Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10310
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCôrtes, Rafael Sonoda
dc.date.accessioned2023-12-21T19:00:44Z-
dc.date.available2023-12-21T19:00:44Z-
dc.date.issued2016-07-29
dc.identifier.citationCÔRTES, Rafael Sonoda. Citocinas pró inflamatórias, eixo hipotálamo-hipófise-adrenal e papel do BDNF na mediação da neurogênese hipocampal no infarto do miocárdio em ratos. 2016. 82 f. Tese (Doutorado Multicêntrico em Ciências Fisiológicas). Instituto de Ciências Biológicas e da Saúde, Departamento de Ciências Fisiológicas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10310-
dc.description.abstractO infarto do miocárdio (IM) é a síndrome de maior prevalência nos dias atuais. Semelhantemente impactante, a depressão tem causado diversos prejuízos à saúde e a economia mundial. Epidemiologicamente, essas diferentes condições clínicas possuem uma relação bidirecional. Diversos estudos em ratos, nos últimos anos, associam o surgimento de sinais análogos a depressão a alterações fisiopatológicas pós IM, dentre as quais a ativação de fatores pró-inflamatórios e a hiperativação do eixo endócrino hipotálamo-hipófise-adrenal (HPA). O objetivo deste trabalho foi: estudar, em grupos distintos de ratos, num protocolo a curto prazo, de quatro dias e num longo, de vinte e cinco dias, as características supracitadas, além de elucidar a participação do fator neurotrófico derivado do cérebro (BDNF) e da neurogênese hipocampal no surgimento da depressão induzida por IM experimental, através da proteína ki-67, marcador de proliferação celular. Para tanto, ratos Wistar machos (200-250g) foram submetidos ao IM através da ligadura da artéria coronária esquerda e submetidos ao teste de preferência pela sacarose, teste do nado forçado e ao teste do campo aberto. Foram mensurados: os níveis cardíacos de TNF-α e as concentrações plasmáticas e hipotalâmicas de TNF-α e IL-1β. Na alça endócrina, as concentrações plasmáticas de hormônio adrenocorticotrófico (ACTH) e de corticosterona e os níveis hipotalâmicos de hormônio liberador de corticotrofina (CRH). Por fim, foi mensurada as concentrações plasmáticas de BDNF para a associação com a neurogênese do hipocampo, região importante na fisiopatologia da depressão. No protocolo longo, os animais infartados apresentaram sinais análogos a depressão em comparação aos animais falso operados. Concomitantemente, apresentaram níveis elevados de TNF-α e IL-1β, de CRH, ACTH e corticosterona e concentrações plasmáticas diminuídas de BDNF, sugerindo diminuição da proliferação de células granulares no hipocampo e, consequentemente, o surgimento da depressão em resposta ao IM. Embora sejam necessários mais estudos, acredita-se que este trabalho tenha impacto translacional, servindo de base experimental para o desenvolvimento de futuras estratégias farmacológicas mais eficazes para melhor qualidade e expectativa de vida de pacientes com infarto do miocárdio. Palavras chave: Infarto, citocinas, depressãopor
dc.description.sponsorshipCAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectInfarctioneng
dc.subjectcytokineseng
dc.subjectdepressioneng
dc.subjectinfarto do miocárdiopor
dc.subjectDepressãopor
dc.subjectBDNFpor
dc.subjectHipotálamo - hipófise - adrenalpor
dc.titleCitocinas pró inflamatórias, eixo hipotálamo-hipófiseadrenal e papel do BDNFna mediação da neurogênese hipocampal no infarto do miocárdio em ratospor
dc.title.alternativeProinflammatory cytokines, hypothalamic-pituitaryadrenal axis and role of BDNFin mediating hippocampal neurogenesis in myocardial infarction in ratseng
dc.typeTesepor
dc.description.abstractOtherMyocardial infarction (MI) is the most prevalent nowadays syndrome. Similarly impressive, depression has caused many damages to health and the global economy. Epidemiologically, these different clinical conditions have a bidirectional relationship. Several studies in rats, in recent years, associated the emergence of analog signals depression post pathophysiological IM changes, among which the activation of pro-inflammatory factors and the activation of the hypothalamic-pituitary-adrenal endocrine axis (HPA). The objective of this study was: to study, in different rat groups, a short-term protocol, four days and a long, twenty-five days, the above features, besides elucidating the involvement of brain-derived neurotrophic factor (BDNF ) and hippocampal neurogenesis in the onset of depression induced experimental IM by ki-67 protein, cell proliferation marker. For this purpose, male Wistar rats (200-250 g) were subjected to IM through ligation of the left coronary artery and underwent preference for sucrose test and the open field test. They were measured: cardiac TNF-α, plasma and hypothalamic concentrations of TNF-α and IL-1β. In endocrine handle, plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone and hypothalamic levels of corticotropin releasing hormone (CRH). Finally, we measured plasma concentrations of BDNF to the association with the neurogenesis of the hippocampus, an important region in the pathophysiology of depression. In the long protocol, infarcted animals showed similar signs of depression compared to those operated fake animals. Concomitantly, showed elevated levels of TNF-α and IL-1β, CRH, ACTH and corticosterone plasma levels and reduced BDNF, suggesting decreased proliferation of granule cells in the hippocampus and hence the emergence of depression in response to MI. Although further studies are required, it is believed that this study has translational impact serving experimental basis for the development of more effective future pharmacologic strategies to better quality and life expectancy of patients with myocardial infarction.eng
dc.contributor.advisor1Olivares, Emerson Lopes
dc.contributor.advisor1ID027.886.707-37por
dc.contributor.referee1Olivares, Emerson Lopes
dc.contributor.referee2Nascimento, José Hamilton Matheus
dc.contributor.referee3Rocha, Fábio Fagundes da
dc.contributor.referee4Fortes, Fábio da Silva de Azevedo
dc.contributor.referee5Silveira, Anderson Luiz Bezerra da
dc.creator.ID116.692.957-45por
dc.creator.Latteshttp://lattes.cnpq.br/2640160789308974por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma Multicêntrico de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesAlmeida J, Duarte JO, Oliveira LA, Crestani CC. Effects of nitric oxide synthesis inhibitor or fluoxetine treatment on depression-like state and cardiovascular changes induced by chronic variable stress in rats. Stress 18(4), 462-74, 2015. Alexander N, Osinsky R, Schmitz A, Mueller E, Kuepper Y, Hennig J. The BDNF Val66Met polymorphism affects HPA-axis reactivity to acute stress. Psychoneuroendocrinology, 35(6), 949-953, 2010. Anisman H, Merali Z, Hayley S. Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders. Progress in neurobiology, 85 (1), 1-74, 2008. Archer J. Tests for emotionality in rats and mice: a review. Animal behaviour, 21(2), 205-235, 1973. Banks W, Plotkin SR, Kastin AJ. Permeability of the blood-brain barrier to soluble cytokine receptors. Neuroimmunomodulation, 2(3), 161-165, 1995. Bantsiele GB, Bentué-Ferrer D, Saïkali S, Laviolle B, Bourin M, Reymann JM. Behavioral effects of four antidepressants on an ischemic rat model of emotional disturbances. Behav Brain Res, 201(2), 265-71, 2009. Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. The EMBO Journal, 1(5), 549-53, 1982. Baumann P. Pharmacotherapy of depression: recent developments, 3(125), 2079-80, 2083-4, 2007. Béjot Y, Prigent-Tessier A, Cachia C, Giroud M, Mossiat C, Bertrand N, Marie C. Time-dependent contribution of non neuronal cells to BDNF production after ischemic stroke in rats. Neurochemistry international, 58(1), 102-111, 2011. Blier P. The pharmacology of putative early-onset antidepressant strategies. Eur Neuropsychopharmacol, 13, 57-66, 2003. Borsini F, Meli A. Is the forced swimming test a suitable model for revealing antidepressant activity?. Psychopharmacology, 94(2), 147-160, 1988. Brown ES, Rush AJ, McEwen B. Hippocampal remodelling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacol, 21(4), 474- 84, 1999. Bunney WE, Davis J M. Norepinephrine in depressive reactions.Arch. Gen. Psychiatry, 13, 483-494, 1965. Casarotto PC, Andreatini R. Repeated paroxetine treatment reverses anhedonia induced in rats by chronic mild stress or dexamethasone. Eur Neuropsychopharmacol, 17, 735– 42, 2007. Castagné V, Moser P, Roux S, Porsolt RD. Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci, 55 (8.10), 11-18, 2011 . Ceccatelli S, Eriksson M, Hokfelt T. Distribution and coexistence of corticotropinreleasing factor-, neurotensin-, enkephalin-, cholecystokinin-, galanin- and vasoactive intestinal polypeptide/peptide histidine isoleucine-like peptides in the parvocellular part of the paraventricular nucleus. Neuroendocrinology, 49, 309-323, 1989. Chao HM, Sakai RR, Ma LY, McEwen BS. Adrenal steroid regulation of neurotrophic factor expression in the rat hippocampus. Endocrinology 139, 3112–3118, 1998. Chung, Eugene S. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure results of the anti-TNF Therapy Against Congestive Heart failure (ATTACH) Trial. Circulation 107(25), 3133-3140, 2003. Cohen MC, Cohen S. Cytokine function: a study in biologic diversity. Am J Clin Pathol May, 105(5), 589-98, 1996 Courvoisier H, Moisan MP, Sarrieau A, Hendley ED, Mormède P. Behavioral and neuroendocrine reactivity to stress in the WKHA/WKY inbred rat strains: a multifactorial and genetic analysis. Brain research, 743(1), 77-85, 1996. Coyle JT, Duman RS. Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron, 38, 157-160, 2003 Crupi R, Mazzon E, Marino A, La Spada G, Bramanti P, Cuzzocrea S, et al. Melatonin treatment mimics the antidepressant action in chronic corticosterone-treated mice. J Pineal Res, 49, 123–9, 2010. Cush JJ. Unusual toxicities with TNF inhibition: heart failure and drug-induced lupus. Clinical and experimental rheumatology, 22, 141-147, 2004. Daskalakis NP, De Kloet ER, Yehuda R, Malaspina D, Kranz TM. Early Life Stress Effects on Glucocorticoid-BDNF Interplay in the Hippocampus, 16, 8:68, 2015. Del Porto, José Alberto. Conceito e diagnóstico. Rev Bras Psiquiatr, 21(1), 1999. Dolotov OV. Semax, an analog of ACTH (4–10) with cognitive effects, regulates BDNF and trkB expression in the rat hippocampus. Brain research, 1117(1), 54-60, 2006. Dhar AK, Barton DA. Depression and the Link with Cardiovascular Disease. Front Psychiatry, 21, 7-33, 2016 DSM-V-TR- Diagnostic and Statistical Manual of Mental Disorders. Du J, Zhang D, Yin Y, Zhang X, Li J, Liu D, Pan F, Chen W. The Personality and Psychological Stress Predict Major Adverse Cardiovascular Events in Patients With Coronary Heart Disease After Percutaneous Coronary Intervention for Five Years. Medicine (Baltimore) 95(15), 3364, 2016 Duman RS, Malberg J, Nakagawa S, D’Sa C. Neuronal plasticity and survival in mood disorders. Biological Psychiatry, 48(8), 732-9, 2000. Duman, R.S, Nakawa, S, Mayber J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacol, 25, 836-44, 2001. Dwived Y, Rizavi HS, Pandey GN. Antidepressants reverse corticosteronemediated decrease in brain-derived neurotrophic factor expression: differential regulation of specific exons by antidepressants and corticosterone. Neuroscience, 139, 1017–29, 2006. Einat H, Yuan P, Gould TD, Li J, Du J, Manji HK, Chen G. The role of the extracellular signal-regulated kinase signaling pathway in mood regulation. Journal of Neuroscience, 23, 7311-7316, 2003. Erhardt L, Herlitz J, Bossaert L. Task force on the management of chest pain. Eur Heart J, 23(15), 1153–76, 2002. Factor SM. Pathophysiology of myocardial ischemia. In: Hurst JW, Schlant, RC, Rackley CE, Sonnenblick EH, Wenger NK. Ed The Heart. Arteries and veins. 7 ed. New York, Mc Graw, Cap. 49: 940-59, 1990. Felder RB, Francis J, Zhang ZH, Wei SG, Weiss RM, Johnson AK.. Heart failure and the brain: New perspectives. Am J Physiol Regul Integr Comp Physiol, 284, 259–276, 2003. Fisar Z, Hroudová J, Raboch J. Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers. Neuro Endocrinol Lett, 31(5), 645-56, 2010. Fishbein MC, Maclean D, Maroko PR. Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. Am J Pathol, 90, 57- 70, 1978. Francis J, Weiss RM, Johnson AK, Felder RB. Central mineralocorticoid receptor blockade decreases plasma TNF-alpha after coronary artery ligation in rats. Am J Physiol Regul Integr Comp Physiol, 284(2), 328-35, 2003 Francis J, Chu Y, Johnson AK, Weiss RM, Felder RB. Acute myocardial infarction induces hypothalamic cytokine synthesis. Am J Physiol Heart Circ Physiol, 286(6), 2264-71, 2004a. Francis J, Zhang ZH, Weiss RM, Felder RB. Neural regulation of the proinflammatory cytokine response to acute myocardial infarction. Am J Physiol Heart Circ Physiol. 287(2), 791-7, 2004b. Freedland KE, Rich MW, Skala JA, Carney RM, Davila-Roman VG, Jaffe AS. Prevalence of depression in hospitalized patients with congestive heart failure. Psychosom, 65, 119-128, 2003. Fregnil F, Pascual-Leone A. Estimulação magnética transcraniana: uma nova ferramenta para o tratamento da depressão? Rev. Psiq. Clín, 28 5), 253-265, 2001. Frey BN. Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life sciences, 79(3), 281-286, 2006. Galuppo P, Bauersachs J. Mineralocorticoid receptor activation in myocardial infarction and failure: recent advances. Eur J Clin Invest Oct, 42(10), 1112-20, 2012. Gorman JM. Comorbid depression and anxiety spectrum disorders. Depress Anxiety; 4(4), 160-8, 1996-1997. Goodman & Gilman. As bases farmacológicas da terapêutica. 9 a. ed. Rio Janeiro, Guanabara Koogan, 1996. Gotz R, Koster R, Winkler C, Raulf F, Lottspeich F, Schartl M. and Thoenen H, Neurotrophin-6 is a new member of the nerve growth factor family. Nature, 372, 266- 269, 1994. Gonul AS, Akdeniz F, Taneli F, Donat O, Eker C, Vahip S. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. European Archives of Psychiatry and Clinical Neuroscience, 255(6), 381-386, 2005. Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry Dec 1; 46(11), 1472-9, 1999. Graeff F G & Brandão M L. Neurobiologia das doenças mentais, São Paulo: Lemos Editorial, 1993. Gray J, McNaughton N. The neuropsychology of anxiety. 2nd edition. Oxford: Oxford University Press, 2-36, 2000. Greenwood D, Jagger DJ, Huang LC, Hoya N, Thorne PR., Wildman SS, Housley GD. P2X receptor signaling inhibits BDNF-mediated spiral ganglion neuron development in the neonatal rat cochlea. Development, 134(7), 1407-1417, 2007. Grippo, AJ. Neuroendocrine and cytokine profile of chronic mild stress-induced anhedonia. Physiology&Behavior,84(5),697-706,2005. Helwig BG, Musch TI, Craig RA, Kenney MJ. Increased interleukin-6 receptor expression in the paraventricular nucleus of rats with heart failure. Am J Physiol Regul Integr Comp Physio, 292(3), 1165-73, 2007. Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamuspituitary- adrenal axis. Trends Neurosci, 20, 78-84, 1997. Huang EJ, Reichardt LF. TRK receptors : Roles in Neuronal Signal Transduction. Annual Review of Biochemestry, 72, 609-642, 2003. Huang Z, Zhong XM, Li ZY, Feng CR., Pan AJ, Mao QQ. Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats. Neuroscience letters, 493(3), 145-148, 2011. Hwang, In Koo. Enhanced cell proliferation and neuroblast differentiation in the rat hippocampal dentate gyrus following myocardial infarction. Neuroscience letters, 450(3), 275-280, 2009. Irwin MW, Mak S, Mann DL, Qu R, Penninger JM, Yan A, Dawood F, Wen WH, Shou Z, Liu P. Tissue expression and immunolocalization of tumor necrosis factoralpha in postinfarction dysfunctionalmyocardium.Circulation, 99(11), 1492-8, 1999. Jacobsen JP, Mork A. Chronic corticosterone decreases brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus, but not in the frontal cortex of the rat. Brain Res, 1110:221–5, 2006. Jeanneteau FD. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus.Proceedings of the National Academy of Sciences, 109(4), 1305-1310, 2012. Johns TNP, Olson BJ. Experimental myocardial infarction: I. Method of coronary occlusion in small animals. Ann Surg, 140, 675-682, 1954. Johnson AK, Grippo AJ. Sadness and broken hearts: neurohumoral mechanisms and comorbidity of ischemic heart disease and psychological depression. J Physiol Pharmacol,57 Suppl 11, 5-29, 2006. Kala P, Hudakova N, Jurajda M, Kasparek T, Ustohal L, Parenica J, Sebo M, Holicka M, Kanovsky J. Depression and Anxiety after Acute Myocardial Infarction Treated by Primary PCI. PLoS One, 13, 11(4), 2016. Kaloustian S. Apoptosis time course in the limbic system after myocardial infarction in the rat. Brain research, 1216, 87-91, 2008. Kaufman N, Gavan TL, Hill RW. Experimental myocardial infarction in the rat. AMA Arch Pathol, 67, 482-488, 1959. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature, 386 (6624): 493-5, 1997. Kishi T. Heart Failure as a Disruption of Dynamic Circulatory Homeostasis Mediated by the Brain. Int Heart J, 57(2), 145-9, 2016. Koelch M, Pfalzer AK, Kliegl K, Rothenhöfer S, Ludolph AG, Fegert JM, Burger R, Mehler-Wex C, Stingl J, Taurines R, Egberts K, Gerlach M. Therapeutic Drug Monitoring of Children and Adolescents Treated with Fluoxetine. Pharmacopsychiatry, 2011. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci, 16(6), 2027-33, 1996. Kummar A, Cannon CP. Acute coronary syndromes: diagnosis and management, part I. Mayo Clin Proc, 84, 917-938, 2009. Lanas F, Avezum A, Bautista LE, Diaz R, Luna M, Islam S, Yusuf S. Risk factors for acute myocardial infarction in Latin America: the INTERHEART Latin American study. Circulation, 115, 1067-1074, 2007. Lathe R. Hormone and hippocampus. J Endocrinol, 169,205-31, 2001. Latini R, Bianchi M, Correale E, Dinarello CA, Fantuzzi G, Fresco C, Shapiro L. Cytokines in acute myocardial infarction: selective increase in circulating tumor necrosis factor, its soluble receptor, and interleukin-1 receptor antagonist. Journal of cardiovascular pharmacology, 23(1), 1-6, 1994. Lessmann V, Gottmann K, Malcangio M. Neurotrophin secretion: current facts and future prospects. Progress in Neurobiology, 69, 341-374, 2003. Levi-Montalcini R, Hamburger V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. The journal of experimental zoology, 116(2), 321-61, 1951. Lindsay RM, Wiegand SL, Altar CA and DiStefano PS, Neurotrophic factors: from molecule to man, Trends Neurosci, 17, 182-190, 1994. Li S, Wang C, Wang M, Li W, Matsumoto K, Tang Y. Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci, 15, 1373–81, 2007. Lupien SJ, De Leon M, De Santi S, Convit A, Tarshish C, Nair NPV, Thakur M, McEwen B, Hauger R, Meaney MJ. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neurosci, 1(1), 69-72, 1998. Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, Wihler C, Koliatsos VE, Tessarollo L, Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA. 96, 15239–15244, 1999. Magariños AM, Verdugo JM, McEwen BS. Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci., 94, 14002-8, 1997. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci, 20(24), 9104-10, 2000. Mao QQ, Xian YF, Ip SP, Tsai SH, Che CT. Long-term treatment with peony glycosides reverses chronic unpredictable mild stress-induced depressive-like behavior via increasing expression of neurotrophins in rat brain. Behav Brain Res, 210, 171–7, 2010. Mao QQ, Huang Z, Ip SP, Xian YF, Che CT. Peony glycosides reverse the effects of corticosterone on behavior and brain BDNF expression in rats. Behavioural brain research, 227(1), 305-309, 2012. Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci, 10(9), 1089-93, 2007. Matto V, Allikmets L. Acute and chronic citalopram treatment differently modulates rat exploratory behavior in the exploration box test: no evidence for increased anxiety or changes in the [3H] raclopride binding.Pharmacology, 58(2), 59-69, 1999. McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res, 886,172-89, 2000. McGill HC, Jr., McMahan CA, Herderick EE, Malcom GT, Tracy RE, Strong JP. Origin of atherosclerosis in childhood and adolescence. Am J Clin Nutr, 72, 1307-1315, 2000. Meyer JH. Neuroimaging markers of cellular function in major depressive disorder: implications for therapeutics, personalized medicine, and prevention. Clin Pharmacol Ther, 91(2), 201-14, 2012. Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M. Mechanism of TrkB - mediated hippocampal long-term potentiation. Neuron, 36(1), 121-37, 2002. Molteni R, Rossetti AC, Savino E, Racagni G, Calabrese F. Chronic mild stress modulates activity-dependent transcription of BDNF in rat hippocampal slices. Neural plasticity, 2015. Nemeroff CB, Owens MJ. Treatment of mood disorders. Nat Neurosci Suppl 5, 1068- 1070, 2002. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron, 34, 13-25, 2002. Neumann FJ, Ott I, Gawaz M, Richardt G, Holzapfel H, Jochum M, Schömig A. Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation, 92(4), 748-755, 1995. Nostramo R, Serova L, Laukova M, Tillinger A, Peddu C, Sabban EL. Regulation of nonclassical renin-angiotensin system receptor gene expression in the adrenal medulla by acute and repeated immobilization stress. Am J Physiol Regul Integr Comp Physiol, 308(6), 517-29, 2015. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci, 15(11), 7539-47, 1995 . NIMH- National Institute of Mental Health. Health topics, 2011. Disponível em: URL: http://www.nimh.nih.gov/health/topics/depression/governmentinvolvement.index.shtml. Olivares EL, Ribeiro VP, de Castro JPW, Ribeiro KC, Mattos EC, Goldenberg RC, Masuda MO. Bone marrow stromal cells improve cardiac performance in healed infarcted rat hearts. American Journal of Physiology-Heart and Circulatory Physiology, 287(2), 464-470, 2004. Olivares EL, Costa ESRH, Werneck-de-Castro JP, Pinho-Ribeiro V, Silva MG, Ribeiro KC, Mattos EC, Goldenberg RC, Campos de Carvalho AC, Masuda MO Cellular cardiomyoplasty in large myocardial infarction: can the beneficial effect be enhanced by ACE-inhibitor therapy? Eur J Heart, 9, 558-567, 2007. Olivares EL, Silva-Almeida C, Pestana FM, Sonoda-Côrtes R, Araujo IG, Rodrigues N C, Rocha FF. Social stress-induced hypothyroidism is attenuated by antidepressant treatment in rats.Neuropharmacology, 62(1), 446-456, 2012. O'Neil A, Fisher AJ, Kibbey KJ, Jacka FN, Kotowicz MA, Williams LJ, Stuart AL, Berk M, Lewandowski PA, Taylor CB, Pasco JA. Depression is a risk factor for incident coronary heart disease in women: An 18-year longitudinal study. J Affect Disord, 15, 117-24, 2016. Ono, Koh. Cytokine gene expression after myocardial infarction in rat hearts possible implication in left ventricular remodeling. Circulation, 98(2), 149-156, 1998. Ormel, J. Impact of mental disorderes on disability and quality of life in Europe: results from the European Study of Mental Disorders. Psychiatrica Scandinavica, 110 , suppl 421, 36, 2004. Osvaldo AK, Lourenço MD. Estratificação do risco cardiovascular; a hipertensão e o risco de doença cardiovascular. Jornal Angolano de Saúde. Vol 1/1, 2016. Otten U, Baumann JB, Girard J. Stimulation of the pituitaryadrenocortical axis by nerve growth factor. Nature, 282(5737), 413-4, 1979. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E. Myocardial infarct size and ventricular function in rats. Circulation research, 44(4), 503-512, 1979. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation, 72, 406- 412, 1985. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol, 260, 1406-1414, 1991. Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol, 47, 379-391, 1978. Pratt LA, Ford DE, Crum RM, Armenian HK, Gallo JJ, Eaton WW. Depression, psychotropic medication, and risk of myocardial infarction. Prospective data from the Baltimore ECA follow-up. Circulation, 94, 3123-3129, 1996. Prickaerts J, Raaijmakers W, Blokland A. Effects of myocardial infarction and captopril therapy on anxiety-related behaviors in the rat. Physiol Behav, 60, 43-50, 1996. Rang HP, Dale JM., Rittier JM. Rang and Dale’s: Pharmacology. 6ed. Nova Iorque: Churchill/Livingstone, 2006. Rantamäki T, Knuuttila JEA, Hokkanen ME, Castrén E. The effects of acute and longterm lithium treatments on TrkB neurotrophin receptor activation in the mouse hippocampus and anterior cingulate cortex. Neuropharmacology, 50, 421- 427, 2006. Ridker, P. M., Rifai, N., Pfeffer, M., Sacks, F., Lepage, S., Braunwald, E., & Cholesterol and Recurrent Events (CARE) Investigators. Elevation of tumor necrosis factor-α and increased risk of recurrent coronary events after myocardial infarction. Circulation, 101(18), 2149-2153, 2000. Riedel G, Micheau J. Function of the hippocampus in memory formation: desperately seeking resolution. Prog Neuropsychopharmacol Biol Psychiatry, 25(4), 835-53, 2001. Rygula R, Abumaria N, Flugge G, Fuchs E, Ruther E, Havemann-Reinecke U. Anhedonia and motivational deficits in rats: impact of chronic socialstress. Behav Brain Res, 162, 127–34, 2005. Saaralainen T, Hendolin P, Lucas G, Koponen E, Sairane M, MacDonald E, Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P, Castre E. Activation of the trkB neurotrophin receptor is induced by antidepressant drugs and requires for antidepressant-induced behavioural effects. J Neurosci, 23(1), 349-57, 2003. Sáenz JCB, Villagra OR, Trías JF. Factor analysis of forced swimming test, sucrose preference test and open field test on enriched, social and isolated reared rats. Behavioural brain research, 169(1), 57-65, 2006. Saidov AB, Israilov RI. Morphological characteristics of cardiomyocyte death in the experimental myocardial infarction in rats with various emotional reaction. Morfologiia, 122(4), 50-2, 2002. Salleh MA, Papakostas I, Zervas I, Christodoulou G. Eletroconvulsoterapia: critérios e recomendações da Associação Mundial de Psiquiatria. Rev Psiq Clín, 33(5), 262-267, 2006. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressant. Science, 301, 805-9, 2003. Sapolski RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci, 10(9), 2897-902. Sapolski RM. Stress, Glucocorticoids, and Damage to the Nervous System: The Current State of Confusion. Stress, 1(1), 1-19, 1996 Scaccianoce S, Del Bianco P, Paolone G, Caprioli D, Modafferi AM, Nencini P, Badiani A. Social isolation selectively reduces hippocampal brain-derived neurotrophic factor without altering plasma corticosterone. Behavioural brain research, 168(2), 323- 325, 2006. Schaaf MJ, de Jong J, de Kloet ER, Vreugdenhil E. Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Res, 813, 112–20, 1998. Scheuer DA, Mifflin SW. Repeated intermittent stress exacerbates myocardial ischemia-reperfusion injury. Am J Physiol, 274, 470-475, 1998. Schleifer SJ, Macari-Hinson MM, Coyle DA, Slater WR, Kahn M, Gorlin R, Zucker HD. The nature and course of depression following myocardial infarction. Arch Intern Med, 149, 1785-1789, 1989. Schildraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry, 122, 509-522, 1965. Schloss P, Henn FA. New insights into the mechanisms of antidepressant therapy. Pharmacology & Therapeutics, 102, 47-60, 2004. Schoemaker RG, Smits JF. Behavioral changes following chronic myocardial infarction in rats. Physiol Behav, 56(3), 585-9, 1994. Schoemaker RG, Kalkman EA, Smits JF. 'Quality of life' after therapy in rats with myocardial infarction: dissociation between hemodynamic and behavioral improvement. Eur J Pharmacol, 298(1), 17-25, 1996. Seligman MEP. Helplessness. On development, depression and death, New York, W.H. Freeman and Company, 1992. (Trabalho original publicado em 1975). Selye H. Stress and disease. Trans Am Laryngol Rhinol Otol Soc, 312-326, discussion, 326-319, 1955. Selye H. Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology, 11(5), 1960. Sertoz OO, Binbay IT, Koylu E, Noyan A, Yıldırım E, Mete HE. The role of BDNF and HPA axis in the neurobiology of burnout syndrome. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 32(6), 1459-1465, 2008. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A, 93(9), 3908-13, 1996. Sheline YI, Gado M, Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry, 160, 1516-8, 2003. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S, Iyo M. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biological Psychiatry, 54(1), 70-5, 2003. Shors TJ, Miesegaes G, Beylin A, Zhae M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410, 372-6, 2001. Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-like effect of brainderived neurotrophic factor (BDNF). Pharmacol Biochem Behav 56, 131–137, 1997. Smith MA, Makino S, Kim SY, Kvetnansky R. Stress increases brain-derived neurotropic factor messenger ribonucleic acid in the hypothalamus and pituitary. Endocrinology, 136, 3743–3750, 1995. Snyder JS, Kee N, Wojtowicz JM. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol, 85, 2423-31, 2001. Spijkerman T, de Jonge P, van den Brink RH, Jansen JH, May JF, Crijns HJ, Ormel J. Depression following myocardial infarction: first-ever versus ongoing and recurrent episodes. Gen Hosp Psychiatry, 27, 411-417, 2005. Stevenson JA, Feleki V, Rechnitzer P, Beaton JR. Effect of exercise on coronary tree size in the rat. Circulation Research, 15(3), 265-269, 1964. Steyn K, Sliwa K, Hawken S, Commerford P, Onen C, Damasceno A, Ounpuu S, Yusuf S. Risk factors associated with myocardial infarction in Africa: the INTERHEART Africa study. Circulation; 112, 3554-3561, 2005. Tanapat P, Galea LA, Gould E. Stress inhibits the proliferation of granule cell precursors in the developing dentate gyrus. Int J Dev Neurosci, 16(3-4), 235-9, 1998. Tapia-Arancibia L, Rage F, Givalois L, Arancibia S. Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinol, 25(2), 77-107, 2004. Turnbull AV, Rivier CL. Regulation of the Hypothalamic-Pituitary-Adrenal Axis by Cytokines: Actions and Mechanisms of Action. Physiol Rev, 79, 1, 1999. van der Staay JJ, Kerbusch S, Raaijmakers W. Genetic correlations in validating emotionality. Behavior genetics, 20(1), 51-62, 1990. van Praag H, Korf J. Endogenous depression with andwithout disturbances of 5- hydroxytryptamine metabolism: a biochemicalclassification? Psychopharmacol, 19, 148-152, 1971. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci Mar, 2(3), 266-70, 1999. van Praag H, Schinder AF, Chistie B, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature 2002, 415, 1030-5. Vollmayr B, Faust H, Lewicka S, & Henn FA. Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness. Molecular psychiatry, 6(4), 471-474, 2001. Vollmayr B, Henn FA. Stress models of depression. Clinical Neuroscience Research, 3(4), 245-251, 2003. Walz R, Lenz G, Roesler R, Vianna MMR, MArins V, Brentani R, Rodnight R, Izquierdo I. Time-dependent enhancement of inhibitory avoidance retention and MAPK activation by post-training infusion of nerve growth factor into CA1 region of hippocampus of advert rats. European Journal of Neuroscience, 12, 2185-2189, 2000. Wann BP, Bah TM, Boucher M, Courtemanche J, Le Marec N, Rousseau G, Godbout R. Vulnerability for apoptosis in the limbic system after myocardial infarction in rats: a possible model for human postinfarct major depression. J Psychiatry Neurosci, 32, 11- 16, 2007. Watson S, Mackin P. HPA axis function in mood disorders. Psychiatry, 5, 166–70, 2007. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology, 93(3), 358-364, 1987. Willner, P. Animal models of depression: on overview. Pharmacology and Therapeutics, 45, 425-455, 1990. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacology,134,319–329. Willner P. Chronic mild stress (CMS) revisited: Consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology, 2005 White HD, Chew DP. Acute myocardial infarction. Lancet, 372, 570-584, 2008. WHO - World Health Organization. Integrated Management of Cardiovascular Risk: Report of a WHO Meeting. Geneva, 2002 Wijesinghe M, Perrin K, Ranchord A, Simmonds M, Weatherall M, Beasley R. Routine use of oxygen in the treatment of myocardial infarction: systematic review. Heart, 95 (3), 198-202, 2008. Wozniak G, Toska A, Saridi M, Mouzas O. Serotonin reuptake inhibitor antidepressants (SSRIs) against atherosclerosis. Med Sci Monitm Sep, 17(9), 205-14, 2011. Xu Y. Ku B, Tie L, Yao H, Jiang W, Ma X, Li X. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain research, 1122(1), 56-64, 2006. Yu IT, Lee SH, Lee YS, Son H. Differential effects of corticosterone and dexamethasone on hippocampal neurogenesis in vitro. Biochem Biophys Res Commun, 317, 484–90, 2004. Zalcman S. Cytokine-specific central monoamine alterations induced by interleukin-1,-2 and-6. Brain research, 643(1), 40-49, 1994. Zornoff, L. Infarto do miocárdio experimental em ratos: análise do modelo. Arquivos Brasileiros de Cardiologia, 2009. Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington’s disease. Progress in Neurobiology, 81(5-6), 294-330, 2007.por
dc.subject.cnpqFisiologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5918/2016%20-%20Rafael%20Sonoda%20C%c3%b4rtes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/6512/2016%20-%20Rafael%20Sonoda%20C%c3%b4rtes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/15190/2016%20-%20Rafael%20Sonoda%20C%c3%b4rtes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/21478/2016%20-%20Rafael%20Sonoda%20C%c3%b4rtes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/27828/2016%20-%20Rafael%20Sonoda%20C%c3%b4rtes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/34196/2016%20-%20Rafael%20Sonoda%20C%c3%b4rtes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/40572/2016%20-%20Rafael%20Sonoda%20C%c3%b4rtes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/46942/2016%20-%20Rafael%20Sonoda%20C%c3%b4rtes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/53356/2016%20-%20Rafael%20Sonoda%20C%c3%b4rtes.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/2169
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2017-11-09T18:21:47Z No. of bitstreams: 1 2016 - Rafael Sonoda Côrtes.pdf: 1476755 bytes, checksum: 8d385f19ac5f844e345d9c74ea4ca89f (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-11-09T18:21:47Z (GMT). No. of bitstreams: 1 2016 - Rafael Sonoda Côrtes.pdf: 1476755 bytes, checksum: 8d385f19ac5f844e345d9c74ea4ca89f (MD5) Previous issue date: 2016-07-29eng
Appears in Collections:Doutorado Multicêntrico em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2016 - Rafael Sonoda Côrtes.pdfDocumento principal1.43 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.