wellington Oliveira da Cruz.pdf: 14172587 bytes, checksum: 12767101c3271533d8d58b1826cc3777 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-07-27T16:56:47Z (GMT). No. of bitstreams: 1 2019 - Wellington Oliveira da Cruz.pdf: 14172587 bytes, checksum: 12767101c3271533d8d58b1826cc3777 (MD5) Previous issue date: 2019-08-06eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Wellington Oliveira da Cruz.pdf13.84 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.