Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14749
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Andrea Rosane da
dc.date.accessioned2023-12-22T03:05:27Z-
dc.date.available2023-12-22T03:05:27Z-
dc.date.issued2004-11-13
dc.identifier.citationSILVA, Andrea Rosane da. Adição de organometálicos a orto e paranaftoquinonas. 2004. 203 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2004.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14749-
dc.description.abstractEste trabalho teve como objetivo estudar as reações de metilação, benzilação, alilação e propargilação de orto e para-naftoquinonas, derivadas do lapachol (2-metoxi-lapachol (2), b-lapachona (3), a-lapachona (4) e a-xiloidona (5)) empregando reagentes organometálicos de magnésio, índio e estanho. As reações iniciais, feitas com reagentes de Grignard (iodeto de metil-magnésio, brometo de alil-magnésio e cloreto de benzilmagnésio) indicam que existe regiosseletividade no processo, visto que, a adição ocorre na maioria dos casos em apenas uma das carbonilas, mesmo quando sobra reagente de partida após o tempo de reação. A possibilidade do reagente de Grignard estar coordenado com o oxigênio do anel pirânico, pode ter influenciado na formação dos produtos. Estas reações não foram muito limpas, pois ocorria sempre a formação de muitos sub-produtos, com exceção das reações com b-lapachona (3). As reações de alilação e propargilação utilizando como metais índio e estanho foram realizadas em meio aquoso (reações do tipo Barbier). Nas reações com estanho, foi preciso utilizar banho de ultra-som, para que o metal se dissolvesse dando início à reação. Os melhores resultados correspondem à adição com alil-índio, pois em alguns casos com alilestanho, ocorre a destruição de parte do reagente (naftoquinona). A mesma seletividade vista anteriormente com os regentes de Grignard, foi observada também nestas reações, sendo que os rendimentos, neste caso foram sempre superiores, pois não ocorreu a formação tantos sub-produtos. Uma grande vantagem na utilização do metal índio, além dos bons rendimentos, é a velocidade das reações, pois estas são mais rápida do que com estanho. A propargilação com estanho não foi bem sucedida com a a-lapachona (4) e o 2-metoxi-lapachol (2), (praticamente não houve formação de produto) e com a blapachona obteve-se somente um modesto rendimento. Com propargil-índio os resultados foram mais animadores, obtendo-se em alguns casos a formação de produtos alênico e acetilênico. Palavas chave: lapachol, lapachona,por
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectlapacholpor
dc.subjectlapachonapor
dc.subjectnaftoquinonapor
dc.subjectreagente de Grignardpor
dc.subjectorganomagnésiopor
dc.subjectorgano-estanhopor
dc.subjectorgano-índiopor
dc.subjectmetilaçãopor
dc.subjectbenzilaçãopor
dc.subjectalilaçãopor
dc.subjectpropargilaçãopor
dc.subjectnaphthoquinoneeng
dc.subjectlapacholeng
dc.subjectlapachoneeng
dc.subjectGrignard reagenteng
dc.subjectorganomagnesiumeng
dc.subjectorganotineng
dc.subjectorganoindiumeng
dc.subjectmethylationeng
dc.subjectbenzylationeng
dc.subjectallylationeng
dc.subjectpropargylationeng
dc.titleAdição de organometálicos a orto e paranaftoquinonaspor
dc.typeDissertaçãopor
dc.description.abstractOtherThe objective of this work is the study of methylation, benzylation, allylation and propargylation reactions of ortho and para-naphthoquinones, derived from lapachol (2-methoxylapachol (2), ß-lapachone (3), a-lapachone (4) and a-xyloidone (5)) using organometallic reagents of magnesium, indium and tin. The initial reactions, with Grignard reagents (methyl-magnesium iodide, benzyl-magnesium chloride and allylmagnesium bromide), indicate that there is regioselectivity in the process, since the addition occurs, in most cases, at only one of the carbonyls, even when there is unused reagent after the reaction time. It is possible that coordination of the Grignard reagent by the oxygen of the pyran ring has an influence in the formation of the products. The reactions were not very clean, and formation of many by-products always occurred, with exception of reactions with ß-lapachone (3). Allylation and propargylation reactions were carried in aqueous solvent (Barbier-type reactions), using indium and tin as metals. In the reactions with tin, it was necessary to use an ultrasonic bath to force dissolution of the metal and start to the reaction. The best results resulted from the use of allyl-indium, because, in some cases, use of allyl-tin led to the destruction of part of the naphthoquinone reagent. The same selectivity seen previously with the Grignard reagents, was also observed in these reactions, but the yields, in this in case, were always superior, since there were not so many by-products. A great advantage in the use of the metal indium, beside the good yields, comes from reaction rates, much faster than those for tin. The propargylation with tin was not successful with a-lapachone (4) and 2-methoxylapachol (2), (there was practically no product formation), and with ß- lapachone there was only had a modest yield. With propargyl-indium the results were more inspiring, leading in some cases to formation of both allene and acetylene products.eng
dc.contributor.advisor1Ferreira, Aurélio Baird Buarque
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5526484175547597por
dc.contributor.referee1Ferreira, Aurélio Baird Buarque
dc.contributor.referee2Pinto, Antonio Ventura
dc.contributor.referee3Costa, João Batista Neves da
dc.contributor.referee4Santa´Anna, Carlos Maurício Rabello
dc.creator.Latteshttp://lattes.cnpq.br/9890558976739328por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesANDREWS, P. C., PEATT, A. C. & RASTON, C. L. Efficient solvent-free in situ tinmediated homoallylation reactions. Tetrahedron Lett., 43:7541-7543, 2002. AUGÉ, J., LUBIN-GERMAIN, N., MARQUE, S. & SEGHROUCHNI L. Indiumcatalyzed Barbier allylation reaction. J. Orgonomet. Chem., 679:79-83, 2003. AUGÉ, J., LUBIN-GERMAIN, N. & THIAW-WOAYE, A. Indium-catalyzed allylation carbonyl compounds with the Mn/TMSCl system. Tetrahedron Lett., 40:9245-9247, 1999. BIEBER, L. W., SILVA, M. F., DA COSTA, R. C. & SILVA, L. O. S. Zinc Barbier Reaction of propargyl halides in water. Tetrahedron Lett., 39:3655-3658, 1998. BLOMBERG, C., GROOTVELD, H. H., GERNER, T. H. & BICKELHAUPT, F. Radical formation during reactions of Grignard reagentes with quinones. J. Organomet. Chem., 24:549-553, 1970. BUTSUGAN, Y., ARAKI, S. & KATSUMURA, N. Allylation of quinones by allylic indium reagents. J. Orgonomet. Chem., 415:7-24, 1991. BUTSUGAN, Y., ARAKI, S. & ITO, H. Indium in organic synthesis: Indium-mediated allylation of carbonyl compounds. J. Org. Chem., 53:1831-1833, 1988. CAREY, F. A. & SUNDBERG, R. J. Organometallic compounds of group I and II metals. Advanced Organic Chemistry – Reactions and Synthesis. 3a Ed.,Part B, New York and London: cap. 7, p.365-367, 1993. CHAN, T. H. & YANG, Y., Organometallic reactions in aqueous media. Allylation of aldehydes with diallylmercury or allylmercury bromide. Tetrahedron Lett., 40:3863- 3866, 1999. CHAN, T. H., YANG,Y. & LI, C. J. Organometallic reactions in aqueous media. The nature of the organotin intermediate in the tin-mediated allylation of carbonyl compounds. J. Org. Chem., 64:4452-4454, 1999. COLONGE, J.; Grignard, R. Composés organomagnésiens. Précis de Chimie Organique. 4a Ed., Paris: Masson et Cie., p.262-264, 1958. 94 CHEN, Y., WANG, T., HELMEY, R., ZHOU, G. X. & BRUTTO, R. L. Concentration determination of methyl magnesium chloride and other Grignard reagents by potentiometric titration with in-line characterization of reaction species by FTIR Spectroscopy. J. Pharm. Biomed. Anal., 29:393-404, 2002. COSTA, P. R. R., et al. Synthesis and preliminary pharmacological evaluation of new (±) 1,4-Naphthoquinones structurally related to lapachol. Bioorg. Med. Chem., 10 :2731-2738, 2002. DE OLIVEIRA, M. M., FAVARO, O. C. N., ROSSINI, M. A. A., KAMAKURA, C. R., PINTO, A. V. & PINTO, M. C. F. R. Seleção por meio de células KB de substâncias e extratos potencialmente ativos em quimioterapia do câncer. An. Acad. Brasil. Cienc., 62(3):217-224, 1990. FERREIRA, V. F., SILVA, M. N. & SOUZA, M. C. B. V. Um panorama atual da química e da farmacologia de naftoquinonas, com ênfase na b-lapachona e derivados. Quim. Nova, 26(3):407-416, 2003. FERREIRA, V. F. Aprendendo sobre os conceitos de ácido e base. Quim. Nova na escola, 4:35-36, 1996. FIESER L. F. et al. Naphthoquinone antimalarials. I. General survey. J. Am. Chem. Soc.,70:3151-3155, 1948. FIESER, L. F. The alkylation of hydroxynaphthoquinone. III. A synthesis of lapachol. J. Am. Chem. Soc.,49:857-864, 1927. GILMAN, H., ZOELLNER, E. A. & DICKEY, J. B. The yields of some Grignard reagents. Alternating properties of normal alkyl bromides. J. Am. Chem. Soc., 51:1576- 1583, 1929. GRIGNARD, V., Discurso de aceitação do Prêmio Nobel, 1912. Disponível em: <www.nobel.se/chemistry/laureates/1912/grignard-lecture.pdf.>. Acesso em: jul. 2004. GUERRA, M. O., FELÍCIO, A. C., CHANG, C. V., BRANDÃO, M. A. & PETERS, V. M. Fetal growth in rats treated with lapachol. Contraception, 66:289-293, 2002. GUERRA, M. O., MAZONI, A. S. B., BRANDÃO, M. A. F. & PETERS, V. M. Toxicology of lapachol in rats: embryolethality. Rev. Brasil. Biol., 61(1):171-174, 2001. GUIRAUD, P., STEIMAN, R., CAMPOS-TAKAKI, G. M., SEIGLE-MURANDI, F. & BUOCHBERG, M. S. Comparison of antibacterial and antifungal activities of lapachol and b-lapachone. Planta Med., 60:373-374, 1994. 95 HOOKER, S. C. The constitution of lapachol and its derivatives. Part IV. Oxidation with potassium permanganate. J. Am. Chem. Soc., 58:1168-1173, 1936. LEE, A. S. Y., CHU, S. F., CHANG, Y. T. & WANG, S. H. Synthesis of homopropargyl alcohols via sonochemical Barbier-type reaction. Tetrahedron Lett., 45:1551-1553, 2004. LI, C. J. & CHAN, T. H. Organic syntheses using indium-mediated and catalyzed reactions in aqueous media. Tetrahedron, 55:11149-11176, 1999. LI, C. J. Aqueous Barbier-Grignard type reaction: scope, mechanism, and synthetic applications. Tetrahedron., 52(16):5643-5688, 1996. LI, C. J., WANG, C. & PARDEE, A. B. Induction of apoptosis by b-lapachone in human cancer cells. Cancer Res., 55:3712-3715, 1995. LI, C. J., ZHANG, L. J., DEZUBE, B. J., CRUMPACKER, C. S. & PARDEE, A. B., Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proc. Natl. Acad. Sci.USA, 90:1839-1842, 1993. LINDLEY, J. & MASON, T. J. Sonochemistry. Part 2-Synthetic applications. Chem. Soc. Rev., 16:275-311, 1987. LIOTTA, D., SAINDANE, M. & BARNUM, C. Selective reactions of carbanions with p-quinones. The aggregate model. J. Org. Chem., 46:3370-3372, 1981. LOH, T. P., LIN, M. J. & TAN, K. L. Indium-mediated propargylation of aldehydes: regioselectivity and enantioselectivity studies. Tetrahedron Lett., 44:507-509, 2003. LUCHE, J. L. & EINHORN C. Selective allylation of carbonyl compounds in media aqueous. J. Organomet. Chem., 322:177-183, 1987. MÄEORG, U. & JÕGI, A. Zn mediated regioselective Barbier reaction of propargylic bromides in THF/aq. NH4Cl solution. Molecules, 6:964-965, 2001. MULLER, K., SELLMER, A., WIEGREBE, W. Potential antipsoriatic agents: lapacho compounds as potent inhibitors of HaCaT cell growth. J. Nat. Prod., 62:1134-1136, 1999. NAIR, V., JAYAN, C. N. & ROS, S. Novel reactions of indium reagents with 1,2- diones: a facile synthesis of a-hydroxy ketones. Tetrahedron, 57:9453-9459, 2001. 96 OLIVEIRA, A. B., RASLAN, D. S., MIRAGLIA, M. C. M., MESQUITA, A. A. L., ZANI, C. L., FERREIRA, D. T. & MAIA, J. G. S. Estrutura química e atividade biológica de naftoquinonas. Quim. Nova, 13(4):302-307, 1990. BRAZ-FILHO, R., OLIVEIRA M. F., LEMOS, T. L. G., MATTOS, M. C., SEGUNDO, T. A. & SANTIAGO, G. M. P. New enamine derivatives of lapachol and biological activity. An. Acad. Brasil. Cienc., 74 (2):211-221, 2002. OTHMER, K., Grignard reaction. Enciclopedia of Chemical Technology, 3a Ed., New York: John Wiley & Sons, 1980, V. 12, p. 30-32. OTTEN, S. & ROSAZZA, J. P. Microbial transformations of natural antitumor agents: conversion of lapachol to dehydro-a-lapachone by curvularia lunata. Appl. Environ.l Microbiol., 38(2):311-313, 1979. PAQUETTE, L. A. & MITZEL, T. M. Addition of allylindium reagents to aldehydes substituted at Ca or Cb with heteroatomic functional Groups. Analysis of the modulation in diastereoselectivity attainable in aqueous, organic, and mixed solvent systems. J. Am. Chem. Soc., 118:1931-1937, 1996. PERRIN, D. D., ARMAREGO, W. L. F. & PERRIN, D. R., Purification of Laboratory Chemicals, 2a ed., Oxford: Pergamon Press, 1980. PINTO, A.V., DE MOURA, K. C. G., EMERY, F.S., PINTO, C. N., PINTO, M. C. F. R., DANTAS, A. P., SALOMÃO, K., & DE CASTRO, S. L. Trypanocidal activity of isolated naphthoquinones from tabebuia and some heterocyclic derivatives: A review from an interdisciplinary study. J. Bras. Chem. Soc., 12 (3):325-338, 2001. PINTO, A. V., PINTO, M. C. F. R. & OLIVEIRA C. G. T. Síntese das a- e b-norlapachonas em meio ácido e reações com N-bromosuccinimida. An. Acad. Brasil. Cienc., 54 (1):108-114, 1982. PINTO, M. C. R., PINTO, A. V. & OLIVEIRA, C. G. T. Síntese de naftoquinonas naturais a partir do lapachol. An. Acad. Brasil. Cienc., 52(3):481- 482, 1980. PEPPE, C., FU, N. Y., YUAN, Y. F., CAO, Z., WANG, S. W. & WANG, J. T. Indium(III) bromide-catalyzed preparation of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction. Tetrahedron, 58:4801-4808, 2002. RAVELO, A. G., Braun, A. E., Sacau, E. P., Ferro, E. A., Tokuda, H., Mukainaka, T. & Nishino, H., Inhibitory efects of lapachol derivatives on Epstein-Barr virus activation. Bioorg. Med. Chem., 11:483-488, 2003. 97 RAY, J. K., PAN, D., MAL. S. K. & KAR. G. K. Chemoselective method for the synthesis of 4-allyl-4-hydroxycyclohexa-2,5-dienone derivatives from 1,4-quinones by an indium-mediated allylation protocol. Tetrahedron, 58:2847-2852, 2002. RICHEY JR, H. G. Mechanistic features of the reactions og organomagnesium compounds. Grignard Reagents - New Developments, New York: John Wiley & Sons, 2000, Cap.1, p.2-3. RICHEY JR, H. G. Mechanismis of Grignard reagent formation. Grignard Reagents - New Developments, New York: John Wiley & Sons, 2000, Cap.7, p.189-190. SHA, C. K., TSENG, C. T. & CHANG, W. S. Synthesis of b-substituted a-iodo cycloalkanones by the CuI-mediated conjugate addition of Grignard reagents to a-iodo cycloalkenones. Tetrahedron Lett., 42:683-685, 2001. STOPPANI, A. O. M., DUBIN, M., SILVIA, H. & VILLAMIL, F. Citotoxidadad de la b-lapachona: una o-naftoquinona con posibles usos terapeuticos. Medicina, 61 (3),:343- 350, 2001. SMITH, L. I. & CRAWFORD, H. M. The reaction between duroquinone and the Grignard reagents. J. Am. Chem. Soc., 50,:869-883, 1928. TANAKA, H., NAKAHATA, S., WATANABE, H., ZHAO, J., KUROBOSHI, M. & TORII, S. Barbier-type allylation of carbonyl derivatives by use of aluminum as an electron pool. Double allylation of carboxylic esters. Inorg. Chim. Acta, 296:204-207, 1999. THOMSON, R. H. & BURNETT, A. R. Naturally occurring quinone. Part X. The quinonoid constituents of Tabebuia avellanedae (Bignoniaceae). J. Chem. Soc. (c), 2100-2104, 1967. UNGVÁRY, F. & LAWRENCE, K. E. Solvent attack in Grignard Reagent formation from bromocyclopropane and 1-bromohexane in diethyl ether. J. Am. Chem. Soc., 113:5392-5397, 1991. VARGAS, M. D., CÂMARA, C. A., PINTO, A. C. & ROSA, M. A. Secondary amines and unexpected 1-aza-anthraquinones from 2-methoxylapachol. Tetrahedron, 57:9569- 9574, 2001. VOGEL, A. I., Vogel´s-textbook of Practical Organic Chemistry, 5a Ed., Londres: Longman, 1989 WAKEFIELD, B. J.Addition of organomagnesium compounds to carbonyl groups. Organomagnesium Methods in Organic Synthesis, London: Academic Press, 1995, Cap. 6, p. 113. 98 WALBORSKY, H. M. Mechanism of Grignard reagent formation. The surface nature of the reaction. Acc. Chem. Res., 23:286-293, 1990. WIGAL, C. T., APONICK, A., BUZDYGON, R. S., TOMKO JR, R. J., FAZAL, A. N., SHUGHART, E. L., MCMASTER, D. M., MYERS, M. C. & PITCOCK JR, W. H. Regioselective organocadmium alkylations of substituted quinones. J. Org. Chem., 67:242-244, 2002. WIGAL, C. T., APONICK, A., MCKINLEY, J. D. & RABER, J. C. Quinone alkylation using organocadmium reagents: A general synthesis of quinols. J. Org. Chem., 63:2676- 2678, 1998. WIGAL, C. T., APONICK, A., MCKINLEY, J., RABER, J. C, FRITZ, C. & MONTGOMERY, D. Reactions of alkyllithium and Grignard reagents with benzoquinone: evidence for an electron-transfer mechanism. J. Org. Chem., 62:4874- 4876, 1997.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/63296/2004%20-%20Andrea%20Rosane%20da%20Silva.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4219
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2020-11-30T13:28:31Z No. of bitstreams: 1 2004 - Andrea Rosane da Silva.pdf: 7033760 bytes, checksum: fb930f4c82c3092d38828b0a8b3a2911 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-11-30T13:28:31Z (GMT). No. of bitstreams: 1 2004 - Andrea Rosane da Silva.pdf: 7033760 bytes, checksum: fb930f4c82c3092d38828b0a8b3a2911 (MD5) Previous issue date: 2004-11-13eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2004 - Andrea Rosane da Silva.pdfAndrea Rosane da Silva6.87 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.