Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14570
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXavier Junior, Neubi Francisco
dc.date.accessioned2023-12-22T03:03:12Z-
dc.date.available2023-12-22T03:03:12Z-
dc.date.issued2018-02-19
dc.identifier.citationXAVIER JUNIOR, Neubi Francisco. Análise conformacional e reações unimoleculares da glicina e seu cátion. 2018. 78 f.. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14570-
dc.description.abstractA origem da vida é uma das perguntas mais antigas da humanidade e estudos sobre as fontes das primeiras moléculas biológicas podem trazer algumas respostas. Neste sentido, a observação do comportamento das moléculas biológicas no meio interestelar (ISM – interestellar medium) é de grande importância, pois, o espaço tem condições hostis, similares à atmosfera da Terra primitiva. A glicina é o menor aminoácido existente e é supostamente responsável pelas primeiras ligações peptídicas no planeta. Embora, pela baixa temperatura e condições de extremo vácuo, a glicina se encontre predominantemente em fase sólida no ISM, o impacto com fótons e partículas altamente energéticas é um dos mecanismos que promovem, neste ambiente, o transporte de uma fração da glicina para fase gasosa. Portanto, o entendimento da estrutura e reatividade da glicina, em sistema isolado, torna-se uma contribuição importante para a ciência. Neste trabalho é apresentado uma análise conformacional e as reações unimoleculares da glicina. Os possíveis fenômenos de impacto de alta energia podem também fazer com que ocorra a dessorção acompanhada da ionização dessa espécie, logo, foram conduzidos cálculos par aa forma neutra e cátion radical. Cálculos teóricos foram realizados com o auxílio da Teoria do Funcional da Densidade (DFT), utilizando o funcional B3LYP e bases 6-31G++(d,p) e 6-311G++(2d,2p), juntamente com cálculos single-point em nível CCSD(T), para uma melhor descrição da energia eletrônica. Coeficientes de velocidade para as reações foram calculados em diversas temperaturas, desde próximas ao zero absoluto (50 K) até a temperatura ambiente (300 K) adotando a teoria de estado de transição variacional canônica. Ainda para mitigar as condições no ISM, coeficientes de velocidade variacionais microcanônicos foram calculados. A análise conformacional da glicina foi analisada através de um esquema termodinâmico e cinético de interconversões, tendo sido encontrados oito pontos estacionários de mínimo de energia para a forma neutra e quatro para a forma cátion radical. Uma nova denominação, com base no ângulo diedro dos confôrmeros foi proposta. As barreiras de interconversão, relativas ao confôrmero de menor energia, são maiores do que a energia térmica do sistema (na faixa de temperatura estudada, 50 – 300 K), logo os confôrmeros não estão distribuídos de forma equivalente. Os confôrmeros de menor energia da glicina em forma neutra e cátion radical representam, respectivamente, 75% e 100% da população a 300 K. O canal de reação mais favorecido da glicina (forma neutra, estado eletrônico fundamental) é a desaminação, com uma barreira de 44,76 kcal mol-1 em relação ao confôrmero reativo. A decomposição mais favorecida para a forma cátion radical, gera os produtos H, CO2 e (CH2NH2)+ com um limite de dissociação de 18,03 kcal mol-1 em relação ao confôrmero de menor energia. Esquemas cinéticos globais, incluindo as reações de interconversão e decomposição foram propostas tanto para a forma neutra quanto para o cátion radical e os coeficientes de velocidade globais foram calculados. A partir dos resultados deste trabalho e através de comparações com resultados experimentais, este estudo sugere que o cátion é o transiente mais provável deste aminoácido no ISMpor
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectaminoácidospor
dc.subjectastroquímicapor
dc.subjectcinética químicapor
dc.subjectquímica teóricapor
dc.subjectamino acidseng
dc.subjectastrochemistryeng
dc.subjectchemical kineticseng
dc.subjecttheoretical chemistryeng
dc.titleAnálise conformacional e reações unimoleculares da glicina e seu cátionpor
dc.title.alternativeConformational analysis and unimolecular reactions of glycine and its cationeng
dc.typeDissertaçãopor
dc.description.abstractOtherThe origin of life is one of humanity’s most ancient questions. Studies about the source of the first biologicals molecules can bring some answers. Hence, the knowledge concerning the behavior of biologicals molecules in the ISM (interstellar medium) is of great importance because of space hostile conditions that are similar to the primitive Earth`s atmosphere. Glycine is the smallest amino acid and one of the responsible for the first peptide bonds in the planet. Due to the low temperature and extreme vacuum conditions, glycine is predominantly found in solid phase in the ISM. The impact with photons and highly energetic particles is a mechanism that, in this environment, promotes the transport of a fraction of the glycine to the gas phase. Therefore, understanding the structure and reactivity of glycine as an isolated system becomes an important contribution to science. In this work, a conformational analysis and unimolecular reactions of glycine are presented. This work presents a conformational analysis and gas phase decomposition description for glycine, as an isolated system. High energy impact phenomena can also cause the desorption followed by ionization of this species. Therefore, calculations for the neutral glycine and its radical cation have been performed. Theoretical calculations at the B3LYP and M06-2X levels, with the 6-31++(d,p) and 6- 311++(2d,2p) basis sets have been chosen. Also, single-point calculations at the CCSD(T) level have been performed, for a better description of the electronic energies. Rate coefficients have been calculated at different temperatures (50 K – 300 K), adopting the canonical variational transition state theory. In order to mitigate the ISM conditions, microcanonical variational rate coefficients have also been predicted. Glycine conformational analysis has been investigated throughout a thermodynamic and kinetic interconversion scheme. Eight stationary points, characterized as minimum energy points, have been located for neutral glycine while four have been found for radical cation glycine. A conformer denomination based on the dihedral angles has been proposed. The minimum energy conformer of neutral form accounts for 75% of the population at 300 K while that for the glycine radical cation represents approximately 100% of the population at the same temperature. The interconversion barriers were higher than RT value at the studied temperatures. The most favorable decomposition channel for neutral glycine is the deamination, with the barrier height of 44.76 kcal mol-1. The most favorable reaction channel for radical cation glycine is the dissociation forming the products H, CO2 and (CH2NH2)+ with a dissociation limit of 18.03 kcal mol-1 considering the lowest energy conformer for glycine radical cation. Considering all the reported information, this study suggests that radical cation is the most possible intermediate for observed products from this amino acid reactions at the ISM conditionseng
dc.contributor.advisor1Bauerfeldt, Glauco Favilla
dc.contributor.advisor1ID069.023.487-23por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1876040291299143por
dc.contributor.advisor-co1Baptista, Leonardo
dc.contributor.advisor-co1ID053.6120.556-89por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/2182432135517042por
dc.contributor.referee1Bauerfeldt, Glauco Favilla
dc.contributor.referee2Baptista, Leonardo
dc.contributor.referee3Castilho, Roberto Barbosa de
dc.contributor.referee4Klachquin, Graciela Árbilla de
dc.creator.ID125.815.237-19por
dc.creator.Latteshttp://lattes.cnpq.br/4668989034458574por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesALMEIDA, G. C. et al. Desorption from methanol and ethanol ices by high energy electrons: Relevance to astrochemical models. Journal of Physical Chemistry C, v. 116, n. 48, p. 25388–25394, 2012. ANDRADE, D. P. P. et al. Plasma Desorption Mass Spectrometry analysis of HCOOH ice. Journal of Electron Spectroscopy and Related Phenomena, v. 155, n. 1–3, p. 124–128, 2007. ANDRADE, D. P. P. et al. Frozen methanol bombarded by energetic particles: Relevance to solid state astrochemistry. Surface Science, v. 603, n. 9, p. 1190–1196, 2009. BAPTISTA, L. et al. Theoretical investigation on the stability of negatively charged formic acid clusters. J. Phys. Chem. A, v. 114, n. 26, p. 6917, 2010. BARONE, V.; ADAMO, C.; LELJ, F. Conformational behavior of gaseous glycine by a density functional approach. The Journal of Chemical Physics, v. 102, n. 1, p. 364– 370, 1995. BECKE, A. D. Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, v. 98, n. 7, p. 5648–5652, 1993. BERNSTEIN, M. P. et al. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature, v. 416, n. 6879, p. 401–403, 2002. BINNING, R. C.; CURTISS, L. A. Compact contracted basis sets for third-row atoms: Ga-Kr. Journal of Computational Chemistry, v. 11, n. 10, p. 1206–1216, nov. 1990. BLAUDEAU, J.-P. et al. Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. The Journal of Chemical Physics, v. 107, n. 13, p. 5016– 5021, out. 1997. BODUCH, P. et al. Radiation effects in astrophysical ices. Journal of Physics: Conference Series, v. 629, n. 1, 2015. ČÍŽEK, J. On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules. In: R. LEFEBVRE; C. MOSER (Eds.). . Advances in Chemical Physics: Correlation Effects in Atoms and 71 Molecules, Volume 14. New Jersey. USA: John Wiley & Sons, Ltd, 1969. p. 35–89. CRAMER, C. J. Essentials of Computational Chemistry Theories and Models. Second ed. Chichester, UK: Wiley, 2004. CSASZAR, A. G. Conformers of gaseous glycine. Journal of the American Chemical Society, v. 114, n. 24, p. 9568–9575, nov. 1992. CSÁSZÁR, A. G.; PERCZEL, A. Ab initio characterization of building units in peptides and proteins. Progress in Biophysics and Molecular Biology, v. 71, n. 2, p. 243–309, 1999. DE BARROS, A. L. F. et al. Cosmic ray impact on astrophysical ices: laboratory studies on heavy ion irradiation of methane. Astronomy & Astrophysics, v. 531, p. A160, 2011. DENNINGTON, R.; KEITH, T. A.; MILLAM, J. M. GaussView 5Shawnee Missions, KS, USASemichem, Inc., , 2016. DITCHFIELD, R.; HEHRE, W. J.; POPLE, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. The Journal of Chemical Physics, v. 54, n. 2, p. 724–728, 15 jan. 1971. EHRENFREUND, P. et al. The Photostability of Amino Acids in Space. The Astrophysical Journal, v. 550, n. 1, p. L95–L99, 2001. ELSILA, J. E.; GLAVIN, D. P.; DWORKIN, J. P. Cometary glycine detected in samples returned by Stardust. Meteoritics and Planetary Science, v. 44, n. 9, p. 1323– 1330, 2009. EVANS, M. G.; POLANYI, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Transactions of the Faraday Society, v. 31, p. 875, 1935. EYRING, H. The Activated Complex in Chemical Reactions. The Journal of Chemical Physics, v. 3, n. 2, p. 107–115, 1935. FANTUZZI, F. et al. Photodissociation of methyl formate in circumstellar environment: Stability under soft X-rays. Monthly Notices of the Royal Astronomical Society, v. 72 417, n. 4, p. 2631–2641, 2011. FERREIRA-RODRIGUES, A. M. et al. Photostability of amino acids to Lyman α radiation: Glycine. International Journal of Mass Spectrometry, v. 306, n. 1, p. 77– 81, 2011. FRANCL, M. M. et al. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. The Journal of Chemical Physics, v. 77, n. 7, p. 3654–3665, out. 1982. FREY, R. F. et al. Importance of Correlation-Gradient Geometry Optimization for Molecular Conformational Analyses. Journal of the American Chemical Society, v. 114, n. 13, p. 5369–5377, 1992. FRISCH, M. J. et al. Gaussian 09, Revision E.01Wallingford, CT, USAGaussian, Inc., , 2016. FUKUI, K. The Path of Chemical Reactions - The IRC Approach. Accounts of Chemical Research, v. 14, n. 12, p. 363–368, 1981. GAFFNEY, J. S.; PIERCE, R. C.; FRIEDMAN, L. Mass spectrometer study of evaporation of alpha-amino acids. Journal of the American Chemical Society, v. 99, n. 13, p. 4293–4298, 1977. GLAVIN, D. P.; DWORKIN, J. P. Enrichment of the amino acid L-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proceedings of the National Academy of Sciences, v. 106, n. 14, p. 5487–5492, 2009. GORDON, M. S. The isomers of silacyclopropane. Chemical Physics Letters, v. 76, n. 1, p. 163–168, nov. 1980. GUÉLIN, M. et al. Unveiling the chemistry of hot protostellar cores with ALMA. Astrophysics and Space Science, v. 313, n. 1–3, p. 45–51, 2008. HARIHARAN, P. C.; POPLE, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, v. 28, n. 3, p. 213–222, 1973. HARIHARAN, P. C.; POPLE, J. A. Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory. Molecular Physics, v. 27, n. 1, p. 209–214, 73 22 jan. 1974. HAY, P. J. Gaussian basis sets for molecular calculations. The representation of 3 d orbitals in transition-metal atoms. The Journal of Chemical Physics, v. 66, n. 10, p. 4377–4384, 15 maio 1977. HEHRE, W. J.; DITCHFIELD, K.; POPLE, J. A. Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, v. 56, n. 5, p. 2257– 2261, 1972. HERRERA, B. et al. Conformational Effects on Glycine Ionization Energies and Dyson Orbitals. The Journal of Physical Chemistry A, v. 108, n. 52, p. 11703–11708, dez. 2004. HOLLIS, J. M. . et al. A sensitive very large array search for small-scale glycine emission toward OMC-1. Astrophysical Journal, v. 588, n. 1 I, p. 353–359, 2003. HRATCHIAN, H. P.; SCHLEGEL, H. B. Accurate reaction paths using a Hessian based predictor–corrector integrator. The Journal of Chemical Physics, v. 120, n. 21, p. 9918–9924, jun. 2004. HRATCHIAN, H. P.; SCHLEGEL, H. B. Theory and Applications of Computational Chemistry: The First 40 Years. In: DYKSTRA, C. E. et al. (Eds.). . Amsterdam, NE: Elsevier, 2005a. p. 195–249. HRATCHIAN, H. P.; SCHLEGEL, H. B. Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. Journal of Chemical Theory and Computation, v. 1, n. 1, p. 61–69, jan. 2005b. HU, C. H.; SHEN, M.; SCHAEFER, H. F. Glycine Conformational Analysis. Journal of the American Chemical Society, v. 115, n. 7, p. 2923–2929, 1993. IANNI, J. C. A comparison of the Bader-Deuflhard and the Cash-Karp Runge-Kutta integrators for the GRI-MECH 3.0 model based on the chemical kinetics code Kintecus. In: BATHE, K. J. (Ed.). . Computational Fluid and Solid Mechanics 2003. Oxford, UK: Elsevier, 2003. v. 1p. 1368–1372. JENSEN, J. H.; GORDON, M. S. The Conformational Potential Energy Surface of Glycine: A Theoretical Study. Journal of the American Chemical Society, v. 113, n. 74 21, p. 7917–7924, 1991. KIM, C. K. et al. Comprehensive studies on the tautomerization of glycine: a theoretical study. Organic & Biomolecular Chemistry, v. 11, n. 8, p. 1407, 2013. KRISHNAN, R. et al. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics, v. 72, n. 1, p. 650–654, jan. 1980. KUAN, Y. et al. Interstellar Glycine. The Astrophysical Journal, v. 593, n. 2, p. 848– 867, 2003. LARGO, L. et al. The reaction between NH + and CH 3 COOH : a possible process for the formation of glycine precursors in the interstellar medium. Astronomy & Astrophysics, v. 516, p. A79, 2010. LATTELAIS, M. et al. The survival of glycine in interstellar ices: A coupled investigation using NEXAFS experiments and theoretical calculations. International Journal of Quantum Chemistry, v. 111, n. 6, p. 1163–1171, maio 2011. LEE, C. W. et al. Formation of glycine on ultraviolet-irradiated interstellar ice-analog films and implications for interstellar amino acids. Astrophysical Journal, v. 697, n. 1, p. 428–435, 2009. LEE, C. W.; KANG, H. UV Photolysis of Glycine on Ice Films: Implication for Photosynthesis and Photodestruction of Amino Acids in Interstellar Medium. Bulletin of the Korean Chemical Society, v. 36, n. 3, p. 784–788, 2015. LEE, C.; YANG, W.; PARR, R. G. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Physical Review B, v. 37, n. 2, p. 785–789, 1988. LIU, Z. et al. Crystallization of metastable β glycine from gas phase via the sublimation of α or γ form in vacuum. Biophysical Chemistry, v. 132, n. 1, p. 18–22, 2008. LUND, A. M. et al. Crystal structure prediction from first principles: The crystal structures of glycine. Chemical Physics Letters, v. 626, p. 20–24, 2015. MAEDA, S.; OHNO, K. Generation Mechanisms of Amino Acids in Interstellar Space via Reactions between Closed-Shell Species: Significance of Higher Energy Isomers in 75 Molecular Evolution. The Astrophysical Journal, v. 640, p. 823–828, 2006. MCGRATH, M. P.; RADOM, L. Extension of Gaussian-1 (G1) theory to brominecontaining molecules. The Journal of Chemical Physics, v. 94, n. 1, p. 511–516, jan. 1991. MCLEAN, A. D.; CHANDLER, G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z =11–18. The Journal of Chemical Physics, v. 72, n. 10, p. 5639–5648, 15 maio 1980. NHLABATSI, Z. P.; BHASI, P.; SITHA, S. Possible interstellar formation of glycine from the reaction of CH 2 􀀀NH, CO and H 2 O: catalysis by extra water molecules through the hydrogen relay transport. Phys. Chem. Chem. Phys., v. 18, n. 1, p. 375– 381, 2016. NUEVO, M. et al. A detailed study of the amino acids produced from the vacuum UV irradiation of interstellar ice analogs. Origins of Life and Evolution of Biospheres, v. 38, n. 1, p. 37–56, 2008. ÖBERG, K. I. Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules. Chemical Reviews, v. 116, n. 17, p. 9631– 9663, 2016. OLIVEIRA, R. C. DE M.; BAUERFELDT, G. F. Implementation of a variational code for the calculation of rate constants and application to barrierless dissociation and radical recombination reactions: CH3OH = CH3 + OH. International Journal of Quantum Chemistry, v. 112, n. 19, p. 3132–3140, 5 out. 2012. PERNET, A. et al. Possible survival of simple amino acids to X-ray irradiation in ice: The case of glycine. Astronomy and Astrophysics, v. 552, p. 1–8, 2013. PILLING, S. et al. Formation Routes of Interstellar Glycine Involving Carboxylic Acids: Possible Favoritism Between Gas and Solid Phase. Astrobiology, v. 11, n. 9, p. 883–893, 2011. PILLING, S. et al. The Influence of Crystallinity Degree on the Glycine Decomposition Induced by 1 MeV Proton Bombardment in Space Analog Conditions. Astrobiology, v. 13, n. 1, p. 79–91, 2013. PILLING, S. et al. The temperature effect on the glycine decomposition induced by 2 76 keV electron bombardment in space analog conditions. European Physical Journal D, v. 68, n. 3, 2014. PURVIS, G. D.; BARTLETT, R. J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. The Journal of Chemical Physics, v. 76, n. 4, p. 1910–1918, 1982. RAGHAVACHARI, K.; TRUCKS, G. W. Highly correlated systems. Excitation energies of first row transition metals Sc–Cu. The Journal of Chemical Physics, v. 91, n. 2, p. 1062–1065, 15 jul. 1989. RASSOLOV, V. A. et al. 6-31G * basis set for atoms K through Zn. The Journal of Chemical Physics, v. 109, n. 4, p. 1223–1229, 22 jul. 1998. RASSOLOV, V. A. et al. 6-31G* basis set for third-row atoms. Journal of Computational Chemistry, v. 22, n. 9, p. 976–984, 15 jul. 2001. SCUSERIA, G. E.; JANSSEN, C. L.; SCHAEFER, H. F. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. The Journal of Chemical Physics, v. 89, n. 12, p. 7382–7387, 15 dez. 1988. SCUSERIA, G. E.; SCHAEFER, H. F. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? The Journal of Chemical Physics, v. 90, n. 7, p. 3700–3703, abr. 1989. SELVARENGAN, P.; KOLANDAIVEL, P. Potential energy surface study on glycine, alanine and their zwitterionic forms. Journal of Molecular Structure: THEOCHEM, v. 671, n. 1–3, p. 77–86, 2004. SIMON, S. et al. Structure and fragmentation of glycine, alanine, serine and cysteine radical cations. A theoretical study. Journal of Molecular Structure: THEOCHEM, v. 727, n. 1–3 SPEC. ISS., p. 191–197, 2005. SNYDER, L. E. et al. A Rigorous Attempt to Verify Interstellar Glycine. The Astrophysical Journal, v. 619, n. 2, p. 914–930, 2005. STEINFELD, J. I.; FRANCISCO, J. S.; HASE, W. L. Chemical Kinetics and Dynamics. Second ed. New Jersey, USA: Pearson, 1998. STEPANIAN, S. G. et al. Matrix-isolation infrared and theoretical studies of the glycine 77 conformers. Journal of Physical Chemistry A, v. 102, n. 6, p. 1041–1054, 1998. STEPHENS, P. J. et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of Physical Chemistry, v. 98, n. 45, p. 11623–11627, 1994. TOLOSA, S.; HIDALGO, A.; SANSÓN, J. A. A computational model of the glycine tautomerization reaction in aqueous solution. Journal of molecular modeling, v. 20, n. 3, p. 2147, 2014. VOSKO, S. H.; WILK, L.; NUSAIR, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics, v. 58, n. 8, p. 1200–1211, 1980. WACHTERS, A. J. H. Gaussian Basis Set for Molecular Wavefunctions Containing Third-Row Atoms. The Journal of Chemical Physics, v. 52, n. 3, p. 1033–1036, fev. 1970. WINCEL, H.; FOKKENS, R. H.; NIBBERING, N. M. M. Peptide bond formation in gas-phase ion/molecule reactions of amino acids: A novel proposal for the synthesis of prebiotic oligopeptides. Rapid Communications in Mass Spectrometry, v. 14, n. 3, p. 135–140, 2000. WOLFENDEN, R. et al. Affinities of Amino Acid Side Chains for Solvent Water. Biochemistry, v. 20, n. 4, p. 849–855, 1981. WOON, D. E. Pathways to Glycine and Other Amino Acids in Ultraviolet-irradiated Astrophysical Ices Determined via Quantum Chemical Modeling. The Astrophysical Journal, v. 571, n. Woon 1999, p. L177–L180, 2002. ZHAO, Y.; TRUHLAR, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. Theoretical Chemistry Accounts, v. 120, n. 1–3, p. 215–241, 2008. ZHU, L.; HASE, W. L. A General RRKM Program. Indiana, USA: Indianapor
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/66128/2018%20-%20Neubi%20Francisco%20Xavier%20Junior.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4897
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-08-09T14:54:30Z No. of bitstreams: 1 2018 - Neubi Francisco Xavier Junior.pdf: 4258420 bytes, checksum: 6fccc115aeef12bd0e59685954a1b0b3 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-08-09T14:54:37Z (GMT). No. of bitstreams: 1 2018 - Neubi Francisco Xavier Junior.pdf: 4258420 bytes, checksum: 6fccc115aeef12bd0e59685954a1b0b3 (MD5) Previous issue date: 2018-02-19eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Neubi Francisco Xavier Junior.pdfNeubi Francisco Xavier Junior4.16 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.