Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/11395
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCosta, César Rafael Marins
dc.date.accessioned2023-12-22T01:52:17Z-
dc.date.available2023-12-22T01:52:17Z-
dc.date.issued2018-01-24
dc.identifier.citationCOSTA, César Rafael Marins. Avaliação do tratamento com N-acetilcisteína no infarto do miocárdio experimental em ratas Wistar. 2018. 70 f. Dissertação (Mestrado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2018.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11395-
dc.description.abstractO aumento dos níveis de espécies reativas do oxigênio e o déficit de antioxidantes observados após infarto do miocárdio estão diretamente envolvidos nas mudanças estruturais e funcionais que ocorrem durante o desenvolvimento e progressão do remodelamento cardíaco. Embora estudos prévios tenham demonstrado efeito cardioprotetor na atenuação da lesão tecidual em modelos experimentais de infarto do miocárdio (IM) pela administração de antioxidantes, não são claras as evidências sobre os benefícios do tratamento em longo prazo com substâncias antioxidantes sobre a evolução fisiopatológica do IM tanto em modelos experimentais quanto em pacientes infartados. Atualmente a N-acetilcisteína (NAC) é utilizada terapeuticamente em vários ramos da medicina, pois apresenta algumas características interessantes do ponto de vista farmacoterapêutico. Este estudo teve como objetivo avaliar o papel do tratamento com NAC, durante 28 dias, sobre a função cardíaca, modulação autonômica e estresse oxidativo no IM experimental. Adicionalmente, investigou-se a expressão do fator de crescimento neuronal (NGF) na mediação do aumento da resposta autonômica simpática pós-infarto, bem como, o possível efeito da NAC na modulação desta resposta. A amostra foi composta por ratos Wistar (fêmeas) que foram infartados (IM) ou falso operados (SH), tratados com salina (SAL) ou N-acetilcisteína (NAC) por gavagem (250 mg/Kg/dia). Os animais foram atribuídos em grupos: SHAM-SAL, SHAM-NAC, IM-SAL e IM-NAC, N=10/grupo. Os tratamentos iniciaram-se 24 horas após a cirurgia. Após 28 dias de tratamento os animais foram submetidos a avaliação eletrocardiográfica e ecocardiográfica (ECO) seguida pela eutanásia para a coleta dos tecidos. O procedimento estatístico utilizado foi a two-way ANOVA com post hoc de Tukey e significância definida em P < 0,05. O IM-SAL teve aumento dos pesos relativos do coração e pulmão comparado a IM-NAC (P<0,05). Houve diminuição da geração de H2O2 e aumento da atividade da glutationa peroxidase e na quantidade de grupamento TIOL no IM-NAC comparado a IM-SAL (P<0,05). As análises de ECO mostraram aumento da espessura relativa da parede posterior do ventrículo esquerdo no IM-NAC comparado ao IM-SAL (P<0,01), e aumento dos diâmetros internos da relação do átrio esquerdo e aorta no IM-SAL comparado a IM-NAC (P<0,05). Houve melhora da fração de ejeção no IM-NAC comparado a IM-SAL (P<0,05). Os resultados da variabilidade da frequência cardíaca (VFC) no domínio do tempo mostraram aumento da frequência cardíaca no IM-SAL e diminuição da raiz quadrada da média do quadrado das diferenças entre intervalos RR consecutivos (RMSSD) ao comparar com IM-NAC (P<0,01). A análise do domínio da frequência da VFC, foi observado aumento do componente de baixa frequência (U.N), diminuição do componente de alta frequência (U.N) e aumento da razão BF/AF no IM-SAL comparado a IM-NAC (P<0,01). A análise da expressão de NGF mostrou aumento no IM-SAL em relação a IM-NAC. O tratamento de ratas infartadas durante 28 dias com N-acetilcisteína foi efetivo em evitar a dilatação da câmara ventricular esquerda mostrando um padrão adaptativo, melhorando a função cardíaca, atenuando o processo congestivo, melhorando o perfil redox e induzindo a uma modulação autonômica mais favorável, pelo menos em parte pela redução da expressão de NGF.por
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectinfarto agudo do miocárdiopor
dc.subjectestresse oxidativopor
dc.subjectN-acetilcisteínapor
dc.subjectacute myocardial infarctioneng
dc.subjectoxidative stresseng
dc.subjectN-acetylcysteineeng
dc.titleAvaliação do tratamento com N-acetilcisteína no infarto do miocárdio experimental em ratas Wistarpor
dc.title.alternativeEvaluation of N-acetylcysteine treatment during experimental myocardial infarction in Wistar ratseng
dc.typeDissertaçãopor
dc.description.abstractOtherThe increase in reactive oxygen species and the deficit in antioxidants observed after myocardial infarction are directly related to structural and functional changes that occur during the development and progression of cardiac remodeling. Despite previous studies that demonstrated the cardioprotective effects of antioxidants on the attenuation of damage in experimental models of myocardial infarction (MI), the evidence of the benefits of long-term treatment with antioxidant substances on the physiopathological evolution of MI in both experimental models and infarcted patients are not clear. Currently, N-acetylcysteine (NAC) is, in several branches of medicine, used therapeutically since it shows interesting characteristics from the pharmacotherapeutic point of view. This study assessed the role of NAC treatment during 28 days on cardiac function, autonomic modelling and oxidative stress on experimental MI. Additionally, we evaluated the expression of neuronal growth factor (NGF) on the mediation of the increased sympathetic autonomic response post-infarction, as well as the possible effect of NAC on the modulation of this response. The sample was composed by female Wistar rats that were infarcted (MI) or sham-operated (SH) and treated with saline (SAL) or N-acetylcysteine (NAC) by gavage (250 mg/kg/day). The animals were assigned into groups: SHAM-SAL, SHAM-NAC, MI-SAL and MI-NAC, N=10/group. Treatments started 24 hours after surgery. Twenty-eight days after treatment, the animals were submitted to electrocardiographical and echocardiographical (ECHO) assessment, and then to euthanasia for tissue collection. The statistical procedure used was a two-way ANOVA with Tukey post-hoc and the significance was set at P < 0.05. The MI-SAL showed increased relative heart and lung weight when compared to MI-NAC (P<0.05). The H2O2 generation decreased in MI-NAC in relation to MI-SAL (P<0.05) and the activity of glutation peroxidase (GPx) and TIOL increased in MI-NAC when compared to MI-SAL (P<0.05). ECHO showed increased relative wall thickness of the posterior wall of the left ventricle in MI-NAC when compared to MI-SAL (P<0.01), and increased internal diameters of the left atrium and aorta ratio in MI-SAL when compared to MI-NAC (P<0.05). The ejection fraction improved in MI-NAC compared to MI-SAL (P<0.05). The heart rate variability in the time domain showed increased heart rate in MI-SAL and decreased RMSSD when compared to the MI-NAC (P<0.01). The frequency domain analysis of heart rate variability, there showed increased low frequency domain component (U.N), decreased high frequency component (U.N) and increased LF/HF ratio in MI-SAL when compared to MI-NAC (P<0.01). The analysis of NGF gene expression by RT-PCR showed increased in MI-SAL compared to MI-NAC (P<0.05). The treatment of infarcted rats during 28 days with N-acetylcysteine was effective to avoid the left ventricle dilation showing an adaptative pattern, improving heart function, attenuating the congestive process by improving the redox profile and inducing a more favorable autonomic modulation, at least in part by the reduction of the expression of NGF.eng
dc.contributor.advisor1Olivares, Emerson Lopes
dc.contributor.advisor1ID027.886.707-37por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1361659701207857por
dc.contributor.advisor-co1Silveira, Anderson Luiz Bezerra da
dc.contributor.referee1Olivares, Emerson Lopes
dc.contributor.referee2Côrtes, Wellington da Silva
dc.contributor.referee3Souza, Luciane Claudia Barcellos dos Santos
dc.creator.ID122.801.837-57por
dc.creator.Latteshttp://lattes.cnpq.br/2086731690238933por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesADAMS, K. F. Pathophysiologic role of the renin-angiotensin-aldosterone and sympathetic nervous systems in heart failure. American Journal of Health-System Pharmacy, v. 61, n. 9, p. S4–S13, 2004. AIRES, R. et al. Time course of changes in heart rate and blood pressure variability in rats with myocardial infarction. Brazilian Journal of Medical and Biological Research, v. 50, n. 1, 2017. AKSELROD, S. et al. Hemodynamic regulation: investigation by spectral analysis. The American journal of physiology, v. 249, n. 4, p. H867-75, 1985. ALLEN, A. M. et al. Angiotensin receptors in the nervous system. Brain research bulletin, v. 47, n. 1, p. 17–28, 1998. ANTONELLI, L. et al. Insuficiência Cardíaca com Fração de Ejeção do Ventrículo Esquerdo Preservada em Pacientes com Infarto Agudo do Miocárdio. Arq Bras Cardiol, v. 105, n. 2, p. 145–150, 2015. ANVERSA, P. et al. Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth. Circulation Research, v. 58, n. 1, p. 26–37, 1986. AOYAMA, K. et al. Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nature neuroscience, v. 9, n. 1, p. 119–126, 2006. ARAUJO, D. V. et al. Custo da insuficiência cardíaca no Sistema Único de Saúde. Arq Bras Cardiol, v. 84, n. 5, p. 422–427, 2005. ARUOMA, O. I. et al. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radical Biology and Medicine, v. 6, n. 6, p. 593–597, 1989. AUBERT, A. E. et al. Complexity of cardiovascular regulation in small animals. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, v. 367, n. 1892, p. 1239–50, 2009. AUBERT, A. E. et al. The analysis of heart rate variability in unrestrained rats. Validation of method and results. Computer methods and programs in biomedicine, v. 60, n. 3, p. 197–213, 1999. AVEZUM, A. et al. Aspectos epidemiológicos do infarto agudo do miocárdio no Brasil. Rev Bras Clin Terap, v. 31, n. 2, p. 93–96, 2005. AVEZUM, Á. et al. III Diretriz sobre tratamento do infarto agudo do miocárdio. Arquivos Brasileiros de Cardiologia, v. 83, p. 1–86, 2004. BARBOSA, K. B. F. et al. Estresse oxidativo: conceito, implicações e fatores modulatórios. Revista de Nutrição, 2010. BARREIROS, A. L. B. S.; DAVID, J. M.; DAVID, J. P. Estresse Oxidativo: Relação Entre Geração de Espécies Reativas e Defesa do Organismo. Quim. Nova, v. 29, n. 1, p. 113-123, 2006 58 BARRETTO, A. C. P. et al. Revisão das II Diretrizes da Sociedade Brasileira de Cardiologia para o Diagnóstico e Tratamento da Insuficiência Cardíaca. Arquivos Brasileiros de Cardiologia, v. 79, p. 1-30, 2002 BARROS, R. A.; OKOSHI, M. P.; CICOGNA, A. C. Via beta-adrenérgica em corações normais e hipertrofiados. Arquivos brasileiros de cardiologia, v. 72, n. 5, p. 641–656, 1999. BEER, S. et al. High-dose 17beta-estradiol treatment prevents development of heart failure post-myocardial infarction in the rat. Basic research in cardiology, v. 102, n. 1, p. 9–18, 2007. BEL, A. et al. Transplantation of autologous fresh bone marrow into infarcted myocardium: a word of caution. Circulation, v. 108, n. 10 suppl 1, p. II-247, 2003. BERK, B. C.; FUJIWARA, K.; LEHOUX, S. Review series ECM remodeling in hypertensive heart disease. Journal of Clinical Investigation, v. 117, n. 3, p. 568–575, 2007. BIGGER, T. J. et al. Frequency Domain Measures of Heart Period Variability and Mortality After Myocardial Infarction. Circulation, v. 85, n. 1, p. 164–171, 1991. BLOCK, K.; GORIN, Y. Aiding and abetting roles of NOX oxidases in cellular transformation. Nature Reviews Cancer, v. 12, n. 9, p. 627, 2012. BOCCHI, E. A. et al. III Diretriz Brasileira de Insuficiência Cardíaca Crônica. Arquivos Brasileiros de Cardiologia, v. 93, p. 3-70, 2009 BRAUNERSREUTHER, V.; JAQUET, V. Reactive oxygen species in myocardial reperfusion injury: from physiopathology to therapeutic approaches. Current pharmaceutical biotechnology, v. 13, n. 1, p. 97–114, 2012. BROOK, R. D. et al. Particulate matter air pollution and cardiovascular disease. Circulation, v. 121, n. 21, p. 2331–2378, 2010. BUJA, L. M. Lipid abnormalities in myocardial cell injury. Trends in Cardiovascular Medicine, v. 1, n. 1, p. 40–45, 1991. BUJA, L. M. Myocardial ischemia and reperfusion injury. Cardiovascular Pathology, v. 14, n. 4, p. 170–175, 2005. BURGUNDER, J. M.; VARRIALE, A.; LAUTERBURG, B. H. Effect of Nacetylcysteine on plasma cysteine and glutathione following paracetamol administration. European journal of clinical pharmacology, v. 36, n. 2, p. 127–131, 1989. BUSCHE, S. et al. Expression of Angiotensin AT1 and AT2 Receptors in Adult Rat Cardiomyocytes after Myocardial Infarction: A Single-Cell Reverse Transcriptase- Polymerase Chain Reaction Study. The American Journal of Pathology, v. 157, n. 2, p. 605–611, 2000. BUTTRICK, P.; SCHEUER, J. Sex-associated differences in left ventricular function in aortic stenosis of the elderly. Circulation, v. 86, n. 4, p. 1336–1338, 1992. CASOLO, G. C. et al. Heart rate variability during the acute phase of myocardial infarction. Circulation, v. 85, n. 6, p. 2073–2079, 1992. 59 CAVE, A. C. et al. NADPH oxidases in cardiovascular health and disease. Antioxidants & redox signaling, v. 8, n. 5–6, p. 691–728, 2006. CECONI, C. et al. The Role o f Glutathione Status in the Protection Against Ischaemic and Reperfusion Damage: Effects of N-Acetyl Cysteine University of Brescia, Chair of Cardiology and Chair of Chemistry, Brescia, Italy Perfusion sequence. J Mol Cell Cardio, v. 13, n. 1, p. 5–13, 1988. CHAHINE, T. et al. Particulate air pollution, oxidative stress genes, and heart rate variability in an elderly cohort. Environmental health perspectives, v. 115, n. 11, p. 1617, 2007. CHAN, Y. H. et al. Subcutaneous nerve activity is more accurate than the heart rate variability in estimating cardiac sympathetic tone in ambulatory dogs with myocardial infarction. Heart rhythm: the official journal of the Heart Rhythm Society, v. 12, n. 7, p. 1619–1627, 2015. CHESS, G. F.; TAM, R. M.; CALARESU, F. R. Influence of cardiac neural inputs on rhythmic variations of heart period in the cat. The American journal of physiology, v. 228, n. 3, p. 775–80, 1975. CHUANG, H. C. et al. Nickel-regulated heart rate variability: the roles of oxidative stress and inflammation. Toxicology and applied pharmacology, v. 266, n. 2, p. 298–306, 2013. CLELAND, J. G. F. et al. The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe: Part 1: patient characteristics and diagnosis. European heart journal, v. 24, n. 5, p. 442–463, 2003. COOK, S. et al. High heart rate: a cardiovascular risk factor? European heart journal, v. 27, n. 20, p. 2387–2393, 2006. COURNEYA, C. A.; KORNER, P. I. Neurohumoral mechanisms and the role of arterial baroreceptors in the reno‐vascular response to haemorrhage in rabbits. The Journal of physiology, v. 437, n. 1, p. 393–407, 1991. DA SILVA-SOUZA, M. V. A. et al. Variabilidade da frequência cardíaca: análise dos índices no domínio do tempo em portadores de cardiopatia chagásica crónica, antes e após um programa de exercícios. Revista Portuguesa de Cardiologia, v. 32, n. 3, p. 219–227, 2013. DAVIS, R. C.; HOBBS, F. D. R.; LIP, G. Y. H. ABC of heart failure: history and epidemiology: History and epidemiology. British Medical Journal, v. 320, n. 7226, p. 39, 2000. DE CASTRO, A. L. et al. Cardioprotective effects of thyroid hormones in a rat model of myocardial infarction are associated with oxidative stress reduction. Mol Cell Endocrinol, v. 391, n. 1–2, p. 22–29, 25 jun. 2014. DHALLA, N. S. et al. Evidence for the role of oxidative stress in acute ischemic heart disease: a brief review. The Canadian journal of cardiology, v. 15, n. 5, p. 587– 593, 1999. DIAZ, A. et al. Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. European heart journal, v. 26, n. 10, p. 967–974, 2005. 60 DISEGNI, E. et al. The predictive value of admission heart rate on mortality in patients with acute myocardial infarction. Journal of clinical epidemiology, v. 48, n. 10, p. 1197–1205, 1995. DOS REIS, A. F. et al. Parasympathetic dysfunction, heart rate variability and cholinergic stimulation after acute myocardial infarction. Arq Bras Cardiol, v. 70, n. 3, p. 193–199, 1998. DRINGEN, R.; HAMPRECHT, B. N-acetylcysteine, but not methionine or 2- oxothiazolidine-4-carboxylate, serves as cysteine donor for the synthesis of glutathione in cultured neurons derived from embryonal rat brain. Neuroscience letters, v. 259, n. 2, p. 79–82, 1999. DRÖGE, W. Free radicals in the physiological control of cell function. Physiological reviews, v. 82, n. 1, p. 47–95, 2002. EAKER, E. D. et al. Cardiovascular disease in women. Circulation, v. 88, n. 4, p. 1999–2009, 1993. ELLMAN, G. L. Tissue sulfhydryl groups. Archives of biochemistry and biophysics, v. 82, n. 1, p. 70–77, 1959. ENGBERDING, N. et al. Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: A new action for an old drug? Circulation, v. 110, n. 15, p. 2175–2179, 2004. ESCOSTEGUY, C. C. Epidemiologia das doenças cardiovasculares nas mulheres. Revista da SOCERJ, 2002. FACTOR, S. M. Borderline myocarditis on initial endomyocardial biopsy: noman’s- land no more? Journal of the American College of Cardiology, v. 15, n. 2, p. 290–291, 1990. FARR, S. A. et al. The antioxidants α‐lipoic acid and N‐acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. Journal of neurochemistry, v. 84, n. 5, p. 1173–1183, 2003. FARRELL, T. G. et al. Baroreflex sensitivity and electrophysiological correlates in patients after acute myocardial infarction. Circulation, v. 83, n. 3, p. 945-952, 1991. FERREIRA, A.L.A.; MATSUBARA, L. S. Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Medicina, v. 43, n. 1, p. 61-68, 1997. FILOMENI, G.; CIRIOLO, M. R. Redox control of apoptosis: an update. Antioxidants & redox signaling, v. 8, n. 11–12, p. 2187–92, 2006. FISHBEIN, M. C.; MACLEAN, D.; MAROKO, P. R. Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. The American journal of pathology, v. 90, n. 1, p. 57, 1978a. FISHBEIN, M. C.; MACLEAN, D.; MAROKO, P. R. The histopathologic evolution of myocardial infarction. Chest, v. 73, n. 6, p. 843–849, 1978b. FLÖGEL, U. et al. Myoglobin: a scavenger of bioactive NO. Proceedings of the National Academy of Sciences, v. 98, n. 2, p. 735–740, 2001. 61 FORTUNATO, R. S. et al. Sexual dimorphism and thyroid dysfunction: a matter of oxidative stress? Journal of Endocrinology, v. 221, n. 2, p. R31–R40, 2014. FRANCIS, G. S. Pathophysiology of chronic heart failure. The American journal of medicine, v. 110, n. 7, p. 37–46, 2001. FRANCIS, J. et al. Central mineralocorticoid receptor blockade improves volume regulation and reduces sympathetic drive in heart failure. American Journal of Physiology-Heart and Circulatory Physiology, v. 281, n. 5, p. H2241–H2251, 2001. FRANCISCHETTI, I. et al. Leukocytes and the inflammatory response in ischemia-reperfusion injury. Revista brasileira de cirurgia cardiovascular: orgao oficial da Sociedade Brasileira de Cirurgia Cardiovascular, v. 25, n. 4, p. 575–584, 2010. FUKUI, T. et al. Expression of p22-phox and gp91-phox, essential components of NADPH oxidase, increases after myocardial infarction. Biochemical and biophysical research communications, v. 281, n. 5, p. 1200–6, 2001. FURLAN, R. et al. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation, v. 81, n. 2, p. 537–547, 1990. GALINIER, M. et al. Depressed low frequency power of heart rate variability as an independent predictor of sudden death in chronic heart failure. European Heart Journal, v. 21, n. 6, p. 475–482, 2000. GARDIN, J. M. et al. Relationship of cardiovascular risk factors to echocardiographic left ventricular mass in healthy young black and white adult men and women. Circulation, v. 92, n. 3, p. 380–387, 1995. GASPARELO, T. A. C. Estudo dos mecanismos genéticos e celulares durante a fase inflamatória do processo de regeneração tecidual em animais selecionados geneticamente para a máxima resposta inflamatória aguda homozigotos para os alelos R ou S do gene Slc11a1. Dissertação (Mestrado em Imunologia) - Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2009. Disponível em:< http://www.teses.usp.br/teses/disponiveis/42/42133/tde-03022010-093331/en.php>. Acesso em: 2017-01-24. GILLMAN, M. W. et al. Influence of heart rate on mortality among persons with hypertension: the Framingham Study. American heart journal, v. 125, n. 4, p. 1148– 1154, 1993. GILLUM, R. F.; MAKUC, D. M.; FELDMAN, J. J. Pulse rate, coronary heart disease, and death: the NHANES I Epidemiologic Follow-up Study. American heart journal, v. 121, n. 1, p. 172–177, 1991. GIORDANO, F. J. Oxygen, oxidative stress, hypoxia, and heart failure. Journal of Clinical Investigation, v. 115, n. 3, p. 500–508, 2005. GODOY, M. F. et al. Mortalidade por doenças cardiovasculares e níveis socioeconômicos na população de São José do Rio Preto, estado de São Paulo, Brasil. Arq Bras Cardiol, v. 88, n. 2, p. 200–206, 2007. 62 GREENBERG, H.; MCMASTER, P.; DWYER JR., E. M. Left ventricular dysfunction after acute myocardial infarction: Results of a prospective multicenter study. Journal of the American College of Cardiology, v. 4, n. 5, p. 867–874, 1984. GRIEVE, D. J. et al. Role of oxidative stress in cardiac remodelling after myocardial infarction. Heart, lung & circulation, v. 13, n. 2, p. 132–8, 2004. GUGGILAM, A. et al. TNF-α blockade decreases oxidative stress in the paraventricular nucleus and attenuates sympathoexcitation in heart failure rats. American Journal of Physiology-Heart and Circulatory Physiology, v. 293, n. 1, p. H599–H609, 2007. GUIMARÃES, H. P.; AVEZUM, Á.; PIEGAS, L. S. Epidemiologia do infarto agudo do miocárdio. Rev. Soc. Cardiol. Estado de São Paulo, v. 16, n. 1, p. 1–7, 2006. HARE, J. M. Oxidative Stress and Apoptosis in Heart Failure Progression. Circulation Research, v. 89, n. 3, p. 198-200, 2001. HASENFUSS, G. et al. Calcium handling proteins in the failing human heart. Basic Research in Cardiology, v. 92, n. 1, p. 87–93, 1997. HEINEKE, J.; MOLKENTIN, J. D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Reviews Molecular Cell Biology, v. 7, n. 8, p. 589–600, 2006. HENZE, M. et al. Persistent alterations in heart rate variability, baroreflex sensitivity, and anxiety-like behaviors during development of heart failure in the rat. American journal of physiology-heart and circulatory physiology, v. 295, n. 1, p. H29–H38, 2008. HILL, M. F.; SINGAL, P. K. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. The American Journal of Pathology, v. 148, n. 1, p. 291–300, jan. 1996a. HILL, M. F.; SINGAL, P. K. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. The American Journal of Pathology, v. 148, n. 1, p. 291–300, 1996b. HJALMARSON, Å. et al. Effect on mortality of metoprolol in acute myocardial infarction. A Double-blind Randomised Trial. The Lancet, v. 318, n. 8251, p. 823–827, 1981. HJALMARSON, Å. Heart rate: an independent risk factor in cardiovascular disease. European Heart Journal Supplements, v. 9, n. suppl_F, p. F3–F7, 2007. HOIT, B. D. et al. In vivo determination of left ventricular wall stress-shortening relationship in normal mice. American Journal of Physiology-Heart and Circulatory Physiology, v. 272, n. 2, p. H1047–H1052, 1997. IDE, T. et al. Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circulation research, v. 86, n. 2, p. 152–157, 2000. IDE, T. et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation research, v. 88, n. 5, p. 529–535, 2001. 63 Indicadores de Saúde. Disponível em: www.datasus.gov.br (acesso em 18/01/2017) JANSSENS, S. et al. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation research, v. 94, n. 9, p. 1256–1262, 2004. JOHNS, T. N. P.; OLSON, B. J. Experimental myocardial infarction: I. A method of coronary occlusion in small animals. Annals of Surgery, v. 140, n. 5, p. 675, 1954. JONES, C. M. et al. Kinetics of superoxide scavenging by glutathione: an evaluation of its role in the removal of mitochondrial superoxide. Biochemical Society transactions, v. 31, n. 6, p. 1337–1339, 2003. KANNEL, W. B. et al. Coronary heart disease and atrial fibrilation: The Framingham Study. American Heart Journal, v. 106, n. 2, p. 389–396, 1983. KANNEL, W. B.; PLEHN, J. F.; CUPPLES, L. A. Cardiac failure and sudden death in the Framingham Study. American Heart Journal, v. 115, n. 4, p. 869–875, 1988. KHAPER, N. et al. Antioxidant enzyme gene expression in congestive heart failure following myocardial infarction. Molecular and cellular biochemistry, v. 251, n. 1, p. 9-15, 2003. KINUGAWA, S. et al. Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circulation research, v. 87, n. 5, p. 392–398, 2000. KIRIAZIS, H. et al. Hypertrophy and functional alterations in hyperdynamic phospholamban-knockout mouse hearts under chronic aortic stenosis. Cardiovascular research, v. 53, n. 2, p. 372–381, 2002. KISHI, T. et al. Angiotensin II type 1 receptor–activated caspase-3 through ras/mitogen-activated protein kinase/extracellular signal-regulated kinase in the rostral ventrolateral medulla is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats. Hypertension, v. 55, n. 2, p. 291–297, 2010. KISHI, T. Heart failure as an autonomic nervous system dysfunction. Journal of cardiology, v. 59, n. 2, p. 117–122, 2012. KITNEY, R. I. An Analysis of the Thermoregulatory Influences on Heart-Rate Variability, chapter 5. In: The study of heart-rate variability. Oxford University press, New York, NY, 1980, p. 81–106. KLEIGER, R. E. et al. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. The American Journal of Cardiology, v. 59, n. 4, p. 256–262, 1987. KORPELAINEN, J. T. et al. Cardiovascular autonomic reflexes in brain infarction. Stroke, v. 25, n. 4, p. 787–792, 1994. KRIJNEN, P. A. J. et al. Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. Journal of clinical pathology, v. 56, n. 3, p. 194–9, 2003. 64 LA ROVERE, M. T. et al. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. The Lancet, v. 351, n. 9101, p. 478–484, 1998. LANG, C. C. et al. Elevated heart rate and cardiovascular outcomes in patients with coronary artery disease: clinical evidence and pathophysiological mechanisms. Atherosclerosis, v. 212, n. 1, p. 1–8, 2010. LEE, T. M.; LAI, P. Y.; CHANG, N. C. Effect of N-acetylcysteine on sympathetic hyperinnervation in post-infarcted rat hearts. Cardiovascular Research, v. 85, n. 1, p. 137–146, 2010. LERNER, D. J.; KANNEL, W. B. Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year follow-up of the Framingham population. American heart journal, v. 111, n. 2, p. 383–390, 1986. LESSA, Í. Epidemiologia da hipertensão arterial sistêmica e da insuficiência cardíaca no Brasil. Rev bras hipertens, v. 8, n. 4, p. 383–392, 2001. LI, M. et al. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation, v. 109, n. 1, p. 120–124, 2004. LI, Y. F. et al. Angiotensin-mediated increase in renal sympathetic nerve discharge within the PVN: role of nitric oxide. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, v. 290, n. 4, p. R1035–R1043, 2006. LINDLEY, T. E. et al. Superoxide is involved in the central nervous system activation and sympathoexcitation of myocardial infarction–induced heart failure. Circulation research, v. 94, n. 3, p. 402–409, 2004. LINDPAINTNER, K. et al. Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. Journal of molecular and cellular cardiology, v. 25, n. 2, p. 133–143, 1993. LITWIN, S. E. et al. Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat. Circulation, v. 89, n. 1, p. 345–354, 1994. LOMBARDI, F. et al. Heart rate variability as an index of sympathovagal interaction after acute myocardial infarction. The American Journal of Cardiology, v. 60, n. 16, p. 1239–1245, 1987. LOOI, Y. H. et al. Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension, v. 51, n. 2, p. 319–325, 2008. LOPEZ, A. D. Assessing the burden of mortality from cardiovascular diseases. World health statistics quarterly. Rapport trimestriel de statistiques sanitaires mondiales, v. 46, n. 2, p. 91—96, 1993. LU, L.; QUINN, M. T.; SUN, Y. Oxidative stress in the infarcted heart: role of de novo angiotensin II production. Biochemical and Biophysical Research Communications, v. 325, n. 3, p. 943–951, 2004. 65 MALIK, M.; CAMM, A. J. Components of heart rate variability--what they really mean and what we really measure. The American journal of cardiology, v. 72, n. 11, p. 821–822, 1993a. MALIK, M.; CAMM, A. J. Heart rate variability: From facts to fancies. Journal of the American College of Cardiology, v. 22, n. 2, p. 566–568, 1993b. MALLAT, Z. et al. Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation, v. 97, n. 16, p. 1536–9, 1998. MALLIANI, A. et al. Spectral analysis to assess increased sympathetic tone in arterial hypertension. Hypertension, v. 17, n. 4, p. III36, 1991. MALLORY, F. B.; PARKER JR, F. Fixing and staining methods for lead and copper in tissues. The American journal of pathology, v. 15, n. 5, p. 517, 1939. MASANO, T. et al. Beneficial effects of exogenous tetrahydrobiopterin on left ventricular remodeling after myocardial infarction in rats: the possible role of oxidative stress caused by uncoupled endothelial nitric oxide synthase. Circ.J., v. 72, n. 1346–9843 (Print), p. 1512–1519, 2008. MASSON, G. S. et al. Time-Dependent Effects of Training on Cardiovascular Control in Spontaneously Hypertensive Rats: Role for Brain Oxidative Stress and Inflammation and Baroreflex Sensitivity. PLOS ONE, v. 9, n. 5, p. e94927, 2014. MATEJÍKOVÁ, J. et al. Protection against ischemia-induced ventricular arrhythmias and myocardial dysfunction conferred by preconditioning in the rat heart: Involvement of mitochondrial KATP channels and reactive oxygen species. Physiological Research, v. 58, n. 1, p. 9–19, 2009. MCKEE, P. A. et al. The Natural History of Congestive Heart Failure: The Framingham Study. New England Journal of Medicine, v. 285, n. 26, p. 1441–1446, 1971. MCMURRAY, J. et al. Evidence of oxidative stress in chronic heart failure in humans. European Heart Journal, v. 14, n. 11, p. 1493–1498, 1993. MEISTER, A. Glutathione biosynthesis and its inhibition. Methods in enzymology, v. 252, p. 26–30, 1994. MIRANDA, A. et al. Time course of echocardiographic and electrocardiographic parameters in myocardial infarct in rats. Anais da Academia Brasileira de Ciências, v. 79, n. 4, p. 639–648, 2007. MONTERA, M. et al. Sociedade Brasileira de Cardiologia. II Diretriz Brasileira de Insuficiência Cardíaca Aguda. II Diretriz Brasileira de Insuficiência Cardíaca Aguda. Arquivos Brasileiros de Cardiologia, v. 93, n. 3 supl. 3, p. 1-65, 2009 MORAES, R. S. F.; FERLIN, E. L. Variabilidad de la frecuencia cardíaca: utilidad del análises espectral para evaluar el sistema nervioso autônomo. Revista Argentina de Cardiologia, v. 60, p. 77–80, 1992. MOSCA, L. et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update. Circulation, v. 123, n. 11, p. 1243-1262, 2011. 66 MOSCA, L. et al. Evidence-based guidelines for cardiovascular disease prevention in women: 2007 update. Journal of the American College of Cardiology, v. 49, n. 11, p. 1230–1250, 2007. MURDOCH, C. E. et al. NADPH oxidase and heart failure. Current opinion in pharmacology, v. 6, n. 2, p. 148–153, 2006. NAKAGAMI, H.; TAKEMOTO, M.; LIAO, J. K. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, v. 35, n. 7, p. 851–859, 2003. NICOD, P. et al. Influence on prognosis and morbidity of left ventricular ejection fraction with and without signs of left ventricular failure after acute myocardial infarction. The American journal of cardiology, v. 61, n. 15, p. 1165–1171, 1988. OGAWA, K. et al. Brain AT1 receptor activates the sympathetic nervous system through toll-like receptor 4 in mice with heart failure. Journal of cardiovascular pharmacology, v. 58, n. 5, p. 543–549, 2011. OLIVARES, E. L. et al. Bone marrow stromal cells improve cardiac performance in healed infarcted rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, v. 287, n. 2 56-2, p. H464–H470, 2004. OLIVARES, E. L. et al. Cellular cardiomyoplasty in large myocardial infarction: Can the beneficial effect be enhanced by ACE-inhibitor therapy? European Journal of Heart Failure, v. 9, n. 6–7, p. 558–567, 2007. PEDERSEN, T. R. Six-year follow-up of the Norwegian Multicenter Study on Timolol after Acute Myocardial Infarction. The New England journal of medicine, v. 313, n. 17, p. 1055–8, 1985. PEKER, O. et al. Effects of intravenous N-acetylcysteine on periprocedural myocardial injury after on-pump coronary artery by-pass grafting. Journal of Cardiovascular Surgery, v. 49, n. 4, p. 527, 2008. PEREIRA-JUNIOR, P. P. et al. Cardiac autonomic dysfunction in rats chronically treated with anabolic steroid. European Journal of Applied Physiology, v. 96, n. 5, p. 487–494, 2006. PEREIRA-JUNIOR, P. P. et al. Noninvasive method for electrocardiogram recording in conscious rats: feasibility for heart rate variability analysis. Anais da Academia Brasileira de Ciências, v. 82, n. 2, p. 431-437, 2010 PFEFFER, M. A. et al. Myocardial infarct size and ventricular function in rats. Circulation research, v. 44, n. 4, p. 503–512, 1979. PFEFFER, M. A.; BRAUNWALD, E. Ventricular Remodeling After Myocardial Infarction Experimental Observations and Clinical Implications. Circulation Research, v. 81, n. 4, p. 1161–1172, 1990. PIMENTA, L. Doença cardiovascular na mulher: fatos e mitos. Revista da SOCERJ, 2001. PIPILIS, A. et al. Heart rate variability in acute myocardial infarction and its association with infarct site and clinical course. The American Journal of Cardiology, v. 67, n. 13, p. 1137–1139, 1991. 67 POLI, G.; PAROLA, M. Oxidative damage and fibrogenesis. Free Radical Biology and Medicine, v. 22, n. 1–2, p. 287–305, 1997. POULSEN, H. E.; PRIEME, H.; LOFT, S. Role of oxidative DNA damage in cancer initiation and promotion. European Journal of Cancer Prevention, v. 7, n. 1, p. 9–16, 1998. PRINCIP, M. et al. Can illness perceptions predict lower heart rate variability following acute myocardial infarction? Frontiers in psychology, v. 7, 2016. RAPEPORT, N. Cardiovascular disease prevention in women: are we up to date? Cardiovascular journal of Africa, v. 22, n. 3, p. 119–121, 2011. REIMER, K. A.; IDEKER, R. E. Myocardial ischemia and infarction: anatomic and biochemical substrates for ischemic cell death and ventricular arrhythmias. Human pathology, v. 18, n. 5, p. 462–475, 1987. RUBIN, S. A. et al. Compensatory hypertrophy in the heart after myocardial infarction in the rat. Journal of the American College of Cardiology, v. 1, n. 6, p. 1435– 1441, 1983. RUH, A. C. et al. Inflamação: entre a regeneração e a cicatrização. Publicatio UEPG: Ciências Biológicas e da Saúde, v. 19, n. 1, p. 11–19, 2013. SAGRISTÁ, M. L. et al. Antioxidant and pro-oxidant effect of the thiolic compounds N-acetyl-L-cysteine and glutathione against free radical-induced lipid peroxidation. Free radical research, v. 36, n. 3, p. 329–340, 2002. SAHN, D. J.; DEMARIA, A.; KISSLO, J. Recommendations Regarding Quantitation in M-Mode Echocardiography: Results of a Survey of Echocardiographic Measurements. Circulation, v. 58, n. 6, p. 1072–1083, 1978. SAM, F. et al. Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. Journal of Cardiac Failure, v. 11, n. 6, p. 473–480, 2005. SAUL, J. P. et al. Heart-rate and muscle sympathetic-nerve variability during reflex changes of autonomic activity. American Journal of Physiology, v. 258, n. 3, p. h713–h721, 1990. SCHMIDT-OTT, U. M.; ASCHEIM, D. D. Thyroid hormone and heart failure. Current Heart Failure Reports, v. 3, n. 3, p. 114–119, 2006. SCHWARTZ, P. J. et al. Autonomic mechanisms and sudden death. New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation, v. 78, n. 4, p. 969-979, 1988. SCHWARTZ, P. J.; BILLMAN, G. E.; STONE, H. L. Autonomic mechanisms in ventricular fibrillation induced by myocardial ischemia during exercise in dogs with healed myocardial infarction. An experimental preparation for sudden cardiac death. Circulation, v. 69, n. 4, p. 790-800, 1984. SCHWARTZ, P. J.; DE FERRARI, G. M. Sympathetic–parasympathetic interaction in health and disease: abnormalities and relevance in heart failure. Heart failure reviews, v. 16, n. 2, p. 101–107, 2011. 68 SCHWARTZ, P. J.; LA ROVERE, M. T.; VANOLI, E. Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for postmyocardial infarction risk stratification. Circulation, v. 85, n. 1, p. I77–I91, 1992. SCHWEIZER, U.; CHIU, J.; KÖHRLE, J. Peroxides and peroxide-degrading enzymes in the thyroid. Antioxidants & redox signaling, v. 10, n. 9, p. 1577–1592, 2008. SEGERS, V. F. M.; LEE, R. T. Stem-cell therapy for cardiac disease. Nature, v. 451, n. 7181, p. 937–942, 2008. SELYE, H. et al. Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology, v. 11, n. 5, p. 398–407, 1960. SHAH, A. M.; SAUER, H. Transmitting biological information using oxygen: Reactive oxygen species as signalling molecules in cardiovascular pathophysiology. Cardiovascular Research, v. 71, n. 2, p. 191–194, 2006. SHIOMI, T. et al. Overexpression of Glutathione Peroxidase Prevents Left Ventricular Remodeling and Failure after Myocardial Infarction in Mice. Circulation, v. 109, n. 4, p. 544–549, 2004. SIA, Y. T.; LAPOINTE, N.; et al. Beneficial effects of long-term use of the antioxidant probucol in heart failure in the rat. Circulation, v. 105, n. 21, p. 2549–2555, 2002. SIA, Y. T.; PARKER, T. G.; LIU, P.; et al. Improved post-myocardial infarction survival with probucol in rats: Effects on left ventricular function, morphology, cardiac oxidative stress and cytokine expression. Journal of the American College of Cardiology, v. 39, n. 1, p. 148–156, 2002. SIA, Y. T.; PARKER, T. G.; TSOPORIS, J. N.; et al. Long-term effects of carvedilol on left ventricular function, remodeling, and expression of cardiac cytokines after large myocardial infarction in the rat. J Cardiovasc Pharmacol, v. 39, n. 1, p. 73– 87, 2002. SIERVULI, M. T. F. et al. Infarto do miocárdio: alterações morfológicas e breve abordagem da influência do exercício físico. Rev Bras Cardiol, v. 27, n. 5, p. 349–355, 2014. SILVEIRA, R. C.; PROCIANOY, R. S. Ischemic brain damage in very low birth weight preterm newborn infants. Jornal de Pediatria, v. 81, n. 1 suppl. 1, p. S23–S32, 2005. SIMON, T. et al. Sex differences in the prognosis of congestive heart failure: results from the Cardiac Insufficiency Bisoprolol Study (CIBIS II). Circulation, v. 103, n. 3, p. 375–380, 2001. SOCHMAN, J. N-acetylcysteine in acute cardiology: 10 years later: What do we know and what would we like to know?! Journal of the American College of Cardiology, v. 39, n. 9, p. 1422–1428, 2002. SOUZA, N. S. et al. Effects of autonomic balance and fluid and electrolyte changes on cardiac function in infarcted rats: A serial study of sexual dimorphism. Clinical and Experimental Pharmacology and Physiology, v. 43, n. 4, p. 476–483, 2016. 69 SPADARO, J. et al. Characterization of myocardial infarcts in the rat. Archives of Pathology and Laboratory Medicine, v. 104, n. 4, p. 179–183, 1980. STEIN, P. K. et al. Heart rate variability: autonomic tone A measure of cardiac. American heart journal, v. 127, n. 5, p. 1376–1381, 1994. SUN, Y. et al. Infarct scar as living tissue. Basic research in cardiology, v. 97, n. 5, p. 343–347, 2002. SUTTON, M. G. S. J.; SHARPE, N. Left ventricular remodeling after myocardial infarction. Circulation, v. 101, n. 25, p. 2981–2988, 2000. SWYNGHEDAUW, B. Molecular Mechanisms of Myocardial Remodeling. Physiological Reviews, v. 79, n. 1, p. 215–262, 1999. TAMURA, T.; SAID, S.; GERDES, A. M. Gender-related differences in myocyte remodeling in progression to heart failure. Hypertension, v. 33, n. 2, p. 676–680, 1999. TANAKA, N. et al. Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation, v. 94, n. 5, p. 1109–1117, 1996. THAYER, J. F.; YAMAMOTO, S. S.; BROSSCHOT, J. F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International journal of cardiology, v. 141, n. 2, p. 122–131, 2010. TRINDADE, D. C. et al. Role of renin-angiotensin system in development of heart failure induced by myocardial infarction in rats. Anais da Academia Brasileira de Ciências, v. 79, p. 251-259, 2007. TSUJI, H. et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation, v. 94, n. 11, p. 2850–2855, 1996. VALENTINI, M.; PARATI, G. Variables influencing heart rate. Progress in cardiovascular diseases, v. 52, n. 1, p. 11–19, 2009. VALGIMIGLI, M. et al. Hydroxyl radical generation, levels of tumor necrosis factor-alpha, and progression to heart failure after acute myocardial infarction. Journal of the American College of Cardiology, v. 43, n. 11, p. 2000–2008, 2004. VALKO, M. et al. Role of oxygen radicals in DNA damage and cancer incidence. Molecular and cellular biochemistry, v. 266, n. 1–2, p. 37–56, 2004. VANOLI, E. et al. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circulation research, v. 68, n. 5, p. 1471– 1481, 1991. VASAN, R. S. et al. Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population-based cohort. Journal of the American College of Cardiology, v. 33, n. 7, p. 1948–1955, 1999. WALLEN, W. J. et al. Gender-differences in myocardial adaptation to afterload in normotensive and hypertensive rats. Hypertension, v. 36, n. 5, p. 774–9, 2000. WARREN, S. E. et al. Time course of left ventricular dilation after myocardial infarction: influence of infarct-related artery and success of coronary thrombolysis. Journal of the American College of Cardiology, v. 11, n. 1, p. 12–19, 1988. 70 WHO, World Health Organization. Cardiovascular diseases (CVDs) fact sheet. Sep 2016. Disponível em: <http://www.who.int/mediacentre/factsheets/fs317/en/> Acesso em 18 de janeiro de 2017. WORLD HEALTH ORGANIZATION et al. World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. Journal of hypertension, v. 21, n. 11, p. 1983–1992, 2003. YOSHIYAMA, M. et al. Effects of cellular cardiomyoplasty on ventricular remodeling assessed by Doppler echocardiography and topographic immunohistochemistry. Circulation Journal, v. 68, n. 6, p. 580–586, 2004. YU, X. J. et al. Interaction between AT1 receptor and NF-κB in hypothalamic paraventricular nucleus contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure. Cardiovascular toxicology, v. 13, n. 4, p. 381–390, 2013. YUSUF, S. et al. Beta blockade during and after myocardial infartion: an overview of the randomised trials. Progress in Cardiovascular Disease, v. 27, n. 5, p. 335–371, 1985. ZAINO, E. C.; TABOR, S. H. Cardiac hypertrophy in acute myocardial infarction. Circulation, v. 28, n. 6, p. 1081–1083, 1963. ZANZINGER, J.; CZACHURSKI, J. Chronic oxidative stress in the RVLM modulates sympathetic control of circulation in pigs. Pflügers Archiv European Journal of Physiology, v. 439, n. 4, p. 489–494, 2000. ZHAO, W. et al. Cardiac oxidative stress and remodeling following infarction: role of NADPH oxidase. Cardiovascular pathology: the official journal of the Society for Cardiovascular Pathology, v. 18, n. 3, p. 156–66, 2009. ZHAO, W. et al. Temporal and spatial characteristics of apoptosis in the infarcted rat heart. Biochemical and biophysical research communications, v. 325, n. 2, p. 605– 611, 2004. ZORNOFF, L. A. M.; PAIVA, S. A. R. DE; DUARTE, D. R.; et al. Remodelación ventricular postinfarto de miocardio: conceptos e implicaciones clínicas. Arquivos Brasileiros de Cardiologia, v. 88, n. 2, p. 134-143, 2008. ZORNOFF, L. A. M.; PAIVA, S. A. R. DE; MINICUCCI, M. F.; et al. Infarto do miocárdio experimental em ratos: análise do modelo. Arquivos Brasileiros de Cardiologia, p. 434-440, 2009. ZUCKER, I. H. et al. Regulation of central angiotensin type 1 receptors and sympathetic outflow in heart failure. American Journal of Physiology-Heart and Circulatory Physiology, v. 297, n. 5, p. H1557–H1566, 2009.por
dc.subject.cnpqFarmacologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/65174/2018%20-%20C%c3%a9sar%20Rafael%20Marins%20Costa.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4665
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-05-21T00:29:35Z No. of bitstreams: 1 2018 - César Rafael Marins Costa.pdf: 1652360 bytes, checksum: 4e4a4ec37c5ea000e56d16d7a6238f07 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-05-21T00:29:35Z (GMT). No. of bitstreams: 1 2018 - César Rafael Marins Costa.pdf: 1652360 bytes, checksum: 4e4a4ec37c5ea000e56d16d7a6238f07 (MD5) Previous issue date: 2018-01-24eng
Appears in Collections:Mestrado em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - César Rafael Marins Costa.pdf2018 - César Rafael Marins Costa1.61 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.