Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14938
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFonseca, Fabricia Viana
dc.date.accessioned2023-12-22T03:08:31Z-
dc.date.available2023-12-22T03:08:31Z-
dc.date.issued2011-03-25
dc.identifier.citationFONSECA, Fabricia Viana. Papel dos receptores 5-HT1A do núcleo dorsal da rafe no mecanismo de saciedade ao sódio em ratos WISTAR. 2011. 87 f. Dissertação (Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas) - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14938-
dc.description.abstractNós investigamos o possível papel dos autorreceptor somatodentritico 5-HT1A no núcleo dorsal da rafe (NDR) sobre a resposta do consumo de sal em condições basais e após desafios natriorexigênica induzido pela depleção de sódio em ratos. Ratos em condição basal, ratos submetidos a protocolos de depleção de sódio, onde os animais foram tratados com furosemida (20mg/kg, SC) ou protocolo FUROCAP, FUROCAP modificado, estimulação beta-adrenérgica ou modificação do protocolo de estimulação beta-adrenérgicos. Os animais que foram tratados com furosemida foram divididos em dois grupos de ratos: um sem acesso à água, e com água ad libitum. A cirurgia estereotáxica foi realizada para administração (7,5 nmol / rato) de 8-OH-DPAT e (2nmol / ratos) WAY100135 intra-DRN. Sistemicamente os animais receberam WAY100135 (5mg/kg, IP). Curiosamente, a microinjeção de 8-OH-DPAT no DRN promoveu um aumento suplementar de longa duração da ingestão de 0,3 M NaCl em ratos em condição basal, apesar de um elevado volume ingerido 30 minutos após a injeção central. Por outro lado, repetidas doses de microinjeção intra-DRN (7,5 nmol / rato) provocou uma diminuição significativa a longo prazo na ingestão de 0,3 M NaCl em ratos em condições basais e submetidos aos protocolo de depleção. Administração de WAY100135 não alteraram as respostas de ingestão de água ou NaCl 0,3 M no grupo sem acesso à água. Por outro lado, a administração sistêmica e intra-DRN de antagonista 5-HT1A promoveu redução intensa e prolongada na resposta natriorexigênica, no grupo que recebeu água ad libitum. A administração aguda de antagonistas 5-HT1A, diminuiu significativamente a ingestão de 0,3 M de NaCl nos protocolos de Furocap e Isoproterenol Modificado. Esta resposta, possivelmente, exigiu um aumento da atividade da 5-HT durante saciedade sal de sinalização ao longo da fase de consumação. Estes resultados mostram um claro envolvimento do 5-HT1A DRN na saciedade ao sódio em condições basais e durante a fase de do consumo de sal em ratos depletados.por
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasilpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectserotoninapor
dc.subjectapetite por sódiopor
dc.subjectRatos Wistarpor
dc.subjectserotonineng
dc.subjectsodium appetiteeng
dc.subjectWistar Miceeng
dc.titlePapel dos receptores 5-HT1A do núcleo dorsal da rafe no mecanismo de saciedade ao sódio em ratos WISTARpor
dc.title.alternativeRole of 5-HT1A receptors in the dorsal raphe nucleus in the sodium satiety mechanism in WISTAR ratseng
dc.typeDissertaçãopor
dc.description.abstractOtherWe investigated the possible role of 5-HT1A somatodendritic autoreceptors in the dorsal raphe nucleus (DRN) on salt intake response during basal conditions and following natriorexigenic challenge aroused by sodium depletion in rats. Rats in condiction basal, rats submitted to protocols of sodium depletion, where the animals were treated with furosemide (20mg/kg, SC), protocol FUROCAP, modified FUROCAP, beta-adrenergic stimulated or modified beta-adrenergic protocols rats. Animals that were treated with furosemide were divided into two groups of rats with sodium depletion: one without access to water, and the other received water ad libitum. A stereotaxic surgery was realized for administering (7.5 nmol/rat) of 8-OH-DPAT and (2nmol/rats) WAY100135 intra- DRN. The animals received systemic WAY100135 (5 mg / kg, ip). Interestingly, microinjection of 8-OH-DPAT into the DRN raised an additional long-lasting increase of 0.3 M NaCl intake in sodium-depleted rats despite a high volume ingested 30 min after central injection. Conversely, repeated intra-DRN microinjection (7.5 nmol/rat) evoked a significant long-term decrease in 0.3 M NaCl intake in basal conditions and sodium-depleted rats. Administration of WAY100135 did not alter the responses of ingestion of water or 0.3 M NaCl in the group with no access to water. On the other hand, the 5-HT1A antagonist promoted intense and long-term reduction in the natriorexigenic response, in the group that received water ad libitum. Acute administration of 5-HT1A antagonist significantly decreased de 0.3 M NaCl ingestion in modified FUROCAP and modified beta-adrenergic protocols rats . This response possibly demanded an increased 5-HT activity during salt satiety signaling along the consummatory phase. These results show a clear-cut involvement of the DRN 5-HT1A somatodendritic autoreceptors in sodium satiety signaling under basal conditions and during the consummatory phase of salt intake in sodium-depleted rats.eng
dc.contributor.advisor1Reis, Luis Carlos
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2679836949147357por
dc.contributor.referee1Carvalho, Denise Pires
dc.contributor.referee2Ventura, Renato Rizo
dc.contributor.referee3Olivares, Emerson Lopes
dc.creator.ID106.615.137-77por
dc.creator.Latteshttp://lattes.cnpq.br/9292722675695467por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma Multicêntrico de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesAGHAJANIAN, G. K.; SPROUSE, J. S. & RASMUSSEN, K. Physiology of the midbrain serotonin system. In: Psychopharmacology: The Third Generation of Progress, New York, Raven Press, p. 141-149, 1987. ALBERT, P. R. & LEMONDE, S. 5-HT1A receptors, gene repression, and depression: guilt by association. Neuroscientist, 6:575-93, 2004. ALBERT, P. R.; LEMBO, P.; STORRING, J. M.; CHAREST, A & SAUCIER, C. The 5-HT1A receptor: signaling, desensitization, and gene transcription. Neuropsychopharmacology, 1:19-25, 1996 ALBERT, P. R.; ZHOU, Q. Y.; VANTOLl, H. H. M., BUNZOW, J. R.;CIVELLI, O. Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J. Biol. Chem. 265:5825–5832, 1990. ANTUNES-RODRIGUES, J., DE CASTRO, M., ELIAS, L. L. K., VALENÇA, M. M & McCANN, S. M. Neuroendocrine control of body fluid metabolism. Physiol. Rev. 84: 169-208, 2004. ANTUNES-RODRIGUES, J.; MCCANN, S. M. SAMSON, W. K. Central administration of atrial natriuretic factor inhibits saline preference in the rat. Endocrinology, 118:1726-1728, 1986. ANTUNES-RODRIGUES, J & COVIAN, M. R. Hypothalamic control of sodium chloride and water intake. Acta Physiol Lat AM 13:94-100, 1963. ARMSTRONG, W. E. Hipothalamic supraoptic and paraventriculr nuclei. In: The Rat Nervous System, New York: Academic, cap. 18: 377-390, 1995. ARTIGAS, F.; ROMERO, L.; DE MONTIGNY, C.; BLIER, P. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 19:378–383, 1996. ASSIÉ, M. B.; LOMENECH, H.; RAVAILHE V.; FAUCILLON, V. & NEWMAN-TANCREDI A. Rapid desensitization of somatodendritic 5-HT1A receptors by chronic administration of the high-efficacy 5-HT1A agonist, F13714: a microdialysis study in the rat. Brit J Pharmacol 149: 170-178, 2006 AZMITIA, E. C.; GANNON, P. J.; KHECK, N. M. Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacology 14: 35–46, 1996. AZMITIA EC. 1987. The CNS serotonergic system: Progression toward a collaborative organization. In: Psychopharmacology: The Third Generation of Progress, New York, Raven Press, p. 61-73, 1987. AZMITIA, E. C & SEGAL, M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. Journal of Comparative Neurology, 179: 641-668.1978. BADAUÊ-PASSOS, D. Jr.; VENTURA, R. R.; SILVA L. F. S.; OLIVARES, E. L. & REIS, L. C. Effect of brain serotoninergic stimulation on sodium appetite of euthyroid and hypothyroid rats. Exp Physiol, 88: 251-260, 2003. 76 BADAUÊ-PASSOS, D. Jr.; GODINO, A.; JOHNSON, A. K.; VIVAS, L. & ANTUNES-RODRIGUES J. 2007. Dorsal raphe nuclei integrate allostatic information evoked by sodium depletion-induced ingestion. Exp Neurol 206: 86-94, 2007. BERESFORD, M. J. & FITZSIMONS, J. T. Intracerebroventricular angiotensin II-induced thirst and sodium appetite in rat are blocked by the AT1 receptor antagonist, Losartan (DuP 753), but not by the AT2 antagonist, CGP 42112B. Exp Physiol, 77:761-764, 1992. BISLEY, J. W.; REES, S. M.; Mc KINLEY, M. J.; HARDS, D. K. & OLDFIELD, B. J. Identification of osmoresponsive neurons in the forebrain of the rat: a Fos study at the ultrastructural level. Brain Res, 720: 25–34, 1996. BLIER, P.; PIÑEYROi, G.; EL MANSARI, M.; BERGERON, R.; DE MONTIGNY, C. Role ofsomatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Annals New York Academy of Sciences, 861: 204–216, 1998. BLIER, P. & DE MONTIGNY, C. Current advances and trends in the treatment of depression. Trends Pharmacol. Sci. 15: 220–226, 1994. BLIER, P.; DE MONTIGNY, C. & CHAPUT, Y. A role for the serotonin system in the mechanism of action of antidepressant treatments: preclinical evidence. J. Clin. Psychiatry 51:14–20, 1990. BLIER, P. & DE MONTIGNY, C. Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse 1: 470–480, 1987. BURNET, P. W. J.; EASTWOOD, S. L.; LACEY, K. The distribution of 5HT1A and 5-HT2A receptor mRNA in human brain. Brain Res, 676: 157–168, 1995. BOOTH, R. E.; JOHNSON, J. P. & STOCKAND, J. D. Aldosterone. Adv Physiol Educ, 4: 8-20. 2002. BOSLEY & DESCARRIES, J. Monoamine innervation of the organum vasculosum laminae terminalis (OVLT): a high resolution radioautographic study in the rat. Comp Neurol, 272:545-561, 1988. BRESLIN, P. A.; SPECTOR, A. C. & GRILL, H. J. Chorda tympani section decreases the cation specificity of depletion-induced sodium appetite in rats. Am J Physiol, 264:319-323. 1993. BUONINCONTI, R. The juxtaglomerular apparatus: physiopathology and clinical aspects of renin-angiotensin system. Recenti Prog Med, 41:81-165, 1966. CALLERA, J. C.; OLIVEIRA, L. B.; BARBOSA, S. P.; COLOMBARI, D. S.; DE LUCA, L. A. JR & MENANI, J. V. GABA(A) receptor activation in the lateral parabrachial nucleus induces water and hypertonic NaCl intake. Neuroscience, 134:725-735, 2005. CARAS, M. L.; MAKENZIE, K.; RODWIN, B.; KATZ, D. B. Investigating the motivational mechanism of altered saline consumption following 5-HT(1A) manipulation. Behav. Neurosci, 122:4007–4015, 2008. 77 CASANOVAS, M. J.; M. T. VILARO, M. T.; MENGOD, G & ARTIGAS, F.Differential regulation of somatodendritic serotonin 5-HT1A receptors by 2-Week Treatments with the selective agonists alnespirone (S-20499) and 8-Hydroxy-2-(Di-n-Propylamino)tetralin: microdialysis and autoradiographic studies in rat brain. J Neurochem, 72:262-272, 1999. CASANOVAS, J. M.; LÉSOURD, M. & ARTIGAS, F. The effect of the selective 5-HT1A agonists alnespirone (S-20499) and 8-OH-DPAT on extracellular 5-hydroxytryptamine in different regions of rat brain. Br J Pharmacol, 122:733-41, 1997. CAVALCANTE-LIMA, H. R.; BADAUÊ-PASSOS, D. Jr.; DE-LUCCA, J. R. W.; LIMA, H. R. C.; COSTA-e-SOUSA, R. H.; OLIVARES, E. L.; CEDRAZ-MERCEZ, P. L.; REIS, R. O .; MEDEIROS, M. A.; CÔRTES, W. S. & REIS, L. C. Chronic excitotoxic lesion of dorsal raphe nucleus induces sodium appetite. Braz J Med Biol Res, 38: 1669-1675. 2005ª. CAVALCANTE-LIMA, H. R.; LIMA, H. R. C.; COSTA-e-SOUSA, R. H.; OLIVARES, E. L.; CEDRAZ-MERCEZ, P. L.; REIS, R. O.; BADAUÊ-PASSOS, D. Jr.; DE-LUCCA, J. R. W.; MEDEIROS, M. A.; CÔRTES, W. S. & REIS, L. C. Dipsogenic stimulation in ibotenic DRN-lesioned rats induces concomitant sodium appetite. Neurosci Lett, 374: 5-10, 2005b. CLIFFE, I. A.; BRIGHTWELL, C. I.; FLETCHER, A.; FORSTER, E. A.; MANSELL, H. L.; REILLY, Y.; ROUTLEDGE, C. & WHITE, A. C. (S)-N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide [(S)-WAY-100135]: a selective antagonist at presynaptic and postsynaptic 5-HT1A receptors. J. Med. Chem, 36:1509–1510, 1993. COLOMBARI, D. S.; MENANI, J. V.; JOHNSON, A. K.; Forebrain angiotensin type 1 receptors and parabrachial serotonin in the control of NaCl and water intake. Am J Physiol, 271:1470-6, 1996. COOPER, S. J,; FRYER, M. J. & NEILL, J. C. Specific effect of putative 5-HT1A, agonists, 8-OH-DPAT and gepirone, to increase hypertonic saline consumption in the rat. Evidence against a general hyperdipsic action. Physiol Behav, 43: 533-537, 1988. COOPER, S. J. & CICCOCIOPPO R. Effect of selective 5-HT1 agonists in water deprived rats on salt intake in two-choice tests. Pharmacol Biochem Behav, 45: 513-518, 1993. DAVERN, P. J. & MCKINLEY, M. J. Forebrain regions affected by lateral parabrachial nucleus serotonergic mechanisms that influence sodium appetite. Brain Research, 1339: 41 – 48, 2010. DAVIS, J. O. & FREEMAN, R. H. Mechanisms regulating renin release. Physiol Rev, 56:1-56. 1976. DE BOLD, A. J.; BORENSTEIN, H. B.; VERESS, A.T. & SONNENBERG, H. A rapid and potent natriureticresponse to intravenous injection of atrial myocardial extracts in rats. Life Science, 28: 89–94, 1981. DE GOBBI, J. I.; BARBOSA, S. P.; DE LUCA, L. A. JR.; THUNHORST, R.L.; JOHNSON, A. K. & MENANI, J. V. Activation of serotonergic 5-HT(1A) receptors in the lateral parabrachial nucleus increases NaCl intake. Brain Res, 1066:1-9, 2005. DE GOBBI, J. I.; BELTZ, T. G.; JOHNSON, R. F.; MENANI, J. V.; THUNHORST, R. L. & JOHNSON A. K. Non-NMDA receptors in the lateral parabrachial nucleus modulate sodium appetite. Brain Res, 1301:44-51. 2009. 78 DICKINSON, K. M.; KEOGH, J. B. & CLIFTON, P. M. Effects of a low-salt diet on flow-mediated dilatation in humans. Am J Clin Nutr, 89:485-490, 2009. DUMAN, R. S. Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromol Med, 5:11–26. 2004. FARGIN, A.; RAYMOND, J. R.; LOHSE, M. J.; KOBILKA, B. K.; CARON, M. G. & LEFKOWITZ, R. J. The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 335:358–360, 1988. FERREIRA, D. M. & MENESCAL-DE-OLIVEIRA, L. Role of dorsal raphe nucleus 5-HT1A and 5-HT2 receptors in tonic immobility modulation in guinea pigs. Brain Research 1285: 69 – 76, 2009. FITTS, D. A. Angiotensin II receptors in SFO but not in OVLT mediate isoproterenol-induced thirst. Am. J. Physiol, 267: 7–15, 1994. FITTS, D. A.; TJEPKES, D. S.; BRIGHT, R. O. Salt appetite and lesions of the ventral part of the ventral median preoptic nucleus. Behav. Neurosci, 104: 818–827, 1990. FITTS, D. A. & MASSON, D. B. Forebrain sites of action for drinking and salt appetite to angiotensin or captopril. Behav Neurosci, 103:865-872, 1989. FITZSIMONS, J. T. Angiotensin, thirst, and sodium appetite. Physiol Rev, 78: 583-686, 1998. FITZSIMONS, J. T. Physiology and Pathology of thirst and sodium appetite. In: SELDIN DW; GIEBISCH G (Eds). The kidney: physiology and pathophysiology. New York: Raven Press, P 885-901,1985. FLETCHER, A.; BILL, D. J.; BILL, S. J.; CLIFFE, I. A.; DOVER, G. M.; FORSTER, E. A.; HASKINS, J. T.; JONES, D.; MANSELL, H. L. & REILLY, Y. WAY100135: a novel, selective antagonist at presynaptic and postsynaptic 5-HT1A receptors. Eur J Pharmacol, 24: 283-291, 1993. FRANK, M. J.; CONTRERAS, R. J. & HEITTINGER, T. P. Nerves fibers sensitive to ionic taste stimuli in chorda tympani of the rat. J Neurophysiol, 50: 941-960, 1983. FRANCHINI, L. H.; JOHNSON, A. K. & VIVAS, L. Sodium appetite andFos activation in serotonergic neurons. American Journal of Physiology, 282: 235-243, 2002. FRANCHINI, L.F. & VIVAS, L Distribution of Fos immunoreactivity in rat brain after sodium consumption induced by peritoneal dialysis. Am. J. Physiol, 276: 1180–1187, 1999. FONSECA, F.V.; MECAWI, A.S.; ARAUJO, I. G.; ALMEIDA-PEREIRA, G.; MAGALHÃES-NUNES, A. P.; BADAUÊ-PASSOS, D Jr. & REIS LC. 2009. Role of the 5-HT1A somatodendritic autoreceptor in the dorsal raphe nucleus on salt satiety signaling in rats. Exp. Neurology, 217: 353-360, 2009. FULWILER, C. E. & SAPER, C. B. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res, 319:229-59, 1984. 79 GARTSIDE, S. E.; UMBERS, V.; HAJOS, M. & SHARP, T. Interaction between a selective 5-HT1A receptor antagonist and na SSRI in vivo: Effects on 5-HT cell firing and extracellular 5-HT. Br J Pharmacol, 115:1064–1070, 1995. GANTEN. D. & STOCK, G. Humoral and neurohormonal aspects of blood pressure regulation: focus on angiotensin. Klin Wochenschr, 1:31-41. Review. 1978. GEERLIN, J. C. & LOEWY, A. D. Central regulation of sodium appetite. Exp Physiol, 93:178–209. 2008. GINGRICH, J. A. & AND HEN, R. Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology, 155:1–10. 2001. GOLDIN, A. L.; BARCHI, R. L.; CALDWELL, J. H.; HOFMANN, F.; HOWE, J. R.; HUNTER, J. C. Nomenclature of voltage-gated sodium channels. Neuron, 28: 365–368, 2000. GODINO, A.; MARGATHO, L. O; CAEIRO, X. E.; ANTUNES-RODRIGUES, J. & VIVAS, L. Activation of lateral parabrachial afferent pathways and endocrine responses during sodium appetite regulation. Exp Neurol, 221:275-284, 2009. GODINO, A.; DE LUCA, LA, JR.; ANTUNES-RODRIGUES, J. & VIVAS, L. Oxytocinergic and serotonergic systems involvement in sodium intake regulation: satiety or hypertonicity markers? Am J Physiol Regul Integr Comp Physiol, 293:1027-1036, 2007. GOGOS, A.; KUSLJIC, S. & VAN DEN BUUSE, M. 8-OH-DPAT-induced effects on prepulse inhibition: pre- vs. post-synaptic 5-HT1A receptor activation. Pharmacol Biochem Behav. 81:664-72, 2005. GRAEFF, F. G.; GUIMARÃES, F. S.; DE ANDRADE, T. G. & DEAKIN, J. F. Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav, 54:129-141, 1996. GRIEBEL, G. 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol Ther, 65:319-395, 1995. GRIGNASCHI, G.; INVERNIZZI, R. W.; FANELLI, E.; FRACASSO, C.; CACCIA, S. & SAMANIN, R. Citalopram-induced hypophagia is enhanced by blockade of 5-HT1A receptors: Role of 5-HT2C receptors. Br J Pharmacol, 124:1781–1787, 1998. HAMILTON, R. B. & NORGREN, R. Central projections of gustatory nerves in the rat. J Comp Neurol, 222:560-577, 1984. HARIKUMAR, K. G.; JOHN, P. T. & CHATTOPADHYAY, A. Role of disulfides and sulfhydryl groups in agonist and antagonist binding in serotonin1A receptors from bovine hippocampus. Cell Mol Neurobiol, :665-681, 2000 HARIKUMAR, K. G. & CHATTOPADHYAY, A. Modulation of agonist and antagonist interactions in serotonin 1A receptors by alcohols.FEBS Lett, 438: 96-100, 1998. HARTLEY, J. E. & FLETCHER, A. The effects of WAY-100135 and 8-hydroxy-2-(di-n-propylamino) tetralin on feeding in the rat. Eur J Pharmacol, 252: 329-332, 2004. 80 HASHIMOTO, S.; INOUE, T. & KOYAMA, T. Effects of the coadministration of 5-HT1A receptor antagonists with na SSRI in conditioned fear stress- induced freezing behavior. Pharmacol Biochem Behav, 58:471–475, 1997. HERBERT H, MOGA MM, SAPER CB. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol, 293:540-80, 1990. HERVAS, I.; VILARO, M. T.; ROMERO, L.; SCORZA, M. C.; MENGOD, G. & ARTIGAS, F. Desensitization of 5-HT(1A) autoreceptors by a low chronic fluoxetine dose effect of the concurrent administration of WAY- 100635. Neuropsychopharmacology, 24:11–20., 2001. HJORTH, S.; BENGTSSON, H.J.; KULLBERG, A.; CARLZON, D.; PEILOT, H. & AUERBACH, S.B. Serotonin autoreceptor function and antidepressant drug action. J. Psychopharmacol, 14, 177–185, 2000. HOEBEL, B. G.; HERNANDEZ, L.; SCHAWARTZ, D. H.; MARK, G. P. & HUNTER, G. A. Microdialysis studies of brain norepinephrine, serotonin, and dopamine release during ingestive behavior. Theoretical and clinical implications. Ann N Y Acad Sci, 575:171–193. 1989. HUTSON, P.H.; SARNA, G.S.; O'CONNEL, M.T. & CURZON, G. Hippocampal 5-HT synthesis and release in vivo is decreased by infusion of 8-OHDPAT into the nucleus raphe dorsalis. Neurosci. Lett, 100, 276–280, 1989. INVERNIZZI, R.; CARLI, M.; DI CLEMENTE, A. & SAMANIN, R., 1991. Administration of 8-hydroxy-2-(Di-n-propylamino) tetralin in raphe nuclei dorsalis and medianus reduces serotonin synthesis in the rat brain: differences in potency and regional sensitivity. J. Neurochem, 56, 243–247, 1991. JACOBS, B. L. & AZMITIA, E. C. Structure and function of the brain serotonin system. Physiol Rev, Jan;72:165-229, 1992. JOHNSON, A. K. & THUNHORST, R. L. The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front Neuroendocrinol, 18:292-353, 1997. JOHNSON, A. K. & GROSS, P. M. Sensory circumventricular organs and brain homeostatic pathways. FASEB J 7, 678–686. 1993. LANÇA, A. J. & VAN DER KOOY, D. A serotonin-containing pathway from the area postrema to the parabrachial nucleus in the rat. Neuroscience, 14:1117-26, 1985. LEHR, D.; MALLOW, J. & KRUKOWSKI, M. J. Copious drinking and simultaneous inhibition of urine flow elicited by beta-adrenergic stimulation and contrary effect of alpha-adrenergic stimulation. Pharmacol Exp Ther, 158:150-163, 1967 LESHEMA, M.; KAVUSHANSKYA, A.; DEVYSB, J. M. & THORNTONB, C. S. Enhancement revisited: the effects of multiple depletions on sodium intake in rats vary with strain, substrain, and gender. Physiology & Behavior 82) 571– 580. 2004. LIND, R. W. Bi-directional, chemically specified neural connections between the subfornical organ and the midbrain raphe system. Brain Res, 384:250-261, 1986. 81 LU, B.; YANG, X. J.; CHEN, K.; YANG, D. J. & YAN, J. Q. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression. Neuroscience, 164: 1303-1311, 2009. KALIPATNAPU, S.; PUCADYIL, T. J.; HARIKUMAR, K. G. & CHATTOPADHYAY, A. Ligand binding characteristics of the human serotonin1A receptor heterologously expressed in CHO cells. Biosci Rep, 24:101-115, 2004. KATER, C. E.; BIGLIERI, E. G.; BRUST, N.; CHANG, B. & HIRAI, J. Regulation of the mineralocorticoid hormones in adrenocortical disorders with adrenocorticotropin excess. Clin Exp Hypertens A. 10:1749-58. 1982. KELLEY, A. E. Functional specificity of ventral striatal compartments in appetitive behaviors. Ann NY Acad Sci, 877:71–90, 1999. KIA, H. K.; BRISORGUEIL, M. J. & HAMON, M. Ultrastructural localization of 5-hydroxytryptamine1A receptors in rat brain. J. Neurosci. Res. 46: 697–708. 1996. KIM, S. M.; CHEN, L.; FAULHABER-WALTER, R.; OPPERMANN, M.; HUANG, Y.; MIZEL, D.; BRIGGS, P. J. & SCHNERMANN, J. Regulation of Renin Secretion and Expression in Mice Deficient in β 1- and β1-Adrenergic Receptors. Hypertension, 50:103-109, 2007. KLUSSMANN, E.; MARIC, K. & ROSENTHAL, W. The mechanisms of aquaporin control in the renal collecting duct. Rev Physiol Biochem Pharmacol, 141:33-95. 2000. KREISS, D. S. & LUCKI I. Chronic administration of the 5-HT1A receptor agonist 8-OH-DPAT differentially desensitizes 5-HT1A autoreceptors of the dorsal and median raphe nucleus. Synapse, 25:107–116. 1997. KOBILKA, B. K.; FRIELLE, T.; COLLINS, S.; YANG-FENG, T.; KOBILKA, T. S.; FRANCKE, U.; LEFKOWITZ, R. J. & CARON, M. G. An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature, 329:75–79. 1987. LESHEM, M.; KAVUSHANSKY, A.; DEVYS, J. M. & THORNTON, S. Enhancement revisited: the effects of multiple depletions on sodium intake in rats vary with strain, substrain, and gender. Physiol Behav, 82:571-580, 2004. LEHR, D.; MALLOW, J. & KRUKOWSKI, M. J. Copious drinking and simultaneous inhibition of urine flow elicited by beta-adrenergic stimulation and contrary effect of alpha-adrenergic stimulation. Pharmacol Exp Ther, 158:150-163, 1967. LIND, R. W. Bi-directional, chemically specified neural connections between the subfornical organ and the midbrain raphe system. Brain Research, 384: 250-261,1986. LU, B.; YANG, X. J.; CHEN, K.; YANG, D. J. & YAN, J. Q. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression. Neuroscience, 164: 1303-11. 2009. MAGALHÃES-NUNES, A. P.; BADAUÊ-PASSOS, Jr. D.; VENTURA, R. R.; GUEDES, Jr. D. S.; ARAÚJO, J. P.; GRANADEIRO, P. C.; MILANEZ-BARBOSA, H. K.; COSTA-e-SOUSA, R. H.; MEDEIROS, M. A.; ANTUNES-RODRIGUES, J. & REIS, L. C. Sertraline, a selective 82 serotoninreuptake inhibitor, affects thirst, salt appetite and plasma levels of oxytocin and vasopressin in rats. Exp Physiol, 92: 913-922, 2007. MARGATHO, L. O.; GIUSTI-PAIVA, A.; MENANI, J. V.; ELIAS, L. L.; VIVAS, L. M. & ANTUNESRODRIGUES, J. Serotonergic mechanisms of the lateral parabrachial nucleus in renal and hormonal responses to isotonic blood volume expansion. Am J Physiol, 297: 1190-1197. 2007. MARGATHO, L. O.; GODINO, A.; OLIVEIRA, F. R.; VIVAS, L. & ANTUNES-RODRIGUES, J. Lateral parabrachial afferent areas and serotonin mechanisms activated by volume expansion. 2008. Journal of Neuroscience Research, 86:3613–3621, 2008. MCKINLEY, M. J.; ALLEN, A. M.; MAY, C. N.; MCALLEN, R. M.; OLDFIELD, B. J.; SLY, D. & MENDELSOHN, F. A.Neural pathways from the lamina terminalis influencing cardiovascular and body fluid homeostasis. Clin Exp Pharmacol Physiol, 28 :990-992, 2001. MCKINLEY, M. J.; DENTON, D. A.; LEVENTER, M.; MISELIS, R. R; PARK, R. G.; TARJAN, E.; SIMPSON, J. B. & WEISINGER, R. S. The Physiology of Thirst and Sodium Appetite. New York: Plenum, p. 321, 1986. MCKINLEY, M. J.; DENTON, D. A. & WEISINGER, R. S. Sensors for antidiuresis and thirst-osmoreceptors or CSF sodium detectors? Brain Res, 141: 89–103, 1978. MENANI, J. V.; BARBOSA, S. P.; DE LUCA, L. A. JR.; DE GOBBI, J. I. & JOHNSON, A. K. Serotonergic mechanisms of the lateral parabrachial nucleus and cholinergic-induced sodium appetite. Am J Physiol, 282:837-841, 2002. MENANI, J. V.; COLOMBARI, D. S.; BELTZ, T. G.; THUNHORST, R. L. & JOHNSON, A. K. Salt appetite: interaction of forebrain angiotensinergic and hindbrain serotonergic mechanisms. Brain Res, 801: 29-35, 1998a. MENANI, J. V.; DE LUCA, L. A. JR. & JOHNSON, A. K. Lateral parabrachial nucleus serotonergic mechanisms and salt appetite induced by sodium depletion. Am J Physiol, 274: 555-560, 1998b. MENANI, J. V.; THUNHORST, R. L. & JOHNSON, A. K. Lateral parabrachial nucleus and serotonergic mechanisms in the control of salt appetite in rats. Am J Physiol, 270: 162-168, 1996. MENANI, J. V & JOHNSON, A. K. Lateral parabrachial serotonergic mechanisms: angiotensin-induced pressor and drinking responses. Am J Physiol, 1044-1049, 1995. MECAWI, A. S.; LEPLETIER, A.; ARAUJO, I.G. FONSECA, F.V. & REIS, L.C. Oestrogenic influence on brain AT1 receptor signalling on thirst and salt appetite in osmotic-stimulated and sodium-depleted rats. Exp. Physiol. 93, 1002–1010. 2008. MONTES & JONHSON (1990) MORRIS, M.J.; NA, E.S. & JOHNSON, A.K. Salt craving: the psychobiology of pathogenicsodium intake. Physiol. Behav, 94, 709–721, 2008. 83 MITCHELL, P. J. & REDFERN, P. H. Potentiation of the timedependent, antidepressant-induced changes in the agonistic behaviour of resident rats by the 5-HT1A receptor antagonist, WAY-100635. Behav Pharmacol, 8: 585–606, 1997. NAHMOD, V. E.; FINKIELMAN, S.; BENARROCH, E. E. & PIROLA, C. J. Angiotensin regulates release and synthesis of serotonin in brain. Am Ass Adv Scien, 4372: 1091-1093, 1978. NESTLER, E. J. Molecular mechanisms of drug addiction. Neuropharmacology, 1:24-32, 2004. NESTLER, E. J.; GOULD, E.; MANJI, H.; BUNCAN, M.; DUMAN, R. S.; GRESHENFELD, H. K.; HEN, R.; KOESTER, S.; LEDERHENDLER, I.; MEANEY, M.; ROBBINS, T.; WINSKY, L. & ZALCMAN, S. Preclinical models: status of basic research in depression. Biol Psychiatry, 52:503-528, 2002. NICHOLAS, M.; BARNES & TREVOR SHARP. A review of central 5-HT receptors and their function.Neuropharmacology, 38:1083–1152, 1999. NICOLL, R. A.; MALENKA, R. C. & KAUER, J. A. Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev, 70:513-565, 1990. NODA, M. Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain. Exp Physiol, 92.3 pp 513–522, 2007. OHMAN, L. E. & JOHSON, A. K. Lesions in the lateral parabrachial nucleus enhance drinking to angiotensina II and Isoproterenol. AmJ. Physiol, 256: 264-269, 1989. OLDFIELD, B. J. & MCKINLEY, M. J. Circunventricular organs. In Paxinos G. The rat Nervous System. San Diego: Academic Press, P 391-403. 1995. OLIVARES, E. L.; COSTA-E-SOUSA, R. H.; CAVALCANTE-LIMA, H. R.; LIMA, H. R.; CEDRAZ-MERCEZ, P. L. & REIS, L.C. 2003. Effect of electrolytic lesion of the dorsal raphe nucleus on water intake and sodium appetite. Braz. J. Med. Biol. Res. 36, 1709–1716. 2003. PAXINOS, G. & WATSON, C. The Rat Brain in Stereotaxic Coordinates. Academic Press, London. 1986. PEART, W. S. Renin 1978. Johns Hopkins Med J, 143:193-206, 1978. PEREIRA, D. T.; MENANI, J. V. & DE LUCA, LA. JR. FURO/CAP: a protocol for sodium intake sensitization Physiol Behav, 994:472-81, 2010. PIMENTA, E.; GADDAM, K. K.; ABAN, S. O. I.; DELL’ITALIA, S. H. L. J. & CALHOUN, D. A. Effects of Dietary Sodium Reduction on Blood Pressure in Subjects With Resistant Hypertension, 54:475-481, 2010. POULSEN, K. Radioimmunoassay of the components of the renin-angiotensin system. Dan Med Bull, 17:193-198, 1970. POW, D. V. Neuropeptide accretions in the endoplasmic reticulum of oxytocinergic neurons in cats, monkeys and rabbits: a widespread phenomenon. J Anat, 181:161-7, 1992. 84 RAYMOND, J. R.; MUKHIN, Y. V.; GELASCO, A.; TURNER J.; COLLINSWORTH, G.; GETTYS, T. W.; GREWAL, J. S. & GARNOVSKAYA, M. N. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther, 92:179-212, 2001 RAYMOND, J. R.; MUKHIN, Y. V.; GETTYS, T. W. & GARNOVSKAYA, M. N. The recombinant 5-HT1A receptor: G protein coupling and signaling pathways. Br. J. Pharmacol, 127:1751–1764, 1999. REIS, L. C. Role of the serotoninergic system in the sodium appetite control. An Acad Bras Cienc 79: 261-283. 2007. REIS, L. C.; RAMALHO, M. J.; FAVARETTO, A. L.; GUTKOWSKA, J.; MCCANN, S. M. ANTUNES-RODRIGUES, J. Participation of the ascending serotonergic system in the stimulation of atrial natriuretic peptide release. Proc Nat Acad Sci USA 91: 12022-12026. 1994. REIS, L. C.; RAMALHO, M. J. & ANTUNES-RODRIGUES, J. Brain serotoninergic stimulation reduces the water intake induced by systemic and central beta-adrenergic administration. Brazilian Journal of Medical and Biological Research, 25: 529-536, 1992. REIS, L. C.; RAMALHO, M. J. & ANTUNES-RODRIGUES, J. Effect of central administration of serotoninergic agonists on electrolyte excretion control. Braz J M Biol Res, 24: 633-641, 1991. REIS, L. C.; RAMALHO, M. J. & ANTUNES-RODRIGUES, J. Central serotonergic modulation of drinking behavior induced by angiotensin II and carbachol in normally hydrated rats. Effect of intracerebroventricular injection of MK-212. Brazilian Journal of Medical and Biological Research, 23: 1339-1342, 1990. REIS, W. L.; SAAD, W. A.; CAMARGO, L. A.; ELIAS, L. L. & ANTUNES-RODRIGUES, J. Central nitrergic system regulation of neuroendocrine secretion, fluid intake and blood pressure induced by angiotensin-II. Behav Brain Funct, 6:64. 2010. RETTIG, R.; GANTEN, D. & JOHNSON, A. K. Isoproterenol-induced thirst: renal and extrarenal mechanisms. Am J Physiol. 241:152-157. 1981. ROITMAN, M. F.; PATTERSON, T. A.; SAKAI, R. R.; BERNSTEIN, I. L. & FIGLEWICZ, D. P. Sodium depletion and aldosterone decrease dopamine transporter activity in nucleus accumbens but not striatum. Am J Physiol Regul Integr Comp Physiol, 276:1339–1345. 1999. RIAD, M.; WATKINS, K.C.; DOUCET, E.; HAMON, M. & DESCARRIES, L. Agonist-induced internalization of serotonin-1A receptors in the dorsal raphe nucleus (autoreceptors) but not hippocampus (heteroreceptors). Journal of Neuroscience, 21: 8378–8386, 2001. RICARDO, J. A. & KOH, E. T. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res, 153:1–26, 1978. ROUAH-ROSILIO, M.; OROSCO, M. & NICOLAIDIS, S. Serotoninergic modulation of sodium appetite in the rat. Physiol Behav, 55:811-816, 1994. SADOWSKA, H & KOCHANOWSKA, K. A review of the present knowledge of the renin-angiotensin-aldosterone system. Endokrynol Pol, 17:423-431, 1966. 85 SAKAI, R.R.; Ma, L.Y.; ZHANG, D. M.; McEWEN, B. S. FLUHARTY, S.J. Intracerebral administration of mineralocorticoid receptor antisense oligonucleotides attenuate adrenal steroid-induced salt appetite in rats. Neuroendocrinology, 64:425-429. 1996. SACKS, F. M.; SVETKEY, L. P.; VOLLMER, W. M.; APPEL, L. J.; BRAY, G. A.; HARSHA, D.; OBARZANEK, E.; CONLIN, P. R.; MILLER, E. R 3RD.; SIMONS-MORTON, D. G.; KARANJA, N. & LIN, P. H. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med, 344:3–10, 2001. SAKAI, R. R. & EPSTEIN, A. N.Dependence of adrenalectomy-induced sodium appetite on the action of angiotensin II in the brain of the rat. Behav Neurosci, 104:167-76, 1990. SAPER, C. B. & LOEWY, A. D. Efferent connections of the parabrachial nucleus in the rat. Brain Res, 197:291–317, 1980. SAWCHENKO, P. E. SWANSON, L. W.; STEINBUSCH, H. W. & VERHOFSTAD, A. A.The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res, 277:355-60, 1983. SCHECHTER, L. E.; BOLANOS, F. J.; GOZLAN, H.; LANFUMEY, L.; HAJ-DAHMANE S.; LAPORTE, A. M.; FATTACCINI C. M. & HAMON, M. Alterations of central serotoninergic and dopaminergic neurotransmission in rats chronically treated with ipsapirone: biochemical and electrophysiological studies. J. Pharmacol. Exp. Ther. 255: 1335–1347, 1990. SCHIFFRIN, E. L. & GENEST, J. Mechanism of captopril-induced drinking. Am J Physiol, 242:136–140. 1982. SCHMID, C.; CASTROP, H.; REITBAUER, J.; DELLA, B. R. & KURTZ, A. Dietary salt intake modulates angiotensin II type 1 receptor gene expression. Hypertension, 29:923–929, 1997. SCHOEFFTER, P.; BOBIRNAC, I.; BODDEKE, E. & HOYER, D. Inhibition of cAMP accumulation via recombinant human serotonin 5-HT1A receptors: considerations on receptor effector coupling across systems. Neuropharmacology, 36:429-437, 1997 SHIMIZU, H.; WATANABE, E.; HIYAMA, T. Y.; NAGAKURA, A.; FUJIKAWA, A.; OKADO, H.; YANAGAWA, Y.; OBATA, K. & NODA, M. Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron, 54: 59-72, 2007. SMITH, D. W. & DAY, T. A. Hypovolaemic and osmotic stimuli show distinct patterns of c-Fos expression in the rat subfornical organ. Brain Res, 698: 232–236, 1995a. SMITH, A. M. Z. & JOHNSON, A. K. Chemical topography of efferent projections from the median preoptic nucleus to pontine monoaminergic cell groups in the rat. Neurosci Lett, 199: 215–219, 1995b. SOTELO, C.; CHOLLEY, B.; EL MESTIKAWY, S.; GOZLAN, H. & HAMON, M. Direct Immunohistochemical evidence of the existence of 5-HT1A autoreceptors on serotoninergic neurons in the brain raphe nuclei. Eur. J. Neurosci, 2: 1144–1154, 1990. 86 SPROUSE, J.S. & AGHAJANIAN, G.K. Electrophysiological responses o serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse, 1: 3–9, 1987. STEIN, J. M.; LIND, R. W.; & JOHNSON, A. K.; Central serotonergic influences on renal electrolyte and water excretion. Neuropharmacology, 26: 1685-1692. 1987. STEINBUSCH, H. W. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience, 6:557-618, 1981. STOCKER, S. D.; STRICKER, E. M. & SVED, A. F. Acute hypertension inhibits thirst stimulated by ANG II, hyperosmolality, or hypovolemia in rats. Am J Physiol Regul Integr Comp Physiol, 280:214-224, 2001. SUNN, N.; MCKINLEY, M. J. & OLDFIELD, B. J. Circulating angiotensin II activates neurones in circumventricular organs of the lamina terminalis that project to the bed nucleus of the stria terminalis. J Neuroendocrinol, 15:725–731. 2003. SZCZEPAŃSKA-SADOWSKA, E.; SOBOCIŃSKA, J & SADOWSKI, B. Central dipsogenic effect of vasopressin. Am J Physiol, 242:R372-379,1982. TANAKA J, USHIGOME A, HORI K. & NOMURA M. Responses of raphe nucleus projecting subfornical organ neurons to angiotensin II in rats. Brain Research Bulletin, 45: 315-318. 1998. TANAKA, J.; USHIGOME, A.; HORI, K. & NOMURA, M. Responses of raphe nucleus projecting subfornical organ neurons to angiotensin II in rats. Brain Research Bulletin, 45: 315-318, 1998. TURNOFF, D. & ROWNTREE, L. G. Specificity of renin. Science, 93:281. 1941. THUNHORST, R. L.; XU, Z.; CICHA, M. Z.; ZARDETTO-SMITH, A. M. & JOHNSON, A. K. Fos expression in rat brain during depletion-induced thirst and salt appetite. Am J Physiol, 1274 :1807-1814. 1998. THUNHORST, R. L.; MORRIS, M. JOHNSON, A. K.; Endocrine changes associated with a rapidly developing sodium appetite in rats. Am J Physiol, 267:1168-73. 1994. THUNHORST, R. L.; FITTS, D. A. & SIMPSON, J. B. Angiotensin-converting enzyme in subfornical organ mediates captopril-induced drinking. Behav Neurosci, 103:1302-1310. 1989. THUNHORST, R. L. & JOHNSON, A. K. Renin-angiotensin, arterial blood pressure, and salt appetite in rats. Am J Physiol, 266:458-465, 1994. TIGERSTEDT, R. & BERGMAN, P. Niere und kreislauf. Arch. Physiol, 8: 223–271, 1898. TRILLAT, A. C.; MALAGIÉ, I. MATHE-ALLAINMAT, M. ANMELLA, M. C.; JACQUOT, C.; LANGLOIS, M. & GARDIER, A. M. Synergistic neurochemical and behavioral effects of fluoxetine and 5-HT1A receptor antagonists. Eur J Pharmacol, 357:179–184. 1998 TWAROG, B. M. & PAGE, I. H. Serotonin content of some mammalian tissues and urine and a method for its determination. Am. J. Physiol. 175:157–161. 1953. 87 VENTURA, R. R.; GIUSTI-PAIVA, A.; GOMES, D. A.; ELIAS, L. L. & ANTUNES-RODRIGUES, J. Neuronal nitric oxide synthase inhibition differentially affects oxytocin and vasopressin secretion in salt loaded rats. Neurosci Lett, 379:75-80, 2005. VERBALIS, J. G.; BLACKBURN, R. E.; HOFFMAN, G. E. & STRICKER, E. M. Establishing behavioral and physiological functions of central oxytocin: insights from studies of oxytocin and ingestive behaviors. Adv Exp Med Biol, 395:209-225. 1995. VILLA, P. de S.; CAMARGO, G. M.; CAMARGO, L. A. & SAAD, W. A. Activation of paraventricular nucleus of hypothalamus 5-HT1A receptor on sodium intake. Regul Pept, 140:142-7. 2007. WAGNER, C. KEES, F.; KRÄMER, B. K. & KURTZ, A. Role of sympathetic nerves for the stimulation of the renin system by angiotensin II receptor blockade. J Hypertens, 15:1463-1469, 1997. WALTHER, D. J.; PETER, J. U.; BASHAMMAKH, S.; HORTNAGL, H.; VOITS, M. & FINK, H. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science, 299:76, 2003. WATANABE, E.; FUJIKAWA, A.; MATSUNAGA, H.; YASOSHIMA, Y.; SAKO, N.; YAMAMOTO, T.; SAEGUSA, C. & NODA M . Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J Neurosci, 20: 7743–7751. 2000. WEISINGER, R. S.; DENTON, D. A.; MCKINLEY, M.J & NELSON, J. F. Dehydration-induced sodium appetite in rats. Physiol Behav, 34:45-50, 1985. WEISINGER, R. S.; DENTON, D. A.; DI NICOLANTONIO, R.; HARDS, D. K.; MCKINLEY, M. J.; OLDFIELD, B. & OSBORNE, P. G. Subfornical organ lesion decreases sodium appetite in the sodium-depleted rat. Brain Res, 526: 23-30, 1990. WEISS, M. L. & HATTON, G. I. Collateral input to the paraventricular and supraoptic nuclei in rat. I. Afferents from the subfornical organ and the anteroventral third ventricle region. Brain Res Bull 24:231–238, 1990. ZARDETTO-SMITH, A. M. & WATSON, C. A direct neural projection from the nucleus of the solitary tract to the subfornical organ in the rat. Neurosci.Lett. 80:163–166; 1987. ZIFA, E. & FILLION, G. 5-Hydroxytryptamine receptors. Pharmacol Rev. 144:401-458. 1992.por
dc.subject.cnpqFisiologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/61985/2011%20-%20Fabricia%20Viana%20%20Fonseca.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3897
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-09-16T14:47:00Z No. of bitstreams: 1 2011 - Fabricia Viana Fonseca.pdf: 878609 bytes, checksum: 0bf6489b3c87115120775c4ae4d9b756 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-09-16T14:47:00Z (GMT). No. of bitstreams: 1 2011 - Fabricia Viana Fonseca.pdf: 878609 bytes, checksum: 0bf6489b3c87115120775c4ae4d9b756 (MD5) Previous issue date: 2011-03-25eng
Appears in Collections:Mestrado Multicêntrico em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2011 - Fabricia Viana Fonseca.pdf2011 - Fabricia Viana Fonseca858.02 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.