Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10802
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFreitas, Leonardo Almeida
dc.date.accessioned2023-12-22T01:43:11Z-
dc.date.available2023-12-22T01:43:11Z-
dc.date.issued2022-11-23
dc.identifier.citationFREITAS, Leonardo Almeida. Diversidade taxonômica e funcional da ictiofauna ao longo de um gradiente de influência marinha em uma baía tropical. 2022. 58 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Ciências Humanas e Sociais, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10802-
dc.description.abstractCompreender os padrões e processos que levam à distribuição das espécies no ambiente é essencial para fazer previsões visando proteger os ecossistemas e facilitar a exploração racional dos recursos, sendo uma das questões mais importantes em estudos de ecologia aplicada. O presente estudo teve como objetivo avaliar a diversidade taxonômica e funcional da ictiofauna em um ambiente tropical costeiro semifechado e detectar eventuais mudanças espaciais influenciando a diversidade dos peixes. Nós também tentamos associar diferenças nas assembleias de peixes com o gradiente de influência marinha considerando três zonas da Baía de Sepetiba (interna, central e externa). As amostragens de peixes, utilizando arrastos de fundo padronizados, e a concomitante medida de variáveis ambientais, foram realizadas seguindo um modelo padronizado nas três zonas e quatro estações do ano, visando comparações espaciais e temporais. Dezessete medidas morfológicas quantitativas dos 5 a 6 peixes adultos de cada espécie foram mensuradas para a determinação de 15 atributos funcionais relacionados à aquisição de alimentos e locomoção. Três índices de diversidade taxonômica (Shannon, Simpson e Pielou) e seis índices de diversidade funcional (riqueza, equitabilidade, divergência, dispersão, originalidade e especialização) foram utilizados. A transparência e profundidade da água foram maiores na zona externa comparadas com a zona interna, enquanto o pH (menor no inverno), salinidade (maior no verão comparado com a primavera) e temperatura (maior no verão) variaram sazonalmente. Um aumento da riqueza de espécies e uma concomitante diminuição da abundância e biomassa de peixes foram observados da zona interna para a zona externa, com a estrutura das assembleias de peixes diferindo entre as três zonas. Os índices de diversidade taxonômica de Shannon e Pielou foram maiores na zona externa, enquanto a dominância de Simpson foi maior na zona interna, e não diferiram entre as estações do ano. Foram distinguidos seis grupos funcionais, com um deles (bagres marinhos) muito abundante, predominando na zona interna, e contribuindo para diminuir a divergência. Por outro lado, um grupo muito diverso (riqueza) foi predominante na zona externa, contribuindo para aumentar a redundância nesta área. A maioria dos índices funcionais foram maiores na zona externa, exceto originalidade e especialização funcional, confirmando a maior redundância de vii atributos funcionais nesta zona. No entanto, diferenças significativas foram encontradas apenas para a Divergência Funcional que foi menor na zona interna, indicando que as espécies menos abundantes apresentam atributos mais especializados. Devido a menor redundância dos atributos funcionais, especialmente em espécies pouco abundantes, a zona interna deve ser priorizada em políticas de conservação pois a perda de espécies poderia afetar os papeis ecossistêmicos por elas desempenhadas, garantindo assim a preservação das características funcionais bem como o uso sustentável dos recursos disponíveis.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectBiodiversidadepor
dc.subjectPeixes costeirospor
dc.subjectDivergência funcionalpor
dc.subjectMudanças ambientaispor
dc.subjectÁreas estuarinaspor
dc.subjectBiodiversityeng
dc.subjectCoastal fisheng
dc.subjectFunctional divergenceeng
dc.subjectEnvironmental changeseng
dc.subjectEstuarine areaspor
dc.titleDiversidade taxonômica e funcional da ictiofauna ao longo de um gradiente de influência marinha em uma baía tropicalpor
dc.title.alternativeTaxonomic and functional diversity of ichthyofauna along a gradient of marine influence in a tropical bayeng
dc.typeDissertaçãopor
dc.description.abstractOtherUnderstanding the patterns and processes that lead to the distribution of species in the environment is essential to make predictions to protect ecosystems and facilitate the rational exploitation of resources, being one of the most important issues in applied ecology studies. The present study aimed to assess the taxonomic and functional diversity of the ichthyofauna in a tropical semi- enclosed coastal system and to detect eventual spatial changes influencing fish diversity. We also sought to associate differences in fish assemblages with the gradient of marine influence, considering the three zones of the Sepetiba Bay (inner, middle and outer). Fish sampling, using bottom trawls and measurements of environmental variables were performed concurrently, using a standardized protocol in the three zones and four seasons to enable spatial and temporal comparisons. Seventeen quantitative morphological measurements of 5 to 6 adult fish for each species were used to determine 15 functional traits related to food acquisition and locomotion. Three taxonomic diversity indices (Shannon, Simpson and Pielou) and six functional diversity indices (richness, evenness, divergence, dispersion, originality and specialization) were used. Water transparency and depth were higher in the outer zone compared to the inner zone, whereas pH (lower in winter), salinity (higher in summer compared to spring) and temperature (higher in summer) changed seasonally. An increase in species richness and a concomitant decrease in fish abundance and biomass were observed from the inner to the outer zone, with fish assemblages differing between the three zones. The Shannon and Pielou taxonomic diversity indices were higher in the outer zone, while the Simpson's dominance was higher in the inner zone, and did not differ among the seasons. Six functional groups were distinguished, with one of them (marine catfish) very abundant, predominating in the inner zone, and contributing to reduce the divergence. On the other hand, a very diverse group (richness) was predominant in the external area, contributing to increase the redundancy in this area. Most functional indices were higher in the outer zone, except for functional originality and specialization, confirming the greater redundancy of functional tracts in this zone. However, significant differences were found only for Functional Divergence, which was lower in the inner zone, indicating that less abundant species present more specialized traits. ix Due to the lower redundancy of functional traits, especially in low abundant species, the inner zone should be prioritized in conservation policies, as the loss of species could affect the ecosystem roles played by them, thus guaranteeing the preservation of functional characteristics as well as the sustainable use of available resources.eng
dc.contributor.advisor1Araújo, Francisco Gerson
dc.contributor.advisor1ID040.983.233-20por
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-4551-1974por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7898069293489622por
dc.contributor.referee1Araújo, Francisco Gerson
dc.contributor.referee1ID040.983.233-20por
dc.contributor.referee1IDhttps://orcid.org/0000-0003-4551-1974por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7898069293489622por
dc.contributor.referee2Manna, Luisa Resende
dc.contributor.referee2ID111.893.687-65por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7935297667559675por
dc.contributor.referee3Camara, Ellen Martins
dc.contributor.referee3ID106.191.167-57por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2985868438117426por
dc.contributor.referee4Mendonça, Helaine da Silva
dc.contributor.referee4ID038.816.417-42por
dc.contributor.referee4Latteshttp://lattes.cnpq.br/0966343429418610por
dc.contributor.referee5Azevedo, Márcia Cristina Costa de
dc.contributor.referee5Latteshttp://lattes.cnpq.br/1882374603007371por
dc.creator.ID135.333.897-58por
dc.creator.Latteshttp://lattes.cnpq.br/8570559219930177por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesAnderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., ... & Swenson, N. G. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology letters, 14(1), 19-28. DOI: https://doi.org/10.1111/j.1461- 0248.2010.01552. Anderson, M.J., Gorley, R.N. & Clarke, K.R. (2008). PERMANOVA+ for PRIMER: Guide to Software and StatisticalMethods. Primer-E, Plymouth, UK. Araújo, F. G., Azevedo, M. C. C., de Araújo Silva, M., Pessanha, A. L. M., Gomes, I. D., & da Cruz-Filho, A. G. (2002). Environmental influences on the demersal fish assemblages in the Sepetiba Bay, Brazil. Estuaries, 25(3), 441-450. DOI: 10.1007/BF02695986 Araújo, F. G., Azevedo, M. C. C., & Guedes, A. P. P. (2016). Inter-decadal changes in fish communities of a tropical bay in southeastern Brazil. Regional Studies in Marine Science, 3, 107-118. DOI: https://doi.org/10.1016/j.rsma.2015.06.001. Araújo, F. G., Pinto, S. M., Neves, L. M., & Azevedo, M. C. C. (2017). Inter-annual changes in fish communities of a tropical bay in southeastern Brazil: What can be inferred from anthropogenic activities? Marine Pollution Bulletin, 114(1), 102-113. DOI: 10.1016/j.marpolbul.2016.08.063. Araújo, F. G., Teixeira, T. P., Guedes, A. P. P., de Azevedo, M. C. C., & Pessanha, A. L. M. (2018). Shifts in the abundance and distribution of shallow water fish fauna on the southeastern Brazilian coast: a response to climate change. Hydrobiologia, 814(1), 205-218. DOI: 10.1007/s10750-018-3537-8. Arbizu, P. M. (2017). _pairwiseAdonis: Pairwise Multilevel Comparison using Adonis_. R package version 0.4. Azevedo, M. C. C., Araújo, F. G., Pessanha, A. L. M., & de Araújo Silva, M. (2006). Co-occurrence of demersal fishes in a tropical bay in southeastern Brazil: A null model analysis. Estuarine, Coastal and Shelf Science, 66(1-2), 315-322. DOI: 10.1016/j.ecss.2005.09.006. Azevedo, M. C. C., Araújo, F. G., Cruz-Filho, A. G., Gomes, I. D., & Pessanha, A. L. M. (1999). Variação espacial e temporal de bagres marinhos (Siluriformes, Ariidae) na Baía de Sepetiba, Rio de Janeiro. Revista brasileira de biologia, 59, 443-454. DOI: 10.1590/S0034- 71081999000300009. Azevedo, M. C. C., Araújo, F. G., Cruz-Filho, A. G., Pessanha, A. L. M., de Araújo Silva, M., & Guedes, A. P. P. (2007). Demersal fishes in a tropical bay in southeastern Brazil: Partitioning the spatial, temporal and environmental components of ecological variation. Estuarine, Coastal and Shelf Science, 75(4), 468-480. DOI: 10.1016/j.ecss.2007.05.027. Azevedo, M. C. C., Gomes-Gonçalves, R. S., Mattos, T. M., Uehara, W., Guedes, G. H. S., & Araújo, F. G. (2017). Taxonomic and functional distinctness of the fish assemblages in three coastal environments (bays, coastal lagoons and oceanic beaches) in Southeastern 36 Brazil. Marine Environmental Research, 129, 180-188. DOI: https://doi.org/10.1016/j.marenvres.2017.05.007. Barcellos, C., & Lacerda, L. D. D. (1994). Cadmium and zinc source assessment in the Sepetiba Bay and basin region. Environmental monitoring and Assessment, 29(2), 183-199. DOI: DOI: 10.1007/BF00546874. Bellwood, D. R., Wainwright, P. C., Fulton, C. J., & Hoey, A. S. (2006). Functional versatility supports coral reef biodiversity. Proceedings of the Royal Society B: Biological Sciences, 273(1582), 101-107. DOI: 10.1098/rspb.2005.3276. Brandl, S. J., Emslie, M. J., Ceccarelli, D. M., & T. Richards, Z. (2016). Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere, 7(11), e01557. DOI: 10.1002/ecs2.1557. Borland, H. P., Gilby, B. L., Henderson, C. J., Connolly, R. M., Gorissen, B., Ortodossi, N. L., ... & Olds, A. D. (2022). Dredging transforms the seafloor and enhances functional diversity in urban seascapes. Science of the Total Environment, 831, 154811. DOI: https://doi.org/10.1016/j.scitotenv.2022.154811. Brosse, S., Charpin, N., Su, G., Toussaint, A., Herrera‐R, G. A., Tedesco, P. A., & Villéger, S. (2021). FISHMORPH: A global database on morphological traits of freshwater fishes. Global Ecology and Biogeography, 30(12), 2330-2336. DOI: 10.1111/geb.13395. Caceres, M. & Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. Ecology, URL http://sites.google.com/site/miqueldecaceres/ Camara, E. M., de Azevedo, M. C. C., Franco, T. P., & Araújo, F. G. (2019). Hierarchical partitioning of fish diversity and scale-dependent environmental effects in tropical coastal ecosystems. Marine environmental research, 148, 26-38. DOI: 10.1016/j.marenvres.2019.05.006. Carvalho, T. L. A. B, Nascimento, A. A., Gomes, I. D., & Araújo, F. G. (2022). Histological changes in fish hepatopancreas and kidney as indicators of environmental quality in tropical bays. Environmental Biology of Fishes, 105(7), 917-931. DOI: 10.1007/s10641-022-01300- 1. Cloern, J. E., Jassby, A. D., Schraga, T. S., Nejad, E., & Martin, C. (2017). Ecosystem variability along the estuarine salinity gradient: Examples from long‐term study of San Francisco Bay. Limnology and Oceanography, 62(S1), S272-S291. DOI: 10.1002/lno.10537. Cunha, C. D. L. D. N., Rosman, P. C., Ferreira, A. P., & do Nascimento Monteiro, T. C. (2006). Hydrodynamics and water quality models applied to Sepetiba Bay. Continental Shelf Research, 26(16), 1940-1953. DOI: 10.1016/j.csr.2006.06.010. Dias, A. T., Berg, M. P., de Bello, F., Van Oosten, A. R., Bílá, K., & Moretti, M. (2013). An experimental framework to identify community functional components driving ecosystem processes and services delivery. Journal of Ecology, 101(1), 29-37. DOI: 10.1111/1365- 2745.12024. 37 Dı́az, S., & Cabido, M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in ecology & evolution, 16(11), 646-655. DOI: 10.1016/S0169- 5347(01)02283-2. Dolbeth, M., Vendel, A. L., Pessanha, A., & Patrício, J. (2016). Functional diversity of fish communities in two tropical estuaries subjected to anthropogenic disturbance. Marine Pollution Bulletin, 112(1-2), 244-254. DOI: 10.1016/j.marpolbul.2016.08.011. Dumay, O., Tari, P. S., Tomasini, J. A., & Mouillot, D. (2004). Functional groups of lagoon fish species in Languedoc Roussillon, southern France. Journal of Fish Biology, 64(4), 970-983. 10.1111/j.1095-8649.2004.00365.x. Edie, S. M., Jablonski, D., & Valentine, J. W. (2018). Contrasting responses of functional diversity to major losses in taxonomic diversity. Proceedings of the National Academy of Sciences, 115(4), 732-737. DOI: 10.1073/pnas.1717636115. Elliott, M., & McLusky, D. S. (2002). The need for definitions in understanding estuaries. Estuarine, coastal and shelf science, 55(6), 815-827. DOI: https://doi.org/10.1006/ecss.2002.1031. Flynn, D. F., Mirotchnick, N., Jain, M., Palmer, M. I., & Naeem, S. (2011). Functional and phylogenetic diversity as predictors of biodiversity–ecosystem‐function relationships. Ecology, 92(8), 1573-1581. DOI: 10.1890/10-1245.1 Fontrodona‐Eslava, A., Deacon, A. E., Ramnarine, I. W., & Magurran, A. E. (2021). Numerical abundance and biomass reveal different temporal trends of functional diversity change in tropical fish assemblages. Journal of Fish Biology, 99(3), 1079-1086. DOI: 10.1111/jfb.14812. Froese, R. and D. Pauly. Editors. 2022. FishBase. World Wide Web electronic publication. Acessado em 15/02/2022. www.fishbase.org, version (02/2022). Fundação Rio-Águas. (2020). Rios de Janeiro: Um manual dos rios, canais e corpos hídricos da cidade do Rio de Janeiro. Disponível em: http://www.rio.rj.gov.br/ Gomes, I. D., Araújo, F. G., Azevêdo, M. C. C. D., & Pessanha, A. L. M. (1999). Biologia reprodutiva dos bagres marinhos Genidens genidens (Valenciennes) e Cathorops spixii (Agassiz)(Siluriformes, Ariidae), na Baía de Sepetiba, Rio de Janeiro, Brasil. Revista brasileira de Zoologia, 16, 171-180. DOI: 10.1590/S0101-81751999000600017. Gomes-Gonçalves, R. D. S. (2021). Baía de Sepetiba: avaliação espaço-temporal da ictiofauna e suas relações ambientais. 2021.64p. Tese (Doutorado em Biologia Animal). Instituto de Ciências Biológicas e da Saúde, Departamento de Biologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020. Gomes-Gonçalves, R. D. S., Aguiar, F. S., Azevedo, M. C. C., & Araújo, F. G. (2020). Functional stability despite anthropogenic influences on the ichthyofauna of a tropical bay. Marine Environmental Research, 159, 105016. DOI: https://doi.org/10.1016/j.marenvres.2020.105016. 38 Gomes-Gonçalves, R. D. S., & Araújo, F. G. (2022). Relationships between environmental heterogeneity and fish beta diversity in a tropical bay. Marine Biology Research, 1-13. DOI: 10.1080/17451000.2022.2063902. Gomes‐Gonçalves, R. D. S., Miranda, V. D. R., Freitas, L. A., & Araújo, F. G. (2022). Polychaetes and fish in a tropical bay in southeastern Brazil: Community concordance and influence of environmental variables. Marine Ecology, e12722. DOI: https://doi.org/10.1111/maec.12722. Guedes, A. P. P., Araújo, F. G., Pessanha, A. L., & Milagre, R. R. (2015). Partitioning of the feeding niche along spatial, seasonal and size dimensions by the fish community in a tropical B ay in S outheastern B razil. Marine Ecology, 36(1), 38-56. DOI: 10.1111/maec.12115. Granger, V., Bez, N., Fromentin, J. M., Meynard, C., Jadaud, A., & Merigot, B. (2015). Mapping diversity indices: not a trivial issue. Methods in Ecology and Evolution, 6(6), 688-696. DOI: https://doi.org/10.1111/2041-210X.12357 n/aen/a. Harrell, J. F. (2022). _Hmisc: Harrell Miscellaneous_. R package version 4.7-0, <https://CRAN.R- project.org/package=Hmisc>. Islam, M. S., Hibino, M., & Tanaka, M. (2006). Distribution and diets of larval and juvenile fishes: influence of salinity gradient and turbidity maximum in a temperate estuary in upper Ariake Bay, Japan. Estuarine, Coastal and Shelf Science, 68(1-2), 62-74. DOI: 10.1016/j.ecss.2006.01.010. Kuang, T., Chen, W., Huang, S., Liu, L., & Zhou, L. (2021). Environmental drivers of the functional structure of fish communities in the Pearl River Estuary. Estuarine, Coastal and Shelf Science, 263, 107625. DOI: https://doi.org/10.1016/j.ecss.2021.107625. Laurino, I. R., Serafini, T. Z., Costa, T. M., & Christofoletti, R. A. (2021). The role of estuarine macrofaunal patterns for the management of marine protected areas in a changing world. Journal for Nature Conservation, 63, 126042. DOI: 10.1016/j.jnc.2021.126042. Laliberté, E., & Legendre, P. (2010). A distance‐based framework for measuring functional diversity from multiple traits. Ecology, 91(1), 299-305. DOI: 10.1890/08-2244.1. Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: an R package for multivariate analysis. Journal of statistical software, 25, 1-18. DOI: 10.18637/jss.v025.i01. Leal Neto, A. D. C., Legey, L. F., González-Araya, M. C., & Jablonski, S. (2006). A system dynamics model for the environmental management of the Sepetiba Bay watershed, Brazil. Environmental management, 38(5), 879-888. DOI:10.1007/s00267-005-0211-5. Leitão, R. P. (2015). Estrutura funcional e conservação de assembleias de peixes de riachos na Amazônia Brasileira. Tese de Doutorado, Manaus. Leitão, R. P., Zuanon, J., Mouillot, D., Leal, C. G., Hughes, R. M., Kaufmann, P. R., ... & Gardner, T. A. (2018). Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography, 41(1), 219-232. DOI: 10.1111/ecog.02845. 39 Leprieur, F., Tedesco, P. A., Hugueny, B., Beauchard, O., Dürr, H. H., Brosse, S., & Oberdorff, T. (2011). Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology letters, 14(4), 325-334. DOI: https://doi.org/10.1111/j.1461-0248.2011.01589.x. Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., ... & Jackson, J. B. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312(5781), 1806-1809. DOI: 10.1126/science.1128035. Macário, B. S., Olímpio, M. S., Sales, N. S., & Pessanha, A. L. M. (2021). The effect of habitat structure and the interactions between four juvenile fishes and zooplankton-prey in a tropical estuary. Estuarine, Coastal and Shelf Science, 261, 107528. DOI: 10.1016/j.ecss.2021.107528. Magneville, C., Loiseau, N., Albouy, C., Casajus, N., Claverie, T., Escalas, A., Leprieur, F., Maire, E., Mouillot, D., Villeger, S. (2021). _mFD: A Computation of Functional Spaces and Functional Indices_. R package version 1.0.0, <https://github.com/CmlMagneville/mFD>. Magurran, A. E. (2004). Measuring biological diversity. African Journal of Aquatic Science, 29(2), 285-286. Mason, N. W., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111(1), 112-118. DOI: 10.1111/j.0030-1299.2005.13886.x. Manna, L.R., Rezende, C.F. & Mazzoni, R. (2013). Diversidade funcional de peixes de riacho: Como as Assembleias podem estar organizadas? Oecologia Australis, 17, (3): 402–410. DOI:10.4257/oeco.2013.1703.08. Martino, E. J., & Able, K. W. (2003). Fish assemblages across the marine to low salinity transition zone of a temperate estuary. Estuarine, Coastal and Shelf Science, 56(5-6), 969-987. DOI: 10.1016/S0272-7714(02)00305-0. Mason, N. W., Lanoiselée, C., Mouillot, D., Irz, P., & Argillier, C. (2007). Functional characters combined with null models reveal inconsistency in mechanisms of species turnover in lacustrine fish communities. Oecologia, 153(2), 441-452. DOI: 10.1007/s00442-007-0727- x. McKinley, A. C., Dafforn, K. A., Taylor, M. D., & Johnston, E. L. (2011). High levels of sediment contamination have little influence on estuarine beach fish communities. PLoS One, 6(10), e26353. DOI: 10.1371/journal.pone.0026353. Mendes, R. S., Evangelista, L. R., Thomaz, S. M., Agostinho, A. A., & Gomes, L. C. (2008). A unified index to measure ecological diversity and species rarity. Ecography, 31(4), 450-456. 10.1111/j.0906-7590.2008.05469.x. Menezes, N. A., & Figueiredo, J. L. (1985). Manual de peixes marinhos do Sudeste do Brasil v teleostei (4). 40 Melo, A. S. (2008). O que ganhamos' confundindo'riqueza de espécies e equabilidade em um índice de diversidade?. Biota Neotropica, 8, 21-27. DOI: 10.1590/S1676-06032008000300001 Molisani, M. M., Kjerfve, B., Silva, A. P., & Lacerda, L. D. D. (2006). Water discharge and sediment load to Sepetiba Bay from an anthropogenically-altered drainage basin, SE Brazil. Journal of Hydrology, 331(3-4), 425-433. DOI: 10.1016/j.jhydrol.2006.05.038. Molisani, M. M., Marins, R. V., Machado, W., Paraquetti, H. H. M., Bidone, E. D., & Lacerda, L. D. D. (2004). Environmental changes in Sepetiba bay, SE Brazil. Regional Environmental Change, 4(1), 17-27. DOI: 10.1007/s10113-003-0060-9. Moreno, C. E., & Halffter, G. (2001). Spatial and temporal analysis of α, β and γ diversities of bats in a fragmented landscape. Biodiversity & Conservation, 10(3), 367-382. DOI: 10.1023/a:1016614510040. Mouillot, D., Culioli, J. M., Pelletier, D., & Tomasini, J. A. (2008). Do we protect biological originality in protected areas? A new index and an application to the Bonifacio Strait Natural Reserve. Biological Conservation, 141(6), 1569-1580. DOI: 10.1016/j.biocon.2008.04.002. Mouillot, D., Dumay, O., & Tomasini, J. A. (2007). Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuarine, Coastal and Shelf Science, 71(3-4), 443-456. DOI: 10.1016/j.ecss.2006.08.022. Mouillot, D., Graham, N. A., Villéger, S., Mason, N. W., & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in ecology & evolution, 28(3), 167-177. DOI: 10.1016/j.tree.2012.10.004. Mouillot, D., Villéger, S., Scherer-Lorenzen, M., & Mason, N. W. (2011). Functional structure of biological communities predicts ecosystem multifunctionality. PloS one, 6(3), e17476. DOI: https://doi.org/10.1371/journal.pone.0017476. Onabule, O. A., Mitchell, S. B., & Couceiro, F. (2020). The effects of freshwater flow and salinity on turbidity and dissolved oxygen in a shallow Macrotidal estuary: A case study of Portsmouth Harbour. Ocean & Coastal Management, 191, 105179. DOI: https://doi.org/10.1016/j.ocecoaman.2020.105179. Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P... & Weedon, J. (2022). vegan: Community Ecology Package. R package version 2.6-2, https://CRAN.R- project.org/package=vegan. Pereira, H. H., Neves, L. M., da Costa, M. R., & Araújo, F. G. (2015). Fish assemblage structure on sandy beaches with different anthropogenic influences and proximity of spawning grounds. Marine Ecology, 36(1), 16-27. DOI: 10.1111/maec.12113. Pielou, E. C. (1975). Ecological diversity. A Wiley Interscience Publication. John Wiley & Sons, New York, London, Sydney, Toronto. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 41 Rodrigues‐Filho, C. A., Leitao, R. P., Zuanon, J., Sánchez‐Botero, J. I., & Baccaro, F. B. (2018). Historical stability promoted higher functional specialization and originality in Neotropical stream fish assemblages. Journal of Biogeography, 45(6), 1345-1354. DOI: 10.1111/jbi.13205. Schleuter, D., Daufresne, M., Massol, F., & Argillier, C. (2010). A user's guide to functional diversity indices. Ecological monographs, 80(3), 469-484. 10.1890/08-2225.1. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675. DOI: 10.1038/nmeth.2089. Silva-Júnior, C. A. B., Mérigot, B., Lucena-Frédou, F., Ferreira, B. P., Coxey, M. S., Rezende, S. M., & Frédou, T. (2017). Functional diversity of fish in tropical estuaries: A traits-based approach of communities in Pernambuco, Brazil. Estuarine, Coastal and Shelf Science, 198, 413-420. DOI: https://doi.org/10.1016/j.ecss.2016.08.030. Sparre, P., & Venema, S. C. (1995). Introduction to evaluation of tropical fisheries resources. Part 1. Manual FAO Technical Paper, 306, 339-334. Strong, J. A., Andonegi, E., Bizsel, K. C., Danovaro, R., Elliott, M., Franco, A., ... & Solaun, O. (2015). Marine biodiversity and ecosystem function relationships: the potential for practical monitoring applications. Estuarine, Coastal and Shelf Science, 161, 46-64. DOI: https://doi.org/10.1016/j.ecss.2015.04.008. Stuart-Smith, R. D., Bates, A. E., Lefcheck, J. S., Duffy, J. E., Baker, S. C., Thomson, R. J., ... & Edgar, G. J. (2013). Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 501(7468), 539-542. DOI: https://doi.org/10.1038/nature12529. Teichert, N., Lepage, M., Chevillot, X., & Lobry, J. (2018). Environmental drivers of taxonomic, functional and phylogenetic diversity (alpha, beta and gamma components) in estuarine fish communities. Journal of Biogeography, 45(2), 406-417. DOI: 45.10.1111/jbi.13133. Vanalderweireldt, L., Winkler, G., Forget-Lacoursière, E. L., Mingelbier, M., & Sirois, P. (2020). Habitat use by early life stages of the re-established striped bass and conspecific fish species along the St. Lawrence estuary. Estuarine, Coastal and Shelf Science, 237, 106696. DOI: 10.1016/j.ecss.2020.106696. Villéger, S., Mason, N. W., & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8), 2290-2301. DOI: 10.1890/07-1206.1. Villéger, S., Miranda, J. R., Hernández, D. F., & Mouillot, D. (2010). Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological applications, 20(6), 1512-1522. DOI: https://doi.org/10.1890/09- 1310.1 . Villéger, S., Brosse, S., Mouchet, M., Mouillot, D., & Vanni, M. J. (2017). Functional ecology of fish: current approaches and future challenges. Aquatic Sciences, 79(4), 783-801. DOI: https://doi.org/10.1007/s00027-017-0546-z. 42 Wei, T. and Simko, V. (2021). R package 'corrplot': Visualization of a Correlation Matrix (Version 0.92). Available from https://github.com/taiyun/corrplot Whitfield, A. K. (1999). Ichthyofaunal assemblages in estuaries: a South African case study. Reviews in fish biology and fisheries, 9(2), 151-186. DOI:10.1023/A:1008994405375. Whitfield, A. K., & Elliott, M. (2002). Fishes as indicators of environmental and ecological changes within estuaries: a review of progress and some suggestions for the future. Journal of fish biology, 61, 229-250. DOI: 10.1111/j.1095-8649.2002.tb01773.x. Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. Wolanski, E., Boorman, L. A., Chícharo, L., Langlois-Saliou, E., Lara, R., Plater, A. J., ... & Zalewski, M. (2004). Ecohydrology as a new tool for sustainable management of estuaries and coastal waters. Wetlands Ecology and Management, 12(4), 235-276. DOI: DOI:10.1007/s11273-005-4752-4. WoRMS Editorial Board (2022). World Register of Marine Species. Available from https://www.marinespecies.org at VLIZ. Acessado em 10/01/2022. DOI:10.14284/170por
dc.subject.cnpqBiodiversidadepor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/74845/2022%20-%20Leonardo%20Almeida%20Freitas.Pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6940
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2023-09-22T15:06:54Z No. of bitstreams: 1 2022 - Leonardo Almeida Freitas.Pdf: 2209431 bytes, checksum: 0ef47a5e7aa37f27776bae0415a6bcee (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-09-22T15:06:54Z (GMT). No. of bitstreams: 1 2022 - Leonardo Almeida Freitas.Pdf: 2209431 bytes, checksum: 0ef47a5e7aa37f27776bae0415a6bcee (MD5) Previous issue date: 2022-11-23eng
Appears in Collections:Mestrado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Leonardo Almeida Freitas.Pdf2022 - Leonardo Almeida Freitas2.16 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.