Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14610
Tipo do documento: Dissertação
Title: Investigação do mecanismo de reação de Biginelli de derivados cumarínicos
Other Titles: Investigation of the Biginelli reaction mechanism
Authors: Tejero, Tatiane Nicola
Orientador(a): Bauerfeldt, Glauco Favilla
Primeiro coorientador: Kümmerle, Arthur Eugen
Primeiro membro da banca: Sant'Anna, Carlos Maurícío Rabetlo de
Segundo membro da banca: Carneiro, José Walkímar de Mesquita
Keywords: Reação Multicomponente;Reação Biginelli;intermediário Knoevenagel;Multicomponent Reaction;Biginelli Reaction;Knoevenagel intermediate
Área(s) do CNPq: Química
Idioma: por
Issue Date: 14-May-2019
Publisher: Universidade Federal Rural do Rio de Janeiro
Sigla da instituição: UFRRJ
Departamento: Instituto de Química
Programa: Programa de Pós-Graduação em Química
Citation: TEJERO, Tatiane Nicola. Investigação do mecanismo de reação de Biginelli de derivados cumarínicos. 2019. 184 f. Dissertação (Mestrado em Química) - Instituto de Química, Departamento de Química Fundamental, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.
Abstract: As reações multicomponentes receberam grande atenção na síntese orgânica e química medicinal, pois permitem o design de novas moléculas e produtos farmacêuticos, em especial, com grande complexidade estrutural e excelentes rendimentos. Na reação de Biginelli, os reagentes são aldeído, β-cetoéster e ureia ou tioureia levando a dihidropirimidinonas/tionas. A partir das possíveis combinações dos reagentes, podem ser esperadas três vias de reação: a via de Knoevenagel, a via do íon imínio e a via de enamina, sendo a segunda apontada, tanto por trabalhos experimentais como teóricos (com β-cetoésteres aromáticos e alifáticos comuns) como a via de iniciação mais provável. No entanto, se um β-cetoéster derivado de cumarina é usado, a via de Knovenagel passa a prevalecer. Para entender as diferenças entre essas vias de reação, este trabalho foi proposto visando os cálculos dos possíveis caminhos de reação usando β-cetoéster derivado de cumarina + benzaldeído + ureia e à compreensão da contribuição do núcleo de cumarina presente no β-cetoéster para as mudanças no mecanismo de reação. Os cálculos foram realizados em nível M06-2X/6-31+G(d,p), B3LYP/6-31+G(d,p) e BHandHLYP/6-31+G(d,p), afim de comparar os dados obtidos neste trabalho com dados descritos na literatura. Para descrever o efeito do solvente foi adotado cálculos CPCM e IEFPCM. O caminho que passa pelos pontos estacionários de energias relativas mais baixas é o de Knoevenagel. A barreira calculada para a reação entre o β-cetoéster + benzaldeído (que inicia o canal de Knoevenagel) variam entre 8,76 – 14,84 kcal mol-1 (em relação aos reagentes protonados isolados, essa variação refere-se ao nível de cálculo utilizado). Para a via enamina, a barreira varia entre 27,11 e 33,03 kcal mol-1, (dependendo do nível de calculado utilizado, a via de enamina é iniciada a partir da reação de β-cetoéster + ureia) e para a via do íon imínio a barreira varia entre (dependendo do nível de cálculo observado, e esta via é iniciada pela reação de ureia + benzaldeído). O produto de reação na via de Knoevenagel é também o mais estabilizado (ficando entre -14,74 e -20,44 kcal mol-1, enquanto os produtos nas vias de enamina e do íon imínio 8,76 - – 12,16 e -6,74 e -9,13 kcal mol-1, respectivamente). O segundo passo em todas as vias é a desidratação, e as alturas de barreira variam entre 31,12 – 36,13, 32,60 - 36,25 e 28,85 - 31,99 (Knoevenagel, íon imínio e enamina, respectivamente). As etapas finais dizem respeito à adição do terceiro reagente, e os intermediários e estados de transição pertencentes à via de Knoevenagel continuam sendo os pontos estacionários de energias mais baixas. Assim, a via de Knoevenagel é finalmente atribuída como a via de reação mais provável neste mecanismo complexo. Estes resultados se comparam satisfatoriamente com as observações empíricas e demonstram que o núcleo de cumarina presente no β-cetoéster promove a mudança do mecanismo de iniciação do íon imínio para a via de Knoevenagel.
Abstract: Multicomponent reactions (MCR) have received great attention in organic synthesis and medicinal chemistry, since they allow the design of new molecules and pharmaceuticals, in special, with great structural complexity and excellent yields. In the Biginelli reaction, the reactants are an aldehyde, a β-ketoester and urea or thiourea leading to a myriad of dihydropyrimidinones/thiones. From the possible combinations of the reactants, three reaction pathways can be expected: the Knoevenagel pathway, the iminium ion pathway and the enamine pathway, being the second pointed out, from both experimental and theoretical works with common aromatic and aliphatic β-ketoesters, as the most probable initiation route. However, if a coumarin β-ketoester derivative is used, the Knovenagel pathway seems to prevail. In order to understand the differences between these reaction pathways, this work has been proposed aiming to the calculations of the possible reaction paths in the coumarin β-ketoester + benzaldehyde + urea MCR and to the understanding of the contribution of the coumarin nucleus in the β-ketoester moiety for the changes in the reaction mechanism. Geometry optimizations have been then performed at the Density Functional Theory (DFT) level, adopting the M06-2X, B3LYP and BHandHLYP fuctionals and the 6-31+G(d,p) basis set. From our calculations, the stationary points with lower relative energies belong to the Knoevenagel reaction path. All reaction pathways are initiated with the formation of an ion-dipole pre-barrier complex, stabilized by 8.76 – 14.84 kcal mol-1 (relative to the isolated protonated reactants). The calculated barrier height for the reaction between the coumarin β-ketoester and benzaldehyde (which initiates the Knoevenagel channel) is -18.10 kcal mol-1 (relative to the isolated protonated reactants). For the enamine and iminium ion pathways, barrier heights are 6.21 kcal mol-1 and -16.27 kcal mol-1, respectively (the enamine pathway is initiated from the coumarin β-ketoester and urea reaction and the iminium ion is initiated form the urea and benzaldehyde reaction). Therefore, the barrier height of the first step in the Knoevenagel pathway is ca. 24 and 2 kcal mol-1 lower than the barrier heights of the first step in the enamine and iminium ion pathways, respectively. The reaction product in the Knoevenagel pathway is also the most stabilized (20.44 kcal mol-1 below the isolated protonated reactants, while the products in the enamine and iminium ion pathways are located, with respect the isolated reactants, at 5.85 and -25.04 kcal mol-1, respectively). The second step in all pathways is the dehydration, and barrier heights are 31.12 and 36.13, 28.85 and 31.99 and 32.60 and 36.25 kcal mol-1 (Knoevenagel, enamine and iminium ion, respectively). The final steps concern the addition of the third reactant, and the intermediates and transition states belonging to the Knoevenagel pathway remain the lowest energy structures. Thus, the Knoevenagel pathway is finally attributed as the lowest energy pathway in this complex mechanism for the coumarin β-ketoester + benzaldehyde + urea MCR. These results satisfactorily compare to the experimental observations and demonstrate that the coumarin nucleus in the β-ketoester moiety promotes the change of the mechanism initiation from the iminium ion to the Knoevenagel pathway.
URI: https://rima.ufrrj.br/jspui/handle/20.500.14407/14610
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Tatiane Nicola Tejero.pdf5.51 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.