Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10276
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFugimura, Michelle Midori Sena
dc.date.accessioned2023-12-21T19:00:22Z-
dc.date.available2023-12-21T19:00:22Z-
dc.date.issued2013-12-17
dc.identifier.citationFUGIMURA, Michelle Midori Sena. Avaliação da criação intensiva do camarão branco Litopenaeus schmitti com a tecnologia de bioflocos. 2013. 91 f. Tese (Programa de Pós-Graduação em Zootecnia) - Universidade Federal Rural do Rio de Janeiro, Seropédica.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10276-
dc.description.abstractA tecnologia de bioflocos (BFT) surgiu através da busca de técnicas a fim de tornar a aquicultura mais ambientalmente sustentável, mantendo a alta produção e lucratividade. Melhores crescimento e produtividades já foram verificados para diversas espécies de peneídeos criados no sistema BFT comparado aos sistemas convencionais, porém informações sobre a criação da espécie Litopenaeus schmitti utilizando essa tecnologia são limitadas. Este trabalho teve como objetivo principal verificar a viabilidade técnica da produção intensiva do camarão L. schmitti em sistema BFT. Para tanto foram realizados três experimentos na Estação de Biologia Marinha da UFRRJ (Mangaratiba, RJ). Os juvenis de L. schmitti selvagens foram capturados na Baía de Sepetiba, Rio de Janeiro, e passaram por um período de aclimatação de dez dias em tanques com água clara antes do início do estudo. No primeiro experimento, a contribuição dos agregados microbianos na alimentação (bioflocos e bioflocos com adição de ração comercial contendo 38 % de proteína) dos camarões L. schmitti criados em elevadas densidades de estocagem (100, 200 e 300 camarões/m2), foi avaliada durante um período de 60 dias. Os resultados sugerem que os juvenis L. schmitti usufruíram da disponibilidade da fonte nutricional extra, representada pelos bioflocos, entretanto, estes devem ser considerados como um recurso alimentar adicional à dieta com ração. As densidades de estocagem avaliadas afetaram a produtividade, o crescimento e a sobrevivência de L. schmitti, porém, as sobrevivências de aproximadamente 80 % demonstram o potencial de criação da espécie em condições intensivas. O segundo experimento foi realizado para verificar a possibilidade de uso do bagaço de cevada como fonte de carbono orgânico na fertilização do sistema BFT, e para tal, comparou-se a fertilização com bagaço de cevada, melaço de cana-de-açúcar e farinha de mandioca durante o período de 60 dias. Os resultados de qualidade de água, de composição proximal de bioflocos e de crescimento do camarão confirmaram que o bagaço de cevada pode ser uma opção adequada e de baixo custo, em locais próximos as indústrias cervejeiras. Já, no terceiro experimento, o desempenho zootécnico de L. schmitti, a qualidade de água e a formação de bioflocos foram avaliados em três salinidades (19, 26 e 33) e com o fornecimento de duas dietas comercias (30 e 40 % de proteína) em um sistema de criação estático ao longo de 35 dias. Através do desempenho de L. schmitti obtido nas diferentes tratamentos ficou evidente que a criação pode ser feita em qualquer uma das salinidades avaliadas, e com o fornecimento da dieta comercial contendo o menor teor de proteína. Portanto, os resultados do presente estudo demonstram a viabilidade técnica da criação intensiva do camarão L. schmitti utilizando a tecnologia de bioflocos.por
dc.description.sponsorshipFundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do RJ, FAPERJ, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectAgregados microbianospor
dc.subjectCamarão peneídeopor
dc.subjectCrescimentopor
dc.subjectMicrobial aggregateseng
dc.subjectPenaeid shrimpeng
dc.subjectGrowtheng
dc.titleAvaliação da criação intensiva do camarão branco Litopenaeus schmitti com a tecnologia de bioflocospor
dc.title.alternativeEvaluation of intensive farming of the white shrimp Litopenaeus schmitti with biofloc technologyeng
dc.typeTesepor
dc.description.abstractOtherThe biofloc technology (BFT) has emerged through the search for techniques to make aquaculture more environmentally sustainable, while maintaining the high production and profitability. Better growth and productivity have been checked for several species of cultured penaeid BFT system compared to conventional systems, but information on Litopenaeus schmitti farming using this technology are limited. This study aimed to verify the technical feasibility of the intensive farming of shrimp L. schmitti in BFT system. Three experiments were carried out at the Marine Biology Station of UFRRJ (Mangaratiba, RJ). Juvenile shrimps were wild caught in Sepetiba Bay, Rio de Janeiro, and underwent an acclimation period of ten days in tanks with clear water before the start of the studies. In the first experiment, the contribution of microbial aggregates in feeding (biofloc and biofloc with feed) of shrimp L. schmitti grown at high stocking densities (100, 200 and 300 shrimp/m2), was evaluated for 60 days. The results suggest that juvenile L. schmitti benefited from the availability of additional nutritional source, represented by biofloc, however, these should be regarded as a additional dietary to rations diet. Stocking densities evaluated affected the productivity, growth and survival of L. schmitti, but the survival of approximately 80 % showing the potential of the species in super intensive culture conditions. The second experiment was conducted to verify the possibility of using the barley bagasse as a source of organic carbon in the system BFT fertilization, and to this end, compared to fertilization with barley bagasse, sugar cane molasses and cassava flour during the period of 60 days. The results of water quality, biofloc composition and growth of shrimp confirmed that the barley bagasse can be a suitable option and cost in areas near the breweries. Already, in the third experiment, the growth performance of L. schmitti, water quality and the biofloc formation were evaluated at three salinities (19, 26 and 33) and using two commercial diets (30 and 40 % protein) in static farming system throughout 35 days. Through the performance of L. schmitti obtained in the different treatments was evident that the farming can be done in any of salinities evaluated and using the commercial diet containing the lower protein levels. Thus, the results of this study demonstrate the technical feasibility of intensive shrimp farming L. schmitti using biofloc technology.eng
dc.contributor.advisor1Oshiro, Lidia Miyako Yoshii
dc.contributor.advisor1ID987.007.668-87por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8112019853480327por
dc.contributor.advisor-co1Wasielesky Junior, Wilson
dc.creator.ID085.720.727-14por
dc.creator.Latteshttp://lattes.cnpq.br/6107371291793259por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Zootecniapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Zootecniapor
dc.relation.referencesANDERSON, R. K.; PARKER, P. L.; LAWRENCE, A. L. A13C/12C tracer study of the utilization of presented feed by commercially important shrimp Penaeus vannamei in a pond grow out system. Journal of the World Aquaculture Society, 18, p. 148-155, 1987. ARNOLD, S. J.; COMAN, F. E.; JACKSON, C. J. et al. High-intensivy, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture, 293, p. 42 – 48, 2009. AVNIMELECH, Y.; KOCHVA, M.; DIAB, S. Development of controlled intensive aquaculture systems with limited water exchange and adjusted carbon to nitrogen ratio. Israeli Journal of Aquaculture, 46, p. 119-131, 1994. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, p. 227–235, 1999. AVNIMELECH, Y. Feeding with microbial flocs by tilapiain minimal discharge bio-flocs technology ponds. Aquaculture, 264, p. 140-147, 2007. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O. et al. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, p. 163–172, 2010. BARBIERI, R. C.; OSTRENSKY, A. Camarões Marinho – Engorda. Viçosa – MG: Aprenda Fácil Editora, 2002. 351 p. BROWDY, C. L.; BRATVOLD, D.; STOKES, A. D. et al. Perspectives on the application of closed shrimp culture systems. In: SPECIAL SESSION ON SUSTAINABLE SHRIMP CULTURE, 2001, Baton Rouge. Proceedings of the Special Session on Sustainable Shrimp Culture. Baton Rouge, LA, USA: E.D. Jory & C.L. Browdy, 2001, p. 20-34. BROWDY, C. L.; MOSS, S. M. Shrimp culture in urban, super-intensive closed systems. In: URBAN AQUACULTURE, 2005, Oxford, UK: ed. by B.A. Costa Pierce, 2005, p.173-186. BUENO, S. L. S. Maturation and spawning of the white shrimp Penaeus schmitti Burkenroad, 1936, under large scale rearing conditions. Journal of the World Aquaculture Society, v. 21, n. 3, p. 170-179, 1990. BURFORD, M. A.; SELLARS, M. J.; ARNOLD, S. J. et al. Contribution of natural biota associated with substrates to the nutritional requirements of the post-larval shrimp, Penaeus esculentus (Haswell) in high-density rearing systems. Aquaculture Research, 35, p. 508-515, 2004. CHEN, Y. L.; CHEN, H. Juvenile Penaeus monodon as effective zooplankton predators. Aquaculture, 103, p. 35–44, 1992. 8 CRAB, R.; AVNIMELECH, Y.; DEFOIRDT, T. et al. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270, p. 1 – 14, 2007. CRAB, R.; KOCHVA, M.; VERSTRAETE, W. et al. Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40, p. 105-112, 2009. CRAB, R.; LAMBERT, A.; DEFOIRDT, T. et al. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. Journal of Applied Microbiology, 109, p. 1643–1649, 2010. COHEN, J.; SAMOCHA, T. M.; FOX, J. M. et al. Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools. Aquacultural Engineering, 32, p. 425-442, 2005. DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T. et al. The basics of bioflocs technology: the added value for aquaculture. Aquaculture, 277, p. 125–137, 2008. D’INCAO, F.; VALENTINI, H.; RODRIGUES, L. F. Avaliação da pesca de camarões nas regiões sudeste e sul do Brasil. Atlântica, v. 24, n. 2, p. 103-116, 2002. EBELING, J. M.; TIMMONS, M. B.; BISOGNI, J. J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257, p. 346–358, 2006. EMERENCIANO, M.; BALLESTER, E. L. C.; CAVALLI, R. O. et al. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43, p. 447–457, 2012. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO). 2012. The State of World Fisheries and Aquaculture. Disponível em: <http://www.fao.org/docrep/016/i2727e/i2727e00.htm> Acesso em: 20/07/2012. HAMLIN, H. J.; MICHAELS, J. T.; BEAULATON, C. M. et al. Comparing denitrification rates and carbon sources in commercial scale up flow denitrification biological filters in aquaculture. Aquacultural Engineering, 38, p. 79–92, 2008. HARGREAVES, J. A. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34, p. 344-363, 2006. HOPKINS, J. S.; HAMILTON, R. D.; SANDIFER, P. A. et al. Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds. Journal of the World Aquaculture Society, 24, p. 304–320, 1993. JORAND, F., ZARTARIAN, F.; THOMAS, F. et al. Chemical and structural (2d) linkage between bacteria within activated-sludge flocs. Water Research, v. 29, n. 7, p. 1639–1647, 1995. 9 MARCHIORI, M. A. Guia ilustrado de maturação e larvicultura do camarão-rosa Penaeus paulensis Pérez- Farfante, 1967. Rio Grande: FURG, 1996. MCABEE, B. J. BROWDY, C.; RHODES, R. et al. The use of greenhouse-enclosed raceway systems for the superintensive production of pacific white shrimp Litopenaeus vannamei in the United States. Global Aquaculture Advocate, 6, p. 40 – 43, 2003. MICHAUD, L.; BLANCHETON, J. P.; BRUNI, V. et al. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquacultural Engineering, 34, p. 224- 233, 2006. MINISTÉRIO DA PESCA E AQUICULTURA (MPA). Boletim Estatístico da Pesca e Aquicultura. Brasília, 128 p., 2012. MISHRA, J. K.; SAMOCHA, T. M.; PATNAIK, S. et al. Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering, 38, p. 2-15, 2008. MOSS, S. M. Dietary importance of microbes and detritus in penaeid shrimp aquaculture. In: Microbial Approaches to Aquatic Nutrition within Environmentally Sound Aquaculture Production Systems, Baton Rouge, USA: World Aquaculture Society, 2002, p. 1-18. OTOSHI, C.; TANG, L. R.; DAGDAGAN, D. V. et al. Super-intensive grow out of the Pacific white shrimp, Litopenaeus vannamei: Recent advances at the Oceanic Institute. In: International Conference on Recirculating Aquaculture, 6, 2006, VA. Proceedings from the 6th International Conference on Recirculating Aquaculture. VA, 2006, p. 1-5. PÉREZ FARFANTE, I.; KENSLEY, B. Penaoeid and Sergestoid Shrimps and Prawns of the World: Keys and Diagnoses for the Families and Genera. Éditions du Muséum Paris, p. 91, 1997. RAY, A. J.; DILON, K. S.; LOTZ, J. M. Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquacultural Engineering, 45, p.127– 136, 2011. ROCHA, I. P. Uma análise da produção, demanda e preços do camarão no mercado internacional. Revista Brasileira da Associação de Criadores de Camarão, Recife, v. 7, n. 2, p. 24-35, 2005. SAMOCHA, T. M.; LAWRENCE, A. L.; COLLINS, C. A. et al. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. Journal of Applied Aquaculture,15, n. 3-4, p.1–19, 2004. SAMOCHA, T. M. et al. Intensive raceways without water exchange analyzed for white shrimp culture. Global Aquaculture Advocate, 13, p. 22–24, 2010. SANDIFER, P. A.; HOPKINS, J. S.; STOKES, A. D. et al. Preliminary comparisons of the native Penaeus setiferus and Pacific Penaeus vannamei white shrimp for pond culture in South Carolina, USA. Journal World Aquaculture, v. 24, n. 3, p. 295–303, 1993. 10 SORGELOOS, P. Technologies for sustainable aquaculture development, Plenary Lecture II. In: Aquaculture in the Third Millennium.Technical Proceedings of the Conference on Aquaculture in the Third Millennium, NACA, Bangkok, Thailand, February 2000. Ed. by Subasinghe, R. P; Bueno, P.; Philips, M. J. et al. FAO, Rome, Italy, p. 23–28, 2001. WASIELESKY, W.; ATWOOD, H.; STOKES, A. et al. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258, p. 396–403, 2006. ZHAO, P.; HUANG, J.; WANG, X-H. et al. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture, 354–355, p. 97–106, 2012. AGUILAR, V.; RACOTTA, I. S.; GOYTORTÚA, E. et al. The influence of dietary arachidonic acido n the imune response and performance of Pacific whiteleg shrimp, Litopenaeus vannamei, at high stocking density. Aquaculture Nutrition, 18, p. 258-271, 2012 ALLAN, G. F.; MORIARTY; D. J. W.; MAGUIRE, G. B. Effects of pond preparation and feeding rate on production of Penaeus monodon Fabricius, water quality, bacteria and benthos in model farming ponds. Aquaculture, 130, p. 329–349, 1995. ALONSO-RODRIGUEZ, R.; PAEZ-OSUNA, F. Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture, 219, p. 317–336, 2003. AOAC. Official methods of analysis, 17ª Ed. Association of Official Analytical Chemists, Gaithersburg, MD, 2000. AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). Standard methods for the examination of water and wastewater. Washington, 1998, 1193 p. AMINOT, A.; CHAUSSEPIED, M. Manuel des analyses chimiques en milieu marin. Brest: Cnexo, 1983, 395 p. ARNOLD, S. J.; COMAN, F. E.; JACKSON, C. J. et al. High-intensivy, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture, 293, p. 42 – 48, 2009. AVNIMELECH, Y.; KOCHVA, M.; DIAB, S. Development of controlled intensive aquaculture systems with limited water exchange and adjusted carbon to nitrogen ratio. Israeli Journal of Aquaculture, 46, p. 119-131, 1994. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, p. 227–235, 1999. ______. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264, p. 140-147, 2007. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O. et al. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, p. 163- 172, 2010. BIEDENBACH, J. M.; SMITH, L. L.; THOMSEN, T. K. et al. Use of nematode Panagrellus redivivus as an Artemia replacement in a larval penaeid diet. Journal of the World Aquaculture Society, v. 20, n. 2, p. 61–71, 1989. BOYD, C. E. Water quality management and aeration in shrimp farming. Fisheries and Allied Aquacultures Department, Series No. 2, Alabama Agricultural Experiment Station, Auburn University, Alabama Birmingham.,183 p., 1989. 31 BURFORD, M. A. Phytoplankton dynamics in shrimp ponds. Aquaculture Research, 28, p. 351-360, 1997. BURFORD, M. A.; THOMPSON, P. J.; McINTOSH, R. P. et al. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture, 219, p. 393-411, 2003. COHEN, J.; SAMOCHA, T. M.; FOX, J. M. et al. Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools. Aquacultural Engineering, 32, p. 425-442, 2005. CRAB, R.; CHIELENS, B.; WILLE, M. et al. The effect of different carbon sources on the nutritional nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41, p. 559-567, 2010. D’INCAO, F.; VALENTINI, H.; RODRIGUES, L. F. Avaliação da pesca de camarões nas regiões sudeste e sul do Brasil. Atlântica, v. 24, n. 2, p. 103-116, 2002. DECAMP, O.; CONQUEST, L.; CODY, J. et al. Effect of shrimp stocking density on size-fractionated phytoplankton and ecological groups of ciliated protozea within zero-water exchange shrimp culture systems. Journal of the World Aquaculture Society, v. 38, n. 3, p. 395 – 406, 2007. DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T. et al. The basics of bioflocs technology: the added value for aquaculture. Aquaculture, 277, p. 25–137, 2008. EBELING, J. M..; TIMMONS, M. B.; BISOGNI, J. J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257, p. 346–358, 2006. EMERENCIANO, M. G. C.; WASIELESKY, W. JR.; SOARES, R. B. et al. Crescimento e sobrevivência do camarão-rosa (Farfantepenaeus paulensis) na fase de berçário em meio heterotrófico. Acta Scientarium Biological Sciences, v. 29, p. 1-7, 2007. EMERENCIANO, M.; BALLESTER, E. L. C.; CAVALLI, R. O. et al. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43, p. 447–457, 2012. FERREIRA, L. M. M. H. M. Formação de flocos microbianos em cultivo do camarão-rosa Farfantepenaeus paulensis e do camarão-branco Litopenaeus vannamei. 2008. 44 f. Dissertação (Mestrado em Aqüicultura), Universidade Federal de Rio Grande, Rio Grande do Sul, 2008. FÓES, G. K.; FRÓES, C.; KRUMMENAUER, D. et al. Nursery of pink shrimp Farfantepenaeus paulensis in biofloc technology culture system: survival and growth at different stocking densities, Journal of Shelfish Research, v. 30, n.2, p. 367-373, 2011. FOLCH, J. M.; LEES, M.; SLOANE-STANLEY, G. H. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, p. 497-507, 1957. 32 FRAGA, I.; GALINDO, J.; ARAZOZA, M. et al. Evaluación de niveles de proteína y densidades de siembra em el crecimiento del camarón blanco Litopenaeus schmitti. Revista de Investigaciones Marinas, v. 3, n. 2, p. 141-147, 2002. FUGIMURA, M. M. S. Efeito da temperatura e densidade de estocagem no crescimento e sobrevivência de juvenis de Litopenaeus schmitti criado em cativeiro. Dissertação (Mestrado em Zootecnia), Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, 45 p, 2009. FURTADO, P. S.; POERSCH, L. H.; WASIELESKY JR, W. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture, 231, p. 130-135, 2011. GALINDO, J.; ALVAREZ, J. S.; FRAGA, I. et al. Influencia de los niveles inclusion de lipidos em dietas para juveniles de camarón blanco Penaeus schmitti. Revista Cubana de Investigaciones Pesqueras, 17, p. 23-36, 1992. GREEN, B. W.; SCHRADER, K. K.; PERSCHBACHER, P. W. Effect of stocking biomass on solids, phytoplankton communities, common off-flavors, and production parameters in a channel catfish biofloc technology production system. Aquaculture Research, p. 1 – 17, 2012. GRIFFITH, R. E. Phytoplankton of Chesapeake Bay: An illustrated guide to the genera. University of Maryland Natural Resources Institute, 1967, 78 p. JORY, D. E.; CABRERA, T. R.; DUGGER, D. M. et al. A global review of shrimp feed management: status and perspectives. In: Special Session on Sustainable Shrimp Culture, 2001, Baton Rouge, L.A. Proceedings of the Special Session on Sustainable Shrimp Culture, Baton Rouge, L.A: The World Aquaculture Society, 2001, p. 135. JU, Z. Y.; FORSTER, I.; CONQUEST, L. et al. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research, 39, p. 118-133, 2008. KHATOON, H.; YUSOFF, F. M.; BANERJEE, S. et al. Use of periphytic cyanobacterium and mixed diatoms coated of Penaeus monodon Fabricius postlarvae. Aquaculture, 271, p. 196-205, 2007. KUHN, D. D.; BOARDMAN, G. D.; LAWRENCE, A. L. et al. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture, 296, p. 51-57, 2009. KUMARLY, K.; DA JONES, A. B.; EAST, J. Comparative analysis of the growth and survival of Penaeus monodon (Fabricius) larvae, from protozoea I to postlarvae I, on live feeds, artificial diets and combinations of both. Aquaculture, 81, p. 27–45, 1989. KUMLU, M.; FLETCHER, D. J. The Nematode Panagrellus redivivus as an alternative live feed for larval Penaeus indicus. Israeli Journal of Aquaculture, v. 49, n. 12, p., 1997. KOROLEFF, F.; PALMORK, K. H. Report on the Ices/Scor Nutrient Intercalibration Experiment. ICES, C.M. Hydr.Comm, 1972. 33 LANARI, D.; BALLESTRAZZI, R.; TIBALDI, E. Effects of fertilization and stocking rate on the performance of Penaeus japonicus (Bate) in pond culture. Aquaculture, 83, p. 269– 279, 1989. LIN, Y.C.; CHEN, J. C. Acute toxicity of ammonia on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259, p. 109–119, 2001. LIN, Y. C; CHEN, J. C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224, p. 193–201, 2003. MAGUIRE, G.B.; LEEDOW, M. I. A study of the optimum stocking density and feeding rates for school prawns Metapenaeus macleayi (Haswell) in some Australian brackish water farming ponds. Aquaculture, 30, p. 285-297, 1983. MÁRQUEZ, J. E. Q.; ANDREATTA, E. R.; VINATEA, L. et al. Efeito da densidade de estocagem nos parámetros zootécnicos da criação de camarões Litopenaeus schmitti. Boletim do Instituto de Pesca, 38, p. 145-153, 2012. NAGANO, N.; DECAMP, O. Ingestion of a ciliated protozoa by first-feeding larval stage of Pacific white shrimp, Litopennaeus vannamei (Boone). Aquaculture Research, 35, p. 516–518, 2004. NEAL, R. S., COYLE, S. D.; TIDWELL, J. H. Evaluation of stocking density and light level on the growth and survival of the pacific white shrimp, Litopenaeus vannamei, reared in zero-exchange systems. Journal of the Word Aquaculture Society, v. 41, n. 4, p. 533-544, 2010. NEEDHAM, P. R. Guias para el reconocimiento de algas e invertebrados dulceacuícuolas. 5ª edição, p. 3 – 225, 1973. NETO, J. D. Pesca de camarões na costa norte do Brasil. Atlântica, 13, p. 21-28, 1991. NGA, B. T.; LQRLING, M. PEETERS, E. T. H. M. Chemical and physical effects of crowding on growth and survival of Penaeus monodon Frabricius post-larvae. Aquaculture, 246, p. 455-465, 2005. NOOTONG, K.; PAVASANT, P. Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system. Journal of the World Aquaculture Society, v. 42, n. 3, p. 339-346, 2011. PALMER, C. M. Algae and water pollution an illustrated manual on the identification, significance, and control of algae in water supplies and in polluted water. U.S. Environmental Protection Agency Cincinnati, Ohio. 124 pp, 1977. PARRA, R.; HERNANDEZ, L. Estudio preliminar de los requerimientos nutricionales de juveniles de camarón blanco Penaeus schmitti (Burkenroad). Boletin Red Acuicultura, v. 6, n. 1, p. 12-16, 1992. PATIL, V.; KÄLLQVIST, T.; OLSEN, E. et al. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International, 15, p. 1-9, 2007. 34 PENAFLORIDA, V. D. Interaction between dietary levels of calcium and phosphorus on growth of juvenile shrimp, Penaeus monodon. Aquaculture, 172, p. 281–289, 1999. RAY, J. A.; LEWIS, B. L.; BROWDY, C. L. et al. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299, p. 89–98, 2010. RENAULD, S. M.; VAN THINH, L.; PARRY, D. L. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture, 170, p. 147– 159, 1999. RUBRIGHT, J. S.; HARRELL, J. L.; HOLCOMB, H. W. et al. Responses of planktonic and benthic communities to fertilizer and feed applications in shrimp mariculture ponds. Journal of World Mariculture Society, 12, p. 281–299, 1981. SAMOCHA, T. M.; LAWRENCE, A. L.; COLLINS, C. A. et al. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. Journal of Applied Aquaculture, v. 15, n. 3-4, p. 1–19, 2004. SAMOCHA, T. M.; PATNAIK, S.; SPEED, M. et al. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36: 184–191, 2007. SILVA, C. F.; BALLESTER, E.; MONSERRAT, J. et al. Contribution of microorganisms to the biofilm nutricional quality protein and lipid contents. Aquaculture Nutrition, 15, p. 507-514, 2008. TACON, A. G. J.; CODY, J. J.; CONQUEST, L. D. et al. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition, 8, p. 121–137, 2002. THOMPSON, F. L.; ABREU, P. C.; WASIELESKY, W. Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, 203, p. 263–278, 2002. VAN WYK, P.; SCARPA, J. Water quality and management. In: Van Wyk, P., M. Davis-Hodgkins, R. Laramore, K.L. Main, J. Mountain & J. Scarpa. Farming Marine Shrimp in Recirculating Freshwater Systems. Florida Department of Agriculture and Consumer Services, Tallahassee, pp. 128–138, 1999. VINATEA, L.A. Princípios químicos da qualidade de água em aquicultura. Florianóplis, Universidade Federal de Santa Catarina, 166 pp, 1997. WASIELESKY, W.; POERSCH; L. H.; JENSEN, L. et al. Effect of stocking density on pen reared pink shrimp Farfantepenaeus paulensis (Pérez-Farfante, 1967) (Decapoda, Penaidae). Nauplius, v. 9, n. 2, p. 163-167, 2001. WASIELESKY, W.; ATWOOD, H.; STOKES, A. et al. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258, p. 396–403, 2006. ZAR, J. H. Biostatistical Analysis. Third Edition New Jersey: Prentice Hall, 1996. 662 p. 35 ZHAO, P.; HUANG, J.; WANG, X-H. et al. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture, 354–355, p. 97–106, 2012. ALBUQUERQUE, D. M. N. Resíduo desidratado de cervejaria para suínos em crescimento e terminação. 2009. 71 f. Dissertação (Mestrado em ciência animal), Universidade Federal do Piaui, Piaui, 2009. ALONSO-RODRIGUEZ, R.; PAEZ-OSUNA, F. Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture, 219, p. 317–336, 2003. AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). Standard methods for the examination of water and wastewater. Washington, 1998, 1193 p. AMINOT, A.; CHAUSSEPIED, M. Manuel des analyses chimiques en milieu marin. Brest: Cnexo, 1983, 395 p. AOAC. Official methods of analysis, 17ª Ed. Association of Official Analytical Chemists, Gaithersburg, MD, 2000. ASADUZZAMAN, M.; WAHAB, M. A.; VERDEGEM, M. C. J. et al. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280, p. 117–123, 2008. ASADUZZAMAN, M.; RAHMAN, M. M.; AZIM, M. E. et al. Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds. Aquaculture, 306, p.127-136, 2010. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, p. 227–235, 1999. AVNIMELECH, Y. Bio-filters: the need for an new comprehensive approach. Aquacultural Engineering, 34, p. 172–178, 2006. AVNIMELECH, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264, p. 140-147, 2007. AZIM, M. E.; LITTLE, D. C. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283, p. 29–35, 2008. BALLESTER, E. L .C.; WASIELESKY, W. JR.; CAVALLI, R. O. et al. Nursery of the pink shrimp Farfantepenaeus paulensis in cages with artificial substrates: biofilm composition and shrimp performance. Aquaculture, 265, p. 355–362, 2007. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O.et al. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, p. 163–172, 2010. BOYD, C. Water quality in ponds for aquaculture. Alabama: Aubum University, Alabama. Birmingham Publishing Co. 482 p, 1990. 56 BURFORD, M. A.; LORENZEN, K. Modeling nitrogen dynamics in intensive shrimp ponds: the role of sediments remineralization. Aquaculture, v. 229, n. 1–4, p. 129–145, 2004. CAPPELLE, E. R.; VALADARES FILHO, S. C.; SILVA, J. F. C. et al. Estimativas do valor energético a partir de características químicas e bromatológicas dos alimentos. Revista Brasileira de Zootecnia, v.30, n.6, p. 1837-1856, 2001. COSTA, J. M. B.; MATTOS, W. R. S.; BIONDI, P. et al. Degradabilidade ruminal do resíduo úmido de cervejaria. Boletim Indústria Animal, v.52, n.1, p.87-94, 1995. COSTA, A. D.; VIEIRA, A. A.; LIMA, C. A. R. et al. Desempenho de suínos em crescimento (26-70 kg) alimentados com rações contendo bagaço de cevada. In: Zootec, São Paulo. Anais do Zootec, SP, 2009. CRAB, R.; KOCHVA, M.; VERSTRAETE, W. et al. Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering, 40, p.105-112, 2009. CRAB, R.; CHIELENS, B.; WILLE, M. et al. The effect of different carbon sources on the nutritional nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41, p. 559-567, 2010. DECAMP, O.; CONQUEST, L.; CODY, J. et al. Effect of shrimp stocking density on size-fractionated phytoplankton and ecological groups of ciliated protozea within zero-water exchange shrimp culture systems. Journal of the World Aquaculture Society, v. 38, n. 3, p. 395 – 406, 2007. DEPETERS, E. J.; CANT, J. P. Nutritional factors influencing the nitrogen composition of bovine milk: a review. Journal of Dairy Science, v.75, n.8, p. 2043-2070, 1992. DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T. et al. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, 277, p.125-137, 2008. EMERENCIANO, M.; BALLESTER, E. L. C.; CAVALLI, R. O. et al. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43, p. 447–457, 2012. FERREIRA, L. M. M. H. M. Formação de flocos microbianos em cultivo do camarão-rosa Farfantepenaeus paulensis e do camarão-branco Litopenaeus vannamei. 2008. 44 f. Dissertação (Mestrado em Aqüicultura), Universidade Federal de Rio Grande, Rio Grande do Sul, 2008. FOLCH, J. M.; LEES, M.; SLOANE-STANLEY, G .H. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, p. 497-507, 1957. GADELHA, R. G. F.; PRADO, J. P. S.; CAVALHEIRO, J. M. D. Farinha do bagaço de cevada em dietas para a engorda de camarões marinhos. Ciência Rural (online), v. 40, n. 1, p. 170 – 174. GODOY, L. C.; ODEBRECHT, C.; BALLESTER, E. et al. Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone, 1931) in a heterotrophic culture system. Aquaculture International, 20, p. 559-569, 2012. 57 GRIFFITH, R. E. Phytoplankton of Chesapeake Bay: An illustrated guide to the genera. University of Maryland Natural Resources Institute, 1967, 78 p. HARGREAVES, J. A. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34, p. 344–363, 2006. HARI, B.; KURUP, B. M.; VARGHESE, J. T. et al. Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture, 241, p. 179–194, 2004. JEFFREY, S. W.; HUMPHREY, G. F. New Spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochemie und Physiologic der Pflanzen, 167, p. 191-194, 1975. JORY, D. E.; CABRERA, T. R.; DUGGER, D. M. et al. A global review of shrimp feed management: status and perspectives. In: Special Session on Sustainable Shrimp Culture, 2001, Baton Rouge, L.A. Proceedings of the Special Session on Sustainable Shrimp Culture, Baton Rouge, L.A: The World Aquaculture Society, 2001, p. 135. JU, Z. Y.; FORSTER, I.; CONQUEST, L. et al. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research, 39, p. 118-133, 2008. KHATOON, H.; YUSOFF, F. M.; BANERJEE, S. et al. Use of periphytic cyanobacterium and mixed diatoms coated of Penaeus monodon Fabricius postlarvae. Aquaculture, 271, p. 196-205, 2007. KOROLEFF, F.; PALMORK, K. H. Report on the Ices/Scor Nutrient Intercalibration Experiment. ICES, C.M. Hydr.Comm. 1972. KUMARLY, K., DA JONES, A. B.; EAST, J. Comparative analysis of the growth and survival of Penaeus monodon (Fabricius) larvae, from protozoea I to postlarvae I, on live feeds, artificial diets and combinations of both. Aquaculture, 81, p. 27–45, 1989. KUMLU, M.; FLETCHER, D. J. The Nematode Panagrellus redivivus as an alternative live feed for larval Penaeus indicus. Israeli Journal Aquaculture, v. 49, n. 1, p. 12-18, 1997. KUMLU, M.; FLETCHER, D. J.; FISHER, C. M. Larval pigmentation, survivaland growth of Penaeus indicus fed the nematode Panagrellus redivivus enriched with astaxanthin and various lipids. Aquaculture Nutrition, 4, p. 193–200, 1998. LEFLAIVE, J.; TEN-HAGE, L. Algal and cyanobacterial secondary metabolites in freshwaters a comparison of allelopathic compounds and toxins. Freshwater Biology, 52, p. 199 – 214, 2007. LIN, Y. C., CHEN, J. C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224, p. 193–201, 2003. MAHANAND, S. S.; MOULICK, S.; SRINIVASA RAO, P. Optimum formulation of feed for rohu, Labeo rohita (Hamilton), with biofloc as a component. Aquaculture International, 2012. 58 NEEDHAM, P. R. Guias para el reconocimiento de algas e invertebrados dulceacuícuolas. 5ª ed., 1973, p.3 - 225. NOOTONG, K.; PAVASANT, P. Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system. Journal of theWorld Aquaculture Society, v. 42, n. 3, p. 339-346, 2011. PALMER, C. M. Algae and water pollution an illustrated manual on the identification, significance, and control of algae in water supplies and in polluted water. U.S. Environmental Protection Agency Cincinnati, Ohio.124 p., 1977. PÉREZ FARFANTE, I.; KENSLEY, B. Penaoeid and Sergestoid Shrimps and Prawns of the World: Keys and Diagnoses for the Families and Genera. Éditions du Muséum Paris, 1997, p. 91. RAY J. A.; LEWIS, B. L.; BROWDY, C. L. et al. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299, p. 89–98, 2010. RICHARDS, F. A.; THOMPSON, T. G. The estimation and characterization of plankton populations by pigment analysis. II. A spectrophotometric method for the estimation of plankton pigments. Journal of Marine Research, 11, p. 156 – 172, 1952. SAMOCHA, T. M.; PATNAIK, S.; SPEED, M. et al. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36, p. 184–191, 2007. SANTOS, J. L.; SEVERINO-RODRIGUES, E.; VAZ-DOS-SANTOS, A. M. Estrutura populacional do camarão-branco Litopenaeus schmitti nas regiões estuarina e marinha da baixada santista, São Paulo, Brasil. Boletim do Instituto de Pesca, v. 34, n. 3, p. 375 – 389. SCHNEIDER, O.; SERETI, V.; MACHIELS, M. A. M. et al. The potential of producing heterotrophic bacterial biomass on aquaculture waste. Water Research, 40, p. 2684–2694, 2006. SILVA, V. B.; FONSECA, C. E. M.; MORENZ, M. J. F. et al. Resíduo úmido de cervejaria na alimentação de cabras. Revista Brasileira de Zootecnia, v. 39, n. 7, p. 1595 – 1599, 2010. SERRA, F. P. Utilização de diferentes fontes de carbono no cultivo do camarão Litopenaeus vannamei em sistema com bioflocos. 2013. 36 f. Dissertação (Mestrado em aquicultura) - Universidade Federal do Rio Grande, Rio Grande do Sul, 2013. STRICKLAND, J. D. H.; PARSONS, T. R. A practical handbook of seawater analysis. 2 ed. Ottawa: Fisheries Research Board of Canada, 1972. 311 p. TACON, A. G .J.; CODY, J. J.; CONQUEST, L. D. et al. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition, 8, p. 121–137, 2002. VAN WYK, P.; SCARPA, J. Water quality and management. In: Van Wyk, P., et al. (Ed.), Farming Marine Shrimp in Recirculating Freshwater Systems. Florida Department of Agriculture and Consumer Services, Tallahassee, 1999, p. 128–138. 59 VIEIRA, A. A.; BRAZ, J. M. Bagaço de cevada na alimentação animal. Revista Eletrônica Nutritime, 2009. Disponível em: <http://www.nutritime.com.br/>. Acesso em 10. Set. 2013. VILANI, F. G. Uso do farelo de arroz na fertilização da água em sistema de cultivo com bioflocos e seu efeito sobre o desempenho zootécnico de Litopenaeus vannamei. 2011. 52 f. Dissertação (Mestrado em aquicultura) - Universidade Federal de Santa Catarina, Santa Catarina, 2011. WASIELESKY, W.; ATWOOD, H.; STOKES, A. et al. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258, p. 396–403, 2006. ZAR, J. H. Biostatistical Analysis. Third Edition New Jersey: Prentice Hall, 1996. 662 p. AKIYAMA, D. M., Future consideration for shrimp nutrition and the aquaculture feed industry. In: SPECIAL SESSION ON SHRIMP FARMING, 1992. L.A. Proceedings of the Special Session on Shrimp Farming, LA. USA: World Aquaculture Society, 1992. p. 198-205. ALVAREZ, J. S.; HERNÁNDEZ-LLAMAS, A.; GALINDO, J. et al. Substitution of fishmeal with soybean meal in practical diets for juvenile white shrimp Litopenaeus schmitti (Pérez-Farfante & Kensley 1997). Aquaculture Research, v. 38, p. 689-695, 2007. AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). Standard methods for the examination of water and wastewater. Washington, 1998, 1193 p. AMINOT, A.; CHAUSSEPIED, M. Manuel des analyses chimiques en milieu marin. Brest: Cnexo, 1983, 395 p. AOAC. Official methods of analysis, 17ª Ed. Association of Official Analytical Chemists, Gaithersburg, MD, 2000. ARANA, L. V. Qualidade da água em aquicultura: princípios e práticas. 3ª Ed. Santa Catarina: Editora UFSC, 2010. 238 p. AVNIMELECH, Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, p. 227–235, 1999. BALLESTER, E. L. C.; ABREU, P. C.; CAVALLI, R. O. et al. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, p. 163–172, 2010. BARBIERI, R. Acute toxicity of ammonia in white shrimp (Litopenaeus schmitti) (Burkenroad, 1936, Crustacea) at different salinity levels. Aquaculture, 306, p. 329–333, 2010. BRITO, R.; CHIMAL, M-E; ROSAS, C. Effect of salinity in survival, growth, and osmotic capacity of early juveniles of Farfantepenaeus brasiliensis (decapoda:penaeidae). Journal of Experimental Marine Biology and Ecology, 244, p. 253–263, 2000. BROWDY, C. L.; BRATVOLD, D.; STOKES, A. D. et al. Perspectives on the application of closed shrimp culture systems. In: SPECIAL SESSION ON SUSTAINABLE SHRIMP CULTURE, 2001, Baton Rouge. Proceedings of the Special Session on Sustainable Shrimp Culture. Baton Rouge, LA, USA: E.D. Jory & C.L. Browdy, 2001, p. 20-34. BURFORD, M. A.; THOMPSON, P. J.; McINTOSH, R. P. et al. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232, p. 525–537, 2004. CHEN, J. C.; LIN, C .Y. Lethal effects of ammonia and nitrite on Penaeus penicillatus juveniles at two salinity levels. Comparative Biochemistry and Physiology, 100, p. 466– 482, 1991. 85 CHEN, J. C.; NAN, F. H. Oxygen consumption and ammonia-N excretion of Penaeus chinensis (Osbeck,1765) juveniles at different salinity levels (Decapoda: Penaeidae). Crustaceana, v. 68, n. 6, p. 712–719, 1995. COSTA, R. C.; FRANSOZO, A.; MELO, G. A. S. et al. Chave ilustrada para identificação dos camarões Dendrobranchiata do litoral norte do estado de São Paulo, Brasil. Biota Neotropica, v. 3, n.1, p. 1-12, 2003. DALL, W.; HILL, B. J.; ROTHLISBERG, P. C. et al. The biology of Penaeidae. Advances in Marine Biology, v. 27, p. 1- 484, 1990. DECAMP, O.; CODY, J.; CONQUEST, L. et al. Effect of salinity on natural community and production of Litopenaeus vannamei (Boone) within experimental zero-water exchange culture systems. Aquaculture Research, 34, p.345-355, 2003. DE SCHRYVER, P.; CRAB, R.; DEFOIRDT, T. et al. The basics of bioflocs technology: the added value for aquaculture. Aquaculture, 277, p. 125–137, 2008. EMERENCIANO, M.; BALLESTER, E. L. C.; CAVALLI, R. O. et al. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43, p. 447–457, 2012. FOLCH, J. M.; LEES, M.; SLOANE-STANLEY, G. H. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, p. 497-507, 1957. FRAGA, I.; GALINDO, J.; ARAZOZA, M. et al. Evaluación de niveles de proteína y densidades de siembra em el crecimiento del camarón blanco Litopenaeus schmitti. Revista de Investigacines Marinas, v. 23, n. 2, p. 141-147, 2002. GIROTTO, M. F. V. Efeitos da ammonia sobre juvenis de Litopenaeus vannamei (Boone, 1931) e Litopenaeus schmitti (Burkenroad, 1936): excreção e toxicidade. 2010. 79 f. Dissertação (Mestrado em Ciências Veterinárias) – Universidade Federal do Paraná, Paraná, 2010. GÓMEZ-JIMÉNEZ, S.; GONZÁLEX-FÉLIX, M. L.; PEREZ-VELAZQUEZ, M. et al. Effect of dietary protein level on growth, survival and ammonia efflux rate of Litopenaeus vannamei (Boone) raised in a zero-water exchange culture system. Aquaculture Research, 36, p. 834-840, 2005. GONZÁLEZ-FÉLIX, GÓMEZ-JIMÉNEZ, S.; PEREZ-VELAZQUEZ, M. et al. Nitrogen budget for a low salinity, zero-water Exchange culture system: I. Effect of dietary protein level on the performance of Litopenaeus vannamei (Boone). Aquaculture Research, 38, p. 798-808, 2007. GRIFFITH, R. E. Phytoplankton of Chesapeake Bay: An illustrated guide to the genera. University of Maryland Natural Resources Institute, 1967, 78 p. HARDY, R. W. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research, v.41, p.770‑776, 2010. 86 IZQUIERDO, M.; FORSTER, I.; DIVAKARAN, S. et al. Effect of green and clear water and lipid source on survival, growth and biochemical composition of Pacific white shrimp Litopenaeus vannamei. Aquaculture Nutrition, 12, p. 192–202, 2006. JORY, D. E.; CABRERA, T. R.; DUGGER, D. M. et al. A global review of shrimp feed management: status and perspectives. In: Special Session on Sustainable Shrimp Culture, 2001, Baton Rouge, L.A. Proceedings of the Special Session on Sustainable Shrimp Culture, Baton Rouge, L.A: The World Aquaculture Society, 2001, p. 135. JU, Z. Y.; FORSTER, I.; CONQUEST, L. et al. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research, 39, p. 118-133, 2008. KHATOON, H.; YUSOFF, F. M.; BANERJEE, S. et al. Use of periphytic cyanobacterium and mixed diatoms coated of Penaeus monodon Fabricius postlarvae. Aquaculture, 271, p. 196-205, 2007. KOROLEFF, F; PALMORK, K. H. Report on the Ices/Scor Nutrient Intercalibration Experiment. ICES, C.M. Hydr.Comm, 1972. KRUMMENAUER, D.; SEIFERT JR., C. A.; POERSCH, L. H. et al. Cultivo de camarões marinhos em sistema de bioflocos: análise da reutilização da água. Atlântica, Rio Grande, v. 34, n. 2, p. 103-111, 2012. KUHN, D. D.; BOARDMAN, G. D.; LAWRENCE, A. L. et al. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture, 296, p. 51-57, 2009. LAMELA, R. E. L.; COFFIGHY, R. S.; QUINTANA, Y. C. et al. Phenoloxidse and peroxidase activity in the shrimp Litopenaeus schmitti, Pérez-Farfante and Kensley (1997) exposed to low salinity. Aquaculture Research, v. 36, p. 1293-1297, 2005. LEI, C. H.; HSIEH, L. Y.; CHEN, C. K. Effects of salinity on the oxygen consumption and ammonia-N excretion of young juvenile of the grass shrimp, Penaeus monodon Fabricius. Bulletin of the Institute of Zoology, Academia Sinica, 28, p. 245-256, 1989. LI, E.; CHEN, L.; ZENG, C. et al. Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities. Aquaculture, 265, p. 385–390, 2007. LIAO, I. C.; MURAI, T. Effects of dissolved oxygen, temperature and salinity on the oxygen consumption of the grass shrimp, Penaeus monodon. In: The First Asian Fisheries Forum. Asian Fisheries Society, Manila, Phillippines, p. 641-646, 1986. LIGNOT, J. H.; COCHARD, J. C.; SOYEZ, C. et al. Osmoregulatory capacity according to nutritional status, molt stage and body weight in Penaeus stylirostris. Aquaculture, v. 170, n. 1, p.79–92, 1999. LIN, Y. C.; CHEN, J. C. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259, p. 109– 119, 2001. 87 LIN, Y. C.; CHEN, J. C. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224, p. 193-201, 2003. LÓPEZ. J. G. Aproximación a los requerimientos nutricionales de juveniles de camarón blanco Penaeus schmitti: evaluación de niveles y fuentes de proteína em la dieta. Dissertação de Biología, Universidad de La Habana, 98 p, 1999. MAICA, P. F.; BORBA, M. R.; WASIELESKY JR, W. Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-water-exchange super-intensive system. Aquaculture Research, 43, p. 361–370, 2012. MARTINEZ-CORDOVA, L. R., CAMPAÑA-TORRES, A.; PORCHAS-CORNEJO, M. A. The effects of variation in feed protein level on the culture of white shrimp, Litopenaeus vannamei (Boone) in low-water exchange experimental ponds. Aquaculture Research, 33, p. 995-998, 2002. MARTINEZ-CORDOVA, L. R., CAMPAÑA-TORRES, A.; PORCHAS-CORNEJO, M. A. Dietary protein level and natural food management in the culture of blue Litopenaeus stylirostris and white shrimp Litopenaeus vannamei in microcosms. Aquaculure Nutrition, 9, p. 155–160, 2003. MCINTOSH, D.; SAMOCHA, T. M.; JONES, E. R. et al. Effects of two commercially available low-protein diets (21% and 31%) on water and sediment quality, and on the production of Litopenaeus vannamei in an outdoor tank system with limited water discharge. Aquacultural Engineering, 25, p. 69–82, 2001. MOSS, S. M., DIVAKARAN, S., KIM, B. G. Stimulating effects of pond water on digestive enzyme activity in the Pacific white shrimp, Litopenaeus vannamei (Boone). Aquaculture Research, 32, p. 125–131, 2001. MOSS, S. M.; FORSTER, I. P.; TACON, A. G. J. Sparing effect of pond water on vitamins in shrimp diets. Aquaculture, 258, p. 388–395, 2006. NEEDHAM, P. R. Guias para el reconocimiento de algas e invertebrados dulceacuícuolas. 5ª edição, p. 3 – 225, 1973. O’BRIEN, C. J. The effects of temperature and salinity on growth and survival of juveniles Tiger prawns Penaeus esculentus (Haswell). Journal of Experimental Marine Biology and Ecology, v. 183, p. 133-145, 1994. OCAMPO, L.; VILLARREAL, H.; VARGAS, M. et al. Effect of dissolved oxygen and temperature on growth, survival and body composition of juvenile Farfantepenaeus californiensis (Holmes). Aquaculture Research, v. 31, p. 167 – 171, 2000. PALMER, C. M. Algae and water pollution an illustrated manual on the identification, significance, and control of algae in water supplies and in polluted water. U.S. Environmental Protection Agency Cincinnati, Ohio. 124 p, 1977. PÉQUEUX, A. Osmotic regulation in Crustaceans. Journal of Crustacean Biology, 15, p.1–60. 1995. 88 PÉREZ-FARFANTE, I. Western Atlantic shrimp of the genus Penaeus. Fishery Bulletin, v. 67, n. 3, p. 461-591, 1969. PÉREZ FARFANTE, I.; KENSLEY, B. Penaoeid and Sergestoid Shrimps and Prawns of the World: Keys and Diagnoses for the Families and Genera. Éditions du Muséum Paris, 1997, p. 91. PEREZ-VELAZQUEZ, M.; GONZÁLEX-FÉLIX, M. L.; JAIMES-BUSTAMENTE, F. et al. Investigation of the Effects of Salinity and Dietary Protein Level on Growth and Survival of Pacific White Shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, v. 38, n. 4, p. 475-485, 2007. PEREZ-VELAZQUEZ, M.; GONZÁLEZ-FÉLIX, M. L.; GÓMEZ-JIMÉNEZ, S. et al. Nitrogen budget for a low-salinity, zero-water exchange culture system: II. Evaluation of isonitrogenous feeding of various dietary protein levels to Litopenaeus vannamei (Boone). Aquaculture Research, 39, p. 995-1004, 2008. PONCE-PALAFOX, J.; MARTINEZ-PALACIOS, C. A.; ROSS, L. G. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone,1931. Aquaculture, v. 157, p. 107-115, 1997. RAMOS, R.; ANDREATTA, E. Requerimientos de proteína y energía bruta en juveniles de camarón rosado Farfantepenaeus paulensis (Pérez-Farfante, 1967) sometidos a diferentes salinidades. Latin American Journal of Aquatic Research, v. 39, n. 3, p. 427-438, 2011. RAY, J. A.; LEWIS, B. L.; BROWDY, C. L. et al. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299, p. 89–98, 2010. REBELO, M. F.; RODRÍGUEZ, E. M.; SANTOS, E. A. et al. Histopathological changes in gills of the esturaine crab Chasmagnathus granulata (Crustacea-Decapoda) following actue exposure to ammonia. Comparative Biochemistry and Physiology, 125, p. 157–164, 2000. ROMANO, N.; ZENG, C. The effects of salinity on the survival, growth and haemolymph osmolality of early juvenile blue swimmer crabs, Portunus pelagicus. Aquaculture, 260, p. 151–162, 2006. ROMANO, N.; ZENG, C. Ontogenetic changes in tolerance to acute ammonia exposure and associated gill histological alterations during early juvenile development of the blue swimmer crab, Portunus pelagicus. Aquaculture, 266, p. 246–254, 2007. ROMANO, N.; ZENG, C. Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture, 334-337, p. 12–23, 2012. ROSAS, C.; SÁNCHEZ, A.; DÍAZ-IGLESA, E. et al. Critical dissolved oxygen level to Penaeus setiferus and Penaeus schmitti postlarvae (PL 10-18) exposed to salinity changes. Aquaculture, 152, p. 259 – 272, 1997. 89 SALZE, G.; McLEAN, E.; BATTLE, P. R. et al. Use of soy protein concentrate and novel ingredients in the total elimination of fish meal and fish oil in diets for juvenile cobia, Rachycentron canadum. Aquaculture, 298, p. 294–299, 2010. SAMOCHA, T. M.; LAWRENCE, A. L.; HOROWITZ, A. et al. The use of commercial probiotics in the production of marine shrimp under no water exchange. In: The Second International Conference on Recirculating Aquaculture, 1998. Virginia Polytechnic Institute, 1998, p. 373–375. SAMOCHA, T. M.; LAWRENCE, A. L.; COLLINS, C. A. et al. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. Journal of Applied Aquaculture, 15, n. 3-4, p.1–19, 2004. SAMOCHA, T. M.; PATNAIK, S.; SPEED, M. et al. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering, 36: 184–191, 2007. SETIARTO, A.; STRÜSSMANN, C. A.; TAKASHIMA, F. et al. Short-term responses of adult kuruma shrimp Marsupenaeus japonicus to environmental salinity: osmotic regulation, oxygen consumption and ammonia excretion. Aquaculture Research, 35, p. 669–677, 2004. SHIAU, S. Y.; KWOK, C. C.; CHOU, B. S. Optimal dietary protein level of Penaeus monodon reared in seawater and brackish water. Nippon Suisan Gakkaishi, 57, p. 711-716, 1991. SHIAU, S. Y. Nutrient requirements of penaeid shrimp. Aquaculture, 164, p.77-93, 1998. SILVA, K. R.; WASIELESKY JR., W.; ABREU, P. Nitrogen and phosphorus dynamics in the biofloc production of the pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, v. 44, n. 1, p. 30-41, 2013. TENDULKAR, M.; KULKARNI, A. S. Effect of Different Dietary Protein levels on Growth, Survival and Biochemical aspects of Banana prawn, Fenneropenaeus merguiensis (De Man, 1888). International Journal of Biological & Medical Research, v. 2, n. 4, p. 1140-1143, 2011. VAN WYK, P.; SCARPA, J. Water quality and management. In: Van Wyk, P., M. Davis-Hodgkins, R. Laramore, K.L. Main, J. Mountain & J. Scarpa. Farming Marine Shrimp in Recirculating Freshwater Systems. Florida Department of Agriculture and Consumer Services, Tallahassee, p. 128–138, 1999. WASIELESKY, W.; ATWOOD, H.; STOKES, A. et al. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258, p. 396 - 403, 2006. WEIHRAUCH, D., MORRIS, S., TOWLE, D. W. A review — ammonia excretion in aquatic and terrestrial crabs. Journal of Experimental Biology, 207, p. 4491– 4504, 2004. XU, W. J.; PAN, L.; ZHAO, D. et al. Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture, 350-353, p. 147 – 153, 2012. 90 XU, W-J.; PAN, L-Q. Enhancementet of imune response and antioxidante status of Litopenaeus vannamei juveniles in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquacuture, v. 412-413, p. 117-124, 2013. ZAR, J. H. Biostatistical Analysis. Third Edition New Jersey: Prentice Hall, 1996. 662 p.por
dc.subject.cnpqZootecniapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/63418/2013%20-%20Michelle%20Midori%20Sena%20Fugimura.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4246
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-12-08T10:54:57Z No. of bitstreams: 1 2013 - Michelle Midori Sena Fugimura.pdf: 1218148 bytes, checksum: b9681043f2f3db0d6e5529c27d1515cf (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-12-08T10:54:57Z (GMT). No. of bitstreams: 1 2013 - Michelle Midori Sena Fugimura.pdf: 1218148 bytes, checksum: b9681043f2f3db0d6e5529c27d1515cf (MD5) Previous issue date: 2013-12-17eng
Appears in Collections:Doutorado em Zootecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2013 - Michelle Midori Sena Fugimura.pdf2013 - Michelle Midori Sena Fugimura1.19 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.