Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10902
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarbosa, Bruno Sérgio Toledo
dc.date.accessioned2023-12-22T01:44:47Z-
dc.date.available2023-12-22T01:44:47Z-
dc.date.issued2021-11-24
dc.identifier.citationBARBOSA, Bruno Sérgio Toledo. Sistemas carreadores baseados em emulsões água em óleo em água (W1/O/W2) empregados no encapsulamento de ferro. 2021, 53 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos). Instituto de Tecnologia. Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10902-
dc.description.abstractA anemia é uma condição clínica que afeta o desenvolvimento e a produtividade de mais de um terço da população mundial. Ela é causada principalmente pela deficiência do ferro na alimentação. Uma forma de aumentar a quantidade de ferro ingerida pela população é a adição desse ferro nos alimentos, a fortificação através da microencapsulação. Existem diversas técnicas utilizadas na microencapsulação do ferro, a emulsão dupla é uma de muitas dessas técnicas. Emulsões duplas água em óleo em água (W1/O/W2) são pequenas gotas de água, dentro de gotas maiores de óleo que estão dispersas em água. O presente trabalho investigou emulsões W1/O/W2 para o encapsulamento do ferro, tendo como objetivo caracterizar as emulsões e identificar a bioacessibilidade do ferro em simulações gastrointestinais in vitro para adultos e infantes. O estudo formou emulsões estáveis a partir de isolado proteico de soro e polirricinoleato de poliglicerol como agentes emulsificantes, goma tara como agente espessante e a sacarose como substância osmoticamente ativa. Emulsões duplas fabricadas a partir de 12 % de WPI, 0,8% de goma tara e 2 % de sacarose ficaram mais estáveis por 7 dias e com alta eficiência de encapsulação (96,95 ± 1,00 %), além de alta bioacessibilidade na simulação gastrointestinal para adultos (49,54 ± 5,50 %) e infantes (39,71 ± 2,33 %). Por fim, o estudo apresentou que as emulsões duplas podem formar sistemas estáveis com alta bioacessibilidade de ferro mesmo em sistemas gástricos infantis, indicando a possibilidade da utilização de emulsões duplas para a fortificação de alimentos com ferro.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectgoma tarapor
dc.subjectproteínas do soropor
dc.subjectmicroencapsulaçãopor
dc.subjectmineraispor
dc.subjectbioacessibilidadepor
dc.subjecttara gumeng
dc.subjectwhey proteineng
dc.subjectmicroencapsulationeng
dc.subjectmineralseng
dc.subjectbioaccessibilityeng
dc.titleSistemas carreadores baseados em emulsões água em óleo em água (W1/O/W2) empregados no encapsulamento de ferropor
dc.title.alternativeDelivery systems based on water-in-oil-in-water emulsions (W1/O/W2) used in iron encapsulationeng
dc.typeDissertaçãopor
dc.description.abstractOtherAnemia is a condition that affects the development and productivity of more than a third of the world's population. It is mainly caused by a deficiency of iron in the diet. One way to increase the amount of iron ingested by the population is the addition of this iron to food, fortification through microencapsulation. There are several techniques used in the microencapsulation of iron, double emulsion is one of many techniques. Double water-in-oil-in-water (W1/O/W2) emulsions are small droplets of water, within larger oil droplets that are dispersed in water. The present work investigated W1/O/W2 emulsions for iron encapsulation, aiming to characterize as emulsions and identify a bioaccessibility of iron in in vitro gastrointestinal simulations for adults and children. The study formed stable emulsions from whey protein isolation and polyglycerol polyricinoleate as emulsifying agents, tara gum as a thickening agent and sucrose as an osmotic active substance. Double emulsions made from 12% WPI, 0.8% tara gum and 2% sucrose considered more stable for 7 days and with high encapsulation efficiency (96.95 ± 1.00%), in addition to high bioaccessibility in gastrointestinal simulation for adults (49.54 ± 5.50%) and children (39.71 ± 2.33%). Finally, the study showed that double emulsions can form stable systems with high iron bioaccessibility even in infant gastric systems, indicating the possibility of using double emulsions to fortify foods with iron.eng
dc.contributor.advisor1Rojas, Edwin Elard Garcia
dc.contributor.advisor1ID014.5448.996-54por
dc.contributor.referee1Rojas, Edwin Elard Garcia
dc.contributor.referee2Zuniga, Abraham Damian Giraldo
dc.contributor.referee3Costa, Bernardo de Sá
dc.creator.ID148.352.517-17por
dc.creator.Latteshttp://lattes.cnpq.br/3414895221829710por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesADJONU, R. et al. Whey protein peptides as components of nanoemulsions: A review of emulsifying and biological functionalities. Journal of Food Engineering, v. 122, n. 1, p. 15–27, 2014. AMINE, C. et al. Investigation of emulsifying properties and emulsion stability of plant and milk proteins using interfacial tension and interfacial elasticity. Food Hydrocolloids, v. 39, p. 180–186, 2014. ARANCIBIA, C. et al. Physical properties and lipid bioavailability of nanoemulsionbased matrices with different thickening agents. Food Hydrocolloids, v. 73, p. 243–254, 2017. ARTIGA-ARTIGAS, M. et al. Formation of Double (W 1 /O/W 2 ) Emulsions as Carriers of Hydrophilic and Lipophilic Active Compounds. Food and Bioprocess Technology, v. 12, n. 3, p. 422–435, 2019. BAI, L. T. et al. Emulsifying and physicochemical properties of lotus root amylopectinwhey protein isolate conjugates. Lwt, v. 111, n. May, p. 345–354, 2019. BERRY, J. D. et al. Measurement of surface and interfacial tension using pendant drop tensiometry. Journal of Colloid and Interface Science, v. 454, p. 226–237, 2015. BHATIA, P.; JAIN, R.; SINGH, A. A structured approach to iron refractory iron deficiency anemia (IRIDA) diagnosis (SAID): The more is “SAID” about iron, the less it is. Pediatric Hematology Oncology Journal, v. 2, n. 2, p. 48–53, 2017. BLACK, R. E. Global distribution and disease burden related to micronutrient deficiencies. Nestle Nutrition Institute Workshop Series, v. 78, p. 21–28, 2014. BONNET, M. et al. Release rate profiles of magnesium from multiple W1/O/W2 emulsions. Food Hydrocolloids, v. 23, n. 1, p. 92–101, 2009. BORZELLECA, Joseph F.; LADU, Bert N.; SENTI, Frederic R.; et al. Evaluation of the Safety of Tara Gum as a Food Ingredient: A Review of the Literature. International Journal of Toxicology, v. 12, n. 1, p. 81–89, 1993. BOUYER, E. et al. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: Alternatives to synthetic surfactants in the pharmaceutical field? International Journal of Pharmaceutics, v. 436, n. 1–2, p. 359–378, 2012. BRASIL, Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada - RDC Nº 31, 13/01/1998. Aprova o Regulamento Técnico referente a Alimentos Adicionados de Nutrientes Essenciais, constante do anexo desta Portaria, 1998. BRASIL, Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada - RDC Nº 64, 22/09/2005. Aprova Regulamento Técnico sobre a ingestão diária recomendada (IDR) de proteína, vitaminas e minerais, 2005. BRASIL, Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada - RDC Nº 64, 16/09/2008. Aprova Regulamento Técnico sobre Atribuição de aditivos e seus limites máximos para alimentos, 2008. BRASIL, Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada - RDC Nº 45, 03/11/2010. Dispõe sobre aditivos alimentares autorizados para uso segundo as Boas Práticas de Fabricação (BPF), 2010. BRODKORB, A. et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, v. 14, n. 4, p. 991, 2019. BRYSZEWSKA, M. A. Comparison study of iron bioaccessibility from dietary supplements and microencapsulated preparations. Nutrients, v. 11, n. 2, 2019. BURGER, T. G.; ZHANG, Y. Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends in Food Science and Technology, v. 86, p. 25– 33, 2019. CASTRO-ROSAS, J. et al. Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review. Food Research International, n. September, p. 1–14, 2017. CENGIZ, A.; SCHROËN, K.; BERTON-CARABIN, C. Lipid Oxidation in Emulsions Fortified with Iron-Loaded Alginate Beads. Foods, v. 8, n. 9, p. 361, 2019. CHALELLA MAZZOCATO, M.; THOMAZINI, M.; FAVARO-TRINDADE, C. S. Improving stability of vitamin B12 (Cyanocobalamin) using microencapsulation by spray chilling technique. Food Research International, v. 126, n. May, p. 108663, 2019. CHANG, Y. H.; LEE, S. Y.; KWAK, H. S. Physicochemical and sensory properties of milk fortified with iron microcapsules prepared with water-in-oil-in-water emulsion during storage. International Journal of Dairy Technology, v. 69, n. 3, p. 452–459, 2016. CHIVERO, P. et al. Effect of xanthan and guar gums on the formation and stability of soy soluble polysaccharide oil-in-water emulsions. Food Research International, v. 70, p. 7–14, 2015. CHOI, M. J. et al. Encapsulation of a bioactive peptide in a formulation of W1/O/W2- type double emulsions: Formation and stability. Food Structure, v. 25, p. 100145, 2020. CHOI, S. J.; DECKER, E. A.; MCCLEMENTS, D. J. Impact of iron encapsulation within the interior aqueous phase of water-in-oil-in-water emulsions on lipid oxidation. Food Chemistry, v. 116, n. 1, p. 271–276, 2009. CHURIO, O.; VALENZUELA, C. Development and characterization of maltodextrin microparticles to encapsulate heme and non-heme iron. Lwt, v. 96, p. 568–575, 2018. CIAN, R. E. et al. High iron bioaccessibility from co-microencapsulated iron/ascorbic acid using chelating polypeptides from brewers’ spent grain protein as wall material. Lwt, v. 139, n. September, 2021. DICKINSON, E. Food emulsions and foams: Stabilization by particles. Current Opinion in Colloid and Interface Science, v. 15, n. 1–2, p. 40–49, 2010. DICKINSON, E. Double Emulsions Stabilized by Food Biopolymers. Food Biophysics, v. 6, n. 1, p. 1–11, 2011. DIMA, C. et al. Bioavailability and bioaccessibility of food bioactive compounds; overview and assessment by in vitro methods. Comprehensive Reviews in Food Science and Food Safety, v. 19, n. 6, p. 2862–2884, 2020. DONSÌ, F.; SESSA, M.; FERRARI, G. Effect of emulsifier type and disruption chamber geometry on the fabrication of food nanoemulsions by high pressure homogenization. Industrial and Engineering Chemistry Research, v. 51, n. 22, p. 7606–7618, 2012. DRELICH, J.; FANG, C.; WHITE, C. L. Measurement of Interfacial Tension in Fluid- Fluid Systems. Encyclopedia of Surface and Colloid Science, p. 3152–3166, 2002. DUQUE-ESTRADA, P. et al. Double emulsions for iron encapsulation: is a high concentration of lipophilic emulsifier ideal for physical and chemical stability? Journal of the Science of Food and Agriculture, v. 99, n. 10, p. 4540–4549, 2019. ESTEVINHO, B. N.; ROCHA, F. A Key for the Future of the Flavors in Food Industry: Nanoencapsulation and Microencapsulation. [s.l.] Elsevier Inc., 2017. FERNANDES, R. A.; GARCIA-ROJAS, E. E. Effect of cosolutes on the rheological and thermal properties of Tara gum aqueous solutions. Journal of Food Science and Technology, v. 58, n. 7, p. 2773–2782, 2021. FIORAVANTI, M. I. A. et al. Influence of various ingredients on mineral bioaccessibility in infant formula and whole milk. International Dairy Journal, v. 110, 2020. FREDRICK, E.; WALSTRA, P.; DEWETTINCK, K. Factors governing partial coalescence in oil-in-water emulsions. Advances in Colloid and Interface Science, v. 153, n. 1–2, p. 30–42, 2010. GAONKAR, A. et al. Microencapsulation in the food Industry: A Pratical Implementation Guide. San Diego: Academic Press, 2014. GERA, T.; SACHDEV, H. S.; BOY, E. Effect of iron-fortified foods on hematologic and biological outcomes: systematic review of randomized controlled trials. The American Journal of Clinical Nutrition, v. 96, p. 309–324, 2012. GHAREHBEGLOU, P. et al. Fabrication of double W1/O/W2 nano-emulsions loaded with oleuropein in the internal phase (W1) and evaluation of their release rate. Food Hydrocolloids, v. 89, p. 44–55, 2019. HAN, L. et al. Co-delivery of insulin and quercetin in W1/O/W2 double emulsions stabilized by different hydrophilic emulsifiers. Food Chemistry, v. 369, n. May 2021, p. 130918, 2022. HATEFI, L.; FARHADIAN, N. A safe and efficient method for encapsulation of ferrous sulfate in solid lipid nanoparticle for non-oxidation and sustained iron delivery. Colloids and Interface Science Communications, v. 34, n. December 2019, p. 100227, 2020. HOSSEINI, S. M. H. et al. Effects of novel and conventional thermal treatments on the physicochemical properties of iron-loaded double emulsions. Food Chemistry, v. 270, p. 70–77, 2019. HOU, L. et al. Osmolarity-controlled swelling behaviors of dual-cored double-emulsion drops. Microfluidics and Nanofluidics, v. 21, n. 4, p. 1–8, 2017. HU, Y. T. et al. Techniques and methods to study functional characteristics of emulsion systems. Journal of Food and Drug Analysis, v. 25, n. 1, p. 16–26, 2017. HUANG, M. et al. Fabrication of pickering high internal phase emulsions stabilized by pecan protein/xanthan gum for enhanced stability and bioaccessibility of quercetin. Food Chemistry, v. 357, n. March, p. 129732, 2021. HURRELL, R. F.; COOK, J. D. Strategies for iron fortification of foods. Trends in Food Science and Technology, v. 1, n. C, p. 56–61, 1990. ILYASOGLU BUYUKKESTELLI, H.; EL, S. N. Development and characterization of double emulsion to encapsulate iron. Journal of Food Engineering, v. 263, n. April, p. 446–453, 2019a. ILYASOGLU BUYUKKESTELLI, H.; EL, S. N. Preparation and characterization of double emulsions for saltiness enhancement by inhomogeneous spatial distribution of sodium chloride. Lwt, v. 101, n. October 2018, p. 229–235, 2019b. JAMSHIDI, A. et al. Optimization of encapsulation of fish protein hydrolysate and fish oil in W1/O/W2 double emulsion: Evaluation of sensory quality of fortified yogurt. Journal of Food Processing and Preservation, n. May, p. 1–11, 2019. JANTARATHIN, S.; BOROMPICHAICHARTKUL, C.; SANGUANDEEKUL, R. Microencapsulation of probiotic and prebiotic in alginate-chitosan capsules and its effect on viability under heat process in shrimp feeding. Materials Today: Proceedings, v. 4, n. 5, p. 6166–6172, 2017. JÁUREGUI-LOBERA, I. Iron deficiency and cognitive functions. Neuropsychiatric Disease and Treatment, v. 10, p. 2087–2095, 2014. JEPSON, Willis Linn; HICKMAN, James C. The Jepson manual: higher plants of California. Univ of California Press, 1993. JOYE, I. J.; DAVIDOV-PARDO, G.; MCCLEMENTS, D. J. Nanotechnology for increased micronutrient bioavailability. Trends in Food Science and Technology, v. 40, n. 2, p. 168–182, 2014. KAIMAINEN, M. et al. Encapsulation of betalain into W1/O/W2 double emulsion and release during invitro intestinal lipid digestion. Lwt, v. 60, n. 2, p. 899–904, 2015. KANOUNI, M.; ROSANO, H. L.; NAOULI, N. Preparation of a stable double emulsion (W1/O/W2): Role of the interfacial films on the stability of the system. Advances in Colloid and Interface Science, v. 99, n. 3, p. 229–254, 2002. KAZEMI-TASKOOH, Z.; VARIDI, M. Designation and characterization of cold-set whey protein-gellan gum hydrogel for iron entrapment. Food Hydrocolloids, v. 111, n. June 2020, p. 106205, 2021. KHEYNOOR, N. et al. Encapsulation of vitamin C in a rebaudioside-sweetened model beverage using water in oil in water double emulsions. Lwt, v. 96, p. 419–425, 2018. KHOJA, K. K. et al. In vitro bioaccessibility and bioavailability of iron from fenugreek, baobab and moringa. Food Chemistry, v. 335, n. July 2020, p. 127671, 2021. KLOJDOVÁ, I.; ŠTĚTINA, J.; HORÁČKOVÁ, Š. W1/O/W2 Multiple Emulsions as the Functional Component of Dairy Products. Chemical Engineering and Technology, v. 42, n. 4, p. 715–727, 2019. LEISTER, N.; KARBSTEIN, H. P. Evaluating the stability of double emulsions— A review of the measurement techniques for the systematic investigation of instability mechanisms. Colloids and Interfaces, v. 4, n. 1, p. 1–18, 2020. LIU, J. et al. Protection of anthocyanin-rich extract from pH-induced color changes using water-in-oil-in-water emulsions. Journal of Food Engineering, v. 254, n. February, p. 1–9, 2019. LIU, W. et al. Comparative performances of lactoferrin-loaded liposomes under in vitro adult and infant digestion models. Food Chemistry, v. 258, p. 366–373, 2018. LÓPEZ-CASTEJÓN, M. L. et al. Characterization of prebiotic emulsions stabilized by inulin and β-lactoglobulin. Food Hydrocolloids, v. 87, n. August 2018, p. 382–393, 2019. LUO, Y. et al. Evaluation of the bioaccessibility of carotenoid esters from Lycium barbarum L. in nano-emulsions: A kinetic approach. Food Research International, v. 136, n. 22, p. 109611, 2020. LYNCH, Sean R. The impact of iron fortification on nutritional anaemia. Best Practice and Research: Clinical Haematology, v. 18, n. 2 SPEC. ISS., p. 333–346, 2005 MAHFOUDHI, N. et al. Assessment of emulsifying ability of almond gum in comparison with gum arabic using response surface methodology. Food Hydrocolloids, v. 37, p. 49– 59, 2014. MARQUES, M. C. et al. DHA bioaccessibility in infant formulas and preschool children milks. Food Research International, v. 149, p. 110698, 2021. MATHUR, N. K.. Industrial Galactomannan Polysaccharides. 1. Ed. Nova York: CRC Press (Taylor & Francis Group), 2012. 165 p. MATOS, M. et al. Encapsulation of resveratrol using food-grade concentrated double emulsions: Emulsion characterization and rheological behaviour. Journal of Food Engineering, v. 226, p. 73–81, 2018. MCCLEMENTS, D. J. Comments on viscosity enhancement and depletion flocculation by polysaccharides. Food Hydrocolloids, v. 14, n. 2, p. 173–177, 2000. MCCLEMENTS, D. J. Food Emulsions: Principles, Practices, and Techniques, 2ª edição. 2004. MCCLEMENTS, D. J. Stability of Food Emulsions. University of Massachusetts, n. 1, p. 1–37, 2008. MCCLEMENTS, D. J. Nanoparticles and Microparticle Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds, 2014. MCCLEMENTS, D. J.; JAFARI, S. M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science, v. 251, p. 55–79, 2018. MCCLEMENTS, D. J.; PENG, S. F. Current status in our understanding of physicochemical basis of bioaccessibility. Current Opinion in Food Science, v. 31, p. 57–62, 2020. MEHRA, R. et al. Whey proteins processing and emergent derivatives : An insight perspective from constituents , bioactivities , functionalities to therapeutic applications. v. 87, 2021. MÉNARD, O. et al. A first step towards a consensus static in vitro model for simulating full-term infant digestion. Food Chemistry, v. 240, n. July 2017, p. 338–345, 2018. METTU, S.; WU, C.; DAGASTINE, R. R. Dynamic forces between emulsified water drops coated with Poly-Glycerol-Poly-Ricinoleate (PGPR) in canola oil. Journal of Colloid and Interface Science, v. 517, p. 166–175, 2018. MEZZENGA, R.; FOLMER, B. M.; HUGHES, E. Design of double emulsions by osmotic pressure tailoring. Langmuir, v. 20, n. 9, p. 3574–3582, 2004. MILLER, R.; AKSENENKO, E. V.; FAINERMAN, V. B. Dynamic interfacial tension of surfactant solutions. Advances in Colloid and Interface Science, v. 247, p. 115–129, 2017. MORALES-MEDINA, R. et al. Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food Chemistry, v. 194, p. 1208–1216, 2016. MUSCHIOLIK, G. et al. Multiple Emulsions - Preparation and Stability. p. 123–137, 2006. MUSCHIOLIK, G.; DICKINSON, E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Comprehensive Reviews in Food Science and Food Safety, v. 16, n. 3, p. 532–555, 2017. NABRZYSKI, M. Mineral Components. In: SIKORSKI. Z. E. Chemical and functional properties of food components, 2002.cap.4, p.51-80. NEUMANN, S. M.; VAN DER SCHAAF, U. S.; KARBSTEIN, H. P. Investigations on the relationship between interfacial and single droplet experiments to describe instability mechanisms in double emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 553, p. 464–471, 2018. NGWULUKA, N. et al. Natural Polymer from Sesamum radiatum as an Emulsifier and Stabilizer in Fabrication of Macroemulsions. British Journal of Pharmaceutical Research, v. 8, n. 4, p. 1–11, 2015. OKURO, P. K. et al. Formation and stability of W/O-high internal phase emulsions (HIPEs) and derived O/W emulsions stabilized by PGPR and lecithin. Food Research International, v. 122, n. May 2018, p. 252–262, 2019. OPPERMANN, A. K. L. et al. Effect of outer water phase composition on oil droplet size and yield of (w1/o/w2) double emulsions. Food Research International, v. 107, n. August 2017, p. 148–157, 2018. OZTURK, B.; MCCLEMENTS, D. J. Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, v. 7, p. 1–6, 2016. PARTHASARATHI, S.; ANANDHARAMAKRISHNAN, C. Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules. Food and Bioproducts Processing, v. 100, p. 469–476, 2016. PAULO, F.; SANTOS, L. Design of experiments for microencapsulation applications: A review. Materials Science and Engineering C, v. 77, p. 1327–1340, 2017. PRAJAPATI, V. D. et al. Galactomannan: A versatile biodegradable seed polysaccharide. International Journal of Biological Macromolecules, v. 60, p. 83–92, 2013. PRICHAPAN, N.; MCCLEMENTS, D. J.; KLINKESORN, U. Iron Encapsulation in Water-in-Oil Emulsions: Effect of Ferrous Sulfate Concentration and Fat Crystal Formation on Oxidative Stability. Journal of Food Science, v. 83, n. 2, p. 309–317, 2018. PRICHAPAN, N.; MCCLEMENTS, D. J.; KLINKESORN, U. Encapsulation of Iron within W1/O/W2 Emulsions Formulated Using a Natural Hydrophilic Surfactant (Saponin): Impact of Surfactant Level and Oil Phase Crystallization. Food Biophysics, v. 15, n. 3, p. 346–354, 2020. PRICHAPAN, N.; MCCLEMENTS, D. J.; KLINKESORN, U. Utilization of multilayertechnology to enhance encapsulation efficiency and osmotic gradient tolerance of ironloaded W1/O/W2 emulsions: Saponin-chitosan coatings. Food Hydrocolloids, v. 112, n. September 2020, p. 106334, 2021. RIBEIRO, A.M.; ESTEVINHO, B. N.; ROCHA, F. Microencapsulation of polyphenols - The specific case of the microencapsulation of Sambucus Nigra L. extracts - A review. Trends in Food Science and Technology, 2019. SAFFARIONPOUR, S.; DIOSADY, L. L. Multiple Emulsions for Enhanced Delivery of Vitamins and Iron Micronutrients and Their Application for Food Fortification. Food and Bioprocess Technology, v. 14, n. 4, p. 587–625, 2021. SAINI, R. K. et al. Dietary iron supplements and Moringa oleifera leaves influence the liver hepcidin messenger RNA expression and biochemical indices of iron status in rats. Nutrition Research, v. 34, n. 7, p. 630–638, 2014. SCHROËN, K.; DE RUITER, J.; BERTON-CARABIN, C. The importance of interfacial tension in emulsification: Connecting scaling relations used in large scale preparation with microfluidic measurement methods. ChemEngineering, v. 4, n. 4, p. 1–22, 2020. SHAHIDI, F.; HAN, X. Q. Encapsulation of Food Ingredients. Critical Reviews in Food Science and Nutrition, v. 33, n. 6, p. 501–547, 1993. SHAO, P. et al. Recent advances in improving stability of food emulsion by plant polysaccharides. Food Research International, v. 137, n. January, p. 109376, 2020. SHENKIN, A. The key role of micronutrients. Clinical Nutrition, v. 25, n. 1, p. 1–13, 2006. SHERGILL-BONNER, R. Micronutrients. Paediatrics and Child Health (United Kingdom), v. 27, n. 8, p. 357–362, 2017. SHI, T. et al. Evolution of the Interfacial Tension between Polydisperse “Immiscible” Polymers in the Absence and in the Presence of a Compatibilizer. Macromolecules, v. 37, n. 4, p. 1591–1599, 2004. SILVA, E. N. et al. Evaluation of the bioaccessible fractions of Fe, Zn, Cu and Mn in baby foods. Talanta, v. 117, p. 184–188, 2013. SIMIQUELI, A. A. et al. W1/O/W2 emulsions applied for conveying FeSO4: Physical characteristics and intensity of metallic taste perception. Lwt, v. 100, p. 278–286, 2019. SMITHERS, G. W. Whey-ing up the options - Yesterday, today and tomorrow. International Dairy Journal, v. 48, p. 2–14, 2015. TAMILVANAN, S. Oil-in-water lipid emulsions: Implications for parenteral and ocular delivering systems. Progress in Lipid Research, v. 43, n. 6, p. 489–533, 2004. TAN, C.; MCCLEMENTS, D. J. Application of advanced emulsion technology in the food industry: A review and critical evaluation. Foods, v. 10, n. 4, 2021. TEIXEIRA, F. J. et al. Whey protein in cancer therapy: A narrative review. Pharmacological Research, v. 144, n. February, p. 245–256, 2019. TSERMOULA, P. et al. WHEY - The waste-stream that became more valuable than the food product. Trends in Food Science & Technology, v. 118, p. 230–241, 2021. VELDERRAIN-RODRÍGUEZ, G. R. et al. Encapsulation and stability of a phenolic-rich extract from mango peel within water-in-oil-in-water emulsions. Journal of Functional Foods, v. 56, n. February, p. 65–73, 2019. WORLD HEALTH ORGANIZATION. Nutritional Anaemias : Tools for Effective Prevention. World Health Organization, 2017. WORLD HEALTH ORGANIZATION. Preventing and controlling micronutrient deficiencies in populations affected by an emergency. World Health Organization, 2007. WU, Y. et al. An investigation of four commercial galactomannans on their emulsion and rheological properties. Food Research International, v. 42, n. 8, p. 1141–1146, 2009. WU, Y. et al. The rheological properties of tara gum (Caesalpinia spinosa). Food Chemistry, v. 168, p. 366–371, 2015. WU, Y.; DING, W.; HE, Q. The gelation properties of tara gum blended with κ- carrageenan or xanthan. Food Hydrocolloids, v. 77, p. 764–771, 2018. WUESTENBERG, T.. Cellulose and Cellulose Derivatives in the Food Industry: Fundamentals and Applications. Weinheim: Wiley-VCH, 2015. 525 p. YE, Q.; GEORGES, N.; SELOMULYA, C. Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends in Food Science and Technology, v. 78, p. 167–179, 2018. YING, X. et al. Preparation and drying of water-in-oil-in-water (W1/O/W2) double emulsion to encapsulate soy peptides. Food Research International, v. 141, n. September 2020, p. 110148, 2021. ZAFEIRI, I. et al. Emulsions Co-Stabilised by Edible Pickering Particles and Surfactants: The Effect of HLB Value. Colloids and Interface Science Communications, v. 17, p. 5–9, 2017. ZHANG, J. et al. Rheological and microstructural properties of gelatin B/tara gum hydrogels: Effect of protein/polysaccharide ratio, pH and salt addition. Lwt, v. 103, n. 5988, p. 108–115, 2019.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/70313/2021%20-%20Bruno%20S%c3%a9rgio%20Toledo%20Barbosa.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5890
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-08-16T20:27:16Z No. of bitstreams: 1 2021 - Bruno Sérgio Toledo Barbosa.pdf: 1192814 bytes, checksum: ecb0409800553e37289e6c70ff3367a7 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-08-16T20:27:16Z (GMT). No. of bitstreams: 1 2021 - Bruno Sérgio Toledo Barbosa.pdf: 1192814 bytes, checksum: ecb0409800553e37289e6c70ff3367a7 (MD5) Previous issue date: 2021-11-24eng
Appears in Collections:Mestrado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Bruno Sérgio Toledo Barbosa.pdf1.16 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.