Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14654
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRocha, Vinícius Nunes da
dc.date.accessioned2023-12-22T03:04:05Z-
dc.date.available2023-12-22T03:04:05Z-
dc.date.issued2021-08-30
dc.identifier.citationROCHA, Vinícius Nunes da. Estudo teórico multiconformacional multirreacional da reação de éter etil vinílico + oh. 2021. 95 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14654-
dc.description.abstractÉteres alifáticos têm sido indicados como possíveis aditivos para combustíveis, com potencial para reformular as fontes energéticas vigentes. Essa família de moléculas possui relevância tanto na Química Atmosférica quanto na Química de Combustão, e entender sua reatividade é de suma importância para elucidar o comportamento dessas moléculas e modelar um mecanismo reacional preciso. Em seus mecanismos de combustão, a iniciação é dada a partir das reações unimoleculares e bimoleculares, incluindo reações com radicais OH, que seguem um mecanismo de abstração de hidrogênio. Não obstante, na atmosfera, radicais OH são os principais precursores de processos oxidativos desses éteres, via abstrações de hidrogênio. Nesse estudo, continuação de trabalhos anteriores, o foco é elucidar e estudar a reação EVE (vinil etil éter) + OH, a fim de observar a interação desses radicais com uma estrutura mais complexa dos éteres previamente estudados, agora com caminhos de abstração de hidrogênio e adição de OH como possibilidades. Os cálculos teóricos foram realizados no nível M06-2X com base aug-cc-pVTZ, utilizando o programa ORCA. Em comparação com a literatura, esse trabalho traz um maior nível de detalhamento ao embasamento teórico. Através de uma análise conformacional junto a uma distribuição de Boltzmann, foram confirmadas 4 conformações, relevantes para o mecanismo de reação, suas respectivas geometrias dos intermediários e os correspondentes pontos de sela, que mantiveram características semelhantes de suma importância para predição do mecanismo de reação. Suas conexões foram confirmadas por cálculos de caminhos de reação (IRC) e cálculos Scan. Esses cálculos permitiram a proposta de novos caminhos de reação, mostrando múltiplas possibilidades, assim sendo um estudo multiconformacional multirreacional. Todo o mecanismo para a reação foi proposto e os valores relativos de energia incluem correções de energia de ponto zero vibracionais.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectQuímica teóricapor
dc.subjectEVE + OHpor
dc.subjectC4H8Opor
dc.subjectQuímica Atmosféricapor
dc.subjectQuímica de Combustãopor
dc.subjectAtmospheric Chemistryeng
dc.subjectCombustion Chemestryeng
dc.subjectEVE + OHeng
dc.subjectC4H8Oeng
dc.subjectChemical kineticspor
dc.titleEstudo teórico multiconformacional multirreacional da reação de éter etil vinílico + ohpor
dc.title.alternativeMultireactional multiconformational vinyl ethyl ether + oh reaction theoretical studyeng
dc.typeDissertaçãopor
dc.description.abstractOtherAliphatic ethers have been indicated as a possibility as fuels addictive, with potential to reformulate the energetic matrix. This molecule family has relevancy as much in Atmospheric Chemistry as Combustion Chemistry, and learn its reactivity is important to elucidate its behavior and modulate a precise reactional mechanism. The combustion mechanism starts by unimolecular and bimolecular reactions with OH radicals, following a hydrogen abstraction mechanism. In a similar way, at an atmospheric system, OH radicals are the mainly precursors of these ethers oxidate processes, by hydrogen abstraction mechanisms. This study, as a continuation of previous works, has focus on elucidate the EVE + OH reaction on purpose to observe the interaction of these radicals with more complex structure of the previous studied ether, now with the possibility of addiction channels besides hydrogen abstraction channels. The theoretical calculations have been realized with M06-2x level and aug-cc-pVTZ basis utilizing ORCA software. In comparison with the literature, this work brings a more detailed approach to the theoretical study. By a conformational analysis together with a Boltzmann’s distribution, 4 conformations have been confirmed relevant to the reaction mechanism, its respective intermediates geometries and its correspondents saddle points, that shown similarities of extreme importance to the prediction of the reaction mechanism. Its connectivity was confirmed by Intrinsic Reaction Coordinate (IRC) and Scan calculations. Those calculations allowed the proposal of new reaction channels, showing multiple possibilities, setting then a multiconformational multireactional study.eng
dc.contributor.advisor1Bauerfeldt, Glauco Favilla
dc.contributor.advisor1ID069.023.487-23por
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-5906-7080por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1876040291299143por
dc.contributor.referee1Bauerfeldt, Glauco Favilla
dc.contributor.referee1ID069.023.487-23por
dc.contributor.referee1IDhttps://orcid.org/0000-0001-5906-7080por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1876040291299143por
dc.contributor.referee2Monte, Elizete Ventura do
dc.contributor.referee2IDhttps://orcid.org/0000-0002-1015-7824por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0792089842728963por
dc.contributor.referee3Sant'Anna, Carlos Mauricio Rabello de
dc.contributor.referee3IDhttps://orcid.org/0000-0003-1989-5038por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2087099684752643por
dc.contributor.referee4Baptista, Leonardo
dc.contributor.referee4IDhttps://orcid.org/0000-0001-9433-3313por
dc.contributor.referee4Latteshttp://lattes.cnpq.br/2182432135517042por
dc.contributor.referee5Silva, Gustavo Bezerra da
dc.contributor.referee5Latteshttp://lattes.cnpq.br/0303078626976737por
dc.creator.ID159.620.367-60por
dc.creator.IDhttps://orcid.org/0000-0002-2557-3871por
dc.creator.Latteshttp://lattes.cnpq.br/5217191640471435por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesAGUILERA SAMMARITANO, M., GONZÁLEZ VERA, M., MARCELO COMETTO, P., NICOLA TEJERO, T., BAUERFELDT, G. F., MELLOUKI, A.. Temperature dependence of rate coefficients for the gas phase reaction of OH with 3-chloropropene. A theoretical and experimental study. Chemical Physics Letters 2020, 137757. ANDERSEN, A., CARTER, E. A. First-principles-derived kinetics of the reactions involved in low-temperature dimethyl ether oxidation. Molecular Physics 2008, 106(2-4), 367–396. ATADINÇ, F. et al. Theoretical Study of Hydrogen Abstraction from Dimethyl Ether and Methyl Tert-butyl Ether by Hydroxyl Radical. Physical Chemistry Chemical Physics 2002, 4, 10, 1797–1806. BARBOSA, T. DA S., NIETO, J. D., COMETTO, P. M., LANE, S. I., BAUERFELDT, G. F., ARBILLA, G.. Theoretical calculations of the kinetics of the OH reaction with 2-methyl- 2-propen-1-ol and its alkene analogue. RSC Adv. 2014, 4(40), 20830–20840. BENTSEN, N. S., JACK, M. W., FELBY, C., THORSEN, B. J. Allocation of Biomass Resources for Minimising Energy System Greenhouse Gas Emissions. Energy 2014, 69, 506–515. BONGIOVANNI, R., SANGERMANO, M., MALUCELLI, G., PRIOLA, A., LEONARDI, A., AMEDURI, B., POLLICINO, A., RECCA, A.. Fluorinated vinyl ethers as new surface agents in the photocationic polymerization of vinyl ether resins. Journal of Polymer Science Part A: Polymer Chemistry 2003, 41(18), 2890–2897. BOTTONI, A., CASA, P. DELLA, POGGI, G. Reactions between the OH radical and oxygen-containing atmospheric pollutants: A Theoretical Description. Journal of Molecular Structure: THEOCHEM 2001, 542, 1–3, 123–137. CARR, S. A., STILL, T. J., BLITZ, M. A., ESKOLA, A. J., PILLING, M. J., SEAKINS, P. W., SHANNON, R. J., WANG, B., ROBERTSON, S. H.. Experimental and Theoretical Study of the Kinetics and Mechanism of the Reaction of OH Radicals with Dimethyl Ether. The Journal of Physical Chemistry A 2013, 117(44), 11142–11154. 73 CLARK, T. C., DOVE, J. E. Examination of Possible Non-Arrhenius Behavior in the reactions. Canadian Journal of Chemistry 1973, 51(13), 2147–2154. COUTINHO, N. D., SILVA, V. H. C., DE OLIVEIRA, H. C. B., CAMARGO, A. J., MUNDIM, K. C., AQUILANTI, V. Stereodynamical Origin of Anti-Arrhenius Kinetics: Negative Activation Energy and Roaming for a Four-Atom Reaction. The Journal of Physical Chemistry Letters 2015, 6(9), 1553–1558. COUTINHO, N. D., CARVALHO-SILVA, V. H., DE OLIVEIRA, H. C. B., AQUILANTI, V. The HI + OH → H2O + I Reaction by First-Principles Molecular Dynamics: Stereodirectional and anti-Arrhenius Kinetics. Lecture Notes in Computer Science 2017, 297–313. COUTINHO, N. D., AQUILANTI, V., SANCHES-NETO, F. O., VAZ, E. C., CARVALHO-SILVA, V. H. First-Principles Molecular Dynamics and Computed Rate Constants for the Series of OH-HX Reactions (X = H or the Halogens): Non-Arrhenius Kinetics, Stereodynamics and Quantum Tunnel. Lecture Notes in Computer Science 2018, 605–623. CRAMER, C. J. Essentials of Computational Chemistry. 2nd Ed. John Wiley & Sons, Ltd., 2004. CURRAN, H. J. Developing Detailed Chemical Kinetic Mechanisms for Fuel Combustion. Proceedings of the Combustion Institute, 2018. DE JESUS, N. D., DA SILVA, A. B. M. J., TEJERO, N. T., MACHADO, S. G., XAVIER Jr, F. N., BAUERFELDT, F. G. Chemical mechanism for the decomposition of CH3NH2 and implications to interstellar glycine. Montly Notices of Royal Astronomical Society 2021, 501, 1202-1214. DI TOMMASO, S., ROTUREAU, P., ADAMO, C. Oxidation Mechanism of Aliphatic Ethers: Theoretical Insights on the Main Reaction Channels. The Journal of Physical Chemistry A 2012, 116(36), 9010–9019. DILL, K. A., BROMBERG, S., STIGTER, D. Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology. Garland Science, New York, 2003. 74 EVANS, M. G., POLANYI, M. Some Applications of the Transition State Method to the Calculation of Reaction Velocities, Especially in Solution. Transactions of the Faraday Society 1935, 31, 875-894. EYRING, H. The Activated Complex in Chemical Reactions. The Journal of Chemical Physics 1935, 3, 307-315. FRISCH, M.J., TRUCKS, G.W., SCHLEGEL, H.B., GILL, P.W.M., JOHNSON, B.G., ROBB, M.A., CHEESEMAN, J.R., KEITH, T.A., PETERSSON, G.A., MONTGOMERY, J.A., RAGHAVACHARI, K., ALLAHAM, M.A., ZAKRZEWSKI, V.G., ORTIZ, J.V., FORESMAN, J.B., CIOSLOWSKI, J., STEFANOV, B.B., NANAYAKKARA, A., CHALLACOMBE, M., PENG, C.Y., AYALA, P.Y., CHEN, W., WONG, M.W., ANDRES, J.L., REPLOGLE, E.S., GOMPERTS, R., MARTIN, R.L., FOX, D.J., BINKLEY, J.S., DEFREES, D.J., BAKER, J., STEWART, J.P., HEAD-GORDON, M., GONZALES, C., POPLE, J.A. Gaussian 03. Gaussian Inc., Wallingford, CT 2003. FRANCISCO, J. S.. On the competition between hydrogen abstraction versus C-O bond fission in initiating dimethyl ether combustion. Combustion and Flame 1999, 118(1-2), 312– 316. FUKUI, K., The Path of Chemical-reactions – The IRC Approach. Accounts of. Chemical. Research. 1981, 14, 363-368. GONZALEZ, C., SCHLEGEL, H.B. An Improved Algorithm for Reaction Path Following. J. Chem. Phys 1989, 90, 2154–2161. HAN, D., CAO, H., LI, J., LI, M., HE, M., HU, J. Computational Study on the Mechanisms and Rate Constants of the OH-initiated Oxidation of Ethyl Vinyl Ether in Atmosphere. Chemosphere 2014, 111, 61-69. HAN, D., CAO, H., SUN Y., HE M. Mechanistic and Kinect Study on the Ozonolysis of Ethyl Vinyl Ether and Propryl Vinyl Ether. Struct Chem 2011, 23, 499-514. HOUSTON, P.L, Chemical Kinetics and Dynamics, Dover Publication, Inc., New York, 2006. HILL, T.L. An Introduction to Statistical Thermodynamics. Dover Publications, Inc., New York, 1986. 75 HRATCHIAN, H. P., SCHLEGEL, H. B. Theory and Applications of Computational Chemistry: The First 40 Years. Ed. Elsevier, Amsterdam, 2005, 195-249. HYMAN, M. Biodegradation of Gasoline Ether Oxygenates. Current Opinion in Biotechnology 2003, 24(3), 443-450. KENDALL, R. A., DUNNING JR., T. H., HARRISON, R. J. Electron Affinities of the First- row Atoms Revisited. Systematic Basis Sets and Wave Functions, J. Chem. Phys 1992, 96, 6796-806. ; KOTTISCH, V., MICHAUDEL, Q., FORS, B. P.. Cationic Polymerization of Vinyl Ethers Controlled by Visible Light. Journal of the American Chemical Society 2016, 138(48), 15535–15538. LIN, X.-X., LIU, Y.-R., HUANG, T., CHEN, J., JIANG, S., HUANG, W.. A flexible transition state searching method for atmospheric reaction systems. Chemical Physics 2015, 450-451, 21–31. LIU, X. et al. Fuel 2016, 165, 513-525. NASH, J. J., FRANCISCO, J. S. Journal of Physical Chemistry A 1998, 102, 236-241. NEESE, F. The ORCA Program System. WIREs Comput Mol Sci 2011, 2, 73-78. OLIVEIRA, R. C. DE M.; BAUERFELDT, G. F. Implementation of a Variational Code for the Calculation of Rate Constants and Application to Barrierless Dissociation and Radical Recombination Reactions: CH3OH=CH3+OH. International Journal of Quantum Chemistry 2012, 1-9. ROBERTSON, S.H., GLOWACKI, D.R., LIANG, C.H., MORLEY, C., PILLING, M.J. MESMER (Master Equation Solver for Multi-Energy Well Reactions), an Object-oriented C++ Program for Carrying out ME Calculations and Eigenvalue-eigenvector Analysis on Arbitrary Multiple Well Systems, 2008. <http://sourceforge.net/projects/mesmer>. RODRIGUES-SANTOS, C., ECHEVARRIA, A., SANT’ANNA, C., BITENCOURT, T., NASCIMENTO, M., BAUERFELDT, G.. Quantitative Structure–Property Relationship (QSPR) Models for a Local Quantum Descriptor: Investigation of the 4- and 3-Substituted- Cinnamic Acid Esterification. Molecules 2015, 20(9), 17493–17510. 76 ROY, S., SCHOPF, P., WARSHEL, A.. Origin of the Non-Arrhenius Behavior of the Rates of Enzymatic Reactions. The Journal of Physical Chemistry B 2017, 121(27), 6520–6526. SCARFOGLIERO, M., PICQUET-VARRAULT, B., SALCE, J., DURAND-JOLIBOIS, R., DOUSSIN J-F. Kinect and Mechanistic Study of the Gas-phase Reactions of a Series of Vinyl Ethers with the Nitrate Radical. Journal of Physical Chemistry A 2006, 110, 11074- 11081. SILVA, V. H. C., AQUILANTI, V., DE OLIVEIRA, H. C. B., MUNDIM, K. C. Uniform description of non-Arrhenius temperature dependence of reaction rates, and a heuristic criterion for quantum tunneling vs classical non-extensive distribution. Chemical Physics Letters 2013, 590, 201–207. SQUILLACE, P. J., PANKOW, J. F., KORTE, N. E., ZOGORSKI, J. S. Environmental Behavior and Fate of Methyl Tert-Butyl Ether (MTBE). U.S. Department of the Interior, U.S. Geological Survey 1996, 203-96. STEINFELD, J. I., FRANCISCO, J. S., HASE, W. L.. Chemical Kinetics and Dynamics. 2 Ed. Prentice-Hall, New Jersey, 1998. THIAULT, G., THÉVENET, R., MELLOUKI, A., LE BRAS, G. OH and O3-initiated Oxidation of Ethyl Vinyl Ether. Physical Chemistry Chemical Physics 2002, 4, 613-619. TRANTER, R. S., WALKER, R. W. Rate constants for the reactions of H atoms and OH radicals with ethers at 753 K. Physical Chemistry Chemical Physics 2001, 3(21), 4722–4732. VILA JUNIOR, J. Compostos Orgâncios Voláteis: Transformações e Efeitos Nocivos. Disponível em: <https://oswaldocruz.br/revista_academica/content/pdf.> Acesso em 02 de agosto de 2021. YOON, S. H., LEE, C. S. Effect of Undiluted Bioethanol on Combustion and Emissions Reduction in a SI Engine at Various Charge Air Conditions. Fuel 2012, 97, 887–890. ZAVALA-OSEGUERA, C., ALVAREZ-IDABOY, J. R., MERINO, G., GALANO, A.. OH Radical Gas Phase Reactions with Aliphatic Ethers: A Variational Transition State Theory Study. The Journal of Physical Chemistry A 2009, 113(50), 13913–13920. 77 ZELLNER, R.. Non-Arrhenius behavior in bimolecular reactions of the hydroxyl radical. The Journal of Physical Chemistry 1979, 83(1), 18–23. ZHAO, Y., TRUHLAR, D. G. Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: The MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. Journal of Physical Chemistry A 2004, 108, 6908–6918. ZHAO, Y., TRHULAR, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 2008, 120, 215-41. ZHOU, S., BARNES, I., ZHU, T., BEJAN, I., BENTER, T.. Kinect Study of the Gas-Phase Reactions of OH and NO3 Radicals and O3 with Selected Vinyl Ethers. Journal of Physical Chemistry A. 2006, 11, 7386-7392. ZHOU, C. W., SIMMIE, J. M., CURRAN, H. J. An ab initio/Rice-Ramsperger-Kassel- Marcus study of the hydrogen-abstraction reactions of methyl ethers, H3COCH3−x(CH3)x, x = 0–2, by ̇OH; mechanism and kinetics. Physical Chemistry Chemical Physics 2010, 12(26), 7221. ZHURKO G. A. Chemcraft - Graphical Program for Visualization of Quantum Chemistry Computations. Ivanovo, Russia, 2005. <https://chemcraftprog.com>.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/74561/2021%20-%20Vin%c3%adcius%20Nunes%20da%20Rocha.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6873
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2023-08-28T12:21:43Z No. of bitstreams: 1 2021 - Vinícius Nunes da Rocha.pdf: 3409935 bytes, checksum: b8cafd7a98291f65289ac79e9ace7f02 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-08-28T12:21:43Z (GMT). No. of bitstreams: 1 2021 - Vinícius Nunes da Rocha.pdf: 3409935 bytes, checksum: b8cafd7a98291f65289ac79e9ace7f02 (MD5) Previous issue date: 2021-08-30eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Vinícius Nunes da Rocha.pdf2021 - Vinícius Nunes da Rocha3.33 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.