Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9236
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLima, Lidiane Gomes de
dc.date.accessioned2023-12-21T18:36:22Z-
dc.date.available2023-12-21T18:36:22Z-
dc.date.issued2022-08-31
dc.identifier.citationLIMA, Lidiane Gomes de. Padrões de distribuição de assembleias ictioplanctônicas em dois estuários tropicais do semiárido. 2022. 126 f. Tese (Doutorado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9236-
dc.description.abstractCompreender os processos que conduzem a formação das comunidades locais a partir do pool regional de espécies tem sido um dos principais objetivos da ecologia de comunidades. As espécies que ocupam os habitats disponíveis são filtradas através das restrições ambientais (filtros ambientais) que selecionam as espécies segregando nichos e favorecendo a especiação e a rotatividade de espécies. Além disso, as interações bióticas (filtros bióticos) influenciam nas variações da composição das espécies, com assembleias dominadas por espécies que apresentam vantagens competitivas. Esses filtros podem agir em escalas hierárquicas, particionando a diversidade de espécies de acordo com os componentes α (diversidade local), β (variação da diversidade entre locais) a γ (diversidade regional). O presente estudo teve como objetivos: 1) verificar a variação do ictioplâncton, do meio abiótico (variáveis ambientais locais e da paisagem) e a disponibilidade de recursos alimentares; e 2) analisar o efeito das variáveis ambientais locais e da paisagem nos padrões da diversidade beta das comunidades locais de dois estuários tropicais com diferentes pressões antrópicas: um situado em uma área urbana densamente povoada, e o outro localizado em uma área de proteção ambiental. O estudo foi realizado em três zonas, de acordo com o gradiente de salinidade (superior, intermediária e inferior), ao longo do canal principal dos estuários do rio Paraíba do Norte e Mamanguape – PB. Os resultados apontaram que as variáveis em escala local, bem como a disponibilidade de recursos alimentares constituíram filtros ambientais, os quais foram responsáveis pela formação das assembleias ao longo de ambos os estuários. No estuário mais impactado (Paraíba do Norte), as influências do gradiente trófico proporcionado pelas altas concentrações de nutrientes oriundas do despejo de esgotos, atividades agrícolas e carcinicultura, além de outros impactos antrópicos, podem ter resultado no número reduzido de espécies, baixa abundância de espécies e consequentemente numa menor diversidade beta, além de interferir nas suas funções de berçário para as espécies de peixes. Por outro lado, para o estuário menos impactado (Mamanguape), o gradiente ambiental conduzido pelas variações de temperatura, transparência e clorofila-a, bem como a disponibilidade de alimentos foram responsáveis pelos processos de formação de assembleias larvais distintas entre as zonas estuarinas, as quais foram direcionadas por meio da substituição de espécies, sugerindo a importância da heterogeneidade ambiental para a diversidade de peixes neste estuário.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectRelação espécies-ambientepor
dc.subjectDispersãopor
dc.subjectDesovapor
dc.subjectInterações bióticaspor
dc.subjectPadrões de diversidade de espéciespor
dc.subjectLarvas de peixepor
dc.subjectSpecies-environment relationshipeng
dc.subjectDispersaleng
dc.subjectSpawningeng
dc.subjectBiotic interactionseng
dc.subjectPatterns of species diversityeng
dc.subjectFish larvaeeng
dc.titlePadrões de distribuição de assembleias ictioplanctônicas em dois estuários tropicais do semiáridopor
dc.title.alternativeDistribution patterns of ichthyoplanktonic assemblages in two tropical estuaries in the brazilian semiarid regioneng
dc.typeTesepor
dc.description.abstractOtherUnderstanding the processes that lead to the formation of local communities from the regional pool of species has been one of the main objectives of community ecology. Species that occupy available habitats are filtered through environmental constraints (environmental filters) that select species by segregating niches and favoring speciation and species turnover. In addition, biotic interactions (biotic filters) influence variations in species composition, such as assemblages dominated by species that have competitive advantages. These filters can act on hierarchical scales, partitioning species diversity according to the components α (local diversity), β (variation of diversity between locations) to γ (regional diversity). The present study aimed to: 1) to assess the variation of the ichthyoplankton, the abiotic environment (local and landscape environmental variables) and the availability of food resources; and 2) to analyze the effect of local environmental and landscape variables on the patterns of beta diversity of the local communities of two tropical estuaries with different anthropic pressures: one located in a densely populated urban area, and the other located in an area of environmental protection. The study was carried out in three zones, according to the salinity gradient (upper, intermediate and lower), along the main channel of the estuaries of the Paraíba do Norte and Mamanguape – PB rivers. The results showed that the variables at local scale, as well as the availability of food resources were environmental filters, which were responsible for the formation of the assemblies along both estuaries. In the most impacted estuary (Paraíba do Norte), the influences of the trophic gradient provided by high nutrient concentrations from sewage disposal, agricultural activities and a shrimp farming, in addition to other anthropic impacts, may have resulted in the reduced number of species, low abundance of species and consequently a lower beta diversity, in addition to interfering with their nursery functions for fish species. On the other hand, for the less impacted estuary (Mamanguape), the environmental gradient driven by variations in temperature, transparency and chlorophyll-a, as well as food availability, were responsible for the spawning processes and formation of distinct larval assemblages between the estuarine zones. Which were directed through species substitution, suggesting the importance of environmental heterogeneity for fish diversity in this estuary.eng
dc.contributor.advisor1Araújo, Francisco Gerson
dc.contributor.advisor1ID040.983.233-20por
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-4551-1974por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7898069293489622por
dc.contributor.advisor-co1Pessanha, André Luiz Machado
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5517316070440241por
dc.contributor.referee1Araújo, Francisco Gerson
dc.contributor.referee1IDhttps://orcid.org/0000-0003-4551-1974por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7898069293489622por
dc.contributor.referee2Namiki, Cláudia Akemi Pereira
dc.contributor.referee2ID022.050.019-30por
dc.contributor.referee2IDhttps://orcid.org/0000-0001-9262-8409por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7722808588991475por
dc.contributor.referee3Santangelo, Jayme Magalhães
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8292200467538527por
dc.contributor.referee4Severino, Juliana dos Santos
dc.contributor.referee4ID074.038.914-90por
dc.contributor.referee5Hepp, Luiz Ubiratan
dc.contributor.referee5ID922.847.870-53por
dc.contributor.referee5IDhttps://orcid.org/0000-0002-8499-9549por
dc.contributor.referee5Latteshttp://lattes.cnpq.br/0784893347159686por
dc.creator.ID082.353.954-79por
dc.creator.Latteshttp://lattes.cnpq.br/3505584601106640por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesAESA – Agência Executiva de Gestão das Águas do Estado da Paraíba (2019). Climatologia da precipitação anual acumulada (mm) – ano 2019. Disponível em: http://site2.aesa.pb.gov.br/aesa/jsp/monitoramento/chuvas/climatologias Graficos.jsp. Acesso 01 junho 2019. ALAHUHTA, J.; KOSTEN, S.; AKASAKA, M.; AUDERSET, D.; AZZELLA, M. M.; BOLPAGNI, R.; BOVE, C. P.; CHAMBERS, P. A.; CHAPPUIS, E.; CLAYTON, J.; WINTON, M.; ECKE, F.; GACIA, E.; GECHEVA, G.; GRILLAS, P.; HAUXWELL, J.; HELLSTEN, S.; HJORT, J.; HOYER, M. V.; ILG, C.; KOLADA, A.; KUOPPALA, M.; LAURIDSEN, T.; HUA LI, E.; LUKÁCS, B. A.; MJELDE, M.; MIKULYUK, A.; MORMUL, R. P.; NISHIHIRO, J.; OERTLI, B.; RHAZI, L.; RHAZI, M.; SASS, L.; SCHRANZ, C.; SONDERGAARD, M.; YAMANOUCHI, T.; YU, Q.; WANG, H.; WILLBY, N.; ZHANG, X. K. & HEINO, J. (2017). Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. Journal of Biogeography, v. 44(8), 1758-1769. ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M. & SPAROVEK, G. (2014). Köppen‟s climate classification map for Brazil. Metereologische Zeitschrift. 22(6), 711-728. Doi:10.1127/0941- 2948/2013/0507. AMORIM, E.; RAMOS, S.; ELLIOTT, M. & BORDALO, A. A. (2016). Immigration and early life stages recruitment of the European flounder (Platichthys flesus) to an estuarine nursery: The influence of environmental factors. Journal of Sea Research 107, 56 – 66. Doi:10.1016 /j.seares.2015. 07.005. 111 ANDERSON, M.J.; GORLEY, R. N. & CLARKE, K.R. (2008). PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER–E Ltd., Plymouth, United Kingdom. APHA. (2005). Standard Methods for the Examination of Water and Wastewater, 20th edn. Washington, DC: APHA/AWWA/WPCF. ARAÚJO, H. M. P.; NASCIMENTO-VIEIRA, D. A.; NEUMANN-LEITÃO, S.; SCHWAMBORN, R.; LUCAS, A. P. O. & ALVES, J. P. H. (2008). Zooplankton community dynamics in relation to the seasonal cycle and nutrient inputs in an urban tropical estuary in Brazil. Brazilian Journal of Biology 68, 751-762. BAPTISTA, V.; LEITÃO, F.; MORAIS, P.; TEODÓSIO, M. A. & WOLANSKI, E. (2020). Modelling the ingress of a temperate fish larva into a nursery coastal lagoon. Estuarine, coastal and shelf science 235, 106601. Doi: 10.1016/j.ecss.2020.106601. BARLETTA-BERGAN, A.; BARLETTA, M. & SAINT-PAUL, U. (2002). Community structure and temporal variability of ichthyoplankton in North Brazilian mangrove creeks. Journal of Fish Biology 61, 33–51. Doi: 10.1111/j.10958649.2002.tb01759.x. BARROS, F.; BLANCHET, H.; HAMMERSTROM, K.; SAURIAU, P. G. & OLIVER, J. (2014). A framework for investigating general patterns of benthic β-diversity along estuaries. Estuarine, Coastal and Shelf Science 149, 223- 231. Doi: 10.1016/j.ecss.2014.08.025. BASELGA, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology Biogeography 19, 134–143. Doi:10.1111/j.1466-8238.2009.00490.x. BASELGA, A. & ORME, D. (2012). Betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3(5), 808-812. BASU, S.; GOGOI, P.; BHATTACHARYYA, S.; KUMAR, K. L.; DAS KUMAR, S. & DAS KUMAR, B. (2022). Variability in the zooplankton assemblages in relation to environmental variables in the tidal creeks of Sundarban estuarine system, India. Researh Square 1 -19. Doi: 10.21203/rs.3.rs-183370/v1. BATES, D.; MÄCHLER M. & BOLKER, B. (2011). Lme4: linear mixedeffects models using S4 classes. R package version 0.999375-42. https://CRAN.R project.org/package=lme4. Acesso em 19 de março de 2021. BENONE, N. L. & MONTAG, F. A. (2021). Métodos quantitativos para mensurar a diversidade taxonômica em peixes de riacho. Oecologia Australis 25(2), 398–414. Doi:10.4257/oeco.2021.2502.11. BINI, L. M., LANDEIRO, V. L., PADIAL, A. A., SIQUEIRA, T., & HEINO, J. (2014). Nutrient enrichment is related to two facets of beta diversity for 112 stream invertebrates across the United States. Ecology 95(6), 1569-1578. Doi: 10.1890/13-0656.1. BLABER, S. J. M. (2002). ̳Fish in hot water‘: the challenges facinh fish and fisheries research in tropical estuaries. Journal of Fish Biology 61, 1-20. BLEICH, S.; POWILLEIT, M.; SEIFERT, T., & GRAF, G. (2011). β-diversity as a measure of species turnover along the salinity gradient in the Baltic Sea, and its consistency with the Venice System. Marine Ecology Progress Series 436, 101-118. Doi: 10.3354/meps09219. BRUCET, S.; PÉDRON, S.; MEHNER, T.; LAURIDSEN, T. L.; ARGILLIER, C.; WINFIELD, I. J.; VOLTA, P.; EMMRICH, M.; HESTHAGEN, T.; HOLMGREN, K.; BENEJAM, L.; KELLY, F.; KRAUSE, T.; PALM, A.; RASK, M. & JEPPESEN, E. (2013). Fish diversity in European lakes: Geographical factors dominate over anthropogenic pressures. Freshwater Biology 58(9), 1779-1793. Doi:10.1111/fwb.12167. BO, T.; DORETTO, A.; LEVRINO, M. & FENOGLIO, S. (2020) Contribution of beta diversity in shaping stream macroinvertebrate communities among hydro-ecoregions. Aquatic Ecology 54, 957-97. Doi: 10.1007/s10452-020- 09786-6. BORCARD, D. & LEGENDRE, P. (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153, 51–68. Doi:10.1016/S0304-3800(01)00501-4. CAMARA, E. M.; ANDRADE-TUBINO, M. F.; FRANCO, T. P. & ARAÚJO, F. G. (2020). Multilevel decomposition of spatial and environmental effects on nearshore fish assemblages in tropical semienclosed ecosystems. Estuarine, Coastal and Shelf Science 237, 106691. Doi:10.1016/j.ecss.2020.106691. CAMARA, E. M.; CARAMASCHI, E. P.; DI DARIO, F. & PETRY, A. C. (2018). Short-term changes in two tropical coastal lagoons: effects of sandbar openings on fish assemblages. Journal of Coastal Research 34(1), 90-105. Doi: 10.2112/JCOASTRES-D-16-00026.1. CAMPOS, D. M. A. R.; SILVA, A. F.; SALES, N. S. & OLIVEIRA, R. E. M. C. C.; PESSANHA, A. L. M. (2015). Trophic relationship among fish assemblages in a mudflat within Brazilian marine protected area. Brazilian Journal of Oceanography 63 (2), 135-146. CARVALHO, J. C.; CARDOSO, P. & GOMES, P. (2012). Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecology Biogeography 21, 760– 771. Doi:10.1111/j.1466-8238. 2011.00694.x. CERHPB – Conselho Estadual de Recursos Hídricos da Paraíba (2004). Proposta de instituição do comitê de bacias hidrográficas do litoral norte. João Pessoa. Mimeo. 113 CHASE, J. M. (2010). Stochastic community assembly causes higher biodiversity in more productive environments. Science 328(5984), 1388- 1391. Doi:10.1126/science.1187820. CHASE, J. M. & LEIBOLD, M. A. (2003). Ecological Niches, Chivago University Press, Chicago. CHIN, A. T.; LINKE, J.; BOUDREAU, M.; THÉRIAULT, M. H.; COURTENAY, S. C.; CORMIER, R. & FORTIN, M. J. (2018). Beta diversity changes in estuarine fish communities due to environmental change. Marine Ecology Progress Series 603, 161-173. Doi: 10.3354/meps12683. CLARKE, K. R. & GORLEY, R. N. (2006). PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth. COSTA, M. D. P.; POSSINGHAM, H. P. & MUELBERT, J. H. (2016). Incorporating Early Life Stages of Fishes Into Estuarine Spatial Conservation Planning. Aquatic Conservation 26(6), 1013–1030. Doi: 10.1002/aqc.2584. COWEN, R. K.; PARIS, C. B. & SRINIVASAN, A. (2006). Scaling of Connectivity in Marine Populations. Science 311, 522. Doi: 10.1126/science.1122039. CRIST, T. O.; VEECH, J. A.; GERING, J. C.; SUMMERVILLE, K. S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β and γ diversity. The American Naturalist 162 (6), 734-743. DE-CARLI, B. P.; ALBUQUERQUE, F. P. De.; MOSCHINI-CARLOS, V.; POMPÊO, M. L. M. (2018). Comunidade zooplanctônica e sua relação com a qualidade da água em reservatórios do Estado de São Paulo. Iheringia Série Zoologia 108, 11. DOLBETH, M.; VENDEL, A. L.; BAETA, A.; PESSANHA, A. L. M. & PATRÍCIO, J. (2016). Exploring ecosystem functioning in two Brazilian estuaries with fish richness, traits and food webs. Marine Ecology Progress Series. 560, 41 - 55. Doi:10.3354/meps11895. DRAY, S.; LEGENDRE, P. & PERES-NETO P. R. (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196, 483–493. Doi:10.1016/j.ecolmodel.2006.02.015. ELLIOTT, M. & WHITFIELD, A. K. (2011). Challenging paradigms in estuarine ecology and management. Estuarine, Coastal and Shelf Science 94(4), 306-314. Doi: 10.1016/j.ecss.2011.06.016. ERÖS, T. (2007). Partitioning the diversity of riverine fish: the roles of habitat types and non-native species. Freshwater Biology 52, 1400-1415. 114 ESMAEILI, S. Y.; CORTE, G. N.; CHECON, H. H.; BILATTO, C. G.; LEFCHECK, J. S.; AMARAL, A. C. Z. & TURRA, A. (2021). Revealing the drivers of taxonomic and functional diversity of nearshore fish assemblages: Implications for conservation priorities. Diversity and Distributions. FAHAY, M. P. (1983). Guide to the early stages of marine fishes occurring in the western North Atlantic Ocean, Cape Hattaras to the southern Scotian Shelf. Journal of Northwest Atlantic Fishery Science 4, e1423. FARIA, A.; MORAIS, P. & CHICHARO, M. A. (2006). Ichthyoplankton Dynamics in the Guadiana Estuary and Adjacent Coastal Area, South-East Portugal. Estuarine Coastal Shelf Science 70(1-2), 85–97. Doi: 10.1016/j.ecss.2006. 05.032. FLORENTINO, A. C. & PENHA, J. (2011). High beta diversity of fishes in vegetated litoral zones of floodplain lakes in the Cuiabá River Basin, northern Pantanal, Brazil. Hydrobiologia 671, 137-146. FRANCISCO-RAMOS V. & ARIAS-GONZÁLEZ, J. E. (2013). Additive Partitioning of Coral Reef Fish Diversity across Hierarchical Spatial Scales throughout the Caribbean. Plos One 8(10), e78761. Doi:10.1371/journal.pone. 0078761. GAO, L.; CHENG, F.; SONG, Y. Q.; JIANG, W.; FENG, G. P.; LUO, Y. M. & XIE, S. (2018). Patterns of Larval Fish Assemblages Along the Direction of Freshwater Input Within the Southern Branch of the Yangtze Estuary, China: Implications for Conservation. Journal of Freshwater Ecology 33(1), 97–114. Doi: 10.1080/02705060.2018.1426503. GIANUCA, A. T.; DECLERCK, S. A. J.; LEMMENS, P. & DE MEESTER, L. (2017). Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of β-diversity. Ecology 98 (2), 525-533. GOMES-GONÇALVES, R. S. & ARAÚJO, F. G. (2022). Relationships between environmental heterogeneity and fish beta diversity in a tropical bay. Marine Biology Research, 1-13. DOI: 10.1080/17451000.2022.2063902 GÓMEZ-RODRÍGUEZ, C. & BASELGA, A. (2018). Variation among European beetle taxa in patterns of distance decay of similarity suggests a major role of dispersal processes. Ecography 41, 1–10. Doi:10.1111/ecog.03693. GONÇALVES, R.; CORREIA, A. D.; ATANASOVA, N.; TEODÓSIO, M. A.; BEN-HAMADOU, R. & CHÍCHARO, L. (2015). Environmental factors affecting larval fish community in the salt marsh area of Guadiana estuary (Algarve, Portugal). Scientia Marina 79 (1), 25 – 34. Doi:10.3989/scimar.04081.08A. 115 GRAY, J. S.; WU, R. S. & OR, Y.Y. (2002). Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series. 238, 249–279. GRAY, J. S. (1992). Eutrophication in the sea. In: Columbo G, Ferrari I, Ceccherelli VU, Rossi R (eds) Marine eutrophication and population dynamics. Olsen & Olsen, Fredensborg, 3–15. GUEDES, L. S. (2002). Monitoramento geoambiental do estuário do Rio Paraíba do Norte - PB por meio da cartografia temática digital e de produtos de sensoriamento remoto. 2002. 90 f. Dissertação (Mestrado em Geodinâmica; Geofísica) - Universidade Federal do Rio Grande do Norte. GUIMARÃES, T. F. R.; PETRY, A. C.; HARTZ, S. M., & BECKER, F. G. (2020). Influence of past and current factors on the beta diversity of coastal lagoon fish communities in South America. Journal of Biogeography 48(3), 639–649. Doi:10.1111/jbi.14029. HARTZ, S. M.; ROCHA, E. A.; BRUM, F. T.; LUZA, A. L.; FR, T. D. & BECKER, F. G. (2019). Influences of the area, shape and connectivity of coastal lakes on the taxonomic and functional diversity of fish communities in Southern Brazil. Zoologia (Curitiba) 36, e23539. Doi: 10.3897/zoologia.36.e23539. HEINO, J. & GRÖNROOS, M. (2014). Untangling the relationships among re- gional occupancy, species traits and niche characteristics in stream invertebrates. Ecology and Evolution 4, 1931–1942. Doi:10.1002/ece3.1076. HEINO, J.; MELO, A.S.; SIQUEIRA, T.; SOININEN, J.; VALANKO, S. & BINI, L. M. (2015). Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60 (5), 845–869. Doi: 10.1111/fwb.12533. HENRIQUES, S.; CARDOSO, P.; CARDOSO, I.; LABORDE, M.; CABRAL, H. C. & VASCONCELOS, R. P. (2016). Processes underpinning fish species composition patterns in estuarine ecosystems worldwide. Journal of Biogeography 44(3), 627-639. Doi:10.1111/jbi.12824. JOSEFSON, A. B. & GÖKE, C. (2014). Disentangling the effects of dispersal and salinity in estuary on beta diversity in estuarine benthic invertebrate assemblages. Journal of Biogeography 40, 1000-1009. KINGSFORD, M. J. & GRAY, C. A. (1996). Influence of Pollutants and Oceanography on Abundance and Deformities of Wild Fish Larvae, in: Schmitt, R.J., Osenberg, C.W. (Eds.), Detecting Ecological Impacts: Concepts and Applications in Coastal Habitats. Academic Press, New York, NY, USA, 235–256. KRAFT, N. J. B.; ADLER, P. B.; GODOY, O.; JAMES, E. C.; FULLER, S. & LEVINE, J. M. (2015). Community assembly, coexistence and environmental 116 filtering metaphor. Functional Ecology. 29, 592-599. Doi: 10.1111/1365- 2435.12345. LACERDA, C. H. F.; BARLETTA, M. & DANTAS, D. V. (2014).Temporal patterns in the intertidal faunal community at the mouth of a tropical estuary. Journal of Fish Biology 85, 1571–1602. Doi:10.1111/jfb.12518. LANGENHEDER, S.; BERGA, M.; ÖSTMAN, Ö. & SZÉKELY, A. J. (2012). Temporal variation of b-diversity and assembly mechanisms in a bacterial metacommunity. The ISME Journal 6, 1107– 1114. LEGENDRE, P. (2014). Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography. 23, 1324– 1334. Doi:10.1111/geb.12207. LEGENDRE, P. & DE CA‘ CERES, M. (2013). Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters 16, 951–963. Doi: 10.1111/ele.12141. LEIBOLD, M. A.; HOLYOAK, M.; MOUQUET, N.; AMARASEKARE, P.; CHASE, J. M.; HOOPES, M. F.; HOLT, R. D.; SHURIN, J. B.; LAW, R.; TILMAN, D.; LOREAU, M. & GONZALEZ, A. (2004). The metacommunity concept: a framework for multi‐ scale community ecology. Ecology Letters 7(7), 601-613. LI, Y.; WANG, R.; SU, H.; WANG, J.; XIE, P. & CHEN, F. (2022). Eutrophication and predation mediate zooplankton diversity and network structure. Limnology and Oceanography 67, 133-145. Doi: 10.1002/lno.11957. LIMA, A. R. A.; BARLETTA, M. & COSTA, M. F. (2015). Seasonal distribution and interactions between plankton and microplastics in a tropical estuary. Estuarine, Costal and Self Science 165, 213-225. Doi: 10.1016/j.ecss.2015.05.018. LOGUE, J. B.; MOUQUET, N.; PETER, H.; HILLEBRAND, H.; DECLERCK, P.; FLOHRE, A.; GANTNER, S.; GÜLZOW, N.; HÖRTNAGL, P.; MEIER, S. & PECCEU, B. (2011). Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology and Evolution 26, 482–491. LORENZEN, C. (1967). Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography 12, 343–346. McKINLEY, A.; MISKIEWICZ, A.; TAYLOR, M. D. & JOHNSTON, E. L. (2011). Strong links between metal contamination, habitat modification and estuarine larval fish distributions. Environmental Pollution 159(6), 1499-1509. Doi: 10.1016/j.envpol.2011.03.008. MACHADO, I.; RODRÍGUEZ-GALLEGO, L.; LESCANO, C. & CALLIARI, D. (2021). Species-specific traits and the environment drive ichthyoplankton 117 fluxes between an intermittently closed-open lagoon and adjacent coastal waters. Estuarine, Coastal and Shelf Science 261, 107549. Doi: 10.1016/j.ecss.2021.107549. MEDEIROS, C. R.; HEINO, J.; SANTOS, P. J. P.; MOLOZZI, J. & LIGEIRO, R. (2020). Spatial scale drives diversity patterns of benthic macroinvertebrate communities in tropical estuaries. Limnology and Oceanography 66(3), 727- 739. Doi:10.1002/lno.11636. MOURA, G. C.; BARBOSA, J. E. L.; PATRÍCIO, J.; NERYD, J. F. & GONÇALVES, A. M. M. (2016). Seasonal and spatial shifts in copepod diets within tropical estuaries measured by fatty acid profiles. Ecological Indicators 69, 284–294. Doi:10.1016/j.ecolind.2016.04.037. MOSER, H. G. (1996). The Early Stages of Fishes in the California Current Region: Final Report. Institution of Oceanography Library. University of California, San Diego. NEVES, L. M.; TEIXEIRA, T. P.; ARAÚJO, F. G. (2010). Structure and dynamics of distinct fish assemblage in three reaches (upper, middle and lower) of open tropical estuary in Brazil. Marine Ecology 32, 115-131. NICOLAS, D.; LOBRY, J.; LE PAPE, O. & BOET, P. (2010a). Functional diversity in European estuaries: relating the composition of fish assemblages to the abiotic environment. Estuarine, Coastal and Shelf Science. 88(3), 329- 338. NISHIDA, A. K.; NORDI, N. & ALVES, R. R. N. (2008). Aspectos socioeconômicos dos catadores de moluscos do litoral paraibano, Nordeste do Brasil. Revista de Biologia e Ciências da Terra 8 (1), 207 – 215. NOBREGA, R. R. A. & NISHIDA, A. K. (2003). Aspectos socioeconômicos e percepção ambiental dos catadores de caranguejo-uçá Ucides cordatus cordatus (L. 1763) (Decapoda, Brachyura) do estuário do Rio Mamanguape, Nordeste do Brasil. Interciência 28, 36-43. OKSANEN, J.; BLANCHET, F. G.; KINDT, R.; LEGENDRE, P.; O‘HARA, R. G.; SIMPSON, G. L.; SOLYMOS, P.; STEVENS, M. H. H. & WAGNER, H. (2012). Vegan: Community Ecology Package. R package version 1.17-0. Disponível em: <http://CRAN.R-project.org/package=vegan>. OKSANEN, J.; BLANCHET, F. G.; FRIENDLY, M.; KINDT, R.; LEGENDRE, P.; MCGLINN, D.; MINCHIN, P. R.; O‘HARA, R. B.; SIMPSON, G. L.; SOLYMOS, P.; STEVENS, M. H. H.; SZOECS, E. & WAGNER, H. (2015). Vegan: community ecology package. R Package Version 2.2-1. PASQUAUD, S.; VASCONCELOS, R. P.; FRANÇA, S.; HENRIQUES, S.; COSTA, M. J. & CABRAL, H. (2015). Worldwide patterns of fish biodiversity in estuaries: Effect of global vs. local factors. Estuarine, Coastal and Shelf Science 154, 122-128. Doi:10.1016/j.ecss.2014.12.050. 118 PELÁEZ, O. & PAVANELLI, C. S. (2019). Environmental heterogeneity and dispersal limitation explain different aspects of β‐diversity in Neotropical fish assemblages. Freshwater Biology 64 (3), 497-505. PELÁEZ, O. E.; AZEVEDO, F. M. & PAVANELLI, C. S. (2017). Environmental heterogeneity explains species turnover but not nestedness in fish assemblages of a Neotropical basin. Acta Limnologica Brasiliensia 29. PODANI, J. & SCHMERA, D. (2011). A new conceptual and methodological framework for exploring patterns in presence–absence data. Oikos 120, 1625–1638. PODANI, J.; RICOTTA, C. & SCHMERA, D. (2013). A general framework for analyzing beta diversity, nestedness and related community-level phenomena based on abundance data. Ecological Complexity 15, 52–61. Doi:10.1016/j.ecocom.2013. 03.002. PRIMO, A. L.; AZEITEIRO, U. M.; MARQUES, S. C.; RE, P. & PARDAL, M. A. (2012). Seasonal, Lunar and Tidal Control of Ichthyoplankton Dynamics at the Interface Between a Temperate Estuary and Adjacent Coastal Waters (Western Portugal). Scientia Marina 76 (2), 237–246. Doi: 10.3989/scimar.03415.18a. RAMOS, S.; AMORIM, E.; ELLIOTT, M.; CABRAL, H. & BORDALO, A. A. (2012). Early life stages of fishes as indicators of estuarine ecosystem health. Ecological Indicators 19, 172 –183. Doi: 10.1016/j.ecolind.2011.08.024. RICHARDS, W. J. (2006). Early Stages of Atlantic Fishes: an Identification Guide for the Western Central North Atlantic. II Volume Set. Boca Raton. CRC Press. 2640p. ROBINSON, C. L. K.; YAKIMISHYN, J. & DEARDEN, P. (2011). Habitat heterogeneity in eelgrass fish assemblage diversity and turnover. Aquatic Conservation: Marine and Freshwater Ecosystems 21, 625-635. ROCHA, M. P.; BINI, L. M.; SIQUEIRA, T.; HJORT, J.; GRONROOS, M.; LINDHOLM, M. & HEINO, J. (2018). Predicting occupancy and abundance by niche position, niche breadth and body size in stream or-ganisms. Oecologia, 186, 205–216. Doi:10.1007/ s00442-017-3988-z. RUHÍ A.; DATRY, T. & SABO, J. L. (2017). Interpreting beta-diversity components over time to conserve metacommunities in highly dynamic ecosystems. Conservation Biology 31, 1459–1468. Doi: 10.1111/cobi.12906. SANTOS, R. V. S.; RAMOS, S. & BONECKER, A. C. T. (2017). Can we assess the ecological status of estuaries based on larval fish assemblages? Marine Pollution Bulletin 124 (1), 367 – 375. Doi:10.1016/j.marpolbul.2017.07.043. 119 SEMMENS, B. X.; AUSTER, P. J. & PADDACK, M. J. (2010). Using Ecological Null Models to Assess the Potential for Marine Protected Area Networks to Protect Biodiversity. Plos One 5(1), e8895. Doi:10.1371/journal.pone. 0008895. PubMed: 20111711. SILVA, P. G.; HERNÁNDEZ, M. I. M & HEINO, J. (2018). Disentangling the correlates of species and site contributions to beta diversity in dung beetle assemblages. Diversity and Distributions 24, 1674–1686. Doi: 10.1111/ddi.12785. SILVA, K. G.; PALUDO, D.; OLIVEIRA, E. M. A.; LIMA, R. P. & SOAVINSKI, R. J. (2011). Distribuição e ocorrência do peixe-boi marinho (Trichechus manatus) no estuário do rio Mamanguape, Paraíba, Brasil. Natural Resources 1 (2), 5-14. SLOTERDIJK, H.; BREHMER, P.; SADIO, O.; MÜLLER, H.; DÖRING, J. & EKAU, W. (2017). Composition and structure of the larval fish community related to environmental parameters in a tropical estuary impacted by climate change. Estuarine, Coastal and Shelf Science 197, 10– 26. Doi:10.1016/j.ecss.2017.08.003 SIMPSON, N. T.; BYBEL, A, P.; WEBER, M. J.; PIERCE, C. L. & ROE, K. J. (2021). Factors associated with distributions of six fishes of greatest conservation need in streams in midwestern USA. Aquatic Conservation: Marine and Freshwater Ecosystems 31 (7), 1831-1846. SOCOLAR, J. B.; GILROY, J. J.; KUNIN, W. E. & EDWARDS, D. P. (2016). How should betadiversity inform biodiversity conservation? Trends in Ecology & Evolution 31(1), 67–80. SOUZA, C. A.; BEISNER, E. B.; VELHO, L. F. M.; CARVALHO, P.; PINEDA, A. & VIEIRA, L. C. G. (2021). Impoundment, environmental and temporal scale predict zooplankton beta diversity patterns in an Amazonian river basin. Science of The Total Environmental 776, e145948. Doi:10.1016/j.scititenv. 2021.145948. SPECZIÁR, A.; ÁRVA, D.; TÓTH, M.; MÓRA, A.; SCHMERA, D.; VÁRBÍRÓ, G. & ERÕS, T. (2018). Environmental and spatial drivers of beta diversity components of chironomid metacommunities in contrasting freshwater systems. Hydrobiologia 819, 123-143. Doi: 10.1007/s10750-018-3632-x. TEICHERT, N.; LEPAGE, M.; CHEVILLOT, X. & LOBRY, L. (2018). Environmental drivers of taxonomic, functional and phylogenetic diversity (alpha, beta and gamma components) in estuarine fish communities. Journal Biogeography 45, 406–417. DOI: 10.1111/jbi.13133. The R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, Disponível em : <http://www.R-project.org>, 2018. VAN DER GUCHT, K.; COTTENIE, K.; MUYLAERT, K.; VLOEMANS, N.; COUSIN, S.; DE CLERCK, S.; JEPPESEN, K.; CONDE-PORCUNA, J. M.; 120 SCHEWNK, K.; ZWAT, G.; DEGANS, H.; VYVERMAN, W. & DE MEESTER, L. (2007). The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales. Biological Science 104 (51), 20404-20409. Doi: 10.1073/pnas.0707200104. VEECH, J. A. & CRIST, T. O. (2010). Toward a unified view of diversity partitioning. Ecology 91 (7), 1988-1992. WANG, X. G.; SUN, D. & LIN, S. Q. (2017). The Ecological Study of Fish Larvae in the Yangtze Estuary and Adjacent Waters. Journal of Shanghai Fisheries University 26(5), 733–742. Doi: 10.12024 /jsou.20170301964. ZHANG, H.; WANG, Y.; LIANG, C.; LIU, S. & XIAN, W. (2022). Estuarine Ichthyoplankton Studies – A Review. Frontiers in Marine Science 9, 794433. Doi:10.3389/fmars.2022.794433. ZHANG, H.; ZHANG, P.; WANG, H.; MOLINOS, J. G.; HANSSON, L. A.; HE, L.; ZHANG, M. & XU, J. (2021). Synergistic effects of warming and eutrophication alert zooplankton predator–prey interactions along the benthic–pelagic interface. Global Change Biology 27, 5907-5919. Doi: 10.1111/gcb.15838.por
dc.subject.cnpqBiodiversidade Animalpor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/74841/2022%20-%20Lidiane%20Gomes%20de%20Lima.Pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6937
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2023-09-22T12:36:12Z No. of bitstreams: 1 2022 - Lidiane Gomes de Lima.Pdf: 3257346 bytes, checksum: 52080aca07f57767612bd212d0af3715 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-09-22T12:36:12Z (GMT). No. of bitstreams: 1 2022 - Lidiane Gomes de Lima.Pdf: 3257346 bytes, checksum: 52080aca07f57767612bd212d0af3715 (MD5) Previous issue date: 2022-08-31eng
Appears in Collections:Doutorado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Lidiane Gomes de Lima.Pdf2022 - Lidiane Gomes de Lima3.18 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.