Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/9597
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlmeida, Greiciane França Bronzato de
dc.date.accessioned2023-12-21T18:41:52Z-
dc.date.available2023-12-21T18:41:52Z-
dc.date.issued2018-02-23
dc.identifier.citationALMEIDA, Greiciane França Bronzato de. Monitoramento da dispersão de cepas de Escherichia coli em ambiente de produção leiteira. 2018. 90 f.. Tese( Doutorado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2018.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/9597-
dc.description.abstractA atividade leiteira tem sido de grande importância para economia em todo o mundo e, por esse motivo, cada vez mais os produtores têm buscado melhorias na qualidade do leite, focando no controle de enfermidades que acometem o rebanho, em especial da mastite bovina. A mastite ambiental pode gerar grandes impactos na bovinocultura leiteira, sendo esta comumente ocasionada por microrganismos como Escherichia coli. Esta espécie bacteriana possui heterogeneidade genética e população caracterizada por cepas geneticamente diversificadas, além da capacidade de persistir no ambiente de produção por tempo prolongado. Frente a esse contexto, o presente estudo teve como objetivo avaliar as relações clonais de E. coli em ambiente de produção leiteira através das técnicas de tipagem molecular Pulsed Field Gel Eletrophoresis (PFGE) e Multilocus Sequence Typing (MLST), para isso 444 amostras distribuídas entre leite, fezes, água e cadeia produtiva oriundas de uma fazenda localizada no município de Barra do Piraí no Estado do Rio de Janeiro, Brasil, foram submetidas a testes bioquímicos e a técnica de MALDI-TOF MS para identificação bacteriana. Além disso, as amostras de água (poço, açude, bebedouro, torneira e riacho) foram submetidas ao teste do Número Mais Provável (NMP) para avaliação de coliforme totais e termotolerantes no qual apresentaram padrões de potabilidade superiores aos estipulados pelo Ministério da Saúde. De 183 enterobactérias identificadas, 152 (83%) foram confirmadas através de ambas as metodologias como E. coli. Destas, nove representantes tiveram o gene gyrB sequenciado para confirmação molecular da espécie apresentando até 99% de máxima identidade quando as sequências foram comparadas com as sequências do banco de dados NCBI. Posteriormente, todas as 152 cepas de E. coli foram submetidas fenotipicamente a produção de biofilme e detecção de genes de virulência, onde foi possível observar que 41,44% (63/152) de cepas foram produtoras de biofilme, sendo 37,5% (57/152) fraca produdoras, 1,31% (2/152) produtoras moderadas e 2,63% (4/152) fortes produtoras. Além disso, foi possível detectar 92, 1% (140/152) de cepas positivas para o gene fimH; 88,8% (135/152) para o gene csgA, 29,6% (45/152) para o gene flu (que são genes relacionados ao biofilme) e 13,1% (20/152) positivas para o gene eaeA; 7,2% (11/152) para o gene LT e 2,6% (4/152) para o gene stxI. Nenhuma cepa foi positiva para os genes stxII, ST, ial e eagg. A partir destes resultados, 18 perfis foram estabelecidos com o propósito de selecionar 30 cepas que foram processadas no laboratório de genética da Universidad Nacional de Río Cuarto, Argentina, através da técnica PFGE, onde foi possível observar uma elevada variabilidade genética. As cepas que apresentaram de 95% a 100% de similaridade (n=10) foram sequenciadas, a fim de estabelecer uma relação clonal entre elas através da técnica de MLST, que gerou oito tipos diferentes de ST, sendo o ST164 e o ST1308 os que estabeleceram possíveis relações clonais entre cepas. Além disso, foi observado um novo tipo de sequência (ST) que deverá ser submetido a um sequenciamento de nova geração, e então ser enviado ao curador do MLST para que seja gerado um novo número de ST e depositado no banco de dados do esquema. Ao realizar buscas tanto no banco de dados quanto na literatura, não foram encontrados no Brasil relatos sobre os STs (ST5, ST164, ST165 e ST1308) estudados provenientes de cepas de E. coli bovinas, levando ao entendimento de que este trabalho é o primeiro relato no país.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectE. colipor
dc.subjectMastite bovinapor
dc.subjectperfil de virulênciapor
dc.subjecttipagem molecularpor
dc.subjectE. colieng
dc.subjectbovine mastitiseng
dc.subjectvirulence profileeng
dc.subjectmolecular typingeng
dc.titleMonitoramento da dispersão de cepas de Escherichia coli em ambiente de produção leiteirapor
dc.title.alternativeMonitoring the dispersion of Escherichia coli strains in a dairy environmenteng
dc.typeTesepor
dc.description.abstractOtherDairy farming has been of great importance for the world economy and for such reason producers have, more and more, sought improvements in milk quality, focusing on controlling diseases that affect the cattle such as bovine mastitis. Environmental mastitis, which is commonly caused by microorganisms such as Escherichia coli, can generate great impacts on dairy cattle. This bacterial species has genetic heterogeneity and population characterized by genetically diverse strains, besides the capacity to persist in production environment for an extended period. In this context, the present study aims to evaluate the clonal relationships of E. coli in a milk production environment through the molecular typing techniques Pulsed Field Gel Electrophoresis (PFGE) and Multilocus Sequence Typing (MLST). For this purpose, 444 samples distributed between milk, faeces, water and the production chain from a farm located in the municipality of Barra do Piraí, in the State of Rio de Janeiro, Brazil, were subjected to biochemical tests and theMatrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) technique for bacterial identification. In addition, water samples (well, pond, drinking fountain, faucet and creek) were subjected to the Most Probable Number (MPN) test for total and thermotolerant coliform evaluation, in which they presented potability standards higher than those stipulated by the Ministry of Health. Out of 183 identified enterobacteria, 152 (83%) were confirmed by both methodologies as being E. coli. Out of these, nine representatives had the gyrB gene sequenced for molecular confirmation of the species exhibiting up to 99% maximum identity when the sequences were compared to the NCBI database sequences. Later, all 152 E. coli strains were phenotypically subjected to biofilm production and virulence genes detection, where it was possible to observe that 41.44% (63/152) of strains were biofilm producers, being 37.5% (57/152) weak producers, 1.31% (2/152) of moderate producers and 2.63% (4/152) strong producers. Moreover, 92.1% (140/152) of fimH gene positive strains could be detected, 88.8% (135/152) for the csgA gene, 29.6% (45/152) for the flu gene (which are biofilm-related genes) and 13.1% (20/152) positive for the eaeA gene; 7.2% (11/152) for the LT gene and 2.6% (4/152) for the stxI gene. No strain was positive for the stxII, ST, ial and eagg genes. From these results, 18 profiles were established with the purpose of selecting 30 strains that were processed in the Laboratory of Genetics of the National University of Río Cuarto, Argentina, through the PFGE technique, where it was possible to observe high genetic variability. Strains that presented from 95% to 100% of similarity (n = 10) were sequenced in order to establish a clonal relationship between them through the MLST technique that generated eight different ST types, with ST164 and ST1308 being the ones that established possible clonal relationships between strains. Furthermore, a new type of sequence (ST) was observed, one which should be subjected to a new generation sequencing and then sent to the MLST healer to generate a new ST number and deposited in the schema database. When researching the database as well as the literature, no ST reports (ST5, ST164, ST165 and ST1308) derived from bovine E. coli strains were found in Brazil, leading to the understanding that this work is the very first report in such country.eng
dc.contributor.advisor1Coelho, Shana de Mattos de Oliveira
dc.contributor.advisor1ID054.668.217-05por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3212438357088121por
dc.contributor.advisor-co1Souza, Miliane Moreira Soares de
dc.contributor.advisor-co1ID010.761.987-32por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/0865211214618618por
dc.contributor.referee1Coelho, Shana de Mattos de Oliveira
dc.contributor.referee2Coelho, Irene da Silva
dc.contributor.referee3Pribul, Bruno Rocha
dc.contributor.referee4Mangia, Adriana Hamond Regua
dc.contributor.referee5Rouws, Luc Felicianus Marie
dc.creator.ID110.846.167-46por
dc.creator.Latteshttp://lattes.cnpq.br/6675394920127795por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspor
dc.relation.references7. REFERÊNCIAS BIBLIOGRÁFICAS AANENSEN, D. M. & SPRATT, B. G. The multilocus sequence typing network: mlst.net. Nucleic Acids Research, v. 33, p. W728–W733, 2005. ACHTMAN, M. &WAGNER, M. Microbial diversity and the genetic nature of microbial species. Nature Reviews Microbiology, v. 6, p. 431–440, 2008. ADICIPTANINGRUM, A.M.; BLOMFIELD, I.C.; TANS, S.J. Direct observation of type 1 fimbrial switching. EMBO Reports, v. 10, p. 527–532, 2009. ADKINS, P. R.; MIDDLETON, J. R.; FOX, L. K. Comparison of Virulence Gene Identification, Ribosomal Spacer PCR, and Pulsed Field Gel Electrophoresis for Strain-Typing Staphylococcus aureus Isolated from Cases of Subclinical Bovine Mastitis in the USA. Journal of Clinical Microbiology, JCM-03282, 2016. AHMED, W. F & SAMER, A. Detection of Shiga Toxin – Producing Escherichia coli in Raw and Pasteurized Milk. Zagazig Veterinary Journal, v. 45, n. 1, p. 47-54, 2017. ALMEIDA, D. Manuseamento de produtos hortifrutícolas. SPI – Sociedade Portuguesa de Inovação. Portugal, 2005. ALTSCHUL, S. F.; MADDEN, T. L.; SCHAFFER, A. A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D. J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.Nucleic Acids Research, v. 25, p. 3389-3402, 1997. ALTWEGG, M. & BOCKMUHL, J. Escherichia coli e Shigella. In: Topley & Wilson Microbiology and microbial infections. Microbiology and Microbial Infection, 9th ed., London: Arnold, 1998. ANDERSON, G. G.; PALERMO, J. J.; SCHILLING, J. D.; ROTH, R.; HEUSER, J.; HULTGREN, S. J. Intracellular bacterial biofilm-like pods in urinary tract infections. Science, v. 301, p. 105–107, 2003. ANDREI, A. & ZERVOS, M. J. The application of molecular techniques to the study of hospital infection. Archives of Pathology & Laboratory Medicine, v.5, n.130, p.662-668, 2006. ARGUDÍN, M. A.; MENDOZA, M. C.; RODICIO, M. R. Food poisoning and Staphylococcus aureus enterotoxins. Toxins, v. 2, p. 1751-1773, 2010. AWALE, M.; DUDHATRA, G. B.; KUMAR, A.; CHAUHAN, B. N.; KAMANI, D. R.; MODI, C. M.; PATEL, H. B.; MODY, S. K. Bovine mastitis: a threat to Economy. Scientific Reports, v. 1, n. 5, p. 1-10, 2012. BARNHART, M.M. & CHAPMAN, M.Curli Biogenesis and Function. Annual Review of Microbiology, v. 60, p. 131-147, 2007. BEAN, A.; WILLIAMSON, J.; CURSONS, R. T. Virulence Genes of Escherichia coli Strains Isolated from Mastitic Milk. Journal of Veterinary Medicine, v. 51, n. 6, p. 285-287, 2004. 60 BELOIN, C.; ROUX, A.; GHIGO, J.M. Escherichia coli biofilms. Current Topics in Microbiology and Immunology, v. 322, p. 249–289, 2008. BERCHIERI JUNIOR, A. & MACARI, M. Doenças das aves. Campinas: FACTA, p. 455-469. 2009. BERRO, R.; BRANDÃO, J. B.; BREITENBACH, R. Sistema local de produção de leite em Itaqui, Rio Grande do Sul: caracterização e diferenciação dos estabelecimentos formais. 7º Encontro de Economia Gaúcha – FEE, Porto Alegre, 2014. Disponível em <http://www.fee.rs.gov.br/wp-content/uploads/2014/05/201405237eeg-mesa5-producaoleiteitaqui.pdf >. Acesso em 21 de Julho de 2017. BERTSCHINGER, H. U. & FAIRBROTHER, J. M. Escherichia coli infections. In: STRAW, B.E. Diseases of swine, 5th ed., Iowa State University Press, Ames, IA. p. 431-468, 1999. BETTELHEIM, K. A. KUZEVSKI, A.; GILBERT, R.A.; KRAUSE, D. O.; MCSWEENEY, C. S. The diversity of Escherichia coli serotypes and biotypes in cattle faeces. Journal of Applied Microbiology, v. 98, p. 699-709, 2005. BHOMKAR, P.; MATERI, W.; SEMENCHENKO, V.; WISHART, D. S. Transcriptional response of E. coli upon FimH-mediated fimbrial adhesion. Gene Regulation and Systems Biology, v. 4, p. 1–17, 2010. BIBBAL, D.; LOUKIADIS, E.; KÉROURÉDAN, M.; PEYTAVIN DE GARAM, C.; FERRÉ, F.; CARTIER, F.; GAY, E.; OSWALD, E.; AUVRAY, F.; BRUGÈRE, H. Intimin Gene (eae) Subtype-Based Real-Time PCR Strategy forSpecific Detection of Shiga Toxin-Producing Escherichia coli Serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 in Cattle Feces. Applied and Environmental Microbiology, v. 80, n. 3, p. 1177–1184, 2014. BOGNI, C.; ODIERNO, L.; RASPANTI, C.; GIRAUDO, J.; LARRIESTRA, A.; REINOSO, E.; LASAGNO, M.; FERRARI, M.; DUCRÓS, E.; FRIGERIO, C.; BETTERA, S.; PELLEGRINO, M.; FROLA, I.; DIESER, S.; VISSIO, C. ‘War against mastitis: Current concepts on controlling bovine mastitis pathogens’, In: MÉNDEZ-VILAS, A. (ed.), Science against microbial pathogens: Communicating current research and technological advances, p. 483-494, 2011. BONACORSI, S. P.P.; CLERMONT, O.; TINSLEY, C.; LE GALL, I.; BEAUDOIN, J. C.; ELION, J.; NASSIF, X.; BINGEN, E. Identification of Regions of the Escherichia coli Chromosome Specific for Neonatal Meningitis-Associated Strains. Infection and Immunity, p. 2096–2101, 2000. BLATTNER, F. R.; PLUNKETT, G. I.; BLOCH, C. A.; PERNA, N. T.; BURLAND, V.; RILEY, M.; COLLADO-VIDES, J.; GLASNER, J. D.; RODE, C. K.; MAYHEW, G. F.; GREGOR, J.; DAVIS, N. W.; KIRKPATRICK, H. A.; GOEDEN, M. A.; ROSE, D. J.; MAU, B.; SHAO, Y. The complete genome sequence of Escherichia coli K-12. Science, v. 277, p. 1453-1461, 1997. BLUM, S. E.; HELLER, E. D.; LEITNER, G. Long term effects of Escherichia coli mastitis. The Veterinary Journal, v. 201, p. 72-77, 2014. 61 BLUM, S.; HELLER, E. D.; KRIFUCKS, O.; SELA, S.; HAMMER-MUNTZ, O.; LEITNER, G. Identification of a bovine mastitis Escherichia coli subset. Veterinary Microbiology, v. 132, n. 1–2, p. 135–48, 2008. BRANGER, C.; ZAMFIR, O.; GEOFFROY, S, LAURANS, G.; ARLET, G.; THIEN, H. V.; GOURIOU, S.; PICARD, B.; DENAMUR, E. Genetic background of Escherichia coli and extended spectrum beta‐lactamase type. Emerging Infectious Diseases, v. 11, p. 54‐61, 2005. BRASIL, MINISTÉRIO DA AGRICULTURA, PECUÁRIA E DO ABASTECIMENTO (MAPA). Instrução Normativa N°62. Regulamentos técnicos de produção, identidade e qualidade do leite tipo A, do leite tipo B, do leite tipo C, do leite pasteurizado e do leite cru refrigerado e o regulamento técnico da coleta de leite cru refrigerado e seu transporte a granel. Diário Oficial da União, 2011. BUCHANAN, R.L. & DOYLE, M.P. Foodborne disease significance of Escherichia coli O157:H7 and other enterohemorrhagic E. coli. Food Technology, v. 51, p. 69-76, 1997. BURVENICH, C.; BANNERMAN, D. D.; LIPPOLIS, J. D.; PEELMAN, L.; NONNECKE, B. J.; KEHRLI, M. E., JR.; PAAPE, M. J. Cumulative physiological 50 events influence the inflammatory response of the bovine udder to Escherichia coli infections during the transition period. Journal Dairy Science, v. 90, p. E39-54, 2007. BURVENICH, C.; van MERRIS, V.; MEHRZAD, J.; DIEZ-FRAILE, A.; DUCHATEAU, L. Severity of E. coli mastitis is mainly determined by cowfactors. Veterinary Research, v. 34, p. 521-564, 2003. BUYUKCANGAZ, E.; VELASCO, V.; SHERWOOD, J.S.; STEPAN, R.M.; KOSLOFSKY, R.J.; LOGUE, C.M. Molecular Typing of Staphylococcus aureus and Methicillin-Resistant S. aureus (MRSA) Isolated from Animals and Retail Meat in North Dakota, United States. Foodborne Pathogens and Disease, v. 10, n. 7, p. 608-617, 2013. CAMPOS, L.C. & TRABULSI, L.R. Escherichia. In.: TRABULSI, L.R. et al. Microbiologia. 3 ed. São Paulo: Atheneu, p. 215-228, 2002. CHATTAWAY, M.A.; DAY, M.; MTWALE, J.; WHITE, E.; ROGERS, J.; DAY, M.; POWELL, D.; AHMAD, M.; HARRIS, R.; TALUKDER, K. A.; WAIN, J.; JENKINS, C.; CRAVIOTO, A. Clonality, virulence and antimicrobial resistance of enteroaggregative Escherichia coli from Mirzapur, Bangladesh. Journal of Medical Microbiology, 2017 (aceito para publicação) CHINA, B.; PIRSON, V.; MAINIL, J. Typing of Bovine Attaching and Effacing Escherichia coli by Multiplex In Vitro Amplification of Virulence-Associated Genes. Appliedand Environment Microbiology, v. 62, p. 3462–3465, 1996. CHRISTENSEN, G.D.; SIMPSON, W.A.; YOUNGER, J. J.; BADDOUR, M. L.; BARRET, F. F.; MELTON, D. M.; BEACHEY, E. H. Adherence of coagulase-ative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. Journal of Clinical Microbiology, v. 22 n. 6 p. 996-1006, 1985. 62 CLERMONT, O.; BONACORSI, S.; BINGEN, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appliedand Environment Microbiology, v. 66, p. 4555-4558, 2000. COBBOLD, R. & DESMARCHELIER, P. A longitudinal study of Shiga-toxigenic Escherichia coli (STEC) prevalence in three Australian dairy herds. Veterinary Microbiology, v. 71, n. 1-2, p. 125–137, 2002. CONAB, Companhia Nacional de Abastecimento. Conjuntura mensal especial, 2017. Disponívelem:http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_05_15_14_13_38_leite_abril_2017.pd. Acesso em 20 de Janeiro de 2018 COOPER, J. E. & FEIL, E. J. Multilocus sequence typing--what is resolved? Trends Microbiology, v. 12, p. 373-377, 2004. CROXATTO, A.; PROD’HOM, G.; GREUB, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiology Reviews, v. 36, n. 2, p. 380-407. 2012. CROXEN, M. A. & FINLAY, B. B. Molecular mechanisms of Escherichia coli pathogenicity. Nature Reviews Microbiology, v. 8, n. 1, p. 26-38, 2010. CUCARELLA, C.; SOLANO, C.; VALLE, J.; AMORENA, B.; LASA, I.; PENADES, J. R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of Bacteriology, v. 183, p. 2888–2896, 2001. DALTON, K.; ISRAELSEN, C.; YOUNG, A. J. The importance of increasing milk quality by 91 decreasing the Somatic Cell Count (SCC). Agriculture Extension Utah State University, 2017. DANESE, P.N.; PRATT, L.A.; DOVE, S.L.; KOLTER, R. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Molecular Microbiology, v. 37, p. 424-432, 2000. DERAL- Departamento de Economia Rural da Secretaria de Estado da Agricultura e do Abastecimento do estado do Paraná. Análise da Conjutura Agropecuária, online, 2014. DESMARAIS, T. R.; SOLO-GABRIELE, H. M.; PALMER, C. J. Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Applied and Environmental Microbiology, v. 68, p. 1165-1172, 2002. DEURENBERG, R.; VLAYEN, J.; GUILLO, S.; OLIVER, T. K.; FERVERS, B.; BURGERS, J. Standardization of search methods for guideline development: an international survey of evidence‐based guideline development groups. Health Information & Libraries Journal, v. 25, n. 1, p. 23-30, 2008. DIECKMANN, R., HELMUTH, R., ERHARD, M. AND MALORNY, B. Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix- 63 assisted laser desorption ionization-time of flight mass spectrometry. Applied and Environmental Microbiology, v.74, p. 7767-7778, 2008. DINGLE, K. E.; COLLES, F. M.; WAREING, D. R.; URE, R.; FOX, A. J.; BOLTON, F. E.; BOOTSMA, H. J.; WILLEMS, R. J.; URWIN, R.; MAIDEN, M. C. Multilocus sequence typing system for Campylobacter jejuni. Journal of Clinical Microbiology, v. 39, p. 14–23, 2001. DOMKA, J.; LEE, J.; BANSAL, T.; WOOD, T. K. Temporal gene-expression in Escherichia coli K-12 biofilms. Environmental Microbiology, v. 9, n. 2, p. 332-46, 2007. DONLAN, R. M. & COSTERTON, J. W. Biofilms: survival mechanism of clinically relevantmicroorganisms. Clinical Microbiology Reviews, v. 15, p. 167-193, 2002. DRASAR, B. S. & HILL, M. J. Human intestinal flora. London: Academic Press, Ltd, p. 38-43, 1974. DYER, J. G.; SRIRANGANATHAN, N.; NICKERSON, S. C.; ELVINGER, F. Curli production and genetic relationships among Escherichia coli from cases of bovine mastitis. Journal of Dairy Science, v. 90, n. 1, p. 193-201, 2007. EICHHORN, I.; HEIDEMANNS, K.; SEMMLER, T.; KINNEMANN, B.; MELLMANN, A.; HARMSEN, D.; ANJUM, M. F.; SCHMIDT, H.; FRUTH, A.; VALENTIN-WEIGAND, P.; HEESEMANN, J.; SUERBAUM, S.; KARCH, H.; WIELER, L. H. Highly virulent non-O157 enterohemorrhagic Escherichia coli (EHEC) serotypes reflect similar phylogenetic lineages, providing new insights into the evolution of EHEC. Applied and Environmental of Microbiology, v. 81, p. 7041–7047, 2015. EJRNAES, K. Bacterial Characteristics of Importance for Recurrent Urinary Tract Infections Caused by Escherichia coli. Danish Medical Bulletin, v. 58, p. B4187, 2011. EMATER-RIO, Relatório de atividades 2015, 2016. ENRIGHT, M. C.; DAY, N. P.; DAVIES, C. E.; PEACOCK, S. J.; SPRATT, B. G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of Clinical Microbiology, v. 38, n. 3, p.1008-1015, 2000. EWING, W.H. Edwards and Ewing’s identification of Enterobacteriaceae. 4ed. New York. Elsevier Publishing CO, p. 536, 1986. FAGUNDES, H.; POMPEU, L. B.; CORASSIN, C. H.; DE OLIVEIRA, C. A. F. Microbiological analysis and somatic cell counts in raw milk from farms of São Paulo State, Brazil. African Journal of Microbiology Research, v. 5, n. 21, p. 3542-3545, 2011. FAO, Food and Agriculture Organization of the United Nations. Dairy Production and Products – Milk Production. Disponível em <http://www.fao.org/agriculture/dairy-gateway/milk-production/en/#.V3AZwbgrLIV> Acesso em 05 ago. 2017. 64 FARROKH, C.; JORDAN, K.; AUVRAY, F.; GLASS, K.; OPPEGAARD, H.; RAYNAUD, S.; THEVENOT, D.; CONDRON, R.; DE REU, K.; GOVARIS, A.; HEGGUM, K.; HEYNDRICKX, M.; HUMMERJOHANN, J.; LINDSAY, D.; MISZCZYCHA, S.; MOUSSIEGT, S.; VERSTRAETE, K.; CERF, O. Review of Shiga toxin-producing Escherichia coli (STEC) an their significance in dairy production. International Journal of Food Microbiology, v. 162, n. 2, p. 190-2012, 2013. FEIL, E. J.; HOLMES, E. C.; BESSEN, D. E.; CHAN, M. S.; DAY, N. P.; ENRIGHT, M. C.; GOLDSTEIN, R.; HOOD, D. W.; KALIA, A.; MOORE, C. E.; ZHOU, J.; SPRATT, B. G. Recombination within natural populations of pathogenic bacteria: Short-term empirical estimates and long-term phylogenetic consequences. Proceedings of the National Academy of Sciences, v. 98, p. 182–187, 2001. FERNANDES, J. B. C.; ZANARDO, L. G.; GALVÃO, N. N.; CARVALHO, I. A.; NERO, L. A.; MOREIRA, M. A. S. Escherichia coli from clinical mastitis: serotypes and virulence factors. Journal of Veterinary Diagnostic Investigation, v. 23, n. 6, p. 1146–1152, 2011. FERREIRA, A. J. P. & KNÖBL, T. Colibacilose. In: BERCHIERI JUNIOR, A.; SILVA, E. N., Di FABIO, J.; SESTI, L.; ZUANAZE, M. A. F. (Ed.). Doença das aves. 2th ed. Campinas: FACTA, cap. 4.2, p. 457-471, 2009. FITRHENRY, R. J.; REECE, S.; TRABULSI, L. R.; HEUSCHKEL, R.; MURCH, S.; THOMSON, M.; FRANKEL, G.; PHILLIPS, A. D. Tissue tropism of enteropathogenic Escherichia coli strains belonging to the O55 serogroup. Infection and Immunity. v.70, n.8, p.4362-4368, 2002. FLEMMING, H. C.; NEU, T. R.; WOZNIAK, D. J. The EPS matrix: the "house ofbiofilm cells". Journal of Bacteriology, v. 189, n. 22, p. 7945-7, 2007. FOXMAN, B.; ZHANG, L.; KOOPMAN, J.S.; MANNING, S. D.; MARRS, C. Choosing an appropriate bacterial typing technique for epidemiologic studies. Epidemiologic Perspectives & Innovations, n. 2, p. 01-08, 2005. FRANCISCO A. P.; VAZ, C.; MONTEIRO P. T.; MELO-CRISTINO, J.; RAMIREZ, M.; CARRIÇO, J. A. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics, v. 13, p. 87, 2012. FRANCO, R. M. Escherichia coli: ocorrência em suínos abatidos na Grande Rio e suaviabilidade experimental em linguiça frescal tipo toscana. 144 f. Tese de Doutorado, Universidade Federal Fluminense, 2002. FRIEDRICH, A. W.; BIELASZEWSKA, M.; ZHANG, W.L.; PULZ, M.; KUCZIUS, T.; AMMON, A.; KARCH, H. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. Journal of Infectious Diseases, v. 185, n. 1, p. 74-84, 2002. FUQUAY, J. W. Encyclopedia of Dairy Sciences. Boston, MA: Elsevier, 2011. 65 GARCH, F. E.; SAUGET, M.; HOCQUET, D.; LECHAUDEE, D.; WOEHRLE, F.; BERTRAND, X. mcr-1 is borne by highly diverse Escherichia coli isolates since 2004 in food producing animals in Europe. Clinical Microbiology and Infection, v. 23, p. 51e1-51e4, 2017. GAUTAM, R.; BANI-YAGHOUB, M.; NEILL, W.H.; DÖPFER, D.; KASPAR, C.; IVANEK, R. Modeling the effect of seasonal variation in ambient temperature on the transmission dynamics of a pathogen with a free-living stage: Example of Escherichia coli O157:H7 in a dairy herd. Preventive Veterinary Medicine, v. 102, n. 1, p. 10-21, 2011. GEUE, L.; SCHARES, S.; MINTEL, B.; CONRATHS, F. J.;MULLER, E.; EHRICHT, R.. Rapid Microarray-Based Genotyping of Enterohemorrhagic Escherichia coli Serotype O156:H25/H_/Hnt Isolates fromCattle and Clonal Relationship Analysis. Applied and Environmental Microbiology, v. 76, n. 16, p. 5510–5519, 2010. GHIGO, J. M. Natural conjugative plasmids induce bacterial biofilm development. Nature, v. 412, p. 442–445, 2001. GOERING, R. V. Pulsed-field gel electrophoresis. In: PERSING, D. H. (Ed.).Molecular Microbiology: Diagnostic Principles and Practice. ASM Press, p.185-196, 2004. GOLI, M.; EZZATPANAH, H.; GHAVAMI, M.; CHAMANI, M.; DOOSTI, A. Prevalence assessment of Staphylococcus aureus and Streptococcus agalactiae by multiplex polymerase chain reaction (M-PCR) in bovine sub-clinical mastitis and their effect on somatic cell count (SCC) in Iranian dairy cows. African Journal of Microbiology Research, v. 6, n. 12, p. 3005–3010, 2012. GOPHNA, U.; OELSCHLAEGER, T. A.; HACKER, J.; RON, E. Z. Role of fibronectin in curli-mediated internalization. FEMS Microbiology Letter, v. 212, p. 55–58, 2002. GORDON, D. M..; CLERMONT, O.; TOLLEY, H.; DENAMUR, E. Assigning Escherichia coli strains to phylogenetic groups: multi-locus sequence typing versus the PCR triplex method. Environmental Microbiology, v. 10, p. 2484–2496, 2008. GORDON, D. M.; STERN, S. E.; COLLIGNON, P. J. Influence of the age and sex of human hosts on the distribution of Escherichia coli ECOR groups and virulence traits. Microbiology, v. 151, p. 15–23, 2005. GRAD, Y. H.; LIPSITCH, M.; FELDGARDEN, M.; ARACHCHI, H. M.; CERQUEIRA, G. C.; FITZGERALD, M.; et al. Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. Proceedings of the National Academy os Sciences of the United States os America. v. 109, n. 8, p. 3065-70, 2012. GROHN, Y. T.; WILSON,D. J.; GONZALEZ, R. N.; HERTL, J. A.; SCHULTE, H.; BENNETT, G.; SCHUKKEN.Y. H. Effect of pathogen-specific clinical mastitis on milk yield in dairy cows. Journal of Dairy Science, v. 87, p. 3358–3374, 2004. GYLES C. L. & FAIRBROTHER J. M. Escherichia coli. In: GYLES, C. A.; PRESCOTT, J. F.; SONGER, J. G.; THOEN, C. O. (Eds). Pathogenesis of Bacterial Infections in Animals. Wiley-Blackwell, p. 231-265, 2010. 66 GYLES, C. L. Shiga toxin-producing Escherichia coli: an overview. Journal of Animal Science, v. 85, p. E45–E62, 2007. GYLES, C. L & FAIRBROTHER J. M. In: GYLES C. L et al. Escherichia coli In: Pathogenesis of bacterial infections in animals, 3ed. Ames, Iowa: Iowa State University Press, p. 193-214, 2004. HALL, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98NT. Nucleic Acids Symposium Series, v. 41, p. 95–98, 1999. HANCOCK, D. D.; BESSER, T. E.; KINSEL, M. L.; TARR, P. I.; RICE, D. H.; PAROS, M. G. The prevalence of Escherichia coli Persistence of E. coli O157:H7 on dairy farms 259 O157:H7 in dairy and beef cattle in Washington State. Epidemiology & Infection, v. 113, p. 199-207, 1994. HANNAGE, P.; FEIL, E. J.; BRUEGGEMANN, A. B.; SPRATT, B. G. Multilocus Sequence Typing: Strain Characterization, Population Biology, and Patterns of Evolution Descent. In: PERSING, D. H. (Ed.). Molecular Microbiology: Diagnostic Principles and Practice. Washington: ASM Press, p. 235-243, 2004. HARBOTTLE, H.; WHITE, D. G.; MCDERMOTT, P. F.; WALKER, R. D.; ZHAO, S. Comparison of multilocus sequence typing, pulsed-field gel electrophoresis,and antimicrobial susceptibility typing for characterization of Salmonella entericaserotype Newport isolates. Journal of Clinical Microbiology, v. 44, p. 2449-2457, 2006. HAUSNER, M. & WUERTZ, S. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Applied and Environmental Microbiology, v. 65, p. 3710–3713, 1999. HENDERSON, I. R. & NATARO, J. P. Virulence functions of autotransporter proteins. Infection and Immunity, v. 69, p. 1231-1243, 2001. HENDERSON, I. R.; CAPELLO, R.; NATARO, J. P. Autotransporter proteins, evolution and refing protein secretion. Trends Microbiology, v. 8, p. 529-532, 2000. HENRIQUES, S.; SILVA, E.; LEMSADDEK, A.; LOPES-DA-COSTA, L.; MATEUS, L. Genotypic and phenotypic comparison of Escherichia coli from uterine infections with different outcomes: Clinical metritis in the cow and pyometra in the bitch. Veterinary Microbiology, v. 170, p. 109–116, 2014. HERNANDES, R. T.; VELSKO, I.; SAMPAIO, S. C.; ELIAS, W. P.; ROBINS-BROWNE, R. M.; GOMES, T. A.; GIRÓN, J. A. Fimbrial Adhesins Produced by Atypical Enteropathogenic Escherichia coli Strains. Applied and Environmental Microbiology, v. 77, p. 8391-8399, 2011. HERRERA-LUNA, C.; KLEIN, D.; LAPAN, G.; REVILLA-FERNANDEZ, S.; HASCHEK, B.; SOMMERFELD-STUR, I.; MOESTL, K.; BAUMGARTNER, W. Characterization of virulence factors in Escherichia coli isolated from diarrheic and healthy calves in Austria shedding various enteropathogenic agents. Veterinary Medicine, v. 54, p. 1–11, 2009. 67 HERZER, P.J.; INOUYE, S.; INOUYE, M.; WHITTAM, T. S. Phylogenetic distribution of branched RNA-linked mulitcopy single-stranded DNA among natural isolates of Escherichia coli. Journal of Bacteriology, v. 172, p. 6175-6181, 1990. HOGAN, J. & SMITH, K. L. Managing Environmental Mastitis. Veterinary Clinics of North America: Food Animal Practice, v. 28, n. 2, p. 217-224, 2012. HOLDEN, M. T.; FEIL, E. J.; LINDSAY, J. A.; PEACOCK, S. J.; DAY, N. P.; ENRIGHT, M. C.; FOSTER, T. J.; MOORE, C. E.; HURST, L.; ATKIN,R.; BARRON, A.; BASON, N.; BENTLEY, S. D.; CHILLINGWORTH, C.; CHILLINGWORTH, T.; CHURCHER,C.; CLARK, L.; CORTON, C.; CRONIN, A.; DOGGETT, J.; DOWD, L.; FELTWELL, T.; HANCE, Z.; HARRIS, B.; HAUSER, H.; HOLROYD, S.; JAGELS, K.; JAMES, K. D, et al. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proceedings of the National Academyof Sciences of the United States of America, v. 101, p. 9786–91, 2004. HUGHES, J. M.; WILSON, M. E.; JOHNSON, K. E.; THORPE, C. M.; SEARS, C. L. The emerging clinical importance of non-O157 shiga toxinproducing Escherichia coli. Clinical Infectious Diseases, v. 43, n. 12, p. 1587-1595, 2006. HUSSEIN, H. S. & SAKUMA, T. Invited review: prevalence of Shiga Toxinproducing Escherichia coli in dairy cattle and their products. Journal of Dairy Science, v. 88, 2005. IBGE. Estatística da Produção Pecuária, 2017. Disponível em: https://www.ibge.gov.br/estatisticas-novoportal/economicas/agricultura-e-pecuaria/9209-pesquisa-trimestral-do-leite.html?&t=o-que-e. Acesso em: 15 de Janeiro de 2018. IBGE. Censo Demográfico e Econômico, 2016. http://www.ibge.gov.br. Acesso em: 27 de Julhode 2017. IBGE. Pesquisa Pecuária Municipal, 2015. Disponível em: http:// www.ibge.gov.br.htm. Acesso em: 04 de Agosto de 2017. ILINA, E. N.; BOROVSKAYA, A. D.; MALAKHOVA, M. M.; VERESHCHAGIN, V. A.; KUBANOVA, A. A.; KRUGLOV, A. N.; SVISTUNOVA, T. S.; GAZARIAN, A. O.; MAIER, T.; KOSTRZEWA, M.; GOVORUN, V. M. Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria. Journal of Molecular Diagnostics, v. 11, p. 75-86, 2009. INSTITUTO NACIONAL DE METEREOLOGIA (INMET). Dados históricos. http://www.inmet.gov.br/projetos/rede/pesquisa/gera_serie_txt_mensal.php?&mRelEstacao=83743&btnProcesso=serie&mRelDtInicio=01/07/2014&mRelDtFim=30/05/2015&mAtributos=,,,,,,,,,,,,1,,1,,. Acesso em: 10 de Março de 2018. ISHII, S.; KSOLL, W. B.; HICKS, R. E.; SADOWSKY, M. J. Presence and growth of naturalized Escherichia coli in temperate soils from lake superior watersheds. Applied and Environmental Microbiology, v. 72, p. 612-621, 2006. 68 JAMESDANIEL, S.; SALVI, R.; COLING, D. Auditory proteomics: methods, accomplishments and challenges. Brain research, v. 1277, p. 24-36, 2009. JI, R.; LI, Y. J.; WANG, Y.; CUI, S. H.; JIANG, T. Comparison of multilocus sequence typing system and pulsed-field gel electrophoresis in typing of Salmonella enteritidis. Zhonghua Liu Xing Bing Xue Za Zhi, v. 27, p. 1065-1068, 2006. JOHNSON, J. R.; DELAVAR, I. P.; KUSKOWSKI, M.; STELL, A. L. Phylogenetic distribution of extraintestinal virulence associated traits in Escherichia coli. Journal of Infectious Diseases, v. 183, p. 78-88, 2001 JOHNSON, J. R. & STELL, A. L. Extended Virulence Genotypes of Escherichia coli Strains from Patients with Urosepsis in Relation to Phylogeny and Host Compromise. Journal of Infectious Diseases, v.72, p. 181-261, 2000. JOLLEY, K. A.; CHAN, M. S.; MAIDEN, M. C.J.mlstdbNet – distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics, v. 5, p. 86, 2004. KAAS, R. S.; FRIIS, C.; USSERY, D. W.; AARESTRUP, F. M. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics, v. 13, p. 577, 2012. KANE, D. J.; SARAFIAN, T. A.; ANTON, R.; HAHN, H.; GRALLA, E. B.; VALENTINE, J. S.; BREDESEN, D. E. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science, v. 262, n. 5137, p. 1274-1277, 1998. KAPER, J. B.; NATARO, J. P.; MOBLEY, H. L. T. Pathogenic Escherichia coli. Nature Reviews Microbiology, v. 2, p. 123-138, 2004. KASAI, H.; WATANABE, K.; GASTEIGER, E.; BAIROCH, A.; ISONO, K.; YAMAMOTO, S.; HARAYAMA, S. Construction of the gyrB database for the identification and classification of bacteria. Genome Informatics. Workshop Genome Informatic, v. 9, p. 13–21, 1998. KAU, A. L.; HUNSTAD, D. A.; HULTGREN, S. J. Interaction of uropathogenic Escherichia coli withhost uroepithelium. Current Opinium in Microbiology, v. 8, p. 54-59, 2005. KIEFFER, N.; POIREL, L.; CLERC, O.; LIENHARD, R.; NORDMANN, P. Co-production of MCR-1 and extended-spectrum β-lactamase in Escherichia coli recovered from urinary tract infections in Switzerland. Infection, p. 1-2, 2017. KJARGAARD, K.; SCHEMBRI, M. A.; RAMOS, C.; MOLIN, S.; KLEMM, P. Antigen 43 facilitates formation of multispecies biofilms. Environmental Microbiology, v. 2, p. 695–702, 2000a. KLINE, K. A.; KAU, A. L.; CHEN, S. L.; LIM, A.; PINKNER, J. S.; ROSCH, J.; NALLAPAREDDY, S. R.; MURRAY, B. E.; HENRIQUES-NORMARK, B.; BEATTY, W., Mechanism for sortase localization and the role of sortase localization in efficient pilus assembly in Enterococcus faecalis. Journal of Bacteriology, v. 191, n. 10, p. 3237-3247, 2009. 69 KONEMAN, W. E.; ALLEN, S. D.; JANDA, W. M.; SCHRECKENBERGER, P. C.; WINN, JR. W. C. As Enterobacteriaceae. In: KONEMAN, E. W. Diagnóstico microbiológico– texto e atlas colorido. 6. ed. Rio de Janeiro: Editora Médica e Científica, p. 263-329, 2012. KOREA, C. G.; GHIGO, J. M.; BELOIN, C. The sweet connection: solving the riddle of multiple sugar-binding fimbrial adhesins in Escherichia coli: multiple E. coli fimbriae form a versatile arsenal of sugar-binding lectins potentially involved in surface-colonisation and tissue tropism. Bioessays, v. 33, p. 300–311, 2011. KOTETISHVILI, M.; STINE, O. C.; CHEN, Y.; KREGER, A.; SULAKVELIDZE, A.; SOZHAMANNAN, S.; MORRIS JR, J. G. Multilocus sequence typing has better discriminatory ability for typing Vibrio cholerae than does pulsed-field gel electrophoresis and provides a measure of phylogenetic relatedness. Journal of Clinical Microbiology, v. 41, p. 2191–2196, 2003. KOTETISHVILI, M.; STINE, O. C.; KREGER, A.; MORRIS JR, J. G.; SULAKVELIDZE, A.Multilocus sequence typing for characterization of clinical and environmental Salmonella strains. Journal of Clinical Microbiology, v. 40, p. 1626–1635, 2002. KUMAR, S.; TAMURA, K.; NEI, M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics, v. 5, p. 150–163, 2004. LAGO, A.; GODDEN, S. M.; BEY, R.; RUEGG, P. L.; LESLIE, K. The selective treatment of clinical mastitis based on on-farm culture results: I. Effects on antibiotic use, milk with holding time, and short-term clinical and bacteriological outcomes. Journal of Dairy Science, v. 94, p. 4441–4456, 2011. LAMBERTINI, E.; KARNS, J. S.; VAN KESSEL, J. A. S.; CAO, H.; SCHUKKEN, Y. H.; WOLFGANG, D. R.; SMITH, J. M.; PRADHAN, A. K. Dynamics of Escherichia coli virulence factors in dairy herds and farm environments in a longitudinal study in the United States. Applied and Environmental Microbiology, v. 81, p. 4477-4488, 2015. LANDINI, P. Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli. Research in Microbiology, v. 160, n. 4, p. 259-66, 2009. LANGONI, H.; GUIMARÃES, F. F.; COSTA, E. O. D.; JOAQUIM, S. F.; MENOZZI, B. D. Milk cellularity and colony forming units in mastitis caused by coagulase-positive staphylococci and coagulase negative. Pesquisa Veterinária Brasileira, v. 35,n. 6, p. 518-524, 2015. LEFEBVRE, B.; DIARRA, M. S.; VINCENT, C.; MOISAN, H.; MALOUIN, F. Relative cytotoxicity of Escherichia coli O157:H7 isolates from beef cattle and humans. Foodborne Pathogens and Disease, v. 6, p. 357–364, 2009. LE GALL, T.; CLERMONT, O.; GOURIOU, S.; PICARD, B.; NASSIF, X.; DENAMUR, E.; TENAILLON, O. Extraintestinalvirulence is a coincidental by-product of commensalism in 70 B2 phylogenetic group Escherichia coli strains. Molecular Biology and Evolution, v. 24, n. 11, p. 2373–84, 2007. LEIMBACH, A.; POEHLEIN, A.; VOLLMERS, J.; GÖRLICH, D.; DANIEL, R.; DOBRINDT, U. No evidence for a bovine mastitis Escherichia coli pathotype. BMC Genomics, v. 18, p. 359, 2017. LEIMBACH, A.; HACKER, J.; DOBRINDT, U. E. coli as an all-rounder: the thin line between commensalism and pathogenicity. Current Topics in Microbiology and Immunology, v. 358, p. 3-32, 2013. LEOMIL, L.; AIDA-UGRINOVICH, L.; GUTH, B. E. C.; IRINO, K.; VETTORATO, M. P.; ONUMA. D. L.; CASTRO, A. F. P. Frequency of Shiga toxin-producing Escherichia coli (STEC) isolates among diarrheic and non-diarrheic calves in Brazil. Veterinary Microbiology, v. 97, p. 103-109, 2005. LI, Y.; HAO, G.; GALVANI, C. D.; MENG, Y.; DE LA FUENTE, L.; HOCH, H. C.; BURR, T. J. Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation.Microbiology, v. 153, p. 719-726, 2007. LOPEZ-SAUCEDO, C.; CEMA, J. F.; VILLEGAS-SEPULVEDA, N.; THOMPSON, R.; VELAZQUEZ, F. R.; TORRES, J.; TARR, P. I.; ESTRADA-GARCIA, T. Single multiplex polymerase chain reaction to detect diverse loci associated with diarrheagenic Escherichia coli. Emerging Infectious Diseases, v. 9, p. 127- 131, 2003. LUKINMAA, S.; NAKARI, U. M.; EKLUND, M.; SIITONEN, A. Application of molecular genetic methods in diagnostics and epidemiology of food-borne bacterial pathogens. Acta Pathologica, Microbiologica, et Immunologica, v. 112, p. 908-29, 2004. LUO, C.; WALK, S. T.; GORDON, D. M.; FELDGARDEN, M.; TIEDJE, J. M.; KONSTANTINIDIS, K. T. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterialspecies. Proceedings of the National Academy of Sciences of the United States of America, v.108, p. 7200–7205, 2011. LUO, H.; WAN, K.; WANG, H. H. High-frequency conjugation system facilitates biofilm formation and pAM_1 transmission by Lactococcus lactis. Applied and Environmental Microbiology, v. 71, p. 2970–2978, 2005. LYNCH, M.; O’CONNOR, L.; FOX, E.; JORDAN, K.; MURPHY, M. Verocytotoxigenic Escherichia coli O157, O111, O26, O103, O145 in Irish dairy cattle and raw milk: Prevalence and epidemiology of emergent stains. Zoonoses Public Health, v. 59, p. 264–271, 2012. MACK, D., ROHDE, H., DOBINSKY, S., RIEDEWALD, J., NEDELMANN, M., KNOBLOCH, J. K.M. Identification of three essential regulatory gene loci governing expression of Staphylococcus epidermidis polysaccharide intercellular adhesin and biofilm formation. Infection and Immunity, v. 68, p. 3799-3807, 2000. 71 MADSEN, J. S.; BURMØLLE, M.; HANSEN, L. H.; SORENSEN, S. J. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunology & Medical Microbiology, v. 65, p. 183-195, 2012. MAGALHÃES, V. FERREIRA, J. C.; BARELLI, C.; DARINI, L. C. Pulsed field gel eletrophoresis use in bacteriology – a technical review. Revista do Instituto Adolfo Lutz, v. 64, n. 2, p. 155-161, 2005. MAIA, G. B. S.; PINTO, A. R.; MARQUES C. Y. T.; ROITMAN F. B.; LYRA, D. D. Produção leiteira no Brasil. BNDES Setorial, Rio de Janeiro, v.37, p. 371-398, 2013. Disponível em <http://www.bndes.gov.br/SiteBNDES/export/sites/default/bndes_pt/Galerias/Arquivos/conhecimento/bnset/ set3709.pdf.>. Acesso em: 24 de Julho de 2017. MAIDEN, M. C. J. Multilocus Sequence Bacteria. Annual Review of Microbiology, v. 60, p. 561-588, 2006. MAIDEN, M. C.; BYGRAVES, J. A.; FEIL, E.; MORELLI, G.; RUSSELL, J. E.; URWIN, R.; ZHANG, Q.; ZHOU, J.; ZURTH, K.; CAUGANT, D. A.; FEAVERS, I. M.; ACHTMAN, M.;SPRATT, B. G. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences of the United States of America, v. 95, n. 6, p. 3140–3145, 1998. MAINIL, J. G.; FAIRBROTHER, J. M. Pathogenic Escherichia coli in domestic mammals and birds. In: Morabito, S.; editor. Pathogenic Escherichia coli: molecular and cellular microbiology. Norwich (UK): Horizon Scientific Press and Caister Academic Press; 2014. MAINIL, J. Escherichia coli virulence factors. Veterinary Immunology and Immunopathology, v. 152, p. 2-12, 2013. MAINIL, J. G. & DAUBE, G. Verotoxigenic Escherichia coli from animals, humans and foods: who’s who? Journal of Applied Microbiology, v. 98, p. 1332-1344, 2005. MAKOVEC, J. A. & RUEGG, P. L. Results of milk samples submitted for microbiological examination in Wisconsin from 1994 to 2001. Journal of Dairy Science, v. 86, p. 3466–3472, 2003. MARQUES, V. F.; SOUZA, M. M. S.; MENDONÇA, E. C. L.; ALENCAR, T. A.; PRIBUL, B. R.; COELHO, S. M. O.; LASAGNO, M.; REINOSO, E. B. Análise fenotípica e genotípica da virulência de Staphylococcus spp. e de sua dispersão clonal como contribuição ao estudo da mastite bovina. Pesquisa Veterinária Brasileira, v. 33, n. 2, p. 161-170, 2013. MATIAS, C. A. R.; PEREIRA, I. A.; REIS, E. M. F.; RODRIGUES, D. P.; SICILIANO, S. Frequency of zoonotic bacteria among illegally traded wild birds in Rio de Janeiro. Brazilian Journal of Microbiology, v. 47, p. 882-888, 2016. MAY, T. & OKABE, S. Escherichia coli harbouring a natural IncF conjugative F plasmid develops complex mature biofilms by stimulating synthesis of colonic acid and curli. Journal of Bacteriology, v. 190, p. 7479–7490, 2008. 72 MCCRATE, O. A; ZHOU, X.; REICHHARDT, C.; CEGELSKI, L. Sumof the Parts: Composition and Architecture of the Bacterial Extracellular Matrix, Journal of Molecular Biology, v. 425, n. 22, p. 4286-4294, 2013 MELLMANN, A.; HARMSEN, D.; CUMMINGSM C. A.; ZENTZ, E. B.; LEOPOLD, S. R.; RICO, A.; PRIOR, K.; SZCZEPANOWSKI, R.; JI, Y.; ZHANG, W.; MCLAUGHLIN, S. F.; HENKHAUS, J. K.; LEOPOLD, B.; BIELASZEWSKA, M.; PRAGER, R.; BRZOSKA, P. M.; MOORE, R. L.; GUENTHER, S.; ROTHBERG, J. M.; KARCH, H. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PloS One, v. 6, n. 7, p. e22751, 2011. MIGUEL, P. R. R. Incidência de contaminação no processo de obtenção do leite e suscetibilidade a agentes antimicrobianos. Dissertação de Mestrado. Universidade Estadual do Oeste do Paraná, Paraná, 2010. MINAGAWA, C. W. Estudo microbiológico fecal de linhagens de camundongos, de estirpe de E. coli e do meio ambiente em biotérios. 108 f. Dissertação de Mestrado. Universidade de São Paulo, São Paulo, 2007. MOMTAZ, H.; DEHKORDI, S. F.; TAKTAZ, T.; REZVANI, A.; YARALI, S. Shiga toxin-producing Escherichia coli isolated from bovine mastitic milk: serogroups, virulence factors, and antibiotic resistance properties. The Scientific World Journal, p. 2012: 618709, 2012. MONEY, E. S.; CARTER, G. P.; SERRE, M. L. Modern space/time geostatistics using river distances: data integration of turbidity and E. coli measurements to assess fecal contamination along the rarity an river in New Jersey. Environmental Science & Technology, v. 43, p. 3736–3742, 2009. MORE, S. J. Global trends in milk quality: implications for the Irish dairy industry. Irish Veterinary Journal, v. 62, n. 4, p. S5-S14, 2009. MOURA L. B. & FERNANDES M. G. A incidência de infecções urinárias causadas por E. coli. Revista Olhar Científico, v. 01, p. 411 – 426, 2010. MULLER, E. E. Qualidade do leite, células somáticas e prevenção da mastite. Simpósio sobre Sustentabilidade da Pecuária Leiteira na Região Sul do Brasil, Anais II Sul-Leite, Toledo, PR, p. 206-217, 2002. MUNDY, R.; SCHULLER, S.; GIRARD, F.; FAIRBROTHER, J. M.; PHILLIPS, A. D.; FRANKEL, G. Functional studies of intimin in vivo and ex vivo: implications for host specificity and tissue tropism. Microbiology, v. 153, p. 959–967, 2007. NAGY, B. &FEKETE, P. Z. Enterotoxigenic Escherichia coli in veterinary medicine. International Journal of Medical Microbiology, v. 295, n. 6–7, p. 443-454, 2005. NAGY, E.; MAIER, T.; URBAN, E.; TERHES, G.; KOSTRZEWA, M. Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption⁄ionization time-of-flight mass spectrometry. Clinical Microbiology and Infection, v. 15, p. 796-802, 2009. 73 NALLAPAREDDY, S. R.; DUH, R. W.; SINGH, K. V.; MURRAY, B. E. Molecular typing of selected Enterococcus faecalis isolates: pilot study using multilocus sequence typing and pulsed-field gel electrophoresis. Journal of Clinical Microbiology, v. 40, p. 868–876, 2002. NASCIMENTO, H. H.; SILVA, L.E. P.; SOUZA, R. T.; SILVA, N. P.; SCALETSKY, I.C. A. Phenotypic and genotypic characteristics associated with biofilm formation in clinical isolates of atypical enteropathogenic Escherichia coli (aEPEC) strains. BMC Microbiology, v. 14, p. 184, 2014. NATARO, J. P. & KAPER, J. B. Diarrheagenic Escherichia coli. Clinical Microbiology Reviews, v. 11, p. 142-201, 1998. NATIONAL MASTITIS COUNCIL (NMC). Laboratory Handbook on Bovine Mastitis. National Mastitis Council, 1999. NEMOY, L. L.; KOTETISHVILI, M.; TIGNO, J.; KEEFER-NORRIS, A.; HARRIS,A. D.; PERENCEVICH, E. N.; JOHNSON, J. A.; TORPEY, D.; SULAKVELIDZE, A.; MORRIS, J. G., JR.; STINE, O. C. Multilocus sequence typing versus pulsed-field gel electrophoresis for characterization of extended-spectrum betalactamase-producing Escherichia coli isolates. Journal of Clinical Microbiology, v. 43, p. 1776-1781, 2005. NIELSEN. Os produtos mais quentes do mundo. Disponível em: <http://br.nielsen.com/reports/documents/WhatsHotInsightsonGrowthin FoodBeverageProductsBrPt.pdf>. Acesso em: 27 deJulho de 2017. NOLLER, A. C.; McELLISTREM, M. C.; STINE, O. C.; MORRIS J.G, J. R,.; BOXRUD, D. J.; DIXON, B.; HARRISON, L. H. Multilocus sequence typing reveals a lack of diversity among Escherichia coli O157:H7 isolates that are distinct by pulsed-field gel electrophoresis. Journal of Clinical Microbiology, v. 41, p. 675–679, 2003. NORMAN, K. N.; CLAWSON, M. L.; STROCKBINE, N. A.; MANDRELL, R. E.; JOHNSON, R.; ZIEBELL, K.; ZHAO, S.; FRATAMICO, P. M.; STONES, R.; ALLARD, M. W.; BONO, J. L. Comparison of whole genome sequences from human and non-human Escherichia coli O26 strains. Frontier in Cellular and Infection Microbiology, v. 5, p.21, 2015. OLIVER, D. M. & PAGE, T. Effects of seasonal meteorological variables on E. coli persistence in livestock feces and implications for environmental and human health. Scientific Reports, v. 6, p. 37101, 2016. OLIVEIRA, L. P.; BARROS, L. S. S.; SILVA, V. C. Avaliação fisico-química de leite cru e pasteurizado consumido no Recôncavo da Bahia. Enciclopédia Biosfera, v. 8, p. 335-343, 2012. OLIVEIRA, M. G.; BRITO, J. R.; GOMES, T. A. T.; GUTH, B. E. C.; VIEIRA, M. A. M.; NAVES, Z. V. F.; VAZ, T. M. I.; IRINO, K. Diversity of virulence profiles of Shiga toxin-producing Escherichia coli serogroups in food-producing animals in Brazil. Int. Journal Food Microbiology, v. 127, p. 139-46, 2008. 74 OLIVEIRA, M.; BEXIGA, R.; NUNES, S. F.; CARNEIRO, C.; CAVACO, L. M.; BERNARDO, F.; VILELA, C. L. Biofilm-forming ability profiling of Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Veterinary Microbiology, v. 118, p. 133–140, 2006. ONG, C. L.; BEATSON, S. A.; MCEWAN, A. G.;SCHEMBRI, M. A. Conjugative plasmid transfer and adhesion dynamics in an Escherichia coli biofilm. Applied and Environmental Microbiology, v. 75, p. 6783–6791, 2009. OTTO, A.; BERNHARDT, J.; HECKER, M.; BECHER, D. Global relative and absolute quantitation in microbial proteomics. Current Opinion in Microbiology, v.15, p.364–372, 2012. PACHEPSKY, Y. A. & SHELTON, D. R. Escherichia coli and fecal coliforms in freshwater and estuarine sediments. Critical Reviews in Environmental Science and Technology, v. 41, p. 1067–1110, 2011. PASS, M. A.; ODEDRA, R.; BATT, R. M. Multiplex PCRs for identification of Escherichia coli virulence genes. Journal of Clinical Microbiology, v. 38, p. 2001–2004, 2000. PEACOCK, S. J.; DE SILVA, G. D. I.; JUSTICE, A.; COWLAND, A.; MOORE, C. E.; WINEARLS, C. G.; DAY, N. P. Comparison of multilocus sequence typing and pulsed-field gel electrophoresis as tools for typing Staphylococcus aureus isolates in a microepidemiological setting. Journal of Clinical Microbiology, v. 40, p. 3764–3770, 2002. PEI, Y.; TERAJIMA, J.; SAITO, Y.; SUZUKI, R.; TAKAI, N.; IZIMIYA, H.; MORITA-ISHIHARA, T.; OHNISHI, M.; MIURA, M.; IYODA, S.; MITOBE, J.; WANG, B.; WATANABE, H. Molecular characterization of enterohemorrhagic Escherichia coli O157:H7 isolates dispersed across Japan by Pulsed-Field Gel Electrophoresis and Multiple-Locus Variable-Number Tandem Repeat Analysis. Japan Journal of Infection Diseases, v. 61, p. 58-64, 2007. PEREIRA, M. A.; BORGES, E. F. C.; PEREIRA, M. G.; REZENDE, T. N.; PEREIRA, T. C.; ARAUJO, P. P. Influência da água na qualidade do leite produzido em propriedades localizadas no município de três corações, Estado de Minas Gerais, Brasil. III Simpósio de Qualidade do Leite. 2016. PÉREZ-LOSADA, M.; CABEZAS, P.; CASTRO-NALLAR, E.; CRANDALL, K. A. Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. Infection, Genetics and Evolution, v. 16, p. 38-53, 2013. PERSING, D. H (Ed.) Molecular microbiology: diagnostic principles and practice. Washington: ASM Press, v. 15, p. 185-196, 2004. PIAZZA, R. M. F.; ABE, C. M.; HORTON, D. S. P. Q.; MILIWEBSKY, E.; CHINEN, I.; VAZ, T. M. I.; IRINO, K. Detection and subtyping methods of diarrheagenic Escherichia coli strains. Pathogenic Escherichia coli in Latin America, v. 7, p. 95-115, 2010. 75 PICIOREANU, C.; VAN LOOSDRECHT, M. C. M.; HEIJNEN, J. J. Community Structure and Co-operation in Biofilms. In: ALLISON, D. G.; GILBERT, P.; LAPPIN-SCOTT, H. M.; WILSON, M. editors. Society for General Microbiology, p. 129-166, 2000. PINTO, C. L. O; MARTINS, M. L.; VANETT, M. C. D. Qualidade microbiológica de leite cru refrigerado e isolamento de bactérias psicrotróficas proteolíticas. Ciência e Tecnologia dos Alimentos, v. 26, n. 3, p. 645-651, 2006. PINZÓN-SANCHEZ, C. & RUEGG, P. L. Risk factors associated with short-term post-treatment outcomes of clinical mastitis. Journal of Dairy Science, v. 94, p. 3397–3410, 2011. PRUSS, B. M.; BESEMANN, C.; DENTON, A.; WOLFE, A. J. A complex transcription network controls the early stages of biofilm development by Escherichia coli. Journal of Bacteriology, v. 188, n. 11, p. 3731-9, 2006. RADOSTITS, O. M.; GAY, C. C.; BLOOD, D. C.; HINCHCLIFF, K. W. Clínica Veterinária – Um tratado de Doenças dos Bovinos, Suínos, Caprinos e Equinos. 9ª ed., Rio de Janeiro: Guanabara Koogan, p. 541-629, 2000. RAJKHOWA, S.; DAS, R.; BORA, S.; RAJKHOWA, C.; RAHMAN, H.; BUJARBARUAH, K. M. Detection of Shiga toxin-producing Escherichia coli and enteropathogenic Escherichia coli in faecal samples of healthy mithun (Bos frontalis) by multiplex polymerase chain reaction. Zoonoses Public Health, v. 57, n. 6, p. 397-401, 2010. RAMOS, S.; SILVA, N.; DIAS, D.; SOUSA, M.; CAPELO-MARTINEZ, J. L.; BRITO, F.; CANIÇA, M.; IGREJAS, G.; POETA, P. Clonal diversity of ESBL-producing Escherichia coli in pigs at slaughter level in Portugal. Foodborne Pathogens and Disease, v. 10, n. 1, 2013. RANJBAR, R.; KARAMI, A.; FARSHAD, S.; GIAMMANCO, G. M.; MAMMINA, C. Typing methods used in the molecular epidemiology of microbial pathogens: a how-to guide. The new microbiologica, v. 1, n.37, p.1-15, 2014. RATAJCZAK, M.; LAROCHE, E.; BERTHE, T.; CLERMONT, O.; PAWLAK, B.; DENAMUR, E.; PETIT, F. Influence of hydrological conditions on the Escherichia coli population structure in the water of a creek on a rural watershed. BMCMicrobiology, v. 10, p. 222, 2010. REGUA-MANGIA, A. H. Métodos moleculares na vigilância epidemiológica de doenças infecciosas. Revista Brasileira de Inovação Tecnológica em Saúde, on-line. 2015. REISNER, A.; HOLLER, B. M.; MOLIN, S.; ZECHNER, E. L. Synergistic effects in mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansion. Journal of Bacteriology, v. 188, p. 3582–3588, 2006. RESTIERI, C.; GARRISS, G.; LOCAS, M. C.; DOZOIS, C. M. Autotransporter-encoding sequences are phylogenetically distributed among Escherichia coli clinical isolates and reference strains. Applied and Environmental Microbiology, v. 73, p. 1553–1562, 2007. 76 RIBOT, E. M.; FAIR, M. A.; GAUTOM, R.; CAMERON, D. N.; HUNTER, S. B.; SWAMINATHAN, B.; BARRETT, T. J. Standardization of pulsed-field gelelectrophoresis protocols for the subtyping of Escherichia coli O157:H7,Salmonella spp., and Shigella spp. for PulseNet. Foodborne Pathogens and Disease, v. 3, p. 59-67, 2006. RICHTER, S. S.; SERCIA, L.; BRANDA, J. A.; BURNHAM, C. A.; BYTHROW, M.; FERRARO, M. J.; MANJI, R. Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system. European Journal of Clinical Microbiology & Infectious Diseases, v. 32, n. 12, p. 1571-1578. 2013. RIGOBELO, E. C.; GAMEZ, H. J.; MARIN, J. M.; MACEDO, C.; AMBROSIN, J. A.; ÁVILA, F. A. Virulence factors of Escherichia coli isolated from diarrheic calves. Arquivo Brasileiro de MedicinaVeterinária e Zootecnia, v. 58, n. 3, p. 305-310, 2006. ROMERO, L. L.; LOPEZ, L.; MARTINEZ-MARTINEZ, B.; GUERRA, J. R.; HERNANDEZ, A. P. Characterization of the first CTX-M-14-producing Salmonella enterica serotype Enteritidis isolate. Journal of Antimicrobial Chemotherapy, v. 53, p. 1113–1114, 2004. SABAT, A. J.; BUDIMIR, A.; NASHEV, D.; SÁ-LEÃO, R.; VAN DIJL, J. M.; LAURENT, F.;GRUNDMANN, H.; FRIEDRICH, A. W.; ESCMID Study Group of Epidemiological Markers (ESGEM). Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveillance, v. 18, n. 4, p. 20380, 2013. SABATÉ, M.; PRATS, G.; MORENO, E.; BALLESTE, E.; BLANCH, A. R.; ANDREU, A. Virulence and antimicrobial resistance profiles among Escherichia coli strains isolated from human and animal wastewater. Research in Microbiology, v. 159, p. 288-293, 2008. SAMANTHA, I.; JOARDAR, S. N.; DAS, P. K.; SAR, T. K. Comparative possession of Shiga toxin, intimin, enterohaemolysin and major extended spectrum beta lactamase (ESBL) genes in Escherichia coli isolated from backyard and farmed poultry. Iranian Journal of Veterinary Research, v. 16, n. 1, p. 90-93, 2015. SANTOS, M. V.& FONSECA, L. F. L. Estratégias para controle de mastite e melhoria da qualidade do leite. Manole, p. 314, 2007. SANTOS, F. G. P.; MOTA, R. A.; SILVEIRA FILHO, V. M.; SOUZA, H. M.; OLIVEIRA, M. B. M.; JOHNER, J. M. Q.; LEAL, N. C.; ALMEIDA, A. M. P.; LEAL-BALBINO, T. C. Molecular typing of Staphylococcus aureus isolated from milk of cows with subclinical mastitis and milking equipment from the state of Pernambuco. Napgama, v. 6, p. 19-23, 2003. SANTOS, M. V. & FONSECA, L. F. L. Importância e efeito de bactérias psicrotróficas sobre a qualidade do leite. Revista Higiene Alimentar, v. 15, n. 82, p. 13-19, 2001. SAYAL, P.; SANDHU, R.; SINGH, K.; DEVI, P. Slime Production Among Uropathogenic Bacterial Isolates: Evaluating Different Phenotypic Detection Methods. Annals of Pathology and Laboratory Medicine, v. 04, n. 01, p. A48-53, 2017 77 SCHAUDER, S.; SHOKAT, K.; SURETTE, M. G.; BASSLER, B. L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Molecular Microbiology, v. 41, n. 2, p. 463-76, 2001. SCHEMBRI, M. A.; KJAERGAARD, K.; KLEMM, P. Global gene expression in Escherichia coli biofilms. Molecular Microbiology, v. 48, n. 1, p. 253-67, 2003. SCHUBERT, M. N. & NIEDERLE, P. A. Estratégias competitivas do cooperativismo na cadeia produtiva do leite: o caso da Ascooper, SC. Anais do 47º Congresso da Sociedade Brasileira de Economia, Administração e Sociologia Rural, Porto Alegre, RS, 2009. Disponível em <http://www.sober.org.br/palestra/13/104.pdf>. Acesso em: 25 de Julho de 2017. SCHWARTZ, D. C. & CANTOR, C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell, v. 37, n. 1, p. 67-75, 1984. SEEGERS, H.; FOURICHON, C.; BEAUDEAU, F. Production effects related to mastitis and mastitis economics in dairy cattle herds.Veterinary Research, v. 34, p. 475–491, 2003. SELANDER, R. K.; CAUGANT, D. A.; WHITTAM, T. S. Genetic structure andvariation in natural populations of Escherichia coli. In: Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology. NEIDHARDT, F. C.: INGRAHAM, J. L.: MAGASANIK, B.; LOW, K. B.; SCHAECHTER, M.; UMBARGER, H. E. (eds). American Society of Microbiology, p. 1625-1648, 1987. SEYDA, C.; GÖKÇEN, D.; ÜNLÜ, S. M. Detection ofseveral virulence properties, antibiotic resistance and phylogenetic relationship in E. coli isolated from cow mastitis. Acta Veterinaria Beograde, v. 64, p. 413-425, 2014. SHELDON, I. M., RYCROFT, A. N.; DOGAN, B.; CRAVEN, M.; BROMFIELD, J. J.; CHANDLER, A.; ROBERTS, M. H.; PRICE, S. B.; GILBERT, R. O.; SIMPSON, K.W. Specific strains of Escherichia coli are pathogenic for the endometrium of cattle and cause pelvic inflammatory disease in cattle and mice. PLoS One, v. 5, p. e9192, 2010. SHEPARD, S. M.; DANZEISEN, J. L.; ISAACSON, R. E.; SEEMANN, T.; ACHTMAN, M.; JOHNSONA. T. J. Genome Sequences and Phylogenetic Analysis of K88- and F18- Positive Porcine Enterotoxigenic Escherichia coli. Journal of Bacteriology, p. 395– 405, 2012 SIEGRIST, T. J.; ANDERSON, P. D.; HUEN, W. H.; KLEINHEINZ, G. T.; McDERMOTT, C. M.; SANDRIN, T. R. Discrimination and characterization of environmental strains of Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Journal of Microbiological Methods, v. 68, n. 3, p. 554-62, 2007. SILVA, V. O.; SOARES, L. O.; JÚNIOR, A. S.; MANTOVANI, H. C.; CHANG, Y.; MOREIRA, M. A. S. Biofilm formation on biotic and abiotic surfaces in the presence of antimicrobials by Escherichia coli isolates from cases of bovine mastitis. Applied and Environmental Microbiology, v. 80, p. 6136–6145, 2014. 78 SILVA, E.; LEITAO, S.; TENREIRO, T.; POMBA, C.; NUNES, T.; LOPES DA COSTA, L.; MATEUS, L. Genomic and phenotypic characterization of Escherichia coli isolates recovered from the uterus ofpuerperal dairy cows. Journal of Dairy Science, v.92, p. 6000–6010, 2009. SILVEIRA, W. D.; FERREIRA, A.; LANCELLOTTI, M.; BARBOSA, I. A. G. C. D.; LEITE, D. S.; CASTRO, A. F. P.; BROCCHI, M. Clonal relationships among avian Escherichia coli isolates determined by enterobacterial repetitive intergenic consensus (ERIC)-PCR. Veterinary Microbiology, v. 89, p.323-328, 2002. SIMÕES, M.; SIMÕES L. C.; PEREIRA, M. O.; VIEIRA M. J. Control of flow-generated biofilms using surfactants-evidence of resistance and recovery. Food and Bioproducts Processing, v. 84, n.4, p. 338-345, 2006. SINGH, A.; GOERING, R. V.; SIMJEE, S.; FOLEY, S. L.; ZERVOS, M. J. Application of molecular techniques to the study of hospital infection. Clinical Microbiology Reviews, v. 19, n. 3, p. 512-530, 2006. SINTCHENKO, V. & GALLEGO, B. Laboratory-Guided Detection of Disease Outbreaks Three Generations of Surveillance Systems. Archives of Pathology & Laboratory Medicine, v. 133, p. 916-925, 2009. SMITH, K. L.; TODHUNTER, D. A.; SCHOENBERGER, P. S. Environmental mastitis: Cause, prevalence, prevention. Journal of Dairy Science, v. 68, p. 1531–1553, 1985. SOARES, B. S. Aplicação de técnicas moleculares para o monitoramento da diversidade genética de Staphylococcus aureus em ambientes de produção leiteira. 80f. Tese de Doutorado. Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro. 2017. SOLL, D. R.; LOCKHART, S. R.; PUJOL, C. Laboratory procedures for the epidemiological analysis of microorganisms. In MURRAY, P. R.; BARON, E. J.; JORGENSEN, J. H.; PFALLER, M. A.; YOLKEN, R. H. (ed.), Manual of clinical microbiology, 8th ed., ASM Press, Washington, D. C., v. 1. p. 139–167, 2003. SOLO-GABRIELE, H. M.; WOLFERT, M. A.; DESMARAIS, T. R.; PALMER, C. J. Sources of Escherichia coli in a coastal subtropical environment. Applied and Environmental Microbiology, v. 66, p. 230-237, 2000. SON, I.; VAN KESSEL, J. A.; KARNS, J. S. Genotypic diversity of Escherichia coli in a dairy farm. Foodborne Pathogens and Disease, v. 6, p. 837–847, 2009. SORENSEN, S. J.; BAILEY, M.; HANSEN, L. H.; KROER, N.; WUERTZ, S. Studying plasmid horizontal transfer in situ: a critical review. Nature Reviews Microbiology, v. 3, p. 700–710, 2005. SUOJALA, L.; POHJANVIRTA, T.; SIMOJOKI, H.; MYLLYNIEMI, A.; PITKALA, A.; PELKONEN, S.; PYORALA, S. Phylogeny, virulence factors and antimicrobial susceptibility of Escherichia coli isolated in clinical bovine mastitis. Veterinary Microbiology, v. 147, p. 383–388, 2011. 79 SUZUKI, M. T. & GIOVANNONI, S. J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology, v. 62, n. 2, p. 625-630, 1996. SYDOW, A. C. M. D.G. V. Avaliação da ocorrência de fatores de virulência em estirpes de Escherichia coli em fezes de cães errantes. 89 f. Dissertação de Mestrado.Universidade de São Paulo. São Paulo, 2005. TADEPALLI, S.; PRUDHIVI, S.; MYNENI, D. R. B.; RAO, D. S. Biofilm formation in uropathogenic Escherichia coli isolates and its association with extended spectrum betalactamase production and drug resistance. Saudi Journal of Pathology and Microbiology, v. 1, n. 2, p. 60-64, 2016. TANAKA, K.; WAKI, H.; IDO, Y.; AKITA, S.; YOSHIDA, Y.; YOSHIDA, T.; MATSUO, T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, v. 2, n. 8, p. 151-153, 1988. TAVAKOLI, M. & POURTAGHI, H. Molecular detection of virulence genes and multi-drug resistance patterns in Escherichia coli (STEC) in clinical bovine mastitis: Alborz province, Iran. Iranian Journal of Veterinary Research, v. 18, n. 3, p, 208-211, 2017. TENAILLON, O.; SKURNIK, D.; PICARD, B.; DENAMUR, E. The population genetics of comensal Escherichia coli. Nature Reviews Microbiology, v. 8, n. 3, p. 207–17, 2010. TENG, L. J.; HSUEH, P. R.; LIAW, S. J.; HO, S. W.; TSAI, J. C. Genetic detection of diarrheagenic Escherichia coli isolated from children with sporadic diarrhea. Journal of Microbiology Immunology Infection, v. 37, n. 6, p. 327-334, 2004. TENOVER, F. C.; ARBEIT, R. D.; GOERING, R. V. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections a review for healthcare epidemiologists. Infection Control & Hospital Epidemiology, v. 18, n. 6, p. 426-439, 1997. TENOVER, F. C.; ARBEIT, R. D.; GOERING, R. V.; MICKELSEN, P. A.; MURRAY, B. E.; PERSING, D. H.; SWAMINATHAN, B. Interpreting chromosomal DNA restriction patterns produced by Pulsed-Field Gel Electrophoresis: criteria for bacterial strain typing. Journal of Clinical Microbiology, v. 33, n. 9, p. 2233-2239, 1995. TERAJIMA, J.; IZUMIYA, H.; IYODA, S. High genomic diversity of enterohemorrhagic Escherichia coli isolates in Japan and its applicability for the detection of diffuse outbreak. Journal of Japan Association of Infection Diseases, v. 55, p.19-22, 2002. THIRY, D.; SAULMONT, M.; TAKAKI, S.; DE RAUW, K.; DUPREZ, J. N.; IGUCHI, A.; PIÉRARD, D.; MAINIL. J. G. Enteropathogenic Escherichia coli O80:H2 in young calves with diarrhea, Belgium. Emerging Infectious Diseases, v. 23, n. 12, 2017. TOUCHON, M.; HOEDE, C.; TENAILLON, O.; BARBE, V.; BAERISWYL, S.; BIDET, P.; et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet., v. 5, n. 1, p. e1000344, 2009. 80 TRABULSI, L. R. V.; KELLER, R. V.; GOMES, T. A. T. Typical and atypical enteropathogenic Escherichia coli (EPEC). Emerging Infectious Disease, v. 5, p. 508- 513, 2002. TURNER, K. M. E. & FEIL, E. J. The secret life of the multilocus sequence type. International Journal of Antimicrobial Agents, v. 29, p. 129–135, 2007. USDA, United States Department of Agriculture.2017. Disponível em: https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads. Acesso em: 15 de Janeiro de 2018. USDA, United States Department of Agriculture. Brazil Dairy and Products Annual Dairy Report, BR0979, 2015. USDA. United States Department of Agriculture. 2007b. Dairy 2007: Part V: Changes in dairy cattle health and management practices in the United States, 1996–2007. USDA National Animal Health Monitoring Service. Disponível em: http://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy07/Dairy07_dr_PartV_rev.pdf. Acesso em: 26 de Setembro de 2017. VAN BELKUM, A.; TASSIOS, P. T.; DIJKSHOORN, L.; HAEGGMAN, S.; COOKSON, B.; FRY, N. K.; BRISSE, S. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clinical Microbiology and Infection, v. 13, p. 1-46, 2007. VAN HOUDT, R. & MICHIELS, C.W. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in Microbiology, v. 156, p. 626–633, 2005. VASUDEVAN, P.; NAIR, M. K. M.; ANNAMALAI, T.; VENKITANARAYANA, K. S. Phenotypic and Genotipic characterization of bovine mastitis isolates Staphylococcus aureus for biofilm formation.Veterinary Microbiology, v.92, p.179-185, 2003. VICENTE, H. I. G.; AMARAL, L. A.; CERQUEIRA, A. M. F. Shiga toxigenic Escherichia coli serogroups O157, O11 and O113 in feces, water and milk samples from dairy farms. Brazilian Journal of Microbiology, v. 36, p. 217-222, 2005. VOGELEER, P.; TREMBLAY, Y. D. N.; JUBELIN, G.; JACQUES, M.; HAREL, J. Biofilm forming abilities of Shiga toxin-producing Escherichia coliisolates associated with human infections. Applied and Environmental Microbiology, v. 82, p. 1448 –1458, 2016. WALK, S.T.; ALM, E.W.; CALHOUN, L. M.; MLADONICKY, J. M.; WHITTAM, T. S. Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Environmental Microbiology, v. 9, p. 2274–2288, 2007. WATANABE, H.; WADA, A.; INAGAKI, Y. Outbreaks of enterohaemorrhagic Escherichia coli O157:H7 infection by two different genotype strains in Japan. Lancet, p. 831-832, 1996. WENZ, J. R.; BARRINGTON, G. M.; GARRY, F. B.; ELLIS, R. P.; MAGNUSON, R. J. Escherichia coli isolates’ serotypes, genotypes, and virulence genes and clinical coliform mastitis severity. Journal of Dairy Science, v. 89, n. 9, p. 3408–12, 2006. 81 WENZ, J. R.; BARRINGTON, G. M.; GARRY, F. B.; MCSWEENEY, K. D.; DINSMORE, R. P.; GOODELL, G.; CALLAN, R. J. Bacteremia associated with naturally occurring acute coliform mastitis in dairy cows. Journal of the American Veterinary Medical Association., v. 219, p. 976–981, 2001. WELCH, R.A. The Genus Escherichia. In: DWORKIN, M.; FALKOW, S.; ROSEMBERG. E.; SCHLEIFER, K. H.; STACKEBRANDT, E. The Prokaryotes: A handbook on the Biology of Bacteria, Proteobacteria: Gamma Subclass. New York, USA: Springer Science, v. 6, p. 60-71, 2006. WIRTH, T.; FALUSH, D.; LAN, R.; COLLES, F.; MENSA, P.; WIELER, L. H.; KARCH, H.; REEVES, P. R.; MAIDEN, M. C.; OCHMAN, H.; ACHTMAN. M. Sex and virulence in Escherichia coli: an evolutionary perspective. Molecular Microbiology, v. 60, p. 1136–1151, 2006. YAMAMOTO, S. & HARAYAMA, S. PCR amplification and directsequencing of gyrB genes with universal primers and theirapplication to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology, v. 61, p. 1104–1109, 1995. YU, FEI.; CHEN, XIAO.; ZHENG, SHUFA.; HAN, DONGSHENG.; WANG, YIYIN.; WANG, RUONAN.; WANG, BAOHONG.; CHEN, YU. Prevalence and Genetic Diversity of Human Diarrhoeagenic Escherichia coli Isolates by Multilocus Sequence Typing. International Journal of Infectious Diseases, v. 67, p. 7-13, 2018por
dc.subject.cnpqMedicina Veterináriapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/65648/2018%20-%20Greiciane%20Fran%c3%a7a%20Bronzato%20de%20Almeida.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4780
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-06-23T12:07:50Z No. of bitstreams: 1 2018 - Greiciane França Bronzato de Almeida.pdf: 2781462 bytes, checksum: f0cc862a932387aa170377e23958c01d (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-06-23T12:07:50Z (GMT). No. of bitstreams: 1 2018 - Greiciane França Bronzato de Almeida.pdf: 2781462 bytes, checksum: f0cc862a932387aa170377e23958c01d (MD5) Previous issue date: 2018-02-23eng
Appears in Collections:Doutorado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Greiciane França Bronzato de Almeida.pdfGreiciane França Bronzato de Almeida2.72 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.