Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14631
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGarcia, Michel Braga
dc.date.accessioned2023-12-22T03:03:46Z-
dc.date.available2023-12-22T03:03:46Z-
dc.date.issued2016-04-06
dc.identifier.citationGARCIA, Michel Braga. Investigação teórica da reação de abstração de hidrogênio do formaldeído pelo átomo de cloro em fase gasosa. 2016. 92 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14631-
dc.description.abstractOs estudos em Química Atmosférica permitem entender o comportamento químico de diversos poluentes atmosféricos frente a agentes oxidantes presentas na troposfera. Entre esses agentes, radicais OH, ozônio e nitrato são os mais importantes. Ainda em zonas costeiras, átomos de cloro tornam-se também importantes espécies para a remoção química de poluentes primários e secundários. Este trabalho visa o estudo cinético da reação H2CO + Cl → HCO + HCl em fase gasosa. A reação foi descrita em níveis HF, MP2, CCSD, QCISD, DFT (B2PLYP, MPW2PLYP e MPWKCIS1K) Também o efeito da base foi explorado e, para tanto, as bases aug-cc-pVDZ (ACCD) e aug-cc-pVTZ (ACCT) foram adotadas. Cálculos de otimização de geometria e frequência vibracionais foram feitos para reagentes e produtos. Foram vistos também para todos os níveis de cálculo a formação de um pré-complexo estabilizado, em relação aos reagentes isolados, por cerca de 4 kcal mol-1. Ponto de sela também foram otimizados e identificados pela frequência vibracional imaginária. Barreiras de energia foram previstas em cerca de 1 kcal mol-1, em acordo com a previsão da literatura, 0,7 - 1,0 kcal mol-1. Os coeficientes de velocidade foram calculados na faixa de 100 – 500 K a partir da teoria do estado de transição variacional com auxilio do programa kcvt. Os parâmetros cinéticos encontrados, coeficientes de velocidade (k, 298 K, expressos em 10-11 cm3molécula-1s-1), energia de ativação (Ea, expresso em kcal mol-1) e fator pré-exponencial (A, expresso em 10-11 cm3molécula-1s-1) foram: k298K = 4,89, Ea = 0,25 e A = 7,45. Os resultados sugerem que a dinâmica da reação é bem descrita a partir de um mecanismo que contempla a participação de um intermediário pré-barreira. Resultados de coeficientes de velocidade variacionais canônicos obtidos neste trabalho se mostraram satisfatórios quando comparados a dados experimentais validando a proposta de mecanismo trazida nesse trabalho.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectAtmospheric Chemistryeng
dc.subjectquímica atmosféricapor
dc.subjectátomo de cloropor
dc.subjectformaldeídopor
dc.subjectchlorine atomspor
dc.subjectformaldehydepor
dc.titleInvestigação teórica da reação de abstração de hidrogênio do formaldeído pelo átomo de cloro em fase gasosapor
dc.title.alternativeTheoretical investigation of fomaldehyde hydrogen abstraction reaction by chlorine atoms in gas phaseeng
dc.typeDissertaçãopor
dc.description.abstractOtherStudies on Atmospheric Chemistry allow the understanding of chemical behavior of different atmospheric pollutants towards oxidant agents in troposphere. Among these agents, OH radicals, ozone and nitrate radicals are the most important. In coastal zones, chlorine atoms are also important specie for the chemical removal of primary and secondary pollutants. This work aims the kinetic study of the gas phase reaction between chlorine atom and formaldehyde, H2CO + Cl  HCO + HCl. The reaction was described at HF, MP2, CCSD, QCISD and DFT (B2PLYP, MPW2PLYP and MPWKCIS1K) levels. Basis set effect was also explored and the aug-cc-pVDZ (ACCD) and aug-cc-pVTZ (ACCT) basis set were adopted. Geometry optimizations and vibrational frequencies calculations were performed for reactants and products. A prebarrier complex was located at all levels of theory, stabilized with respect the isolated reactants by ca. 4 kcal mol-1. Saddle points were located and characterized by their imaginary frequencies. Energy barriers were predicted as ca. 1 kcal mol-1, in agreement with experimental results (0.7 – 1.0 kcal mol-1). Rate coefficients were calculated in the range from 100 to 500 K, adopting the canonical variational method, as available in the kcvt code. The calculated kinetic parameters, rate coefficients (k, 298 K, expressed in 10-11 cm3 molecule-1 s-1), activation energy (Ea, expressed in kcal mol-1) and Arrhenius preexponential factor (A, expressed in 10-11 cm3 molecule-1 s-1) were: k = 4.89, Ea = 0.25 and A = 7.45. The results suggest that a reaction dynamics is well described by a mechanism taking into account a prebarrier intermediate. Canonical variational rate coefficients were predicted in good agreement with experimental data, validating the proposal for the reaction mechanism introduced in this studyeng
dc.contributor.advisor1Bauerfeldt, Glauco Favilla
dc.contributor.advisor1ID6902348723por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1876040291299143por
dc.contributor.referee1Pereira, Marcio Soares
dc.contributor.referee2Klachquin, Graciela Arbilla de
dc.creator.ID128.689.277-50por
dc.creator.Latteshttp://lattes.cnpq.br/2464992948883617por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.references7. REFERÊNCIAS BIBLIOGRÁFICAS ADAMO, C.; BARONE, V.. Toward reliable adiabatic connection models free from adjustable parameters. Chemical Physics Letters, v. 274, n. 1-3, p.242-250, 1997. ADAMO, C.; BARONE, V.. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. The Journal Of Chemical Physics, v. 108, n. 2, p.664-677, 1998. ANDERSON, P. C.; KURYLO, M. J.. Rate constant measurements for the reaction Cl + HC2O HCl + HCO. Implications regarding the removal of stratospheric chlorine. J. Phys. Chem., v. 83, n. 16, p.2055-2057, 1979. ANDRADE, M. V. A.; PINHEIRO, H. L. C.; PEREIRA, A. F. P.; ANDRADE, J. B.. Compostos carbonílicos atmosféricos: fontes, reatividade, níveis de concentração e efeitos toxicológicos. Química Nova, v. 25, n. 6, p.1117-1131, 2002. AQUINO, C. A. B. Identificação de compostos orgânicos voláteis (COVs) emitidos por florestas na região amazônica. 2006. 106f. Dissertação (Mestrado em Física e Meio Ambiente) – Universidade Federal do Mato Grosso, Cuiabá, 2006. ATKINSON, R. et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement V. Atmospheric Environment, v. 30, n. 22, p.3903-3904, 1996. ATKINSON, R. Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes. J. Phys. Chem, v. 26, n. 2, p. 215, 1997. BARBOSA, T. S. Investigação Teórica da Decomposição do Acetaldeído em Estado Fundamental. Monografia apresentada para conclusão do Curso de Química. Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, 2010. BARBOSA, T. S. Estudo cinético das reações do radical hidroxila com 2-metil-2-propen-1-ol e seu alceno análogo. Dissertação (Mestrado em Química) - Universidade Federal do Rio de Janeiro, 2013. BARRY, R.G.; CHORLEY, R.J. Atmosfera, tempo e clima. BOOKMAN: 9nd ed. Porto Alegre, 2013. 84 BECKE, A. D.. A new mixing of Hartree–Fock and local density-functional theories. The Journal Of Chemical Physics, v. 98, n. 2, p.1372-1377, 1993. BECKE, A. D.. Density-functional thermochemistry. III. The role of exact exchange. The Journal Of Chemical Physics, v. 98, n. 7, p.5648-5652, 1993. BERUTTI NETO, R. Investigação Teórica de Reações Unimoleculares da Formamida em Fase Gasosa. Dissertação (Mestrado em Química) - Universidade Federal Rural do Rio de Janeiro, 2012. BEUKES, J.A.; DIANNA, B.; BAKKEN, V.; NIELSEN, C.J. Experimental and theoretical study of the F, Cl and Br reactions with formaldehyde and acetaldehyde. Phys. Chem. Chem. Phys.,v. 2, p. 4049-4060, 2000. BOESE, A. D.; MARTIN, J. M. L.. Development of density functionals for thermochemical kinetics. The Journal Of Chemical Physics, v. 121, n. 8, p.3405-3416, 2004. BRAGA, A., PEREIRA, L.A.A. e SALDIVA, P.H.N. (2002) Poluição Atmosférica e seus Efeitos na Saúde Humana. Faculdade de Medicina da USP. Disponível em:<http:// http://comciencia.br/reportagens/cidades/paper_saldiva.pdf> . Acesso em: 05 Jan 2015. BRASSEUR, G.P.; ORLANDO, J.J.; TYNDALL, G.S. Atmospheric Chemistry and global change. Oxford University Press, New York, 1999. CHAMEIDES, W. L.; DAVIS, D. D.. The free radical chemistry of cloud droplets and its impact upon the composition of rain. J. Geophys. Res., v. 87, n. 7, p.4863-4877, 1982. CRAMER, C. J. Essentials of Computational Chemistry: Theories and Models. 2nd Ed. John Wiley & Sons Ltd, 2004. CUEVAS, C.A.; NOTARIO, A.; MARTINEZ, E.; ALBALADEJO, J. Temperature-dependence study of the gas-phase reactions of atmospheric Cl atoms with a series of aliphatic aldehydes. Atmospheric Environment, v.40, p. 3845–3854, 2006. DEMORE, W.B.; SANDER, S.P.; GOLDEN, D.M.; HAMPSON, R.F.; KURYLO, M.J.; HOWARD, C.J.; RAVISHANKARA, A.R.; KOLB, C.E.; MOLINA, M.J. Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 12. JPL Publication, v.4, p. 1 – 266, 1997. 85 DONG, F. et al. The reaction of formaldehyde with chlorine atom. Chemical Physics Letters, v. 371, n. 1-2, p.29-34, 2003. DUNNNING JR, T.H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys., v.90, p.1007-1023, 1989. FERNÁNDEZ-RAMOS, A. et al. Symmetry numbers and chemical reaction rates. Theor Chem Account, v. 118, n. 4, p.813-826, 11 jul. 2007. FINLAYSON-PITTS B.J.; PITTS J.N.JR. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science, v.276, p.1045-105, 1997. FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; SCALMANI, G.; BARONE, V.; MENNUCCI, B.; PETERSSON, G. A.; NAKATSUJI, H.; CARICATO, M.; LI, X.; HRATCHIAN, H. P.; IZMAYLOV, A. F.; BLOINO, J.; ZHENG, G.; SONNENBERG, J. L.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; VREVEN, T.; MONTGOMERY, JR., J. A.; PERALTA, J. E.; OGLIARO, F.; BEARPARK, M.; HEYD, J. J.; BROTHERS, E.; KUDIN, K. N.; STAROVEROV, V. N.; KOBAYASHI, R.; NORMAND, J.; RAGHAVACHARI, K.; RENDELL, A.; BURANT, J. C.; IYENGAR, S. S.; TOMASI, J.; COSSI, M.; REGA, N.; MILLAM, J. M.; KLENE, M.; KNOX, J. E.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; MARTIN, R. L.; MOROKUMA, K.; ZAKRZEWSKI, V. G.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; DAPPRICH, S.; DANIELS, A. D.; FARKAS, Ö.; FORESMAN, J. B.; ORTIZ, J. V.; CIOSLOWSKI, J.; FOX, D. J. GAUSSIAN, INC., WALLINGFORD CT, GAUSSIAN 09, Revision A.02, 2009. FUKUI, K. A Formulation of the Reaction Coordinate. J. Phys Chem., v.74, p.4161, 1970. GONÇALVES, P.J.; BORISSEVITCH, I. Estudos das características fotofísicas da porfirina meso-tetrasulfonatofenil (TPPS4): efeitos da protonação e interação com micelas de CTAB. Tese (Doutorado em Física). Universidade de São Paulo, 2006. 86 GONZALEZ, Z.; SCHLEGEL, H. B. Reaction Path Following in Mass-Weighted Internal Coordinates.J. Phys. Chem., v. 94, p. 5523-5527, 1990. GUENTHER, A.; GERON, C.; PIERCE, T.; LAMB, B.; HARLEY, P.; FALL, R. Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmos. Environ., v.34, p.2205-2230, 2000. GRIMME, Stefan. Semiempirical hybrid density functional with perturbative second-order correlation. The Journal Of Chemical Physics, v. 124, n. 3, p.34108-34125, 2006. GRUBER-STADLER, Margret et al. A Quantum Chemistry Study of the Cl Atom Reaction with Formaldehyde. J. Phys. Chem. A, v. 112, n. 1, p.9-22, 2008. HEALTH, 2015. Disponível em: <http://pt.265health.com/public-health-safety/medical-research/1009074965.html#.VLACySvF9e8>. Acesso em: 09 Jan, 2015. HIRST, D. M. A Computational Approach to Chemistry. Blackwell Scientific Publications, Oxford, 1990. HOHENBERG, P.; KOHN, W. Inhomogeneous electron gas. Physical Review B., v.136, p.864-871, 1964. KNOWLES, P.; SCHÜTZ, M.; WERNER, H-J. Ab Initio Methods for Electron Correlation in Molecules. In: Modern Methods and Algorithms of Quantum Chemistry. J. Grotendorst (Ed.), John von Neumann Institute for Computing, Jülich, NIC Series, v. 1, p. 69-151, 2000. KNOWLES, P.; SCHÜTZ, M.; WERNER, H-J. Ab Initio Methods for Electron Correlation in Molecules. In: Modern Methods and Algorithms of Quantum Chemistry. J. Grotendorst (Ed.), John von Neumann Institute for Computing, Jülich, NIC Series, Vol. 1, pp. 69-151, 2000. KOHN, W.; SHAM, L. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., v.140, p.A1133 – A1138, 1965. LE CRÂNE, J.P.; VILLENAVE, E.; HURLEY, M.D.; WALLINGTON, T.J.; NISHIDA, S.; TAKAHASHI, K.; MATSUMI, Y. Atmospheric Chemistry of Pivalaldehyde and Isobutyraldehyde: Kinetics and Mechanisms of Reactions with Cl Atoms, Fate of (CH3)3CC(O) and (CH3)2CHC(O) Radicals, and Self-Reaction Kinetics of 87 (CH3)3CC(O)O2 and (CH3)2CHC(O)O2 Radicals. J. Phys. Chem. A. v.108, n. 5, p. 795–805, 2004. LEVINE, I. Quantum Chemistry. 6th Ed. Pearson Prentice Hall, New Jersey, 2009. LI Xiao-Yan; ZENG Yan-Li; MENG Ling-Peng; ZHENG Shi-Jun. Reaction Mechanisms of HCHO+X(X=F, Cl, Br). Acta Phys. - Chim. Sin., v.24, p 2053-2058, 2008. MACHADO, G. S. Estudo Cinético da Reação de Combustão do Etanol. Monografia apresentada para conclusão do Curso de Engenharia Química. Departamento de Engenharia Química, Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, 2013. MICHAEL, J.V.; NAVA, D.F.; PAYNE, W.A.; STIEF, L.J. Rate constant for the reaction of atomic chlorine with formaldehyde from 200 to 500 K. J. Chem. Phys. v.70, n. 3, p.1147-1150, 1979. MICHAEL, J. V. et al. Rate constant for the reaction of atomic chlorine with formaldehyde from 200 to 500 K. The Journal Of Chemical Physics, v. 70, n. 3, p.1147-1150, 1979. MØLLER, Chr.; PLESSET, M. S.. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev., v. 46, n. 7, p.618-622, 1934. MULLER, A.; STOYAN, D.. Comparison Methods for Stochastic Models and Risks. New York. John Wiley & Sons, 2002. NIKI, H.; MAKER, P.D.; BREITENBACH, L.P.; SAVAGE, C.M. FTIR studies of the kinetics and mechanism for the reaction of Cl atom with formaldehyde. Chem. Phys. Lett. v.57, n. 4, p. 596-599, 1978. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101. Release 15b, August 2011, edited by Russell D. Johnson III, in http://cccbdb.nist.gov/ (Acessado em Janeiro, 2015). OLIVEIRA, R. C. de M.; BAUERFELDT, G. F. Implementation of a variational code for the calculation of rate constants and application to barrierless dissociation and radical recombination reactions: CH3OH → CH3 + OH. Int. J. Quantum Chem., v.112, p.3132-3140, 2012. 88 OLIVEIRA, R. C. de M.; BAUERFELDT, G. F.. Thermochemical analysis and kinetics aspects for a chemical model for camphene ozonolysis. The Journal Of Chemical Physics, v. 137, n. 13, p.134306-134317, 2012. OUM, K. W., M. J. LAKINakin, D. O. DeHAAN, T. BRAUERS, B. J. Finlayson-Pitts. Formation of Molecular Chlorine from the Photolysis of Ozone and Aqueous Sea-Salt Particles, Science, v.279, p.74-77, 1998. PIRES, M.; CARVALHO, L. R. F. Na artifact in air carbonyls sampling using C18 DNPH-coated cartridge. Anaytica Chimica Acta, Amsterdam, v. 367, n. 1, p. 223-231, 1998. POPLE, J. A.. Quantum Chemical Models (Nobel Lecture). Angewandte Chemie International Edition, v. 38, n. 13-14, p.1894-1902, 1999. RAGHVACHARI, K.; TRUCKS, G. W.; POPLE J. A. and Head-Gordon M. A fifth-order perturbation comparison of eletctron correlation theories. Chem. Phys. Lett., v.157, p.479-483, 1989. RAYEZ, M. T.; RAYEZ, J. C.; VILLENAVE, E. Theoretical approach of the mechanism of the reactions of chlorine atoms with aliphatic aldehydes. Computational and Theoretical Chemistry. v.965, p. 321–327, 2011. RODRÍGUEZ, D., RODRÍGUEZ, A., NOTARIO, A., ARANDA, A., DÍAZ-DE-MERA,Y., and MARTÍNEZ, E.. Kinetic study of the gas-phase reaction of atomic chlorine with a series of aldehydes. Atmos. Chem. Phys. Discuss., Ciudad Real, v. 5, p.5167-5182, 2005. ROTTENBERG, S.; KUHN, U.; SCHEBESKE, G.; OLIVA, S. T.; TAVARES, T. M.; KESSELMEIER, J. Exchange of short-chain aldehydes between Amazonian vegetation and the atmosphere. Ecological applications, Washington, v. 14, supplement, p. 247-267, 2004. RYU, D.S.; YANG, H.; LEE, S.E.; PARK, C.S.; JIN, Y.H.; PARK, Y.S. Crotonaldehyde induces heat shock protein 72 expression that mediates anti-apoptotic effects in human endothelial cells. Toxicol. Lett, v.223, p. 116-123, 2013. 89 SCHIRMER, W.N.; LISBOA, H.M. Química da Troposfera: constituintes naturais, poluentes e suas reações. TECNO-LÓGICA Santa Cruz do Sul, v. 12 n. 2, p. 37-46, 2008. SCHULTZ, N. E.; ZHAO, Y.; TRUHLAR, D. G.. Density Functionals for Inorganometallic and Organometallic Chemistry. J. Phys. Chem. A, v. 109, n. 49, p.11127-11143, 2005. SCHWABE, T.; GRIMME, S.. Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. Phys. Chem. Chem. Phys., v. 8, n. 38, p.4398-4402, 2006. SEAKINS, P.W.; ORLANDO, J.J.; TYNDALL, G.S. Rate coefficients and production of vibrationally excited HCl from the reactions of chlorine atoms with methanol, ethanol, acetaldehyde and formaldehyde. Phys. Chem. Chem. Phys. v.6, p. 2224-2229, 2004. SEINFELD, J. H.; PADIS, S.N. Atmospheric Chemistry and Physics, John Wiley & Sons Inc.: New York, 1988. SOLCI, M.C; NOMI, S.N.; SAKUGAWA, H.; TAKEDA, K. Atmospheric formaldehyde and acetaldehyde at the campus University of Hiroshima, Japan. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 31, n. 1, p. 23-29, 2010. SPICER C.W., CHAPMAN E.G., FINLAYSON-PITTS B.J., PLASTRIDGE R.A., HUBBE J.M., FAST J.D., BERKOWWITZ C.M. Unexpectedly high concentrations of molecular chlorine in coastal air. Nature, v.394, p.353-356, 1998. STEINFELD, J.I., FRANCISCO, J.S., AND HASE, W.L. Chemical kinetics and dynamics, Upper Saddle River, New Jersey, 1999. TAKAMATSU, T.; WATANABE, M.; KOSHIKAWA, M. K.; MURATA, T.; YAMAMURA, S.; HAYASHI, S. Pollution of montane soil with Cu, Zn, As, Sb, Pb, and nitrate in Kanto, Japan. Sci. Total Environ., v. 408, p. 1932–1942, 2010. TAZIEFF, Haroun. Os Vulcões e a Deriva dos Continentes. Edição/reimpressão: 1999. Editor: Europa-América. ISBN 9789721024052. 1999. TOMASONI, M.A. Mudanças globais: a problemática do ozônio e algumas de suas implicações. GeoTextos, v.7, p.1141-178, 2011. 90 TROSTDORF, C.R. Estudo da variabilidade sazonal na emissão do isopreno na região amazônica. 2004. 129f. Dissertação (Mestrado em Ciência) – Instituto de Pesquisas Energéticas e Nucleares, Autarquia associada à Universidade de São Paulo, São Paulo, 2004. TRUHLAR, D. G.; GARRETT, B. C.Variational Transition State Theory. Annual Review of Physical Chemistry, v. 35, p. 159-189, 1984. TRUHLAR, D. G.; GARRETT, B. C.; KLIPPENSTEIN, S. J.. Current Status of Transition-State Theory. The Journal Of Physical Chemistry, v. 100, n. 31, p.12771-12800, 1996. USEPA, 2011. Disponível em : < http://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality> . Acesso em: 10 Jan. 2016. YOUNG, D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. New York. John Wiley & Sons, p.370, 2011. ZHAO, Y.; TRUHLAR, D. G.. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions. J. Phys. Chem. A, v. 108, n. 33, p.6908-6918, ago. 2004. ZHAO, Y.; GONZÁLEZ-GARCÍA, N.; TRUHLAR, D. G.. Benchmark Database of Barrier Heights for Heavy Atom Transfer, Nucleophilic Substitution, Association, and Unimolecular Reactions and Its Use to Test Theoretical Methods. J. Phys. Chem. A, v. 109, n. 9, p.2012-2018, 2005. ZHAO, Y.; TRUHLAR, D. G.. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States. J. Phys. Chem. A, v. 110, n. 49, p.13126-13130, 2006. ZHAO, Y.; TRUHLAR, D. G.. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account, v. 120, n. 1-3, p.215-241, 2007. ZHANG, W.; DU, B.; FENG, C. Theoretical investigation on mechanism for OH-initiated oxidation of CH2=C(CH3)CH2OH. Theor. Chem. Acc., v.125, p.45-55, 2010.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5040/2016%20-%20Michel%20Braga%20Garcia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/19718/2016%20-%20Michel%20Braga%20Garcia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/26085/2016%20-%20Michel%20Braga%20Garcia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/32492/2016%20-%20Michel%20Braga%20Garcia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/38892/2016%20-%20Michel%20Braga%20Garcia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/45210/2016%20-%20Michel%20Braga%20Garcia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/51602/2016%20-%20Michel%20Braga%20Garcia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/58100/2016%20-%20Michel%20Braga%20Garcia.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1379
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-01-20T11:19:55Z No. of bitstreams: 1 2016 - Michel Braga Garcia.pdf: 2199692 bytes, checksum: 4e890f95e489a3e9ea5a095b493dce78 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-01-20T11:19:55Z (GMT). No. of bitstreams: 1 2016 - Michel Braga Garcia.pdf: 2199692 bytes, checksum: 4e890f95e489a3e9ea5a095b493dce78 (MD5) Previous issue date: 2016-04-06eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2016 - Michel Braga Garcia.pdf2016 - Michel Braga Garcia2.15 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.