Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9007
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlmeida, Wilk Sampaio de
dc.date.accessioned2023-12-21T18:33:20Z-
dc.date.available2023-12-21T18:33:20Z-
dc.date.issued2018-12-20
dc.identifier.citationALMEIDA, Wilk Sampaio de. Índices de desagregação e parâmetros de chuva intensa no Estado do Rio de Janeiro e efeito da chuva simulada na erosão hídrica e infiltração de água no solo. 2018. 99 f. Tese (Doutorado em Agronomia, Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9007-
dc.description.abstractA escassez de informações pluviográficas é o principal fator que limita a caracterização do potencial erosivo de determinada região e da estimativa da chuva crítica de projeto para uso em dimensionamento de projetos hidráulicos. Além disso, as práticas inadequadas de manejo do solo intensificam o processo de erosão hídrica e reduzem a infiltração de água no solo. Neste estudo foram estimadas as relações entre precipitações de diferentes durações (coeficientes de desagregação); os parâmetros das equações de chuvas intensas para diferentes localidades do Estado do Rio de Janeiro; avaliou-se a erosão entressulcos em um Argissolo Vermelho-Amarelo Distrófico típico sob preparo convencional (duas grades aradoras e uma niveladora) e diferentes combinações de intensidades (IP) e durações (Dur) de chuvas simuladas de igual erosividade; mediu-se a infiltração de água no solo medida por infiltrômetro de aspersão e de anéis concêntricos; e, realizou-se o ajuste dos modelos de Kostiakov-Lewis, Horton e Philip para estimativa da taxa de infiltração. No estudo de chuvas extremas foram consideradas séries máximas anuais de 5 min a 240 min, associadas a períodos de retorno de 5 a 100 anos. A relação média entre chuvas varia de 0,40±0,10 a 1,04±0,02, com maiores valores para a mesorregião Sul Fluminense. As relações entre chuvas obtidas para as localidades do Rio de Janeiro são maiores que aquelas constatadas em outras regiões do Brasil. As relações intensidade-duração-frequência possuem baixa variabilidade entre as localidades estudadas e os maiores valores dos parâmetros k, a, b e c foram constatados, respectivamente nas regiões Metropolitana, Baixadas Litorâneas e Centro Fluminense. Quanto aos estudos de erosão hídrica e infiltração, foi constatado que na condição de solo revolvido e sem cobertura em superfície, a produção de sedimentos variou de 2,17 g m-2 a 6,12 g m-2, respectivamente nos tratamentos IP 52,9 e Dur 78 min e IP 44,6 mm h-1 e Dur 106 min. Além disso, o escoamento superficial variou de 17,07 mm a 30,53 mm, respectivamente nos tratamentos IP 53,5 mm h-1 e 76,5 mm h-1. Nesse caso, maior taxa de infiltração estável (TIE) foi mensurada com o infiltrômetro de anéis concêntricos em comparação às taxas obtidas com infiltrômetro de aspersão. As durações e intensidades de chuvas alteraram a produção de sedimentos, mas não foi constatada diferença significativa no escoamento superficial. De outro modo, para o solo com palhada de milho em superfície, a produção de sedimentos variou de 1,89±1,26 g m-2 a 4,02±2,66 g m-2 e o escoamento superficial variou de 16,9±8,74 mm a 32,63±10,67 mm. Nessa condição, constatou-se que as durações e intensidades das chuvas não alteraram significativamente a produção de sedimentos e o escoamento superficial. A infiltração de água medida com os anéis concêntricos possui maior variabilidade, verificando-se TIE quantificada na duração 78 min é igual à TIE obtidas com o infiltrômetro de aspersão e estas maiores que as taxas das durações 106 e 60 min dos anéis concêntricos. Maiores erros na estimativa das taxas de infiltração pelos modelos de Kostiakov-Lewis, Horton e Philip foram constatados quando se utiliza os anéis concêntricos para medir a infiltração, contudo, na condição na presença de cobertura sobre o solo, o desempenho dos modelos foi semelhante.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectSimulador de chuvaspor
dc.subjectProcesso erosivo do solopor
dc.subjectPerda de solo e de águapor
dc.subjectChuvas intensaspor
dc.subjectTaxa de infiltraçãopor
dc.subjectRainfall simulatoreng
dc.subjectSoil erosion processeng
dc.subjectSoil and water losseseng
dc.subjectIntense rainfalleng
dc.subjectInfiltration rateeng
dc.titleÍndices de desagregação e parâmetros de chuva intensa no Estado do Rio de Janeiro e efeito da chuva simulada na erosão hídrica e infiltração de água no solopor
dc.title.alternativeDisaggregation indices and parameters of intense rainfall in the state of Rio de Janeiro and effect of simulated rainfall on hydric erosion and soil water infiltrationeng
dc.typeTesepor
dc.description.abstractOtherThe lack of rainfall information is the main factor limiting the characterization of erosive potential of a given region and estimation of critical rainfall for use in the design of hydraulic works. In addition, inadequate soil management practices intensify the process of water erosion and infiltration of water into the soil. In this study, the relationships between precipitations of different durations (coefficients of disaggregation) were estimated; the parameters of intense rainfall equations for different localities of State of Rio de Janeiro; erosion was evaluated in a Argissolo Vermelho-Amarelo Distrófico típico (Rhodudults, according the Soil Taxonomy) under conventional tillage (two harrows and a grader) and different combinations of intensities (IP) and durations (Dur) of simulated rainfall of equal erosivity; soil water infiltration measured by sprinkler infiltrometer and concentric rings was measured; and the adjustment of the Kostiakov-Lewis, Horton and Philip models was performed to estimate the infiltration rate. In the study of extreme rains, maximum annual series of 5 min to 240 min were considered, associated to return periods of 5 to 100 years. The mean rainfall ratios vary from 0.40±0.10 to 1.04±0.02, with higher values for the Southern Fluminense mesoregion. The relationships between rains obtained for the localities of Rio de Janeiro are higher than those observed in other regions of Brazil. The intensity-duration-frequency relations have low variability between studied locations and the highest values of the parameters k, a, b and c were found, respectively, in the Metropolitana, Baixadas Litorâneas and Centro Fluminense regions. As for water erosion and infiltration studies, it was found that in the condition of upturned soil and without surface cover, sediment yield ranged from 2.17 g m-2 to 6.12 g m-2, respectively in the treatments IP 52,9 and Dur 78 min and IP 44.6 mm h-1 and Dur 106 min. In addition, runoff ranged from 17.07 mm to 30.53 mm, respectively in the IP 53.5 mm h-1 and 76.5 mm h-1 treatments. In this case, a higher stable infiltration rate (SIR) was measured with the concentric ring infiltrator in comparison to rates obtained with a spray infiltrometer. Rainfall durations and intensities changed sediment yield, but no significant difference in runoff was observed. Otherwise, for soil with corn straw on the surface, sediment yield ranged from 1.89±1.26 g m-2 to 4.02±2.66 g m-2 and runoff ranged from 16.9±8.74 mm at 32.63±10.67 mm. In this condition, rainfall durations and intensities did not significantly alter sediment yield and surface runoff. The infiltration of water measured with the concentric rings has a greater variability, with an SIR quantified in the duration 78 min is equal to the SIR obtained with the sprinkler infiltrometer, and these are greater than the rates of the durations 106 and 60 min of the concentric rings. Higher errors in estimating infiltration rates by the Kostiakov-Lewis, Horton and Philip models were found when using concentric rings to measure infiltration, however, in the condition in the presence of ground cover, model performance was similar.eng
dc.contributor.advisor1Carvalho, Daniel Fonseca de
dc.contributor.advisor-co1Oliveira, Luiz Fernando Coutinho de
dc.contributor.advisor-co2Rouws, Janaína Ribeiro Costa
dc.contributor.referee1Carvalho, Daniel Fonseca de
dc.contributor.referee2Salvador, Conan Ayade
dc.contributor.referee3Schultz, Nivaldo
dc.contributor.referee4Panachuki, Elói
dc.contributor.referee5Donagemma, Guilherme Kangussu
dc.creator.Latteshttp://lattes.cnpq.br/3124271733732920por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesABUDI, I.; CARMI, G.; BERLINER, P. Rainfall simulator for field runoff studies. Journal of Hydrology, v.454-455, p.76-81, 2012. ALMEIDA, W.S.; CARVALHO, D.F.; PANACHUKI, E.; VALIM, W.C.; RODRIGUES, S.A.; VARELLA, C.A.A. Erosão hídrica em diferentes sistemas de cultivo e níveis de cobertura do solo. Pesquisa Agropecuária Brasileira, v.51, 1110-1119, 2016. ALMEIDA, W.S.; PANACHUKI, E.; OLIVEIRA, P.T.S.; SILVA, R.M.; ALVES SOBRINHO, T.; CARVALHO, D.F. Effect of soil tillage and vegetal cover on soil water infiltration. Soil e Tillage Research, v.175, p.130-138, 2018. ALVARES, C.A.; STAPE, J.L.; SENTELHAS, P.C.; GONÇALVES, J.L.M.; SPAROVEK, G. Köpp n’s l m l ss f on m p fo B z l. Meteorologische Zeitschrift, v.22, p.711- 728, 2013. ALVES SOBRINHO, T.; CARVALHO, D.F.; AQUINO, R.M.; MONTEBELLER, C.A. Programa computacional para a definição de parâmetros hidráulicos utilizados na determinação da energia cinética da chuva simulada em infiltrômetro de aspersão. Engenharia Rural, v.12, p.28-35, 2001. ALVES SOBRINHO, T.; MACPHERSON, H.G.; GÓMEZ, J.A.A portable integrated rainfall and overland flow simulator. Soil Use and Management, v.24, p.163-170, 2008. ALVES SOBRINHO, T.; VITORINO, A.C.T.; SOUZA, L.C.F.; GONÇALVES, M.C.; CARVALHO, D.F. Infiltração de água no solo em sistemas de plantio direto e convencional. Revista Brasileira de Engenharia Agrícola e Ambiental, v.7, p.191-196, 2003. AMUNDSON, R.; BERHE, A.A.; HOPMANS, J.W.; OLSON, C.; SZTEIN, A.E.; SPARKS, D.L. Soil and human security in the 21st century. Science, v.348, 1261071. doi:10.1126/science.1261071 AN, J.; ZHENG, F.L.; HAN, Y. Effects of rainstorm patterns on runoff and sediment yield processes. Soil Science, v.179, 293-303, 2014. ANACHE, J.A.A.; WENDLAND, E.C.; OLIVEIRA, P.T.S.; FLANAGAN, D.C.; NEARING, M.A. Runoff and soil erosion plot-scale studies under natural rainfall: A meta-analysis of the Brazilian experience. Catena, v.152, p.29-39, 2017. ANGULO-MARTÍNEZ, M. E BARROS, A.P. Measurement uncertainty in rainfall kinetic energy and intensity relationships for soil erosion studies: an evaluation using PARSIVEL disdrometers in the Southern Appalachian Mountains. Geomorphology, v.228, p.28-40, 2015. ASSOULINE, S. Infiltration into soils: conceptual approaches and solutions. Water Resources Research, v.49, p.1-18, 2013. ASSOULINE, S.; BEN-HUR, M. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena, v.66, 211-220, 2006. BAGARELLO, V.; CASTELLINI, M.; PRIMA, D.; IOVINO, M. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, v.213, p.492-501, 2014. BAGARELLO, V.; FERRO, V. Scale effects on plot runoff and soil erosion in a Mediterranean environment. Vadose Zone Journal, v.16, 2017. doi:10.2136/vzj2017.03.0059 BAKO, A.N.; DARBOUX, F.; JAMES, F.; JOSSERAND, C.; LUCAS, C. Pressure and shear stress caused by raindrop impact at the soil surface: scaling laws depending on the water depth. Earth Surface Processes and Landforms, v.41, p.1199-1210, 2016. BARTLETT, M.S. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London, v.160, 268-282, 1937. BERNARDO, S.; SOARES, A.A.; MANTOVANI, E.C. Manual de irrigação. UFV, Viçosa, p. 611, 2005. BERTOL, I.; SCHICK, J.; BANDEIRA, D.H.; PAZ-FERREIRO, J.; VÁZQUEZ, E.V. Multifractal and joint multifractal analysis of water and soil losses from erosion plots: A case study under subtropical conditions in Santa Catarina highlands, Brazil. Geoderma, v.287, 116- 125, 2017. BORRELLI, P.; ROBINSON, D.A.; FLEISCHER, L.R.; LUGATO, E.; BALLABIO, C.; ALEWELL, C.; MEUSBURGER, K.; MODUGNO, S.; SCHÜTT, B.; FERRO, V.; BAGARELLO, V.; OOST, K.V.; MONTANARELLA, L.; PANAGOS, P. An assessment of the global impact of 21st century land use change on soil erosion, Nature Communications, v.8, p.1-13, 2013. BROWN, M.B.; FORSYTHE, A.B. Robust tests for equality of variances. Journal of the American Statistical Association, v.69, p.364-367, 1974. CANTALICE, J.R.B.; SILVEIRA, F.P.M.; SINGH, V.P.; SILVA, Y.J.A.B.; CAVALCANTE, D.M.; GOMES, C. Interrill erosion and roughness parameters of vegetation in rangelands. Catena, v.148, p.111-116, 2017. CARVALHO, D.F.; EDUARDO, E.N.; ALMEIDA, W.S.; SANTOS, L.A.F.; ALVES SOBRINHO, T. Water erosion and soil water infiltration in different stages of corn development and tillage systems. Revista Brasileira de Engenharia Agrícola e Ambiental, v.19, p.1072-1078, 2015. CERDÀ, A. JURGENSEN, M.F. Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approach. Catena, v.85, p.231- 236, 2011. CERDÀ, A. Seasonal and spatial variations in infiltration rates in badland surfaces under mediterranean climatic conditions. Water Resources Research, v.35, p.319-328, 1999. CERDÀ, A. Simuladores de lluvia y su aplicación a la Geomorfología. Estado de la cuestión. Cuadernos de I. Geográfica, v.25, p.45-84, 1999. CERDÀ, A.; PROSDOCIMI, M.; ARNÁEZ, J.; LASANTA, T.; RAMOS, M.C.; MARQUÉS, M.J.; RUIZ COLMENERO, M.; BIENES, R.; RUIZ SINOGA, J.D.; SEEGER, M.; RIES, J.B. Soil erosion processes in European vineyards: a qualitative comparison of rainfall simulation measurements in Germany, Spain and France. Hydrology, v.3, P.6, 2016. http://dx.doi.org/10.3390/hydrology3010006. CHAI, T.; DRAXLER, R.R. Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature. Geoscientific Model Development, v.7, p.1247-1250, 2014. CRUZ, E.S. Influência do preparo do solo e de plantas de cobertura na erosão hídrica de um Argissolo Vermelho-Amarelo, 2006. 69p Dissertação (Mestrado em Agronomia-Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro DERPSCH, R.; FRANZLUEBBERS, A.J.; DUIKER, S.W.; REICOSKY, D.C.; KOELLER, K.; FRIEDRICH, T.; STURNY, W.G.; SÁ, J.C.M.; WEISS, K. Why do we need to standardize no-tillage research? Soil & Tillage Research, v.137, p.16-22, 2014. ELLISON, W.D. Soil erosion studies - part I. Agricultural Engineering, v.28, p.145-146, 1947. AO I PS. S us of h Wo ld’s So l sou s (SWS ) - Main Report. (Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015). FAO. FAOSTAT - Food and Agriculture Organization of the United Nations, 2016. http://faostat3.fao.org/ (acesso 01.08.18). GIBBS, H.K.; RUESCH, A.S.; ACHARD, F.; CLAYTON, M.K.; HOLMGREN, P.; RAMANKUTTY, N.; FOLEY, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences of the United States of America, v.107, p.16732-16737, 2010. GOEBES, P.; SEITZ, S.; GEISLER, C.; LASSU, T.; PETERS, P.; SEEGER, M.; NADROWSKI, K.; SCHOLTEN, T. Momentum or kinetic energy - How do substrate properties influence the calculation of rainfall erosivity? Journal of Hydrology, v.517 p.310- 316, 2014. HE, J.; SUN, L.; GONG, H.; CAI, Q. Laboratory studies on the influence of rainfall pattern on rill erosion and its runoff and sediment characteristics. Land Degradation e Development, v.28, 1615-1625, 2017. HORTON, R.E. Analysis of runoff plat experiments with varying infiltration capacity, 1939. HORTON, R.E. The role of infiltration in the hydrological cycle. Trans. Am. Geophys. Union, v.14, p.446-460, 1933. HU, G.; TIAN, L.; ZHAO, L.; WU, X.; LI, R.; WU, T.; ZHU, X.; DU, E.; WANG, Z.; HAO, J.; LI, W.; WANG, S. Soil infiltration processes of different underlying surfaces in the permafrost region on the Tibetan Plateau. Hydrological Sciences Journal, 2018. ISERLOH, T.; FISTER, W.; SEEGER, M.; WILLGER, H.; RIES, J.B. A small portable rainfall simulator for reproducible experiments on soil erosion. Soil e Tillage Research, v.124, p.131-137, 2012. ISERLOH, T.; RIES, J.B.; ARNÁEZ, J.; BOIX-FAYOS, C.; BUTZEN, V.; CERDÀ, A.; ECHEVERRÍA, M.T.; FERNÁNDEZ-GÁLVEZ, J.; FISTER, W.; GEIßLER, C.; GÓMEZ, J.A.; GÓMEZ-MACPHERSON, H.; KUHN, N.J.; LÁZARO, R.; LEÓN, F.J.; MARTÍNEZMENA, M.; MARTÍNEZ-MURILLO, J.F.; MARZEN, M.; MINGORANCE, M.D.; ORTIGOSA, L.; PETERS, P.; REGÜÉS, D.; RUIZ-SINOGA, J.D.; SCHOLTEN, T.; SEEGER, M.; SOLÉ-BENET, A.; WENGEL, R.; WIRTZ, S. European small portable rainfall simulators: A comparison of rainfall characteristics. Catena, v.110, p.100-112, 2013. KATEBIKORD, A.; DARVISHAN, A.K.; ALAVI, S.J. Changeability of soil erosion variables in small field plots from different rainfall durations with constant intensity. Journal of African Earth Sciences, v.129, p.751-758, 2017. KAVIAN, A.; MOHAMMAD, M.; CERDÀ, A.; FALLAH, M.; ABDOLLAHI, Z. Simulated raindrop's characteristic measurements. A new approach of image processing tested under laboratory rainfall simulation. Catena, v.167, p.190-197, 2018. KEESSTRA, S.D.; BOUMA, J. WALLINGA, J.; TITTONELL, P.; SMITH, P.; CERDÀ, A.; MONTANARELLA, L.; QUINTON, J.N.; PACHEPSKY, Y.; VAN DER PUTTEN, W.H.; BARDGETT, R.D.; MOOLENAAR, S.; MOL1, G.; JANSEN, B.; FRESCO, L.O. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, v.2, p.111-128, 2016. KHAN, M.N.; GONG, Y.; HU, T.; LAL, R.; ZHENG, J.; JUSTINE, M.F.; AZHAR, M.; CHE, M.; ZHANG, H. Effect of Slope, Rainfall Intensity and Mulch on Erosion and Infiltration under Simulated Rain on Purple Soil of South-Western Sichuan Province, China. Water, v.8, p.528, 2016. doi:10.3390/w8110528 KINNELL, P.I.A. A review of the design and operation of runoff and soil loss plots. Catena, v.145, 257-265, 2016. KINNELL, P.I.A. Raindrop-induced saltation and the enrichment of sediment discharged from sheet and interrill erosion areas. Hydrological Processes, v.26, p.1449-1456, 2012. KOSTIAKOV, A.N. On the dynamics of the coefficient of water percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration. Transactions of the Sixth Commission of the International Society of Soil Science, Part A (Moscow), p.17-21, 1932. LASSU, T.; SEEGER, M.; PETERS, P.; KEESSTRA, S.D. The Wageningen rainfall simulator: setup and calibration of an indoor nozzle type rainfall simulator for soil erosion studies. Land Degradation e Development, v.26, p.604-612, 2015. LEWIS, M.R. The rate of infiltration of water in irrigation practice. Transactions of the American Geophysical Union, v.18, p.361-368, 1937. LI, C.; PAN, C. The relative importance of different grass components in controlling runoff and erosion on a hillslope under simulated rainfall. Journal of Hydrology, v.558, p.90-103, 2018. LI, X.Z. e FAN, G.S. Influence of organic matter content on infiltration capacity and parameter in field soils. Nongye Gongcheng Xuebao (Transactions of the Chinese Society of Agricultural Engineering), v.22 (3), p.188-190, 2006. MARTINEZ-HERNANDEZ, C.; RODRIGO-COMINO, J.; AND ROMERO-DIAZ, A. Impact of lithology and soil properties on abandoned dryland terraces during the early stages of soil erosion by water in southeast Spain. Hydrological Processes, v.31 (17), p.3095-3109, 2017. MARTÍNEZ-MURILLO, J.F.; NADAL-ROMERO, E.; REGÜÉS, D.; CERDÀ, A.; POESEN, J. Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: a review. Catena, v.106, p.101-112, 2013. MATHYS, N.; KLOTZ, S.; ESTEVES, M.; DESCROIX, L.; LAPETITE, J. M. Runoff and erosion in the Black Marls of the French Alps: observations and measurements at the plot scale. Catena, v.63, 261-281, 2005. MAYERHOFER, C.; MEIßL, G.; KLEBINDER, K.; KOHL, B.; MARKART, G. Comparison of the results of a small-plot and a large-plot rainfall simulator-Effects of land use and land cover on surface runoff in Alpine catchments. Catena, v.156, p.184-196, 2017. MERTEN, G.H.; MINELLA, J.P.G. The expansion of Brazilian agriculture: soil erosion scenarios. International Soil and Water Conservation Research, v.1, p.37-48, 2013. MONTGOMERY, D.R. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America, v.104, p.13268-13272, 2007. MORAES, A.G.L.; CARVALHO, D.F.; ANTUNES, M.A.H.; CEDDIA, M.B. Relationship between remote sensing data and field-observed interrill erosion. Pesquisa Agropecuária Brasileira, v.53, p.332-341, 2018. MORIASI, D.N.; ARNOLD, J.G.; VAN LIEW, M.W.; BINGNER, R.L.; HARMEL, R.D.; VEITH, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transations American Society of Agricultural and Biological Engineers, v.50, p.885-900, 2007. NASH, J.E. & SUTCLIFFE, J.V. River flow forecasting through conceptual models: part 1. A discussion of principles. Journal of Hydrology, v.10, p.282-290, 1970. OLIVEIRA, P.T.S.; NEARING, M.A.; WENDLAND, E.C. Orders of magnitude increase in soil erosion associated with land use change from native to cultivated vegetation in a Brazilian savannah environment. Earth Surface Processes and Landforms, v.40, p.1524-1532, 2015b. OLIVEIRA, P.T.S.; WENDLAND, E.C.; NEARING, M.A. Rainfall erosivity in Brazil: a review. Catena 100, 139-147, 2012. OLIVEIRA, P.T.S.; WENDLAND, E.C.; NEARING, M.A.; SCOTT, R.L.; ROSOLEM, R.; DA ROCHA, H.R. The water balance components of undisturbed tropical woodlands in the Brazilian cerrado. Hydrological Earth System Science, v.19, p.2899-2910, 2015c. OLIVEIRA, S.P.; LACERDA, N.B.; BLUM, S.C.; ESCOBAR, M.E.O.; OLIVEIRA, T.S. Organic carbon and nitrogen stocks in soils of Northeastern Brazil converted to irrigated agriculture. Land Degradation e Development, v.26, p.9-21, 2015a. PAN, C.Z.; SHANGGUAN, Z.P. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. Journal of Hydrology, v.331, 178-185, 2006. PANACHUKI, E.; ALVES SOBRINHO, T.; VITORINO, A.C.T.; CARVALHO, D.F.; URCHEI, M.A. Parâmetros físicos do solo e erosão hídrica sob chuva simulada, em área de integração agricultura-pecuária. Revista Brasileira de Engenharia Agrícola e Ambiental, v.10, p.261-268, 2006a. PANACHUKI, E.; ALVES SOBRINHO, T.; VITORINO, A.C.T.; CARVALHO, D.F.; URCHEI, M.A. Avaliação da infiltração de água no solo, em sistema de integração agricultura-pecuária, com uso de infiltrômetro de aspersão portátil. Acta Scientiarum Agronomy, v.28, p.129-137, 2006b. PANACHUKI, E.; BERTOL, I.; ALVES SOBRINHO, T.; OLIVEIRA, P.T.S.; RODRIGUES, D.B.B. Perdas de solo e de água e infiltração de água em Latossolo Vermelho sob sistemas de manejo. Revista Brasileira de Ciência do Solo, v.35, p.1777-1785, 2011. PANAGOS, P.; BORRELLI, P.; MEUSBURGER, K.; YU, B.; KLIK, A.; LIM, K.J; YANG, J.E.; NI, J.; MIAO, C.; CHATTOPADHYAY, N.; SADEGHI, S.H.; HAZBAVI, Z.; ZABIHI, M.; LARIONOV, G.A.; KRASNOV, S.F.; GOROBETS, A.V.; LEVI, Y.; ERPUL, G.; BIRKEL, C.; HOYOS, N.; NAIPAL, V.; OLIVEIRA, P.T.S.; BONILLA, C.A.; MEDDI, M.; NEL, W.; DASHTI, H.A.; BONIL, M.; DIODATO, N.; OOST, K.V.; NEARING, M.; BALLABIO, C. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports, v.7, p.4175, 2017. PARSONS, A.J.; STONE, P.M. Effects of intra-storm variations in rainfall intensity on interrill runoff and erosion. Catena, v.67, p.68-78, 2006. PHILIP, J.R. The theory of infiltration Sorptivity and algebraic infiltration equations. Soil Science, v.84, p.257-264, 1957. PHILIP, J.R. Theory of infiltration. Advances in Hydroscience, v.5, p.215-296, 1969. PIMENTEL, D. e BURGESS, M. Soil erosion threatens food production. Agriculture, v.3, p.443-463, 2013. POTT, C.A. e Di MARIA, I.C. Comparação de métodos de campo para determinação da velocidade de infiltração básica. Revista Brasileira de Ciência do Solo, v.27, p.19-27, 2003. R CORE TEAM, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. RAN, Q.; SU, D.; LI, P.; HE, Z. Experimental study of the impact of rainfall characteristics on runoff generation and soil erosion. Journal of Hydrology, v.424-425, 99-111, 2012. ROBINSON, D.A.; PANAGOS, P.; BORRELLI, P.; JONES, J.; MONTANARELLA, L.; TYE, A.; OBST, C.G. Soil natural capital in Europe; a framework for state and change assessment. Scientific Reports, v.7: 6706, 2017. RODRIGO COMINO, J. BOGUNOVIC, I.; MOHAJERANI, H.; PEREIRA, P.; CERDÀ, A.; SINOGA, J.D.R.; RIES, J.B. The impact of vineyard abandonment on soil properties and hydrological processes. Vadose Zone Journal, v.16 (12), p.2-7, 2017. SANTOS, M.A.N.; PANACHUKI, E.; ALVES SOBRINHO, T.; OLIVEIRA, P.T.S.; RODRIGUES, D.B.B. Water infiltration in an Ultisol after cultivation of common bean. Revista Brasileira de Ciência do Solo, v.38, p.1143-1152, 2014. SANTOS, T.E.M.; EDIVAN, R.S.; ABELARDO, A.A.M. Modeling of soil water infiltration with rainfall simulator in different agricultural systems. Revista Brasileira de Engenharia Agrícola e Ambiental, v.20, p.513-518, 2016. SCOTT, A.J.; KNOTT, M. A cluster analysis method for grouping means in the analysis of variance. Biometrics, v.30, p.507-512, 1974. SHAPIRO, S.S.; WILK, M.B. An analysis of variance test for normality (complete samples). Biometrika 52, 591-611, 1965. SIDIRAS, N. e ROTH, C.H. Infiltration measurements with double-ring infiltrometers and a rainfall simulator under different surface conditions on an Oxisol. Soil & Tillage Research, v.9, p.161-168, 1987. SIDIRAS, N. E VIEIRA, M.J. Behaviour of a dusky red Latosol Dystrophic (Oxisol) compacted by tractor wheels during sowing: yields of three crops. Pesquisa Agropecuária Brasileira, v.19, p.1285-1293, 1984. SIDIRAS, N., HENKLAIN, J.C. E DERPSCH, R. Vergleich von drei Bodenbearbeitungsverfahren in Bezug auf einige physikalische Eigenschaften, Boden- und Wasserkonservierung und Erträge von Soja und Weizen auf einem Oxisol. Zeits. Acker- und Pflanzenbau, v.151, p.137-148, 1982. TEIXEIRA, P.C.; DONAGEMMA, G.K.; FONTANA, A.; TEIXEIRA, W.G. (eds.). Manual de métodos de análise de solo. 3.ed. rev. e ampl. - Brasília, DF: Embrapa, 2017. 573p TOMASINI, B.A.; VITORINO, A.C.T.; GARBIATE, M.V.; SOUZA, C.M.A.; ALVES SOBRINHO, T. Infiltração de água no solo em áreas cultivadas com cana-de--açúcar sob diferentes sistemas de colheita e modelos de ajustes de equações de infiltração. Engenharia Agrícola, v.30, p.1060-1070, 2010. VAEZI, A.R.; AHMADI, M.; CERDÀ, A. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls. Science of the Total Environment, v.583, p.382-392, 2017. VARELLA, C.A.A.; PINTO, F.A.C.; QUEIROZ, D.M.; SENA JÚNIOR, D.G. Determinação da cobertura do solo por análise de imagens e redes neurais. Revista Brasileira de Engenharia Agrícola e Ambiental, v.6, n.2, p.225-9, 2002. WANG, B.; STEINER, J.; ZHENG, F.; GOWDA, P. Impact of rainfall pattern on interrill erosion process. Earth Surface Processes and Landforms, v. 42, p.1833-1846, 2017. WANG, L.; SHI, Z.H.; WANG, J.; FANG, N.F.; WU, G.L.; ZHANG, H.Y. Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: a case study of clay loam soil from the Loess Plateau, China. Journal of Hydrology, v.512, p.168-176, 2014. WANG, X.; ZHAO, X.; ZHANG, Z.; YI, L.; ZUO, L.; WEN, Q.; LIU, F.; XU, J.; HU, S.; LIU, B. Assessment of soil erosion change and its relationships with land use/cover change in China from the end of the 1980s to 2010. Catena, v.137, p.256-268, 2016. WOHL, E.; BARROS, A.; BRUNSELL, N.; CHAPPELL, N.A.; COE, M.; GIAMBELLUCA, T.; GOLDSMITH, S.; HARMON, R.; HENDRICKX, J.M.H.; JUVIK, J.; MCDONNELL, J.; OGDEN, F. The hydrology of the humid tropics. Nature Climate Change, v.2, p.655-662, 2012. WU, X.; WEI, Y.; WANG, J.; CAI, C.; DENG, Y.; XIA, J. RUSLE erodibility of heavy textured soils as affected by soil type, erosional degradation, and rainfall intensity: A field simulation. Land Degradation e Development, v.29, p.408-421, 2018. WU, X.; WEI, Y.; WANG, J.; XIA, J.; CAI, C.; WEI, Z. Effects of soil type and rainfall intensity on sheet erosion processes and sediment characteristics along the climatic gradient in central-south China. Science of the Total Environment, v.621, p.54-66, 2018. YEOMANS, J.C. e BREMNER, J.M. A rapid and precise method for routine determination of carbon in soil. Communications in Soil Science and Plant Analysis, v.19, p.1467-1476, 1988. ZHAO, L.; HOU, R.; WUB, F.; KEESSTRA, S. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments. Soil & Tillage Research, v.179, p.47-53, 2018.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/68544/2018%20-%20Wilk%20Sampaio%20de%20Almeida.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5472
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-03-21T20:16:51Z No. of bitstreams: 1 2018 - Wilk Sampaio de Almeida.pdf: 4915267 bytes, checksum: 11384190a5dc551b199775e3ca96fc1d (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-03-21T20:16:51Z (GMT). No. of bitstreams: 1 2018 - Wilk Sampaio de Almeida.pdf: 4915267 bytes, checksum: 11384190a5dc551b199775e3ca96fc1d (MD5) Previous issue date: 2018-12-20eng
Appears in Collections:Doutorado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Wilk Sampaio de Almeida.pdf4.8 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.