Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/13335
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDalla, Carlos Eduardo Rambalducci
dc.date.accessioned2023-12-22T02:45:39Z-
dc.date.available2023-12-22T02:45:39Z-
dc.date.issued2019-08-28
dc.identifier.citationDALLA, Carlos Eduardo Rambalducci. Determinação das propriedades de transporte de misturas n-alcanos não confinadas e confinadas em poros de calcita utilizando dinâmica molecular. 2019.81 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13335-
dc.description.abstractPara suprir as demandas atuais e futuras de hidrocarbonetos e superar a escassez de novas descobertas em reservatórios convencionais, a indústria de petróleo tem concentrado seus esforços em reservatórios mais complexos (não-convencionais). Entre as complexidades pode-se destacar sistemas que estão submetidos a gradientes de temperatura verticais e horizontais. Neste contexto, a recuperação de fluidos presentes em reservatórios não-convencionais vem mostrando-se promissoras. A presença de gradientes de temperatura em misturas induz o surgimento de um fluxo mássico difusivo, fazendo surgir um gradiente de concentração. Este fenômeno é denominado efeito Soret ou termodifusão. O gradiente de concentração formado pela termodifusão é força motriz para o surgimento de um fluxo mássico difusivo. No estado estacionário, o fluxo mássico líquido é igual a zero, resultando em gradientes de temperatura e concentração plenamente desenvolvidos. Sendo assim, este trabalho tem como objetivo utilizar a dinâmica molecular em equilíbrio e não-equilíbrio para avaliar propriedades de transporte e estruturais de misturas de hidrocarbonetos em sistemas homogêneos presentes no seio de fase e confinados em poros estruturados de calcita. As propriedades de transporte foram obtidas via simulação molecular em equilíbrio através do formalismo de Green-Kubo e o coeficiente de Soret foi determinado utilizando o algoritmo com o método de BD-NEMD. O efeito do tamanho finito na determinação de propriedades de transporte também foi avaliado. Duas misturas de hidrocarbonetos foram estudas, uma com a finalidade de validar os métodos (n-pentano/n-decano), e outra de hidrocarbonetos leves (metano/n-butano) simulando reservatórios do tipo shale gas. O efeito do confinamento nestas propriedades foi avaliado para os graus de confinamento estudado. A distribuição de densidades vertical e horizontal nos poros estudados variou de acordo com o grau de confinamento, temperatura e composição, acentuando a elevada interação entre os componentes presentes na mistura e a parede do poropor
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectTermodifusãopor
dc.subjectConfinamentopor
dc.subjectReservatóriospor
dc.subjectDinâmica molecularpor
dc.subjectThermodiffusioneng
dc.subjectConfinementeng
dc.subjectMolecular dynamicseng
dc.subjectReservoirseng
dc.titleDeterminação das propriedades de transporte de misturas n-alcanos não confinadas e confinadas em poros de calcita utilizando dinâmica molecularpor
dc.title.alternativeDetermination of transport and structural properties of alkane mixture in bulk and confined in calcite porespor
dc.typeDissertaçãopor
dc.description.abstractOtherTo meet current and future hydrocarbon demands and overcome the shortage of newly discovered in conventional reservoirs, the oil industry has concentrated its efforts in more complex (unconventional) reservoirs. Among the complexities can be highlighted systems that are subjected to vertical and horizontal temperature gradients . In this context, the recovery of fluids present in unconventional reservoirs has been promising. The presence of temperature gradients in mixtures induces the emergence of diffusive mass flow, giving rise to a gradient of concentration. This phenomenon is called the Soret effect or thermodiffusion. The gradient of concentration formed by thermodiffusion is the driving force for the emergence of a diffusive mass. At steady state, the net mass flow is zero, resulting in a fully developed temperature and concentration gradients. This work aims to use equilibrium and non-equilibrium molecular dynamics to evaluate transport and structural properties of hydrocarbon mixtures in bulk and confined systems structured pores of calcite. The transport properties were obtained via equilibrium molecular simulation through the Green-Kubo formalism and the Soret coefficient was determined using the BD-NEMD algorithm. The effect of finite size on transport properties determination was also evaluated. Two hydrocarbon mixtures were studied, one to validate the methods (n-pentane/n-decane), and one for light hydrocarbons (methane/n-butane) simulating fluid in shale gas reservoirs. The effect of confinement on these properties were evaluated for the degrees of confinement studied. The distribution of vertical and horizontal densities in the pores studied varied according to the degree of confinement, temperature, and composition, emphasizing the high interaction between mixture and pore walleng
dc.contributor.advisor1Furtado, Filipe Arantes
dc.contributor.advisor1ID120.997.237-96por
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-1736-4949por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1582599762724324por
dc.contributor.referee1Furtado, Filipe Arantes
dc.contributor.referee1ID120.997.237-96por
dc.contributor.referee1IDhttps://orcid.org/0000-0002-1736-4949por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1582599762724324por
dc.contributor.referee2Barreto Júnior, Amaro Gomes
dc.contributor.referee2IDhttps://orcid.org/0000-0001-8238-2310por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1005756226202071por
dc.contributor.referee3Calçada, Luís Américo
dc.contributor.referee3IDhttps://orcid.org/0000-0001-6018-9800por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5259178085279570por
dc.creator.ID142.219.957-69por
dc.creator.IDhttps://orcid.org/0000-0002-8078-6554por
dc.creator.Latteshttp://lattes.cnpq.br/2522314513419213por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesABREU, C. R. A. Playmol is a(nother) software for building molecular models. http://atoms.peq.coppe.ufrj.br/playmol/, 2019. AGUILERA, R. Shale gas reservoirs: Theoretical, practical and research issues. Petroleum Research, Elsevier BV, v. 1, n. 1, p. 10–26, sep 2016. AIMOLI, C. G.; MAGINN, E. J.; ABREU, C. R. Force field comparison and thermodynamic property calculation of supercritical CO2 and CH4 using molecular dynamics simulations. Fluid Phase Equilibria, Elsevier BV, v. 368, p. 80–90, apr 2014. AIMOLI, C. G.; MAGINN, E. J.; ABREU, C. R. A. Transport properties of carbon dioxide and methane from molecular dynamics simulations. The Journal of Chemical Physics, AIP Publishing, v. 141, n. 13, p. 134101, oct 2014. ALAGHEMANDI, M. et al. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations. Nanotechnology, v. 20, p. 115704, 03 2009. ALBA-SIMIONESCO, C. et al. Effects of confinement on freezing and melting. Journal of Physics: Condensed Matter, IOP Publishing, v. 18, n. 6, p. R15–R68, jan 2006. ALGAER, E. A.; MüLLER-PLATHE, F. Molecular dynamics calculations of the thermal conductivity of molecular liquids, polymers, and carbon nanotubes. Soft Materials, Informa UK Limited, v. 10, n. 1-3, p. 42–80, jan 2012. ANSELME, M. J.; GUDE, M.; TEJA, A. S. The critical temperatures and densities of the n-alkanes from pentane to octadecane. Fluid Phase Equilibria, v. 57, n. 3, p. 317 – 326, 1990. ISSN 0378-3812. ANTOUN, S.; SAGHIR, M. Z.; SRINIVASAN, S. Composition effect on thermophobicity of ternary mixtures: An enhanced molecular dynamics method. The Journal of Chemical Physics, AIP Publishing, v. 149, n. 3, p. 034502, jul 2018. BARROZO, S.; BENEDETTI, A. V. Mathematical approach of diffusion in the eletrochemical context. Química Nova, GN1 Genesis Network, 2015. BONELLA, S.; FERRARIO, M.; CICCOTTI, G. Thermal diffusion in binary mixtures: Transient behavior and transport coefficients from equilibrium and nonequilibrium molecular dynamics. Langmuir, American Chemical Society (ACS), v. 33, n. 42, p. 11281–11290, oct 2017. BROOKS, B. R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, Wiley-Blackwell, v. 4, n. 2, p. 187–217, 1983. CARMICHAEL, L. T.; BERRY, V. M.; SAGE, B. H. Viscosity of a mixture of methane and butane. Journal of Chemical & Engineering Data, American Chemical Society (ACS), v. 12, n. 1, p. 44–47, jan 1967. Referências 71 COLOMBANI, J. et al. A molecular dynamics study of thermal diffusion in a porous medium. Physical Chemistry Chemical Physics, Royal Society of Chemistry (RSC), v. 4, n. 2, p. 313–321, jan 2002. CORDOMí, A.; CALTABIANO, G.; PARDO, L. Membrane protein simulations using amber force field and berger lipid parameters. Journal of Chemical Theory and Computation, v. 8, n. 3, p. 948–958, 2012. PMID: 26593357. DARKEN, L. S. Diffusion, mobility and their interrelation through free energy in binary metallic systems. Metallurgical and Materials Transactions B, v. 41, p. 277–294, 04 2010. DAWASS, N. et al. Kirkwood-buff integrals from molecular simulation. Fluid Phase Equilibria., 2018. DEDNAM, W.; BOTHA, A. E. Evaluation of kirkwood-buff integrals via finite size scaling: a large scale molecular dynamics study. Journal of Physics: Conference Series, IOP Publishing, v. 574, p. 012092, jan 2015. ESPOSITO, R. O. et al. Compositional Grading in Oil and Gas Reservoirs. [S.l.]: Gulf Professional Publishing, 2017. ISBN 9780128124529. EVANS, D. J.; MORRISS, O. Non-newtonian molecular dynamics. Computer Physics Reports, Elsevier BV, v. 1, n. 6, p. 297–343, jul 1984. FAISSAT, B. et al. Fundamental statements about thermal diffusion for a multicomponent mixture in a porous medium. Fluid Phase Equilibria, v. 100, p. 209 – 222, 1994. ISSN 0378-3812. FOROUTAN, M.; FATEMI, S. M.; ESMAEILIAN, F. A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. The European Physical Journal E, Springer Nature, v. 40, n. 2, feb 2017. FRANCO, L. F. M.; CASTIER, M.; ECONOMOU, I. G. Anisotropic parallel self-diffusion coefficients near the calcite surface: A molecular dynamics study. The Journal of Chemical Physics, AIP Publishing, v. 145, n. 8, p. 084702, aug 2016. FRENKEL, D.; SMIT, B. Understanding Molecular Simulation, Second Edition: From Algorithms to Applications (Computational Science Series, Vol 1). [S.l.]: Academic Press, 2001. ISBN 0-12-267351-4. FRENTRUP, H. et al. Transport diffusivities of fluids in nanopores by non-equilibrium molecular dynamics simulation. Molecular Simulation, Informa UK Limited, v. 38, n. 7, p. 540–553, jun 2012. FURTADO, F. A.; FIROOZABADI, A. Fickian and thermal diffusion coefficients of binary mixtures of isobutylbenzene and n-alkanes at different concentrations from the optical beam deflection technique. The Journal of Chemical Physics, AIP Publishing, v. 151, n. 2, p. 024202, jul 2019. FURTADO, F. A. et al. A low-disturbance nonequilibrium molecular dynamics algorithm applied to the determination of thermal conductivities. AIChE Journal, v. 61, n. 9, p. 2881–2890, sep 2015. Referências 72 FURTADO, F. A. et al. Non-equilibrium molecular dynamics used to obtain soret coefficientes of binary hydrocarbons mixtures. Brazilian Journal of Chemical Engineering, FapUNIFESP (SciELO), v. 32, n. 3, p. 683–698, sep 2015. GALLIERO, G. et al. Impact of thermodiffusion on the initial vertical distribution of species in hydrocarbon reservoirs. Microgravity Science and Technology, Springer Nature, v. 28, n. 2, p. 79–86, nov 2015. GALLIÉRO, G.; MONTEL, F. Nonisothermal gravitational segregation by molecular dynamics simulations. Physical Review E, American Physical Society (APS), v. 78, n. 4, oct 2008. GALLIERO, G.; MONTEL, F. Understanding compositional grading in petroleum reservoirs thanks to molecular simulations. In: EUROPEC/EAGE Conference and Exhibition. [S.l.]: Society of Petroleum Engineers, 2009. GE, S.; ZHANG, X.-X.; CHEN, M. A molecular dynamics simulation of the diffusivity of o2 in supercritical water. International Journal of Thermophysics, v. 31, n. 11, p. 2176–2186, Dec 2010. GHORAYEB, K.; ANRAKU, T.; FIROOZABADI, A. Interpretation of the fluid distribution and GOR behavior in the yufutsu fractured gas-condensate field. In: SPE Asia Pacific Conference on Integrated Modelling for Asset Management. [S.l.]: Society of Petroleum Engineers, 2000. GROOT, S. R. D.; MAZUR, P. Non-equilibrium thermodynamics. Dover ed. [S.l.]: Dover Publications, 2011. ISBN 0486647412. GUBBINS, K. E. et al. The role of molecular modeling in confined systems: impact and prospects. Phys. Chem. Chem. Phys., Royal Society of Chemistry (RSC), v. 13, n. 1, p. 58–85, 2011. HANNAOUI, R. et al. Molecular dynamics simulations of heat and mass transport properties of a simple binary mixture in micro/meso-pores. Chemical Physics, Elsevier BV, v. 389, n. 1-3, p. 53–57, nov 2011. HANNAOUI, R.; GALLIÉRO, G.; BONED, C. Molecular dynamics simulation of thermodiffusion and mass diffusion in structureless and atomistic micropores. Comptes Rendus Mécanique, Elsevier BV, v. 341, n. 4-5, p. 469–476, apr 2013. HANWELL, M. D. et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, Springer Science and Business Media LLC, v. 4, n. 1, aug 2012. HARO, M. López de; COHEN, E. G. D. The enskog theory for multicomponent mixtures. iii. transport properties of dense binary mixtures with one tracer component. The Journal of Chemical Physics, v. 80, n. 1, p. 408–415, 1984. HüNENBERGER, P. H. Thermostat algorithms for molecular dynamics simulations. In: Advanced Computer Simulation. [S.l.]: Springer Berlin Heidelberg, 2005. p. 105–149. HØIER, L.; WHITSON, C. H. Compositional grading - theory and practice. In: SPE Annual Technical Conference and Exhibition. [S.l.]: Society of Petroleum Engineers, 2000. HOOVER, W. G. Nonequilibrium molecular dynamics. Annual Review of Physical Chemistry, Annual Reviews, v. 34, n. 1, p. 103–127, oct 1983. Referências 73 HOWELL, R. C.; PROFFEN, T.; CONRADSON, S. D. Pair distribution function and structure factor of spherical particles. Phys. Rev. B 73, 094107 (2006), v. 4, out. 2006. HUMPHREY, W.; DALKE, A.; SCHULTEN, K. VMD – Visual Molecular Dynamics. Journal of Molecular Graphics, v. 14, p. 33–38, 1996. IKESHOJI, T.; HAFSKJOLD, B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Molecular Physics, Informa UK Limited, v. 81, n. 2, p. 251–261, feb 1994. JAMALI, S. H. et al. Finite-size effects of binary mutual diffusion coefficients from molecular dynamics. Journal of Chemical Theory and Computation, American Chemical Society (ACS), v. 14, n. 5, p. 2667–2677, apr 2018. JORGENSEN, W. L.; MADURA, J. D.; SWENSON, C. J. Optimized intermolecular potential functions for liquid hydrocarbons. Journal of the American Chemical Society, American Chemical Society (ACS), v. 106, n. 22, p. 6638–6646, oct 1984. KENDALL, J.; MONROE, K. P. THE VISCOSITY OF LIQUIDS. II. THE VISCOSITYCOMPOSITION CURVE FOR IDEAL LIQUID MIXTURES.1. Journal of the American Chemical Society, American Chemical Society (ACS), v. 39, n. 9, p. 1787–1802, sep 1917. KMIECIK, S. et al. Coarse-grained protein models and their applications. Chemical Reviews, American Chemical Society ACS, v. 116, n. 14, p. 7898–7936, jun 2016. KRISHNA, R.; BATEN, J. M. van. The darken relation for multicomponent diffusion in liquid mixtures of linear alkanes: an investigation using molecular dynamics (MD) simulations. Industrial & Engineering Chemistry Research, American Chemical Society (ACS), v. 44, n. 17, p. 6939–6947, aug 2005. KUBO, R. Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, Physical Society of Japan, v. 12, n. 6, p. 570–586, jun 1957. LEACH, A. Molecular Modelling: Principles and Applications (2nd Edition). [S.l.]: Pearson, 2001. ISBN 0-582-38210-6. LEAHY-DIOS, A.; FIROOZABADI, A. Molecular and thermal diffusion coefficients of alkane-alkane and alkane-aromatic binary mixtures: effect of shape and size of molecules. The Journal of Physical Chemistry B, American Chemical Society (ACS), v. 111, n. 1, p. 191–198, jan 2007. LEAIST, D. G.; HAO, L. Very large thermal separations for polyelectrolytes in salt solutions. J. Chem. Soc., Faraday Trans., The Royal Society of Chemistry, v. 90, p. 1909–1911, 1994. LECCE, S. D.; ALBRECHT, T.; BRESME, F. A computational approach to calculate the heat of transport of aqueous solutions. Scientific Reports, Springer Nature, v. 7, p. 44833, mar 2017. LEGROS, J.-C. et al. Preparation of the KIBILI experiment. Comptes Rendus Mécanique, Elsevier BV, v. 341, n. 4-5, p. 455–461, apr 2013. LIN, W. A review on shale reservoirs as an unconventional play - the history, technology revolution, importance to oil and gas industry, and the development future. Acta Geologica Sinica - English Edition, Wiley, v. 90, n. 5, p. 1887–1902, oct 2016. Referências 74 LIU, X. et al. Fick diffusion coefficients of liquid mixtures directly obtained from equilibrium molecular dynamics. The Journal of Physical Chemistry B, American Chemical Society (ACS), v. 115, n. 44, p. 12921–12929, nov 2011. LIU, X. et al. Diffusion coefficients from molecular dynamics simulations in binary and ternary mixtures. International Journal of Thermophysics, Springer Nature, v. 34, n. 7, p. 1169–1196, jul 2013. MACIEL, J. A. C. d. S. L.; ABREU, C. R. A.; TAVARES, F. W. CHEMICAL POTENTIALS OF HARD-CORE MOLECULES BY A STEPWISE INSERTION METHOD. Brazilian Journal of Chemical Engineering, scielo, v. 35, p. 277 – 288, 06 2018. ISSN 0104-6632. MAGINN, E. J. et al. Best practices for computing transport properties 1. self-diffusivity and viscosity from equilibrium molecular dynamics [article v1.0]. Living Journal of Computational Molecular Science, University of Colorado at Boulder, v. 1, n. 1, 2019. MANSOORI, G. A.; RICE, S. A. Confined fluids: Structure, properties and phase behavior. In: Advances in Chemical Physics. [S.l.]: John Wiley & Sons, Inc., 2014. p. 197–294. MARTIN, M. G.; SIEPMANN, J. I. Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes. The Journal of Physical Chemistry B, v. 102, n. 14, p. 2569–2577, 1998. MARTÍNEZ, L. et al. PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, Wiley-Blackwell, v. 30, n. 13, p. 2157–2164, oct 2009. MüLLER-PLATHE, F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. The Journal of Chemical Physics, AIP Publishing, v. 106, n. 14, p. 6082–6085, apr 1997. MüLLER-PLATHE, F. Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids. Physical Review E, American Physical Society (APS), v. 59, n. 5, p. 4894–4898, may 1999. MORROW, B. H.; HARRISON, J. A. Vapor–liquid equilibrium simulations of hydrocarbons using molecular dynamics with long-range lennard-jones interactions. Energy & Fuels, v. 33, n. 2, p. 848–858, 2019. MOULTOS, O. A. et al. System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: The case of CO2, n-alkanes, and poly(ethylene glycol) dimethyl ethers. The Journal of Chemical Physics, AIP Publishing, v. 145, n. 7, p. 074109, aug 2016. MOZAFFARI, S. H.; SRINIVASAN, S.; SAGHIR, M. Z. Evaluations of molecular dynamics methods for thermodiffusion in binary mixtures. Journal of Thermal Science and Engineering Applications, ASME International, v. 9, n. 3, p. 031011, apr 2017. MUTISYA, S. M. et al. Molecular dynamics simulations of water confined in calcite slit pores: An NMR spin relaxation and hydrogen bond analysis. The Journal of Physical Chemistry C, American Chemical Society (ACS), v. 121, n. 12, p. 6674–6684, mar 2017. Referências 75 NATH, S. K.; ESCOBEDO, F. A.; PABLO, J. J. de. On the simulation of vapor–liquid equilibria for alkanes. The Journal of Chemical Physics, AIP Publishing, v. 108, n. 23, p. 9905–9911, jun 1998. NIETO-DRAGHI, C.; AVALOS, J. Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems. Molecular Physics - MOL PHYS, v. 101, p. 2303–2307, 07 2003. NIETO-DRAGHI, C.; ÁVALOS, J. B.; ROUSSEAU, B. Computing the soret coefficient in aqueous mixtures using boundary driven nonequilibrium molecular dynamics. The Journal of Chemical Physics, AIP Publishing, v. 122, n. 11, p. 114503, mar 2005. NING, H. T.; WIEGAND, S. Experimental investigation of the soret effect in acetone/water and dimethylsulfoxide/water mixtures. The Journal of chemical physics, v. 125 22, p. 221102, 2006. NYGÅRD, K. Local structure and density fluctuations in confined fluids. Current Opinion in Colloid & Interface Science, Elsevier BV, v. 22, p. 30–34, apr 2016. ONSAGER, L. Reciprocal relations in irreversible processes. i. Phys. Rev., American Physical Society, v. 37, p. 405–426, Feb 1931. PAPAVASILEIOU, K. D. et al. Molecular dynamics simulation of pure n-alkanes and their mixtures at elevated temperatures using atomistic and coarse-grained force fields. The Journal of Physical Chemistry B, v. 123, n. 29, p. 6229–6243, 2019. PASSEY, Q. R. et al. From oil-prone source rock to gas-producing shale reservoir - geologic and petrophysical characterization of unconventional shale gas reservoirs. In: International Oil and Gas Conference and Exhibition in China. [S.l.]: Society of Petroleum Engineers, 2010. PERRONACE, A. et al. Soret coefficient for liquid argon-krypton mixtures via equilibrium and nonequilibrium molecular dynamics: A comparison with experiments. Physical Review E, American Physical Society (APS), v. 66, n. 3, sep 2002. PERRONACE, A. et al. Soret and mass diffusion measurements and molecular dynamics simulations ofn-pentane–n-decane mixtures. The Journal of Chemical Physics, AIP Publishing, v. 116, n. 9, p. 3718–3729, mar 2002. PITAKBUNKATE, T. et al. Effect of confinement on pressure/volume/temperature properties of hydrocarbons in shale reservoirs. SPE Journal, Society of Petroleum Engineers (SPE), v. 21, n. 02, p. 621–634, apr 2016. PLATTEN, J. K. The soret effect: A review of recent experimental results. Journal of Applied Mechanics, ASME International, v. 73, n. 1, p. 5, 2006. PLIMPTON, S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, Elsevier BV, v. 117, n. 1, p. 1–19, mar 1995. POLING, B. E.; PRAUSNITZ, J. M.; O’CONNELL, J. P. The properties of gases and liquids. New York: McGraw-Hill, 2001. RAHMAN, M.; SAGHIR, M. Thermodiffusion or soret effect: Historical review. International Journal of Heat and Mass Transfer, Elsevier BV, v. 73, p. 693–705, jun 2014. Referências 76 RAMIREZ, T. R. et al. Comparative study of formation evaluation methods for unconventional shale gas reservoirs: Application to the haynesville shale (texas). In: North American Unconventional Gas Conference and Exhibition. [S.l.]: Society of Petroleum Engineers, 2011. ROUQUEROL, J. et al. Guidelines for the characterization of porous solids. In: Characterization of Porous Solids III. [S.l.]: Elsevier, 1994. p. 1–9. SANTOS, M. S. et al. Molecular dynamics simulation of n-alkanes and CO2 confined by calcite nanopores. Energy & Fuels, American Chemical Society (ACS), v. 32, n. 2, p. 1934–1941, jan 2018. SETZMANN, U.; WAGNER, W. A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 k at pressures up to 100 MPa. Journal of Physical and Chemical Reference Data, AIP Publishing, v. 20, n. 6, p. 1061–1155, nov 1991. SHINODA, W.; SHIGA, M.; MIKAMI, M. Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Physical Review B, American Physical Society (APS), v. 69, n. 13, apr 2004. SPEIGHT, J. G. Chapter 4 - reservoir fluids. In: SPEIGHT, J. G. (Ed.). Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands (Second Edition). Second edition. Boston: Gulf Professional Publishing, 2016. p. 123 – 175. ISBN 978-0-12-849906-1. SRINIVASAN, S.; SAGHIR, M. Z. Experimental approaches to study thermodiffusion – a review. International Journal of Thermal Sciences, Elsevier BV, v. 50, n. 7, p. 1125–1137, jul 2011. STöCKELMANN, E.; HENTSCHKE, R. Adsorption isotherms of water vapor on calcite: a molecular dynamics-monte carlo hybrid simulation using a polarizable water model. Langmuir, American Chemical Society (ACS), v. 15, n. 15, p. 5141–5149, jul 1999. SWOPE, W. C. et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of Chemical Physics, AIP Publishing, v. 76, n. 1, p. 637–649, jan 1982. TILDESLEY, M. P. A. e D. J. Computer Simulation of Liquids. [S.l.]: OXFORD UNIV PR, 2017. ISBN 0198803192. TRAVALLONI, L.; CASTIER, M.; TAVARES, F. W. Phase equilibrium of fluids confined in porous media from an extended peng–robinson equation of state. Fluid Phase Equilibria, v. 362, p. 335 – 341, 2014. ISSN 0378-3812. Special Issue on PPEPPD 2013. TRAVALLONI, L. et al. Thermodynamic modeling of confined fluids using an extension of the generalized van der waals theory. Chemical Engineering Science, v. 65, n. 10, p. 3088 – 3099, 2010. ISSN 0009-2509. VAZ, R. V.; GOMES, J. R.; SILVA, C. M. Molecular dynamics simulation of diffusion coefficients and structural properties of ketones in supercritical co2 at infinite dilution. The Journal of Supercritical Fluids, v. 107, p. 630 – 638, 2016. ISSN 0896-8446. VOGEL, E.; KüCHENMEISTER, C.; BICH, E. Viscosity correlation for n-butane in the fluid region. High Temperatures-High Pressures, Old City Publishing, Inc, v. 31, n. 2, p. 173–186, 1999. VOGEL, M. Temperature-dependent mechanisms for the dynamics of protein-hydration waters: A molecular dynamics simulation study. The Journal of Physical Chemistry B, American Chemical Society (ACS), v. 113, n. 28, p. 9386–9392, jul 2009. WANG, J.-C.; FICHTHORN, K. A. Influence of molecular structure on the properties of confined fluids by molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Elsevier BV, v. 206, n. 1-3, p. 267–276, jul 2002. WANG, S. et al. Supercritical methane diffusion in shale nanopores: Effects of pressure, mineral types, and moisture content. Energy & Fuels, American Chemical Society (ACS), v. 32, n. 1, p. 169–180, dec 2017. WEINER, S. J. et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, American Chemical Society (ACS), v. 106, n. 3, p. 765–784, feb 1984. WIRNSBERGER, P.; FRENKEL, D.; DELLAGO, C. An enhanced version of the heat exchange algorithm with excellent energy conservation properties. The Journal of Chemical Physics, AIP Publishing, v. 143, n. 12, p. 124104, sep 2015. WOLD, I.; HAFSKJOLD, B. Nonequilibrium molecular dynamics simulations of coupled heat and mass transport in binary fluid mixtures in pores. International Journal of Thermophysics, v. 20, n. 3, p. 847–856, May 1999. ISSN 1572-9567. XIAO, S.; EDWARDS, S. A.; GRäTER, F. A new transferable forcefield for simulating the mechanics of CaCO3 crystals. The Journal of Physical Chemistry C, American Chemical Society (ACS), v. 115, n. 41, p. 20067–20075, sep 2011. YAN, T. et al. Molecular dynamics simulation of ionic liquids: the effect of electronic polarizability. The Journal of Physical Chemistry B, American Chemical Society (ACS), v. 108, n. 32, p. 11877–11881, aug 2004. YEH, I.-C.; HUMMER, G. System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. The Journal of Physical Chemistry B, American Chemical Society (ACS), v. 108, n. 40, p. 15873–15879, oct 2004. YOUNGLOVE, B. A.; ELY, J. F. Thermophysical properties of fluids. II. methane, ethane, propane, isobutane, and normal butane. Journal of Physical and Chemical Reference Data, AIP Publishing, v. 16, n. 4, p. 577–798, oct 1987. ZHANG, M.; MüLLER-PLATHE, F. Reverse nonequilibrium molecular-dynamics calculation of the soret coefficient in liquid benzene/cyclohexane mixtures. The Journal of Chemical Physics, AIP Publishing, v. 123, n. 12, p. 124502, sep 2005por
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/67696/2019%20-%20Carlos%20Eduardo%20Rambalducci%20Dalla.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5272
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-11-26T14:28:04Z No. of bitstreams: 1 2019 - Carlos Eduardo Rambalducci Dalla.pdf: 15329826 bytes, checksum: 96d6c80e44666492cbe43fa69d5775e1 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-11-26T14:28:04Z (GMT). No. of bitstreams: 1 2019 - Carlos Eduardo Rambalducci Dalla.pdf: 15329826 bytes, checksum: 96d6c80e44666492cbe43fa69d5775e1 (MD5) Previous issue date: 2019-08-28eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Carlos Eduardo Rambalducci Dalla.pdf2019 - Carlos Eduardo Rambalducci Dalla14.97 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.