Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/16048
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRosa, Maurilio-
dc.date.accessioned2024-03-05T13:34:08Z-
dc.date.available2024-03-05T13:34:08Z-
dc.date.issued2022-06-10-
dc.identifier.citationROSA, Maurílio. Caracterização morfológica de biomateriais utilizando a membrana amniótica equina como substrato. 2022. 81 f. Tese (Doutorado em Medicina Veterinária) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica. 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/16048-
dc.description.abstractNeste trabalho, buscou-se estabelecer e validar protocolos para coleta, preparo e preservação da membrana amniótica equina que possibilitem a obtenção de um biomaterial viável e livre de contaminação para utilização com fins terapêuticos. Foram testados e estudados os processos de preparo de três diferentes tipos de biomateriais, a membrana restituída de congelamento (AMNn), a membrana desidratada (AMNd) e a membrana descelularizada (AMNTx). Cada um desses materiais também foi caracterizado morfologicamente por imunofluorescência. Complementando o estudo, foi realizada a avaliação clínica pela utilização de cada biomaterial através do tratamento de reparo de lesões corneais em queratomalacia. O resultado do estudo dos processos de coleta, preparo e preservação, demonstrou ser eficiente para produção dos biomateriais. Os materiais AMNTx e AMNn foram os que demandaram mais recursos na sua produção e métodos de armazenamento. O biomaterial AMNd foi o que despendeu menores recursos de produção e armazenamento, demonstrando ser um material versátil capaz de ser utilizado em locais com pouca infraestrutura. Os resultados da caracterização morfológica por imunofluorescência de cada biomaterial culminaram com a comprovação da manutenção dos componentes laminina, fibronectina e dos colágenos I e IV na estrutura da maioria das amostras dos biomateriais estudados, com exceção da AMNd para colágeno I, que apresentou resultado inconclusivo. A avaliação dos tratamentos mostrou que a utilização desses biomateriais foi capaz de reduzir a formação de tecido cicatricial nas lesões. A comparação desses resultados também demonstrou que a membrana desidratada obteve o melhor desempenho clínico perante as membranas congeladas e descelurarizadas, quando observadas a quantidade de formação de tecido cicatricial, vascularização e área de córnea clara preservada. Essas informações obtidas tornam-se de suma importância, uma vez que estes biomateriais demonstraram que podem ser utilizados como bandagens curativas, servindo como arcabouço para migração, adesão, multiplicação celular, estímulo à angiogênese e controle da inflamação, durante o processo de cicatrização tecidual.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectBiomateriaispt_BR
dc.subjectMembrana amnióticapt_BR
dc.subjectEquinospt_BR
dc.subjectBiomaterialspt_BR
dc.subjectAmniotic membranept_BR
dc.subjectEquinept_BR
dc.titleImunomarcação dos componentes da matriz extracelular da membrana amniótica equina sob diferentes métodos de conservação e sua aplicação clínicapt_BR
dc.title.alternativeMorphological characterization of biomaterials using the equine amniotic membrane as substrate.en
dc.typeTesept_BR
dc.description.abstractOtherIn this work, we sought to establish and validate protocols for the collection, preparation and preservation of the equine amniotic membrane that make it possible to obtain a viable and contamination-free biomaterial for use with therapeutic purposes. The processes of preparation of three different types of biomaterials were tested and studied, the frozen-restituted membrane (AMNn), the dehydrated membrane (AMNd) and the decellularized membrane (AMNTx). Each of these materials was also morphologically characterized by immunofluorescence. Complementing the study, a clinical evaluation was performed using each biomaterial in the repair treatment of corneal lesions in keratomalacia. The result of the study of the collection, preparation and preservation processes proved to be efficient to produce biomaterials. AMNTx and AMNn were materials that demanded more resources in their production and storage methods. The AMNd biomaterial required less production and storage resources, proving to be a versatile material capable of being used in places with little infrastructure. The results of the morphological characterization by immunofluorescence of each biomaterial resulted in proof of the maintenance of the components laminin, fibronectin, and collagens I and IV in the structure of most samples of the studied biomaterials, except for AMNd for collagen I, which showed inconclusive results. The evaluation of the treatments showed that the use of these biomaterials was able to reduce the scar tissue formation in the lesions. The comparison of these results also showed that the dehydrated membrane had the best clinical performance against the frozen and decellularized membranes, when observing the amount of scar tissue formation, vascularization and preserved clear corneal area. This information obtained becomes of paramount importance, since these biomaterials have demonstrated that they can be used as curative bandages, serving as a scaffold for migration, adhesion, cell multiplication, stimulation of angiogenesis and control of inflammation during the tissue healing process.en
dc.contributor.advisor1Botteon, Paulo de Tarso Landgraf-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-9695-4217pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6104411705808124pt_BR
dc.contributor.referee1Botteon, Paulo de Tarso Landgraf-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-9695-4217pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6104411705808124pt_BR
dc.contributor.referee2Silva, Marta Fernanda Albuquerque da-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0544591266946007pt_BR
dc.contributor.referee3Carvalho, Vivian de Assunção Nogueira-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-4034-9675pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/6012855368365110pt_BR
dc.contributor.referee4Andrade, Alexandre Lima de-
dc.contributor.referee4IDhttps://orcid.org/0000-0002-3462-4722pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/6404176495306171pt_BR
dc.contributor.referee5Pellizzon, Claudia Helena-
dc.contributor.referee5Lattesttp://lattes.cnpq.br/0019393779801069pt_BR
dc.creator.ID509.514.837-49pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2803066160311519pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Veterináriapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Medicina Veterinária (Patologia e Ciências Clínicas)pt_BR
dc.relation.referencesAGREN, M.S.; WERTHÉN, M. The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds. The International Journal of Lower Extremity Wounds, v.6, n.2, p.82-97, 2007. ARCELLI, R.; TIBALDINI, P.; ANGELI, G.; BELLEZZA, E. Equine amniotic membrane transplantation in some ocular surface diseases in the dog and cat: a preliminary study. Veterinary Research Communications, v.33, Suppl 1, p.169-171, 2009. ARMSTRONG, P.B.; ARMSTRONG, M.T. Intracellular invasions and the organizational stability of tissues a role for fibronectin. Biotech et biophys Acta, v.1470, p.90-20, 2000. ARRIZABALAGA, J.H.; NOLLERT, M.U. Human amniotic membrane: a versatile scaffold for tissue engineering. ACS Biomaterials Science & Engineering, v.4, n.7, p.2226-2236, 2018. AUMAILLEY, M.; SMITH, N. The role of laminins in basement membrane function. Journal of Anatomy, v.193, Pt.1, p.1-21, 1998. BARACHETTI, L.; GIUDICE, C.; MORTELLARO, C.M. Amniotic membrane transplantation for the treatment of feline corneal sequestrum: pilot study. Veterinary Ophthalmology, v.13, n.5, p.326-330, 2010. BARROS, P.S.; GARCIA, J.A.; LAUS, J.L.; FERREIRA, A.L.; SALLES GOMES, T.L. The use of xenologous amniotic membrane to repair canine corneal perforation created by penetrating keratectomy. Veterinary Ophthalmology, v.1, n.2-3, p.119-123, 1998. BERTHIAUME, F.; MAGUIRE, T.J.; YARMUSH, M.L. Tissue engineering and regenerative medicine: History, progress, and challenges. Annual Review of Chemical and Biomolecular Engineering, v.2, p.403-430, 2011. BIGBIE, R.B.; SCHUMACHER, J.; SWAIM, S.F.; PUROHIT, R.C.; WRIGHT, J.C. Effects of amnion and live yeast cell derivative on second-intention healing in horses. American Journal of Veterinary Research, v.52, n.8, p.1376-1382, 1991. BROOKS, D.E. Inflammatory stromal keratopathies: medical management of stromal keratomalacia, stromal abscesses, eosinophilic keratitis, and band keratopathy in the horse. The Veterinary Clinics of North America. Equine Practice, v.20, n.2, p.345-vi, 2004. BROOKS, D.E. Complications of ophthalmic surgery in the horse. The Veterinary Clinics of North America. Equine practice, v.24, n.3, p.697-734, 2008. BROOKS, D.E.; MATTHEWS, A.G. Equine ophthalmology. In: GELATT, K.N. Veterinary ophthalmology. 4.ed. Ames: Blackwell, 2007. Cap.25, p.1165-1274. 64 BROOKS, D.E; OLLIVIER, F.J. Matrix metalloproteinase inhibition in corneal ulceration. Veterinary clinics of North America: Small Animal Practice, v.34, p.611-622, 2004. CHOI, U.S.; LABELLE, P.; KIM, S.; KIM, J.; CHA, J.; LEE, K.C.; LEE, H.B.; KIM, N.S.; KIM, M.S. Successful treatment of an unusually large corneal epithelial inclusion cyst using equine amniotic membrane in a dog. Veterinary Ophthalmology, v.13, n.2, p.122-125, 2010. CHOPRA, A.; THOMAS, B.S. Amniotic membrane: a novel material for regeneration and repair. Journal of Biomimetics Biomaterials and Tissue Engineering, v.18, n.1, 106, p.1-8, 2013. DAHLGREN, L.A. Regenerative medicine therapies for equine wound management. Veterinary Clinics of North America: Equine Practice, v.34, n.3, p.605-620, 2018. DESANTIS, S.; ACCOGLI, G.; ALBRIZIO, M.; ROSSI, R.; CREMONESI, F.; LANGE CONSIGLIO, A. Glycan profiling analysis of equine amniotic progenitor mesenchymal cells and their derived extracellular microvesicles. Stem Cells and Development, v.28, n.12, p.812-821, 2019. DUARTE, I.G.L.; DUVAL-ARAUJO, I. Amniotic membrane as a biological dressing in infected wound healing in rabbits. Acta Cirurgica Brasileira, São Paulo, v.29, n.5, p.334-339, 2014. ECHEVERRY, LF.G.; TORO, S.P.A.; GIRALDO, J.L.V. Implante de membrana amniótica en la corrección de úlceras corneales profundas de caninos y felinos. Revista de Medicina Veterinaria, Bogotá (Colombia), n.36, p.109-120, 2018. FARHADIHOSSEINABADI, B.; FARAHANI, M.; TAYEBI, T.; JAFARI, A.; BINIAZAN, F.; MODARESIFAR, K.; MORAVVEJ, H.; BAHRAMI, S.; REDL, H.; TAYEBI, L.; NIKNEJAD, H. Amniotic membrane and its epithelial and mesenchymal stem cells as an appropriate source for skin tissue engineering and regenerative medicine. Artificial Cells, Nanomedicine, And Biotechnology, v.46, sup.2, p.431-440, 2018. FAVARON, P.O.; CARVALHO, R.C.; BORGHESI, J.; ANUNCIAÇÃO, A.R.; MIGLINO, M.A. The amniotic membrane: development and potential applications - a review. Reproduction in Domestic Animals, v.50, n.6, p.881-892, 2015. FERENCZY, P.A.H.; SOUZA, L.B. Comparação dos meios de preparação e preservação de membrana amniótica humana para uso no tratamento de doenças da superfície ocular. Revista Brasileira de Oftalmologia, v.79, n.1, p.71-80, 2020. FUKUDA, K.; CHIKAMA, T.; NAKAMURA, M.; NISHIDA, T. Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. Cornea, v.18, n.1, p.73-79, 1999. 65 GALERA, P.D.; RIBEIRO, C.R.; SAPP, H.L.; COLEMAN, J.; FONTES, W.; BROOKS, D.E. Proteomic analysis of equine amniotic membrane: characterization of proteins. Veterinary Ophthalmology, v.18, n.3, p.198-209, 2015. GHOLIPOURMALEKABADI, M.; FARHADIHOSSEINABADI, B.; FARAJI, M.; NOURANI, M.R. How preparation and preservation procedures affect the properties of amniotic membrane? How safe are the procedures? Burns, v.46, n.6, p.1254-1271, 2020. GILGER, C.B. Equine ophthalmology. 3.ed. New Jersey: Willey-Blackwell, 2016. GODDI, A.; SCHROEDL, L.; BREY, E.M.; COHEN, R.N. Laminins in metabolic tissues. Metabolism: Clinical and Experimental, v.120, n.154775, p.1-10, 2021. GOODRICH, L.R.; MOLL, H.D.; CRISMAN, M.V.; LESSARD, P.; BIGBIE, R.B. Comparison of equine amnion and a nonadherent wound dressing material for bandaging pinch-grafted wounds in ponies. American Journal of Veterinary Research, v.61, n.3, p.326-329, 2000. HENRIKSEN, K.; KarsdalKARSDAL, M.A. Collagen Tipe I. In: KARSDAL, M.A. (Ed.). Biochemistry of collagens, laminins and elastin: Structure, function and biomarkers. Amsterdam: ScienceDirect, 2016, Chap.1., p.1-11. JAHKOLA, T.; TOIVONEN, T.; SMITTEN, V.K.; VIRTANEN, L.; WASENIUS, V-M.; BLOMQVIST, C. Cathepsin-D, urokinase plasminogen activator and type-1 plasminogen activator inhibitor in early breast cancer: an immunohistochemical study of prognostic value and relations to tenascin-C and other factors. British Journal of Cancer, v.80, p.167-174, 1999. KAYISLI, U.A.; KORGUN, E.T.; AKKOYUNLU, G.; ARICI, A.; DEMIR, R. Expression of integrin alpha5 and integrin beta4 and their extracellular ligands fibronectin and laminin in human decidua during early pregnancy and its sex steroid-mediated regulation. Acta Histochemica, v.107, n.3, p.173-185, 2005. KIERSZENBAUM, A.L.; TRES, L. Histologia e biologia celular - uma introdução à patologia. 3.ed. Rio de Janeiro: Elsevier/ Medicina Nacionais, 2012. p.122-124. KLEIMAN, R.; BANKER, G.; STEWARD, O. Inhibition of protein synthesis alters the subcellular distribution of mRNA in neurons but does not prevent dendritic transport of RNA. PNAS - Proceedings of the National Academy of Sciences of the United States of America, v.90, n.23, p.11192-11196, 1993. KNOLLINGER, A.M.; MCDONALD, J.E.; CARPENTER, N.A.; CROOK, E.K. Use of equine amniotic membrane free-island grafts for treatment of a midstromal corneal ulcer and descemetocele in a snow leopard (Panthera uncia). Journal of the American Veterinary Medical Association, v.253, n.12, p.1623-1629, 2018. 66 KUNZ-SCHUGHART, L.A.; HEYDER, P.; SCHROEDER, J.; KNUECHEL, R. A heterologous 3-D coculture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation. Experimental Cell Research, v.266, n.1, p.74-86, 2001. LACORZANA, J. Membrana amniótica, aplicaciones clínicas e ingeniería tisular. Revisión de su uso oftalmológico. Archivos de la Sociedad Espanola de Oftalmologia, v.95, n.1, p.15-23, 2020. LANGE-CONSIGLIO, A.; CORRADETTI, B.; MEUCCI, A.; PEREGO, R.; BIZZARO, D.; CREMONESI, F. Characteristics of equine mesenchymal stem cells derived from amnion and bone marrow: in vitro proliferative and multilineage potential assessment. Equine Veterinary Journal, v.45, n.6, p.737-744, 2013. LANGE-CONSIGLIO, A.; PERRINI, C.; TASQUIER, R.; DEREGIBUS, M.C.; CAMUSSI, G.; PASCUCCI, L.; MARINI, M.G.; CORRADETTI, B.; BIZZARO, D.; DE VITA, B.; ROMELE, P.; PAROLINI, O.; CREMONESI, F. Equine amniotic microvesicles and their anti-inflammatory potential in a tenocyte model in vitro. Stem Cells and Development, v.25, n.8, p.610-621, 2016. LANGE-CONSIGLIO, A.; LAZZARI, B.; PERRINI, C.; PIZZI, F.; STELLA, A.; CREMONESI, F.; CAPRA, E. MicroRNAs of equine amniotic mesenchymal cell-derived microvesicles and their involvement in anti-inflammatory processes. Cell Transplantation, v.27, n.1, p.45-54, 2018. LASSALINE, M.E.; BROOKS, D.E. Equine glaucoma. In: GILGER, B.C. (Ed.). Equine ophthalmology. St Louis: Elsevier, 2005. p.323-339. LASSALINE, M.E.; BROOKS, D.E.; OLLIVIER, F.J.; KOMAROMY, A.M.; KALLBERG, M.E.; GELATT, K.N. Equine amniotic membrane transplantation for corneal ulceration and keratomalacia in three horses. Veterinary Ophthalmology, v.8, n.5, p.311-317, 2005. MAMEDE, A.C.; CARVALHO, M.J.; ABRANTES, A.M.; LARANJO, M.; MAIA, C.J.; BOTELHO, M.F. Amniotic membrane: from structure and functions to clinical applications. Cell and Tissue Research, v.349, n.2, p.447-458, 2012. MCCOY, A.M.; ARRINGTON, J.; YAU, P.M. Effect of preparation method on the protein profile of equine amnion dressings. Journal of Proteome Research, v.18, n.6, p.2676-2685, 2019. MENEZES, K.; DE MENEZES J.R.; NASCIMENTO; M.A. SANTOS, R.S.; COELHO-SAMPAIO T. Polylaminin, a polymeric form of laminin, promotes regeneration after spinal cord injury. FASEB Journal, v.24, n.11, p.4513-4522, 2010. MORLA, A.; RUOSLAHTI, E. A fibronectin self-assembly site involved in fibronectin matrix assembly: reconstruction in a synthetic peptide. The Journal of Cell Biology, v.118, n.2, p.421-429, 1992. 67 MOYER, C.T. Evaluation of lyophilized human amnion for equine wound management. 48p. Thesis (Master of Science in Biomedical and Veterinary Sciences) – Faculty of Virginia Polytechnic Institute and State University, Leesburg, Virginia, 2018. MURPHY, S.V.; SKARDAL, A.; SONG, L.; SUTTON, K.; HAUG, R.; MACK, D.L.; JACKSON, J.; SOKER, S.; ATALA, A. Solubilized amnion membrane hyaluronic acid hydrogel accelerates full-thickness wound healing. Stem Cells Translational Medicine, v.6, n.11, p.2020-2032, 2017. NEADERLAND, M.H.; RIIS, R.C.; REBHUN, W.C.; ERB, H.N. Healing of experimentally induced corneal ulcers in horses. American Journal of Veterinary Research, v.48, n.3, p.427-430, 1987. NIKNEJAD, H.; PEIROVI, H.; JORJANI, M.; AHMADIANI, A.; GHANAVI, J.; SEIFALIAN, A.M. Properties of the amniotic membrane for potential use in tissue engineering. European Cells & Materials, v.15, p.88-99, 2008. OLIVEIRA, V.A.; ALVARENGA, J. Membrana amniótica preservada em glicerina no reparo de feridas cutâneas de membros locomotores e equinos. Ciência Rural, v.28, n.4, p.623-628, 1998. OLLIVIER, F.J. Medical and surgical management of melting corneal ulcers exhibiting hyperproteinase activity in the horse. Clinical Techniques in Equine Practice, v.4, n.1, p.50-71, 2005. OLLIVIER, F.J.; KALLBERG, M.E.; PLUMMER, C.E.; BARRIE, K.P.; O'REILLY, S.; TAYLOR, D.P.; GELATT, K.N.; BROOKS, D.E. Amniotic membrane transplantation for corneal surface reconstruction after excision of corneolimbal squamous cell carcinomas in nine horses. Veterinary Ophthalmology, v.9, n.6, p.404-413, 2006. PARRY, S.; STRAUSS, J.F.3rd. Premature rupture of the fetal membranes. The New England Journal of Medicine, v.338, n.10, p.663-670, 1998. PERRINI, C.; STRILLACCI, M.G.; BAGNATO, A.; ESPOSTI, P.; MARINI, M.G.; CORRADETTI, B.; BIZZARO, D.; IDDA, A.; LEDDA, S.; CAPRA, E.; PIZZI, F.; LANGE-CONSIGLIO, A.; CREMONESI, F. Microvesicles secreted from equine amniotic-derived cells and their potential role in reducing inflammation in endometrial cells in an in-vitro model. Stem Cell Research & Therapy, v.7, n.1, 169, p.1-15, 2016. PLUMMER, C.E.; OLLIVIER, F.; KALLBERG, M.; BROOKS, D.; BARRIE, K.; UTTER, M.; GELATT, K. The use of amniotic membrane transplantation for ocular surface reconstruction: a review and series of 58 equine clinical cases (2002-2008). Veterinary Ophthalmology, v.12 Suppl 1, p.17-24, 2009. POMPILI, S.; LATELLA, G.; GAUDIO, E.; SFERRA, R.; VETUSCHI, A. The charming world of the extracellular matrix: A dynamic and protective network of the intestinal wall. Frontiers in Medicine, v.8, n.610189, p.1-19, 2021. 68 SAND, J.M.B.; GENOVESE, F.; KARSDAL, M.A. Collagen IV. In: KARSDAL, M.A. (Ed.). Biochemistry of collagens, laminins and elastin: Structure, function and biomarkers. Amsterdam: ScienceDirect, 2016, Chap.4, p.31-41. SEO, M.S.; PARK, H.S.; KANG, J.G.; CHAE, J.S.; KANG, K.S. Isolation and characterization of equine amniotic membrane-derived mesenchymal stem cells. Journal of Veterinary Science, v.14, n.2, p.151-159, 2013. STRUBBE, D.T.; BROOKS, D.E.; SCHULTZ, G.S.; WILLIS-GOULET, H.; GELATT, K.N.; ANDREW, S.E.; KALLBERG, M.E.; MACKAY, E.O.; COLLANTE, W.R. Evaluation of tear film proteinases in horses with ulcerative keratitis. Veterinary Ophthalmology, v.3, n.2-3, p.111-119, 2000. VIOLINI, S.; GORNI, C.; PISANI, L.F.; RAMELLI, P.; CANIATTI, M.; MARIANI, P. Isolation and differentiation potential of an equine amnion-derived stromal cell line. Cytotechnology, v.64, n.1, p.1-7, 2012. WASSMER, C.H.; BERISHVILI, E. Immunomodulatory properties of amniotic membrane derivatives and their potential in regenerative medicine. Current Diabetes Reports, v.20, n.8, 31, p.1-10, 2020. WELCH, P.M.; GABAL, M.; BETTS, D.M.; WHELAN, N.C.; STUDER, M.E. In vitro analysis of antiangiogenic activity of fungi isolated from clinical cases of equine keratomycosis. Journal of Veterinary Ophthalmology, v.3, p.145-151, 2000.pt_BR
dc.subject.cnpqGenéticapt_BR
dc.subject.cnpqMedicina Veterináriapt_BR
dc.subject.cnpqZoologiapt_BR
Appears in Collections:Doutorado em Medicina Veterinária (Patologia e Ciências Clínicas)

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Maurilio Rosa.Pdf1.97 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.