Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9331
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJesus, Monalisa Santana Coelho de
dc.date.accessioned2023-12-21T18:37:36Z-
dc.date.available2023-12-21T18:37:36Z-
dc.date.issued2021-06-25
dc.identifier.citationJESUS, Monalisa Santana Coelho de. Pigmentos Naturais em Diferentes Variedades de Batatas-doces. 2021. 192 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9331-
dc.description.abstractA batata-doce (Ipomoea batatas L.), de cultivo rústico, rica em carboidratos e fitoquímicos funcionais, pigmentos naturais, antioxidantes e pró-vitamínicos A, possui grande potencial para levar desenvolvimento social e econômico para as populações mais carentes e distantes dos centros urbanos. Pode auxiliar na prevenção das doenças relacionadas à desnutrição, à avitaminose A e ao estresse oxidativo. É uma opção para impulsionar sistemas de produção orgânicos e gerar alimentos mais saudáveis, com maiores teores de nutrientes e substâncias funcionais, de forma sustentável. Seus pigmentos naturais (carotenoides e antocianinas) podem substituir com vantagens funcionais os corantes sintéticos utilizados em alimentos industrializados. O perfil de carotenoides e antocianinas de muitas variedades de batatas-doces ainda estão sendo publicados em trabalhos recentes, já que muitas destas moléculas ainda não foram elucidadas. O potencial funcional desses fitoquímicos depende de suas estabilidades perante tratamentos térmicos e da biodisponibilidade após o processo digestivo. O objetivo deste trabalho foi caracterizar e quantificar os carotenoides e antocianinas de quatro variedades de batatas-doces cultivadas em sistema orgânico e avaliar a retenção nas formas de consumo mais comuns. Para isso foram cultivadas quatro variedades de batatas-doces orgânicas, preparadas nas formas in natura, cozidas e fritas para avaliação dos teores, retenção e perfis. As técnicas analíticas utilizadas foram espectrofotometria, Cromatografia Líquida de Alta Eficiência com Detector de Arranjo de Diodos (CLAE-DAD) e Espectrometria de Massas de Alta Resolução com Ionização por Eletrospray (IES-QTdV-EM2). A maior parte dos carotenoides e antocianinas foi identificada e alguns foram detectados pela primeira vez na matriz, como 6 antocianinas aciladas, dentre as 22 detectadas na variedade de pele e polpa roxas, na maioria derivadas de peonidina, justificando a coloração roxa com tonalidade avermelhada, aciladas com ácidos cafeico, p-hidroxicinâmico e principalmente ferúlico. Na variedade de pele branca e polpa roxa foram identificadas 14 antocianinas já conhecidas, a maior parte derivada de cianidina, justificando a cor roxa com tonalidade azulada e, aciladas com os mesmos ácidos, principalmente o cafeico. Duas delas diaciladas, raras em batata-doce, derivadas de pelargonidina, só foram identificadas em batata-doce por Lee et al. (2013). Não foram detectadas antocianinas não aciladas. Os perfis das antocianinas dessas batatas-doces as diferenciam de outras variedades. As antocianinas foram estáveis ao cozimento e fritura, que facilitaram a dessorção das mesmas do amido das matrizes durante a extração, resultando em teores três vezes mais altos do que nas batatas-doces in natura, indicando que o aquecimento deve ser inserido no preparo delas antes da liofilização, que também aumenta a extração das antocianinas, sem degradá-las. O perfil de carotenoides da cultivar IAPAR 69, de polpa alaranjada devido ao b-caroteno como majoritário (>90%) e zeinoxantina como minoritário apresentou teor total de quase 65 mg 100-1 g-1 em base seca (BS), isomerização após cozimento e fritura com retenções em torno de 55%. A variedade de polpa amarelada, com total de carotenoides não identificados de 2 mg 100-1 g-1 BS, apresentou perfil raro característico de novas xantofilas semelhantes àquelas encontradas por Maoka et al. (2007), com degradação após cozimento e fritura com retenções em torno de 82%.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectpigmento naturalpor
dc.subjectantioxidantepor
dc.subjectespectrometria de massaspor
dc.subjectbatata-docepor
dc.subjectagricultura orgânicapor
dc.subjectnatural pigmentseng
dc.subjectantioxidanteng
dc.subjectmass spectrometryeng
dc.subjectsweet potatoeng
dc.subjectorganic agricultureeng
dc.titlePigmentos Naturais em Diferentes Variedades de Batatas-docespor
dc.typeTesepor
dc.description.abstractOtherThe sweet potato (Ipomoea batatas L.), rustic, rich in carbohydrates, functional phytochemicals, natural pigments, antioxidants and pro-vitamins A, has great potential to bring social and economic development for the most needy and distant of urban centers populations. It can aid in the prevention of diseases related to malnutrition, vitamin A deficiency and oxidative stress. It is an option to boost organic production systems and generate healthier foods with higher levels of nutrients and functional substances in a sustainable way. Their natural pigments (carotenoids and anthocyanins) can replace the synthetic dyes used in industrialized foods with functional advantages. The carotenoids and anthocyanins profile of many sweet potato varieties are still being published in recent works, as many of these molecules have not yet been elucidated. The functional potential of these phytochemicals depends on their stability to heat treatments and bioavailability after the digestive process. The objective of this work was to characterize and quantify the carotenoids and anthocyanins of four varieties of sweet potatoes grown in the organic system and to evaluate retention in the most common forms of consumption. Four organic sweet potato varieties were cultivated for this purpose and prepared in fresh, cooked and fried forms for evaluation of the contents, retention and profiles. The analytical techniques used were spectrophotometry, High Performance Liquid Chromatography with Diode Array Detector (HPLC-DAD) and High Resolution Mass Spectrometry with Electrospray Ionization (ESI-QToF-MS2). The carotenoids and anthocyanins present in the studied varieties were quantified and characterized. Most of the carotenoids and anthocyanins were identified and some were detected for the first time in the matrix, such as 6 acylated anthocyanins, among the 22 detected in the variety of purple skin and flesh, most of them derived from peonidin, justifying the purple color with red tint, acilated with caffeic, phydroxycinnamic and mainly ferulic acids. In the variety of white skin and purple flesh, 14 known anthocyanins have been identified, most of them derived from cyanidin, justifying the purple colour with blue tint and, acylated with the same acids, mainly caffeic. Two of them diacilated, rare in sweet potatoes, derived from pelargonidin were only identified in sweet potatoes by Lee et al. (2013). Unacylated anthocyanins were not detected. The anthocyanin profiles of these sweet potatoes differentiate them from other varieties. Anthocyanins were stable to cooking and frying, which facilitated their desorption from the starch of the matrices during the extraction, resulting in levels three times higher than in fresh sweet potatoes, indicating that heating should be inserted in their preparation before lyophilization, which also increases the extraction of anthocyanins, without degrading them. The carotenoid profile of the IAPAR 69 cultivar, with orange flesh due to b-carotene as a major (> 90%) and zeinoxanthin as a minor presented total contents of almost 65 mg 100-1 g-1 on dry basis (BS) with isomerization after cooking and frying with retentions around 55%. The yellowish flesh variety, with 2 mg 100-1 g-1 BS of unidentified total carotenoids, presented a rare profile characteristic of new xanthophylls similar to those found by Maoka et al. (2007), with degradation after cooking and frying, and retentions around 82%.eng
dc.contributor.advisor1Godoy, Ronoel Luiz de Oliveira
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3671854931659782por
dc.contributor.referee1Godoy, Ronoel Luiz de Oliveira
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3671854931659782por
dc.contributor.referee2Barbosa Junior, Jose Lucena
dc.contributor.referee2IDhttps://orcid.org/0000-0001-8496-1404por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5228796959263366por
dc.contributor.referee3Carvalho, Carlos Wanderlei Piler de
dc.contributor.referee3IDhttps://orcid.org/0000-0002-7602-264Xpor
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3532473530387852por
dc.contributor.referee4Lima, Antonio Luiz dos Santos
dc.contributor.referee5Gouvêa, Ana Cristina Miranda Senna
dc.contributor.referee5Latteshttp://lattes.cnpq.br/0719676140304035por
dc.creator.ID072.786.517-00por
dc.creator.IDhttps://orcid.org/0000-0001-5131-9167por
dc.creator.Latteshttp://lattes.cnpq.br/0461770385333129por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospor
dc.relation.referencesBANERJEE, S.; MAZUMDAR, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. International Journal of Analytical Chemistry, Article ID 282574, 2012. CASTAÑEDA-OVANDO, A.; PACHECO-HERNÁNDEZ, M. L.; PÁEZ- HERNÁNDEZ, M. E.; RODRÍGUEZ, J. A.; GALÁN-VIDAL, C. A. Chemical studies of anthocyanins: A review. Food Chemistry, v. 113, p. 859-871, 2009. CEAGESP. N842-Normas de Classificação – Programa Brasileiro para a Modernização da Horticultura. São Paulo, v. 1, n. 1, PBMH, 2003; CHERNUSHEVICH, I.V.; LOBODA, A.V.; THOMSON, B.A. An introduction to quadrupole–time-of-flight mass spectrometry. Journal of Mass Spectrometry, v. 36, p. 849- 865, 2001. COLLINS, C.H.; MANFREDI, A.L.P.; VALENTE, A.L.P.; MURTA, A.L.M.; MCNAIR, H.M. O que é a cromatografia líquida de alta eficiência (CLAE). Química Nova, Abril, 1983. DEGANI, A.L.G.; CASS, Q.B.; VIEIRA, P.C. Cromatografia um breve ensaio. Química nova na Escola, 7 (maio), 1998. DENG, G.-F.; LIN, X.; XU, X.-R.; GAO, L.-L.; XIE, J.-F.; LI, H.-B. Antioxidant capacities and total phenolic contents of 56 vegetables. Journal of Functional Foods, n. 5, pg. 260-266, 2013. EL-ANEED, A.; COHEN, A.; BANOUB, J. Mass Spectrometry, Review of the Basics: Eletrospray, MALDI, and Commonly Used Mass Analisers. Applied Spectroscopy Reviews, v. 44, p. 210-230, 2009. GIORI, F. Adaptação de metodologia de digestão in vitro e determinação da bioacessibilidade in vitro de β-caroteno em três variedades de batata doce de polpa alaranjada. Dissertação (mestrado). Universidade Federal Rural do Rio de janeiro. Seropédica. 2010; GIUSTI, M. M; WROLSTAD, R. E. Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, v. 14, p. 217–225, 2003. GIUSTI, M. M; WROLSTAD, R. E. Current Protocols in Food Analytical Chemistry, Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy, F1.2.1- F1.2.13, Copyright ©, John Wiley & Sons, Inc., 2001. GODA, Y.; SHIMIZU, T.; KATO, Y.; NAKAMURA, M.; MAITANI, T.; YAMADA, T.; TERAHARA, N.; YAMAGUCHI, M. Two Acylated anthocyanins from purple sweet potato. Phytochemistry, v. 44, n. 1, p. 183-186, 1997. 147 GRAS, C. C.; NEMETZ, N.; CARLE, R.; SCHWEIGGERT, R. M. Anthocyanins from purple sweet potato (Ipomoea batatas (L.) Lam.) and their color modulation by the addition of phenolic acids and food-grade phenolic plant extracts. Food Chemistry, v. 235, p. 265-274, 2017. HE, W.; ZENG, M.; CHEN, J.; JIAO, Y.; NIU, F.; TAO, G.; ZHANG, S.; QIN, F.; HE, Z. Identification and Quantitation of Anthocyanins in Purple-Fleshed Sweet Potatoes Cultivated in China by UPLC-PDA and UPLC-QTOF MS/MS. J. Agric. Food Chemistry, v. 64, p. 171- 177, 2016. HELENO, S.; MARTINS, A.; QUEIROZ, M.J.R.P.; FERREIRA, I.C.F.R. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chemistry, v. 173, p. 501–513, 2015. HOU, D.-X. Potential Mechanisms of Cancer Chemoprevention by Anthocyanins. Current Molecular Medicine, v. 3, p. 149-159, 2003. HU, Y.; DENG, L.; CHEN, J.; ZHOU, S.; LIU, S.; FU, Y.; YANG, C.; LIAO, Z.; CHEN, M. An analytical pipeline to compare and characterize the anthocyanins antioxidant activities of purple sweet potato cultivars. Food Chemistry, v. 194, p. 46-54, 2016. ISLAM, S. N., NUSRAT, T., BEGUM, P., AHSAN, M. Carotenoids and β-carotene in orange fleshed sweet potato: A possible solution to vitamin A deficiency. Food Chemistry, v. 199, p. 628-631, 2016. JIE, L.; XIAO-DING, L.; YUN, Z.; ZHENG-DONG, Z.; ZHI-YA, Q.; MENG, L.; SHAOHUA, Z.; SHUO, L.; MENG, W.; LU, Q. Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chemistry, v. 136, p. 1429-1434, 2013. JR, I.M.R.; PASQUINI, C. Espectrofotometria multicanal e arranjos de fotodiodos. Química Nova, v. 20, n. 1, 1997. KADIAN, S. S.; GARG, M. Pharmacological Effects of Carotenoids: a review. International Journal of Pharmaceutical Sciences and Research; v. 3, n. 1, p. 42-48, 2012. KIM, H.J.; PARK, W. S.; BAE, J.-Y.; KANG, S. Y.; YANG, M. H.; LEE, S.; LEE, H.-S.; KWAK, S.-S.; AHN, M.-J. Variations in the carotenoid and anthocyanin contents of Korean cultural varieties and home-processed sweet potatoes. Journal of Food Composition and Analysis, v. 41, p. 188-193, 2015. KIM, J.-M.; PARK, S.-J.; LEE, C.-S.; REN, C.; KIM, S.-S.; SHIM, M. Functional Properties of Different Korean Sweet Potato Varieties. Food Sci. Biotechnol., v. 20, n. 6, p. 1501-1507, 2012. LEE, M. J.; PARK, J. S.; CHOI, D. S.; JUNG, M. Y. Characterization and Quantitation of Anthocyanins in Purple-Fleshed Sweet Potatoes Cultivated in Korea by HPLC-DAD and HPLC-ESIQTOF MS/MS. J. Agric. Food Chem., v. 61, p. 3148−3158, 2013. 148 LEMOS, M.A; ALIYU, M.M.; HUNGERFORD, G. Influence of cooking on the levels of bioactive compounds in Purple Majesty potato observed via chemical and spectroscopic means. Food Chemistry, v. 173, p. 462-467, 2015. LUO, C.L.; ZHOU, Q.; YANG, Z.W.; WANG, R.D.; ZHANG, J.L. Evaluation of structure and bioprotective activity of key high molecular weight acylated anthocyanin compounds isolated from the purple sweet potato (Ipomoea batatas L. cultivar Eshu No.8). Food Chemistry, v. 241, p. 23-31, 2018. MALDANER, L.; JARDIM, I.C.S.F. O Estado da Arte da Cromatografia Líquida de Ultra Eficiência. Quimica Nova, v. 32, n. 1, p. 214-222, 2009. MAOKA, T.; AKIMOTO, N.; ISHIGURO, K.; YOSHINAGA, M.; YOSHIMOTO, M. Carotenoids with a 5,6-dihydro-5,6-dihydroxy-b-end group, from yellow sweet potato ‘‘Benimasari’’, Ipomoea batatas LAM. Phytochemistry, v. 68, p. 1740-1745, 2007. MARTINHO, J.M.G. Espectroscopia de Absorção no Ultravioleta e Visível. Química, 52, 1994. MARTINS, G.B.C.; SUCUPIRA, R.R.; SUAREZ, P.A.Z. a Química e as Cores. Revista Virtual de Química, v. 7, n. 4, p. 1508-1534, 2015. MONTILLA, E. C.; HILLEBRAND, S.; BUTSCHBACH, D.; BALDERMANN, S.; WATANABE, N.; WINTERHALTER, P. Preparative Isolation of Anthocyanins from Japanese Purple Sweet Potato (Ipomoea batatas L.) Varieties by High-Speed Countercurrent Chromatography. J. Agric. Food Chem, v. 58, p. 9899–9904, 2010. NASCIMENTO, L. S. M.; SANTIAGO, M. C. P. A.; OLIVEIRA, E. M. M.; BORGUINI, R. G.; BRAGA, E. E. O.; MARTINS, V. C. ; PACHECO, S.; SOUZA, M. C.; GODOY, R. L. O. Characterization of Bioactive Compounds in Eugenia brasiliensis, Lam. (Grumixama). Nutrition and Food Technology: open Access, v. 3, n. 3, 1-7, 2017. ODAKE, K.; TERAHARA, N.; SAITO, N.; TOKIS, K.; HONDA, T. Chemical Structures of Two Anthocyanins from Purple Sweet Potato, Ipomoea Batatas. Phytochemistry, v. 31, n. 6, p. 2127-2130, 1992. OLIVEIRA, H.; BASÍLIO, N.; PINA, F.; FERNANDES, I.; FREITAS, V.; MATEUS, N. Purple-fleshed sweet potato acylated anthocyanins: Equilibrium network and photophysical properties. Food Chemistry, v. 288, p. 386–394, 2019a. OLIVEIRA, H.; PEREZ-GRAGÓRIO, R.; FREITAS, V.; MATEUS, N.; FERNANDES, I. Comparison of the in vitro gastrointestinal bioavailability of acylated and non-acylated anthocyanins: Purple-fleshed sweet potato vs red wine. Food Chemistry, v. 276, p. 410–418, 2019b. OLIVEIRA, H.; ROMA-RODRIGUES, C.; SANTOS, A.; VEIGAS, B.; BRÁS, N.; FARIA, A.; CALHAU, C.; FREITAS, V.; BAPTISTA, P.V.; MATEUS, N.; FERNANDES, A.R.; FERNANDES, I. GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach. Scientific Reports, v. 9, n. 789, p. 1-14, 2019c. 149 OLIVEIRA, L.F.C. Espectroscopia Molecular. Cadernos Temáticos de Química Nova da Escola, 4 (maio), 2001. PACHECO, S. Preparo de padrões analíticos, estudo de estabilidade e estudo de validação para ensaio de carotenoides por cromatografia líquida. Dissertação, mestrado em Ciência e Tecnologia de Alimentos, Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2009. PACHECO, S.; BORGUINI, R. G.; SANTIAGO, M. C. P. A.; NASCIMENTO, L. S. M.; GODOY, R. L. O. História da Cromatografia Líquida. Revista Virtual de Química, v. 7 n. 4, p. 1225-1271, 2015. PACHECO, S.; PEIXOTO, F. M.; BORGUINI, R. G.; NASCIMENTO, L. S. M.; BOBEDA, C. R. R.; SANTIAGO, M. C. P. A.; GODOY, R. L. O. Microscale extraction method for HPLC carotenoid analysis in vegetable matrices. Scientia Agricola, v. 71, n. 5, p. 416-419, 2014. PASSOS, E.A. Aula 2: Espectrofotometria de Absorção Molecular na Região do UV/Vis. https://docplayer.com.br/13995052-Aula-2-espectrofotometria-de-absorcao-molecular-naregiao- do-uv-vis-elisangela-de-andrade-passos.html. Acessado em 26 de dezembro 2020; PUERTOLAS, E.; CREGENZÁN, O.; LUENGO, E.; ÁLVAREZ, I.; RASO, J. Pulsed-electricfield- assisted extraction of anthocyanins from purple-fleshed potato. Food Chemistry, v. 136, p. 1330–1336, 2013. QIU, F.; LUO, J.; YAO, S.; MA, L.; KONG, L. Preparative isolation and purification of anthocyanins from purple sweet potato by highspeed counter-current chromatography. Journal of Separation Science, v. 32, p. 2146 – 2151, 2009 RAO, A.V.; RAO, L. G. Carotenoids and human health. Pharmacological Research, v. 55, p. 207–216, 2007 RASHMI, H.B.; NEGI, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Research International, v. 136, p. 1-14, 2020. RODRIGUEZ-AMAYA, D. B. A Guide to Carotenoid Analysis in Foods. 1a Ed., Washington D.C., ILSI PRESS, 2001; RUMBAOA, R. G. O.; CORNAGO, D. F.; GERONIMO, I. M. Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chemistry, v. 113, p. 1133–1138, 2009. SHAN, S.; ZHU, K.-X.; PENG, W.; ZHOU, H.-M. Physicochemical Properties and Salted Noodle-making Quality of Purple Sweet Potato Flour and Wheat Flour Blends. Journal of Food Processing and Preservation, v. 37, p. 709–716, 2012. SILVA, L.A.V. Palestra de Agroecologia. Vértices, Campos dos Goytacazes, RJ, v. 12, n. 3, p.199-201, 2010. 150 SKOOG, D.A.; HOLLER, F.J.; NIEMAN, A. Princípios de Análise Instrumental. 5 Ed., Porto Alegre, Bookman, 2002. SMERIGLIO, A.; BARRECA, D.; BELLOCCO, E.; TROMBETTA, D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytotherapy Research, v. 30, p. 1265– 1286, 2016. TEOW, C. C.; TRUONG, V.-D.; MCFEETERS, R. F.; THOMPSOM, R. L.; PECOTA, K. V.; YENCHO, G. C. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varing flesh colours. Food Chemistry, v. 103, p. 829-838, 2007. TERAHARA, N.; KONCZAK-ISLAM, I.; NAKATANI, M.; YAMAKAWA, O.; GODA, Y.; HONDA, T. Anthocyanins in callus induced from purple storage root of Ipomoea batatas L. Phytochemistry, v. 54, p. 919-922, 2000. TERAHARA, N.; KONCZAK-ISLAM, I.; ONO, H.; YOSHIMOTO, M.; YAMAKAWA, O. Characterization of acylated anthocyanins in callus induced from storage root of purple-fleshed sweet potato, Ipomoea batatas L. Journal of Biomedicine and Biotechnology, v. 5, p. 279– 286, 2004. TERAHARA, N.; SHIMIZU, T.; KATO, Y.; NAKAMURA, M.; MAITANI, T.; YAMAGUCHI, M.; GODA, Y. Six Diacylated Anthocyanins from the Storage Roots of Purple Sweet Potato, Ipomoea batatas. Biosci. Biotechnol. Biochem., v. 63, n. 8, p. 1420-1424, 1999. TIAN, Q.; KONCZAK, I.; SCHWARTZ, S.J. Probing Anthocyanin Profiles in Purple Sweet Potato Cell Line (Ipomoea batatas L. Cv. Ayamurasaki) by High-Performance Liquid Chromatography and Electrospray Ionization Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, v. 53, p. 6503-6509, 2005. TRUONG, V. D.; HUA, Z.; THOMPSON, R.L.; YENCHO, G.C.; PECOTA, K.V. Pressurized liquid extraction and quantification of anthocyanins in purple-fleshed sweet potato genotypes. Journal of Food Composition and Analysis, v. 26, p. 96–103, 2012. TRUONG, V.-D., DEIGHTON, N.; THOMPSOM, R. T., MCFEETERS, R. F., DEAN, L. O.; PECOTA, K. V.; YENCHO, G. C. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweet potatoes by HPLC-DAD/ESI-MS/MS. J. Agric. Food Chem, v. 58, p. 404–410, 2010. TSUDA, T. Anthocyanins as Functional Food Factors - Chemistry, Nutrition and Health Promotion. Food Science Technology Research, v. 18, n. 3, p. 315 – 324, 2012. VOJDANI, A; VOJDANI, C. Immune reactivity to food Coloring. Alternative Therapies in Health & Medicine, v. 21, n. S1, p. 52-63, 2015. WALLACE, T. C. Anthocyanins in Cardiovascular Disease. Advances in Nutrition, v. 2, p. 1–7, 2011. WANG, L.; ZHAO, Y.; ZHOU, Q.; LUO, C.-L.; DENG, A.-P.; ZHANG, Z.-C.; J.-L. Characterization and hepatoprotective activity of anthocyanins from purple sweet potato 151 (Ipomoea batatas L. cultivar Eshu No. 8). Journal of Food and Drug Analysis, v. 25, p. 607- 618, 2017. WANG, S.; NIE, S.; ZHU, F. Chemical constituents and health effects of sweet potato. Food Research International, v. 89, p. 90-116, 2016. WANG, Y.; LIU, F.; CAO, X.; CHEN, F.; HU, X.; LIAO, X. Comparison of hight hydrostatic pressure and high temperature short time processing on quality of purple sweet potato nectar. Innovative Food Science and Emerging Technologies, v. 16, p. 326–334, 2012. WANG, Z.; CLIFFORD, M. N.; SHARP, P. Analysis of chlorogenic acids in beverages prepared from Chinese health foods and investigation, in vitro, of effects on glucose absortion in cultures Caco-2 cells. Food Chemistry, v. 108, p. 369-373, 2008. XU, J.; SU, X.; LIM, S.; GRIFFIN, J.; CAREY, E.; KATZ, B.; TOMICH, J.; SMITH, J. S.; WANG, W. Characterization and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chemistry, v. 186, p. 90-96, 2015. YANG, Z.-W.; TANG, C.-E; ZHANG, J.-L; ZHOU, Q.; ZHANG, Z.-C. Stability and antioxidant activity of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No.8) subjected to simulated in vitro gastrointestinal digestion. International Journal of Food Science and Technology, v. 54, p. 2604-2614, 2019. YING, L.; JIA-YING, L; JING, L.; MI-LU, L.; ZHONG-HUA, L. Preparative Separation of Anthocyanins from Purple Sweet Potatoes by High-Speed Counter-Current Chromatography. Chin. J. Anal. Chem., v. 39, n. 6, p. 851–856, 2011. YOSHINAGA, M.; YAMAKAWA, O.; NAKATANI, M. Changes in Anthocyanin Content and Composition of Developing Storage Root of Purple-Fleshed Sweet Potato (Ipomoea batatas (L.) Lam). Breeding Science, v. 50, p. 59-64, 2000. YOSHINAGA, M.; YAMAKAWA, O.; NAKATANI, M. Genotypic Diversity of Anthocyanin Content and Composition in purple-Fleshed Sweet Potato (Ipomoea batatas (L.) Lam). Breeding Science, v. 49, p. 43-47,1999. ZHANG, J.L.; LUO, C.L.; ZHOU, Q.; ZHANG, Z.C. Isolation and identification of two major acylated anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8) by UPLC-QTOF-MS/MS and NMR. International Journal of Food Science and Technology, v. 53, p. 1932–1941, 2018. ZHAO, J.-G.; YAN, Q.-Q.; XUE, R.-Y.; ZHANG, J.; ZHANG, Y.-Q. Isolation and identification of colourless caffeoyl compounds in purple sweet potato by HPLC-DAD-ESI/MS and their antioxidant activities. Food Chemistry, v. 161, p. 22-26, 2014. ZHU, Z; GUAN, Q.; KOUBAA, M.; BARBA, F. J.; ROOHINEJAD, S.; CRAVOTTO, G.; YANG, X.; LI, S.; HE, J. HPLC-DAD-ESI-MS2 analytical profile of extracts obtained from purple sweet potato after green ultrasound-assisted extraction. Food Chemistry, v. 215, p. 391- 400, 2017.por
dc.subject.cnpqCiência e Tecnologia de Alimentospor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/74815/2021%20-%20Monalisa%20Santana%20Coelho%20de%20Jesus.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6934
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-09-20T15:34:07Z No. of bitstreams: 1 2021 - Monalisa Santana Coelho de Jesus.pdf: 20848649 bytes, checksum: 45572492edf3ab067356f44352fdbd8a (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-09-20T15:34:07Z (GMT). No. of bitstreams: 1 2021 - Monalisa Santana Coelho de Jesus.pdf: 20848649 bytes, checksum: 45572492edf3ab067356f44352fdbd8a (MD5) Previous issue date: 2021-06-25eng
Appears in Collections:Doutorado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Monalisa Santana Coelho de Jesus.pdf2021 - Monalisa Santana Coelho de Jesus20.36 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.