TITULO DA TESE

ESTUDO DOS CONSTITUINTES QUÍMICOS DAS ESPÉCIES <u>Hemerocallis</u> <u>fulva</u> e <u>Ocotea</u> <u>cymbarum</u>

AUTOR

CÉSAR CORNÉLIO ANDREI

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS
CURSO DE PÓS-GRADUAÇÃO EM QUÍMICA ORGÂNICA

ESTUDO DOS CONSTITUINTES QUÍMICOS DAS ESPÉCIES

Hemerocallis fulva e Ocotea cymbarum

CÉSAR CORNÉLIO ANDREI

SOB A ORIENTAÇÃO DO PROFESSOR RAIMUNDO BRAZ FILHO

Tese, submetida como requisito parcial para a obtenção do grau de Mestre em Química Orgânica, Área de concentração em Fitoquímica.

Itaguaí, Rio de Janeiro

AGRADECIMENTOS

Ao Professor Raimundo Braz Filho pela amizade, orientação, valioso incentivo e encaminhamento à Pesquisa em Fitoquímica.

Ao Professor Roderick Arthur Barnes do Núcleo de Pesquisas de Produtos Naturais (N.P.P.N.) pela primeira orientação dentro da Pesquisa em Fitoquímica.

Professora Maria Auxiliadora Coelho Kaplan pela inestimável orientação quanto as Técnicas de Laboratório e constantes estímulos para a realização deste trabalho.

À Professora Leila Vilela Alegrio pela amizade e incentivo na realização deste trabalho.

Ao Sr. Paulo de Athaide pela doação do material vegetal da espécie Hemerocallis fulva para estudos químicos.

Ao Instituto Nacional de Pesquisas da Amazônia (I.N.P.A.) pelo fornecimento do extrato etanólico de *Ocotea cymbarum*.

Ao Departamento de Química e Coordenadoria de Pós-

Graduação da Fundação Universidade Estadual de Londrina (F.U.E.L.) pelo apoio e liberação indispensáveis a conclusão deste trabalho.

Ao Núcleo de Pesquisas de Produtos Naturais (N.P.P.N.) da Universidade Federal do Rio de Janeiro pela cortesia dos espectros de U.V., I.V., R.M.N. 1H, R.M.N. 13C e E.M.

Ao Departamento de Química da Universidade Federal do Ceará pela cortesia dos espectros de I.V.

A Sra. Maria Celeste Augusto Lima pelo atencioso serviço de datilografia deste trabalho.

Ao CNPq e CAPES pelo apoio financeiro.

A todas as pessoas, colegas, professores e funcionários dos Departamentos de Química da Universidade Federal Rural do Rio de Janeiro e Fundação Universidade Estadual de Londrina que de formas sempre relevantes contribuíram para a realização deste longo trabalho.

BIOGRAFIA

CÉSAR CORNÉLIO ANDREI, filho de Decebal Corneliu Andrei e Clio Olivetti Andrei, nasceu a 29 de março de 1956 no Rio de Janeiro. Realizou sua educação de 1º grau na Escola Barão de Amparo, e Secundária no Ginásio Estadual Presidente Getulio Vargas e Colégio Estadual Brigadeiro Schorcht.

Em 1974 ingressou no curso de Engenharia Agronômica da U.F.R.R.J., tendo se graduado em 1977.

Durante o curso foi bolsista de Iniciação Cientifica do CNPq no Núcleo de Pesquisas de Produtos Naturais na U.F.R.J. sob a Orientação do Professor Roderick A. Barnes (1977-1978), em seguida (já graduado) obteve bolsa do C.N.P.q para Aperfeiçoamento Científico na U.F.R.R.J. sob a Orientação do Professor Raimundo Braz Filho. (1978)

Em agosto de 1981 foi contratado pela Fundação Universidade Estadual de Londrina para ocupar o cargo de Professor Assistente no Departamento de Química, onde atualmente exerce o mesmo cargo.

RESUMO

Dos bulbos da espécie Hemerocallis fulva, planta herbácea da família Liliaceae, foram isoladas cinco substâncias, β -sitosterol (Hf-2) e quatro antraquinonas: 1,8-di-hidroxi-3metilantraquinona (crisofanol, Hf-1, 4), 1,6,7-tri-hidroxi-3hidroximetilantraquinona (Hf-3, 11, que foi isolada em mistura possivelmente com a 1,6,7-tri-hidroxi-3-metilantraquinonas,12), 1,5,-di-hidroxi-2,6-dimetoxi-3-metilantraquinona (Hf-4, 14, também isolada em mistura possivelmente com a 1,5-di-hidroxi-3-metilantraquinona, 15) e 1 metoxi-3-metil, 5,6-di-hidroxiantraquinona (Hf-5, 17). As estruturas das antraquinonas foram determinadas através da análise dos dados espectrais de U.V., I.V., R.M.N. 1 H., e E.M. enquanto que o β -Sitosterol foi caracterizado por comparação direta com amostra autêntica por cromatografia e constantes físicas.

A obtenção do derivado acetilado de Hf-1 corroborou com sua determinação estrutural.

Foi elaborada uma tabela relacionando a ocorrência de antraquinonas em famílias, gêneros e espécies de vegetais,

fungos e líquens com os dados coletados no Chemical Abstracts englobando o período de 1973 a 1983.

Da madeira da espécie Ocotea cymbarum, planta arbórea da família Lauraceae, foram isoladas seis substâncias, β-sitosterol (Oc-5, 38), três alilbenzenos: 3-(2,5-dimetoxi-3,4-metilenodioxifenil) -1-propeno (apiol, Oc-1, 21), 3-(2,3-dimetoxi-4,5-metilenodioxifenil)-1-Propeno (dilapiol, Oc-2, 22) e 3 (2,3,5-trimetoxi-4-hidroxifenil)-1-propeno (Oc-3, 23), um fenilpropanodiol: 3(2,3-dimetoxi-3,4-metilenodioxifenil)-2,3-propanodiol (apiolglicol, Oc-6, 41) e uma lignana: 4,4'9,9' tetra-hidroxi-3,3', 5,5'-tetrametoxi - 7, 6', 8, 8' -lignana (lioniresinol, Oc-4, 37). Da mesma forma as estruturas das substânicas isoladas foram determinadas através de U.V., I.V., R.M.N.¹H, R.M.N.¹3c e E.M.

No auxílio a determinação estrutural foram obtidos derivados acetilados (Oc-3, 23, Oc-4, 37 e Oc-6, 41) e metoxilado (Oc-4, 37). A substância Oc-6, 41, foi sintetizada a partir da reação de uma mistura de Oc-1/0c-2 (21/22) com OsO₄.

Das dez substâncias isoladas, cinco ainda não foram descritas na literatura como produtos naturais: Hf-3 (11), Hf-4 (14), Hf-5 (17), Oc-3 (23) e Oc-6 (41).

ABSTRACT

From the bulbs of Hemerocallis fulva an herbacius plant of the Liliaceae family, five compounds have been isolated, β -sitosterol (Hf-2, 6) and four anthraquinones: 1,8-dihidroxy -3-methylanthraquinone (crisophanol, Hf-1, 4), 1,6,7-trihidroxy-3-hidroxymethylanthraquinone (Hf-3, 11, which isolated was contaminated with another compound, possibly, 1,6,7-trihidroxy 12), 1,5-dihidroxy-2,6-dimethoxy-3--3-methylanthraquinone, methylanthraquinone (Hf-4, 14), also isolated in mixture with probably, 1,5-dihidroxy-3-methylanthraquinone, 15) and 1-methoxy -5,6-dihidroxy-3-methylanthraquinone (Hf-5, 17). The structuresanthraquiones were determinated by analises of the of Ultraviolet, Infrared, Nuclear Magnetic Ressonance (1H) and spectrals data. Only β -Sitosterol was identified Mass by comparation with direct real sample through chromatographic methods and physicals constants.

The obtainment of the acetoxy derivate from Hf-1 aided in it's structural determination.

A table is presented listing the presence of the

antrhraquinones in families, genuses and species of plants, fungus and lichens. (compiled from the Chemical Abstracts during 1973-1983).

From the wood of *Ocotea cymbarum*, a tree of the Lauraceae Family, six compounds have been isolated, β -sitosterol (Oc-5, 38), three allylbenzenes 3-(2,5-dimethoxy-3,4-methylenedioxiphenyl)-1-propene (apiole, Oc-1, 21), 3-(2,3-dimethoxy-4,5-methylenedioxiphenyl)-1-propene (dilapiole, Oc-2, 22) and 3-(2,3,5-trimethoxy-4-hidroxyphenyl)-1-propene (Oc-3, 23), one propanediolphenyl: 3-(2,5-dimethoxy-3,4-methylenedioxyphenyl)-2,3-propanediol (apioleglicol, Oc-6,41) and one lignane: 4,4',9,9'-tetrahidroxy-3,3',5,5'-tetramethoxy-7,6',8,8'-lignane (lyoniresinol, Oc-4 37) In the same way the structures of the isolated compounds have been determinated through Ultraviolet, Infrared, Nuclear Magnetic Ressonance (1 H and 13 C) and Mass spectrals data.

To confirm the structural determinaions acetoxy (Oc-3, Oc-4, and Oc-6) and methoxy (Oc-4) derivates were prepared. The compound Oc-6 was been sintetized strarting the reacton of a mixture of Oc-1 and Oc-2 with OsO $_4$.

From the ten isolated compounds, five (Hf-3, Hf-4, Hf-5, Oc-3 and Oc-6) were previously unknown as natural products in the literature.

ÍNDICE

					Pg.
1 -	INTRODUÇÃO				01
2 -	RESULTADOS	E DISCUSSÃO			39
	2.1 - Determ	inação estrutural das su	ıbstâncias	iso-	
	ladas	de Hemerocallis fulva			39
	2.1.1	- Determinação estrutural	da Hf-1	(4)	39
	2.1.2	- Determinação estrutural	da Hf-2	(6)	4 4
	2.1.3	- Determinação estrutural	da Hf-3	(11)	45
	2.1.4	- Determinação estrutural	da Hf-4	(14)	5 4
	2.1.5	- Determinação estrutural	da Hf-5	(17)	5 7
	2.2 - Determ	inação estrutural das su	ıbstâncias	iso-	
	ladas	de Ocotea cymbarum			
	2.2.1	- Determinação estrutural	da 0c-1	(21)	
		e Oc-2 (22)			6 6
	2.2.2	- Determinação estrutural	da 0c-3	(23)	77
	2.2.3	- Determinação estrutural	da 0c-4	(37)	87
	2.2.4	- Determinação estrutural	da 0c-5	(38)	9 5
	2.2.5	- Determinação estrutural	de Oc-6	(41)	9 8
3 -	BIOSSÍNTESE	DE ANTRAOUINONAS			183

		Pg.
4	- PARTE EXPERIMENTAL	189
	4.1 - Material e métodos	189
	4.2 - Coleta do material	192
	4.3 - Isolamento dos constituintes químicos de	
	Hemerocallis fulva e Ocotea cumbarum	193
	4.4 - Reações de obtenção de derivados	201
	4.4.1 - Acetilação da Hf-1 (4)	201
	4.4.2 - Hidroxilação da mistura de Oc-1(21)	
	e Oc-2 (22)	201
	4.4.3 - Acetilação da Oc-3 (23)	202
	4.4.4 - Acetilação da Oc-4 (37)	202
	4.4.5 - Acetilação da Oc-6 (41)	202
	4.4.6 - Metilação da Oc-4 (37)	203
5 -	CARACTERÍSTICAS FÍSICAS E QUÍMICAS DAS SUBSTÂNCIAS	
	ISOLADAS DE Hemerocallis fulva e Ocotea cymbarum E	
	SEUS DERIVADOS	204
	5.1 - crisofanol Hf-1 (4)	204
	5.2 - Hf-1 Ac (5)	204
	5.3 - Hf-3 (11)	205
	5.4 - Hf-4 (14)	205
	5.5 - Hf-5 (17)	206
	5.6 - apiol Oc-1 (21)	206
	5.7 - dilapiol Oc-2 (22)	207
	5.8 - Oc-3 (23)	207
	5.9 - Oc-3 Ac	208
	5.10- lioniresinol Oc-4 (37)	208

	Pg.
5.11 - Oc-4 Ac	209
5 12 - Oc-4 (Me) ₂	210
5.13 - β -sitosterol (38)	211
5.14 - apiolglicol (41)	211
5.15 - Oc-6 Ac	211
REFERÊNCIAS BIBLIOGRÁFICAS	212

ÍNDICE DE TABELAS

			Pg.
Tabela	1 -	Constituição e ocorrência de antraquinonas	
		naturais registradas na literatura durante	
		o período de 1973 a 1983	16
Tabela	2 -	Principais picos observados no espectro de	
		massas da $Hf-1$ (4)	43
Tabela	3 -	Deslocamentos químicos dos prótons de Hf-1	
		(4) e do derivado acetilado (5)	44
Tabela	4 -	Principais picos observados no espectro de	
		massas da Hf-3 (11)	47
Tabela	5 -	Deslocamentos quimicos dos prótons do anel	
		antraquinônico não substituido	49
Tabela	6 –	Deslocamentos químicos dos prótons aromáti-	
		cos de anéis antraquinônicos meta-hidroxime-	
		toxilados	51
Tabela	7 –	Comparação dos deslocamentos químicos de	
		prótons aromáticos em anéis antraquinônicos	
		1,4 e 6,7 di-hidroxilados	52

			Pg.
Tabela	8 -	Principais picos observados no espectro de	
		massas da Hf-4	59
Tabela	9 –	Principais picos observados no espectro de	
		massas da Hf-5	59
Tabela	10 -	Dados de R.M.N. ¹ H do apiol (Oc-1, 21) e da	
		mistura apiol (Oc-1, 21) e dilapiol (Oc-2,	
		22)	67
Tabela	11 -	Principais picos observados nos espectros	
		de massas do apiol e dilapiol	68
Tabela	12 -	Valores de deslocamentos químicos dos carbo-	
		nos do apiol	69
Tabela	13 -	Deslocamentos químicos dos carbonos dos gru-	
		pamentos alila, metilenodioxi e metoxilas do	
		apiol, comparados com padrões da literatura	70
Tabela	14 -	Valores de deslocamentos químicos do apiol	
		e da mistura epiol e dilapiol	73
Tabela	15 -	Valores de deslocamentos químicos dos carbo-	
		nos aromáticos do modelo XXXVI comparados	
		com os do dilapiol	75
Tabela	16 -	Valores de deslocamentos químicos dos carbo-	
		nos da Oc-3 (23)	80
Tabela	17 -	Principais picos observados no espectro de	
		massas da Oc-3 (23)	81

Tabela 18 - Principais picos observados no espectro de

	xiv
	Pg.
massas da Oc-4 (37)	83
Tabela 19 - Comparação dos deslocamentos químicos dos	
prótons H-2 e H-6 do anel aromático C nos	
derivados acetilado e dimetilado da Oc-4	
(37)	87
Tabelas 20 - Dados de R.M.N. ¹ H da Oc-4 (37), seus deriva-	
dos acetilado e dimetilado e outros lignoi-	
des descritos na literatura	92
Tabela 21 - Comparação dos deslocamentos químicos dos	
carbonos da Oc-4 (37) com XLVIII E XLIX	94
Tabela 22 - Comparação dos valores dos deslocamentos	
químicos dos carbonos da Oc-5 (38) com os	
correspondentes dos modelos L, LI e LII	97
Tabela 23 - Principais picos observados -o espectro de	
massas da Oc-6 (41)	100
Tabela 24 - Comparação dos deslocamentos químicos dos	
prótons carbinólicos da Oc-6 (41) e Oc-6 Ac	101
Tabela 25 - Comparação dos deslocamentos químicos dos	
prótons metoxílicos, do grupo metilenodio-	
xi e do hidrogênio ligado diretamente ao	
anel aromático em Oc-1 (21), Oc-2 (22) e	
Ос-б (41)	102
Tabela 26 - Comparação dos valores de deslocamentos quí-	
micos dos carbonos da Oc-6 (41) e Oc-1 (21).	103

				Pg.
Tabela	27	-	Fracionamento cromatográfico do eluato ben-	
			zênico do extrato metanólico de Hemerocallis	
			fulva	194
Tabela	28	-	Fracionamento cromatográfico do eluato clo-	
			rofórmico do extrato metanólico de Hemero-	
			callis fulva	196
Tabela	29	_	Fracionamento cromatográfico do eluato ace-	
			tato de atila do extrato etanólico de	
			Ocotea cymbarum	199
Tabela	30	_	Fracionamento cromatográfico do extrato	
			etanólico de <i>Ocotea cymbarum</i>	200

ÍNDICE DE FIGURAS

			Pg.
Figura	1 -	Espectro de U.V. da Hf-1 (4), EtOH e adi-	
		tivos (NaOH e HCl)	109
Figura	2 -	Espectro de I.V. da Hf-1 (4) em KBr	110
Figura	3 -	Espectro de R.M.N. H (100 MHz) da Hf-1(4)	
		em CDCl ₃ e TMS como referência interna	111
Figura	4 -	Espectro de R.M.N. H (100 MHz) da Hf-1(4)	
		em CDCl ₃ + D ₂ O (gota) e TMS como referên-	
		cia interna	112
Figura	5 -	Espectro de massas da Hf-1 (4)	113
Figura	6 -	Espectro de I.V. da Hf-1 Ac (5) em KBr	114
Figura	7 -	Espectro de RMN ¹ H (100 MHz) da Hf-1 Ac	
		(5) em CDCl ₃ e TMS como referência interna	115
Figura	8 -	Espectro de massas da Hf-1 Ac (5)	116
Figura	9 -	Espectro de I.V. da Hf-3 (11) em KBr	117
Figura	10 -	Espectro de R.M.N. ¹ H (100 MHz) da Hf-3	
		(11) em $CDCl_3 + (CD_3)_2CO + (CD_3)_2 SO e TMS$	

				xvii
			como referência interna	Pg. 118
Figura	11	-	Espectro de R.M.N. ¹ H (100 MHz) da Hf-3	
			(11) em $CDCl_3 + (CD_3)_2CO + (CD_3)_2SO+D_2O$	
			(gota) e TMS como referência interna	119
Figura	12	-	Espectro de massas da Hf-3 (11)	121
Figura	13	-	Espectro de I.V. da Hf-4 (14) em KBr	121
Figura	14	-	Espectro de R.M.N. ¹ H (100 MHz) da Hf-4	
			(14) em ${\rm CDCl}_3$ e TMS como referência inter-	
			na	122
Figura	15	-	Espectro de R.M.N. ¹ H (100 MHz) da Hf-4	
			(14) em $CDCl_3$ + $(CD_3)_2CO$ e TMS como refe-	
			rência interna	122
Figura	16	-	Espectro de R.M.N. ¹ H (100 MHz) da Hf-4	
			(14) em $CDCl_3 + (CD_3)_2CO + D_2O$ (gota) e	
			TMS como referência interna	124
Figura	17	-	Espectro de massas da Hf-4 (14)	125
Figura	18	-	Espectro de U.V. da Hf-5 (17), EtOH e adi-	
			tivos (NaOH e HCl)	126
Figura	19	-	Espectro de U.V. da Hf-5 (17), EtOH e adi-	
			tivos (AcOONa e H ₃ BO ₃)	127
Figura	20	-	Espectro de I.V. da Hf-5 (17) em KBr	128
Figura	21	-	Espectro de R.M.N. ¹ H (100 MHz) da Hf-5	
			(17) em CDCl ₃ e TMS como referência inter-	

	Pg.
Espectro de massas da Hf-5 (17)	130
Espectro de U.V. da Oc-1 (21), MeOH e adi-	
tivo (NaOH)	131
Espectro de I.V. da Oc-1 (21) em filme	132
Espectro de R.M.N. ¹ H (60 MHz) da Oc-1	
(21) em CDCl ₃ e TMS como referência inter-	
na	133
Espectro de R.M.N. 13C (25,2 MHz) totalmen-	
te desacoplado, da OC-1 (21) em CDCl ₃ e	
TMS como referência interna	134
igura 27 - Espectro de R.M.N. 13C (25,2 MHz) com aco-	
plamento residual da Oc-1 (21) em CDCl ₃ e	
TMS como referência interna	135
igura 28 - Espectro de massas da Oc-1 (21)	136
Espectro de U.V. da mistura de Oc-1 (21)	
e 0c-2 (22), MeOH e aditivo (NaOH)	137
Espectro de I.V. da mistura de Oc-1 (21)	
e Oc-2 (22) em filme	138
Espectro de R.M.N. ¹ H (60 MHz) da mistura	
de Oc-1 (21) e Oc-2 (22) em $CDCl_3$ e TMS	
como referência interna	139
igura 32 - Espectro de R.M.N. 13C (25,2 MHz) totalmen-	
te desacoplado, da mistura de Oc-1 (21)	

				xix
				Pg.
			e Oc-2 (22) em CDCl ₃ e TMS como referên-	
			cia interna	140
Figura	33	_	Espectro de R.M.N. 13C (25,2 MHz) com aco-	
			plamento residual, da mistura de Oc-1(21)	
			e Oc-2 (22) em CDCl ₃ e TMS como referên-	
			cia interna	141
Figura	34	-	Espectro de massas da mistura de Oc-1(21)	
			e Oc-2 (22)	142
Figura	35	-	Espectro de U.V. da Oc-3 (23), MeOH e adi-	
			tivos (NaOH e HCl)	143
Figura	36	-	Espectro de I.V. da 0c-3 (23) em filme	144
Figura	37	_	Espectro de R.M.N. ¹ H (60 MHz) da Oc-3	
			(23) em CDCl ₃ e TMS como referência inte-	
			na	145
Figura	38	-	Espectro de R.M.N. 1H (60 MHz) da Oc-3(23)	
			em CDCl ₃ + D ₂ O (gota) e TMS como referên-	
			cia interna	146
Figura	39	-	Espectro de R.M.N. 13C (25,2 MHz) totalmen-	
			te desacoplado, da Oc-3 (23) em CDCl ₃ e	
			TMS como referência interna	147
Figura	40	-	Espectro de R.M.N. 13C (25,2 MHz) com aco-	
			plamento residual, da Oc-3 (23) em CDCl ₃	

e TMS como referência interna

Figura 41 - Espectro de massas da Oc-3 (23)

148

149

			Pg.
Figura	42 -	Espectro de I.V. da Oc-3 Ac em filme	150
Figura	43 -	Espectro de R.M.N. ¹ H (60 MHz) da Oc-3 Ac	
		em CDCl ₃ e TMS como referência interna	151
Figura	44 -	Espectro de massas da Oc-3 Ac	152
Figura	45 -	Espectro de U.V. da Oc-4 (37), MeOH e adi-	
		tivos (NaOH e HCl)	153
Figura	46 -	Espectro de I.V. da Oc-4 (37) em KBr	154
Figura	47 -	Espectro de R.M.N. ¹ H (100 MHz) da Oc-4	
		(37) em C_5D_5N e TMS como referência inter-	
		na	155
Figura	48 -	Espectro de R.M.N. H (100 MHz) da Oc-4	
		(37) em C_5D_5N + D_2O (gota) e TMS como re-	
		ferência interna	156
Figura	49 -	Espectro de R.M.N. ¹³ C (25,2 MHZ) totalmen-	
		te desacoplado, da Oc-4 (37) em ${ t C_5 t D_5 t N}$ e	
		TMS como referência interna	157
Figura	50 -	Espectro de R.M.N. 13 C (25,2 MHz) com aco-	
		plamento residual, da Oc-4 (37) em C_5D_5N	
		e TMS como referência interna	158
Figura	51 -	Espectro de massas da Oc-4 (37)	159
Figura	52 -	Espectro de I.V. da Oc-4 Ac em KBr	160
Figura	53 -	Espectro de R.M.N. ¹ H (100 MHz) da Oc-4 Ac	
		em CDCI 3 e TMS como referência interna	161

				xxi
				Pg.
Figura	54	-	Espectro de I.V. da Oc-4 (Me) ₂ em KBr	162
Figura	55	-	Espectro de R.M.N. 1 H (60 MHz) da Oc-4 (Me) $_{2}$	
			em CDCl ₃ e TMS como referência interna	163
Figura	56	-	Espectro de massas da Oc-4 (Me) ₂	164
Figura	57	-	Espectro de I.V. da Oc-5 (38) em KBr	165
Figura	58	-	Espectro de R.M.N. ¹ H (100 MHz) da Oc-5(38)	
			em CDCl ₃ e TMS como referência interna	166
Figura	59	-	Espectro de R.M.N. H (100 MHz) da Oc-5(38)	
			em CDCl ₃ + D ₂ O (gota) e TMS como referên-	
			cia interna	167
Figura	60	-	Espectro de R.M.N. 13c (25,2 MHz)totalmente	
			desacoplado, da Oc-5 (38) em CDCl ₃ e TMS co-	
			mo referência interna	168
Figura	61	-	Expansão da faixa de 0,0 a 71,63 ppm cor-	
			respondente ao espectro da Figura 60	169
Figura	62	-	Espectro de R.M.N. 13C (25,2 MHz) com aco-	
			plamento residual, da Oc-5 (38), em CDl ₃	
			e TMS como referência interna	170
Figura	63	-	Expansão da faixa de 0,0 a 71,63 ppm cor-	
			respondente ao espectro da Figura 62	171
Figura	64	-	Espectro de massas da Oc-5 (38)	172
Figura	65	-	Espectro de U.V. da Oc-6 (41), MeOH e adi-	
			tivo (NaOH)	173

				xxii
				Pg.
Figura	66	-	Espectro de I.V. da Oc-6 (41) em KBr	174
Figura	67	-	Espectro de R.M.N. H (60 MHz) da Oc-6 (41)	
			em CDCl ₃ e TMS como referência interna	
Figura	68	-	Espectro de R.M.N. ¹ H (60 MHz) da Oc-6 (41)	
			em CDCl ₃ + D ₂ O (gota) e TMS como referên-	
			cia interna	176
Figura	69	-	Espectro de R.M.N. ¹ H (100 MHz) da Oc-6(41)	
			em CDCl ₃ e TMS como referência interna	177
Figura	70	-	Espectro de R.M.N. 13C (25,2 MHz) totalmen-	
			te desacoplado, da Oc-6 (41) em CDCl ₃ e	
			TMS como referência interna	178
Figura	71	-	Espectro de R.M.N. 13 C (25,2 MHz) com aco-	
			plamento residual, da Oc-6 (41) em CDCl ₃ e	
			TMS como referência interna	179
Figura	72	-	Espectro de massas da Oc-6 (41)	180
Figura	73	_	Espectro de R.M.N. ¹ H (60 MHz) da mistura	
			de Oc-6 (41) e do glicol derivado de Oc-2	
			(obtidos por sintese a partir da mistura	
			de Oc-1 (21) e Oc-2 (22), em CDCl ₃ e TMS	
			como referência interna	181
Figura	74	_	Espectro de R.M.N. ¹ H (60 MHz) da Oc-6 Ac	
-			em CDCl ₃ e TMS como referência interna	182
			3	- 0 -

ÍNDICE DE ESQUEMAS

		1	Pg.
Esquema	1 -	Caminhos principais de fragmentações da	
		Hf-1 (4) no espectrômetro de massas	62
Esquema	2 -	Caminhos principais de fragmentações da Hf-3	
		(11) no espectrômetro de massas	63
Esquema	3 -	Caminhos principais de fragmentações da Hf-4	
		(14) no espectrômetro de massas	64
Esquema	4 -	- Caminhos principais de fragmentações da Hf-5	
		(17) no espectrômetro de massas	65
Esquema	5 -	- Caminhos principais de fragmentações da Oc-1	
		(21) no espectrômetro de massas	105
Esquema	6 -	- Caminhos principais de fragmentações da Oc-3	
		(23) no espectrômetro de massas	106
Esquema	7 -	- Caminhos principais de fragmentações da Oc-4	
		(37) no espectrômetro de massas	107
Esquema	8 -	- Caminhos principais de fragmentações da Oc-6	
		(41) no espectrômetro de massas	108
Esquema	9 -	- Postulação biossintética para antraquinonas	

			xxiv
			Pg.
		de origem policetídica	184
Esquema	10-	Postulação biossintética para antraquinonas	
		originadas da condensação do ácido chiquími-	
		co, glutâmico e mevalônico	186
Esquema	11-	Postulação biossintética para as antraquino-	
		nas isoladas de Hemerocallis fulva	188

1 - INTRODUÇÃO

Ciência, termo geral para o conhecimento de um universo de acontecimentos, observações, investigações e construções de teorias e modelos para a explicação de fenômenos.

Certamente não podemos estabelecer critérios considerando importante, vital ou prioritário para determinadas áem que a ciência foi dividida para atendimento de tendênreas maioria dos casos. cias imediatistas na Não se pode também fazer distinção entre pesquisa básica e aplicada por que os limites separação das duas atividades nem sempre de envolvem o desenvolvimento do conhecimento marcado pelo tempo e também uma não sobrevive sem a outra.

A Química de Produtos Naturais ocupa uma destacada posição de interesse científico constituindo uma ligação entre ciência exata e da natureza. Além dos aspectos de estudo puramente químico, onde se encontram aplicações de síntese, físico-química e espectrometria, verificamos uma penetração interdisciplinar nas áreas biológica (medicina, bioquímica, fisiologia, quimiotaxonomia, evolução e ecologia) farmacológica

e tecnológica.

O presente trabalho reflete basicamente a investigação puramente química, já que se dedicou ao isolamento e determinação estrutural de produtos naturais de duas espécies vegetais. Obviamente a realização deste trabalho não permanelimitado porque ocorrem entrelaçamentos com outras áreas do conhecimento. Por esta razão, além da determinação estrutural encontrar apoio nos principais caminhos biossintéticos do metabolismos secundário elaborado pelos organismos vivos, as estruturas deduzidas para as substâncias podem ser usadas: como modelos para estabelecer métodos sintéticos; para testes biológicos; como marcadores quimiossistemáticos; para avaliações químicas da evolução e ecologia.

Este trabalho descreve o estudo da composição química oriunda do metabolismo secundário de duas espécies vegetais: Ocotea cymbarum, família Lauraceae e Hemerocallis fulva, família Liliaceae.

A escolha da espécie Ocotea cymbarum resultou da possibilidade de isolamento de substâncias com interesses químico e farmacológico, destacando-se as substâncias pertencentes a classe dos lignoides [001] comunmente encontrados nesta Família [002, ,003, 004, 005 e 006]. Visto que várias espécies desta família foram estudadas, originando inclusive cinco teses de mestrado em curto espaço de tempo (1978-1985) nesta Universidade [002,003,004,005 e 006], julgou-se desnecessária uma revisão da literatura para compilação de novos dados

de interesse para este trabalho.

Devemos declarar que o estudo químico realizado com Ocotea cymbarum não foi ainda concluido pela disponibilidade de tempo, sendo que os extratos e frações que não foram elaborados constituirão parte das próximas atividades de pesquisa.

O estudo da espécie Hemerocallis fulva foi programado inicialmente para identificar a presença de colchicina (I), um alcaloide de largo emprego na medicina [007] e como substância de interesse genético [007] para a obtenção de poliploidia, alcançando assim também interesse agronômico [007]. A possível presença deste alcaloide na espécie foi apontada pela avaliação de dados da literatura [007].

Este trabalho foi iniciado através de uma bolsa de iniciação científica do CNPq no Núcleo de Pesquisas de Produtos Naturais - UFRJ, sob a orientação do Prof. Roderick A. Barnes, não se verificou a presença do alcaloide colchicina (I). Como se tratava de um gênero pouco estudado, o material coletado foi utilizado para investigação dos constituintes químicos elaborados pelo metabolismo secundário, verificando-se

que a espécie era constituida principalmente por antraquinonas, fato este confirmado por recentes trabalhos realizados
no gênero na China e Rússia [008, 009 e 010].

As antraquinonas podem ser consideradas como uma classe de substâncias importantes também do ponto de vista industrial e farmacológico.

Sob o aspecto industrial as antraquinonas são muito utilizadas como corantes, agentes de dispersão ou distribuição e uniformização de cores em fibras e, mais recentemente, em cristais líquidos [011]. Entre os agentes de dispersão podem ser destacados os vários "Disperse dyes" que são aminoantraquinonas.

Podemos citar vários exemplos neste campo, mas infelizmente grande parte dos trabalhos obviamente são patenteados. Podemos ainda mencionar o uso do C.I. Disperse Blue 14 como agente de espessamento ou condensação de cores em fibras de poliester e poliamida [012]; o Disperse Blue P.E. em presença de percloroetileno para a impressão em fibras de poliester [013]; e o Disperse Blue K usado para fibras acrilicas [014].

No aspecto da ação farmacológica parece haver um grande interesse em antraquinonas sobretudo no que toca a uma das piores moléstias que o homem conhece, o câncer.

Os estudos das composições químicas de várias plantas de uso medicinal conduziram ao reconhecimento da presença

de antraquinonas [015], tais como a emodina, crisofanol, parietina e reina [016] (II , III , IV e V)

Foi observado também que algumas destas substâncias possuem atividade antifúngica, como as que foram isoladas do extrato aquoso de *Cassia alata* [017]. Reina, emedina, 4,5-dihidroxi-1-hidroximetil- e 4,5-dihidroxi-2-hidroximetilantra quinona (V , II , VI VII) apresentaram esta propriedade, enquanto que as antraquinonas sustentando açucares e o crisofanol (III) não revelaram atividade apesar de relatados como ativas.

Outras antraquinonas mostraram-se ativas contra o tripanosoma, sendo a daunorubicina (VIII) uma das mais potentes [018], que revela atividade "in vitro" em concentrações nanomolares, enquanto outras substâncias antraciclínicas apresentam a mesma ação mas a concentrações milimolares, como a doxorubicina e nogalamicina (IX e X). O problema do uso da daunorubicina (VIII) é a necessidade de associação com uma substância carreadora para poder ser aplicada "in vivo".

Observou-se que a união da daunorubicina (VIII) com carreador através de ligações covalentes estáveis produz inatividade Quando estas ligações covalentes são menos estáveis mantem-se a atividade "in vitro".

X

Outro efeito interessante observado envolve a liberração e o estimulo na síntese de prostaglandinas (P.G.). Admissão oral de aloina (XI) e 1,8 dioxiantraquinona (XII) estimulou a produção de P.G. em colons isolados de ratos [019]. Aparentemente estas substâncias exibem propriedades também laxativas, que podem depender, pelos menos em parte, da promoção da síntese de P.G. pelo tecido intestinal.

ΧI

Existem vários estudos envolvendo a carcinogenicidade anti-carcinogenicidade das antraquinonas. Parece não tir um determinado tipo estrutural para que o caráter carcinogênico seja exibido. Resultados experimentais apontam as aminoantroquinonas cancerígenas, o não como que parece surpreendente, já que diversas aminas detêm essa propriedade [020]. que provoca preocupação é a utilização das aminoantroquinoindústria de corantes. A 2-aminoantraquinona (2-AAQ) utilizada como intermediário na síntese de corantes, servindo como substrato direto para uma série de corantes e pigmentos feitos comercialmente nos E.U.A. [023]. A ação carcinogênica 2-AAQ já foi investigada [023] através da metabolização no da observando-se que ocorre um fígado de ratos, estímulo nos citocromos B5 e P450. Estes citocromos estão envolvidos com a metabolização de substâncias exógenas.

Antraquinonas não aminadas possuem propriedades mutagênicas [022]. Foi verificado, em testes de pré-incubação em Salmonela typhimurium nas cepas TA 100 e TA 2637, que as antraquinonas crizazina, emodina, islandicina, alizarina, crisofanol,

2-hidroxiantraquinona e ácido emódico (XIII, II, XIV, XV, III, XVI e XVII), apresentaram forte ação mutagênica na cepa TA 2637, enquanto cinodontina (XVIII) revelou apenas uma fraca mutagenicidade. Estes efeitos foram atribuidos, em parte, à presença de hidroxilas fenólicas, destacando àquelas com padrão de substituição 1,3. Alizarina, emodina, islandicina, crizazina e 2-hidroxiantraquinona (XV, II, XIV; XIII e XVI) apresentaram também mutagenicidade na cepa TA 100. Todas as bisantraquinonas testadas, squirina, (+)-rugulosina,(-)- luteosquirina,(-)-rubrosquirina e senosideo A (XIX, XX, XXII e XXIII), além da antraquinona e da antrona (XXIV e XXV), não apresentarem caráter mutagênico.

XXIII

Este teste de pré-incubação revela-se importante para a obtenção de informações de propriedades carcinogênicas de substâncias. É feita alimentação de microorganismos com as substâncias e fixação das colônias com microsomas para se veri-

ficar posteriormente o desenvolvimento metabólico. O microsoma se apresenta rico em enzimas e pode metabolizar as substâncias, podendo transformar produtos inativos em ativos (carcinogênicos). O teste de mutagenicidade com microorganismos baseia-se na proliferação de colônias em meios inibidos normalmente com histidina.

Antraquinonas com características estruturais especiais também apresentam atividade anti-carcinogênica. Esta propriedade parece depender da triangulação N-0-0 (XXVI) envolvendo os oxigênios da carbonila, da hidroxila quelatogênica e o átomo de nitrogênio do NH $_2$ de um aminoaçucar ou de uma cadeia lateral. [023].

XXVI

A doxorubicina (adriamicina) (IX) já é utilizada no tratamento do câncer [023]. Atualmente, estão sendo investigadas outras substâncias com as mesmas características e propriedades, por que a doxorubicina (IX) apresenta efeitos ir-

reversíveis de cardiotoxidez, restringindo sua utilização durante o período de tratamento de doenças. A posssibilidade de utilização da mitoxantrona (XXVIII)[023 e 024] (DHAQ) e derivados está sendo investigada.

Este efeito colateral de cardiotoxidez parece preocuao ponto de já existirem pesquisas baseadas em ressonância eletrônica de spin (ESR). Sabendo-se que algumas quinonas e antraquinonas antraciclínicas foram um grupo de drogas anticarcinogênicas, foi testada a estabilidade dos radicais destas substâncias através de ESR [025]. Foi observado que estas substâncias fornecem radicais quando incubadas com sistemas micro-Estes radicais, rapidamente, formam complexos covalensomais. tes com o DNA e esta reação pode acarretar prejuízos através produção de ânions radicalares superóxido (02. Recenteda mente, foi demonstrado que a doxorubicina (IX) pode ser ativamente citotóxica possivelmente por induzir peroxidação das branas lipídicas[026].

Estas considerações sobre a atividade biológica das antraquinonas demonstram a importância do estudo de plantas que produzem antraquinonas, constituindo motivo adicional para o estudo da Hemerocallis fulva.

Assim além do interesse das estruturas químicas deduzidas pela aplicação de métodos modernos de análise orgânica e a relação interdisciplinar evidencia-se a importância do conhecimento da dispersão das antraquinonas no reino vegetal. Por isto, a Tabela 1 descreve a constituição e ocorrência

de antraquinonas naturais relatadas durante o período de 1973 a 1984, baseada em levantamento no Chemical Abstracts. A escolha deste período (1973 a 1984) decorreu da existência de trabalho relatando as antraquinonas descritas nos anos anteriores [027].

Os dados da Tabela 1 poderão ser utilizados para avaliações quimiossistemáticas, evolução e ecologia químicas, que não foram consideradas neste trabalho.

Critérios para a organização da Tabela 1.

- 1 As divisões foram ordenadas em:
 - 1.1 Antraquinonas ligadas a unidades de açucares.
 - 1.2 Antraquinonas cloradas.
 - 1.3 Antraquinonas nitradas.
 - 1.4 Antraquinonas com substituintes que não açúcares, cloro ou nitro.
 - 1.5 Antraquinonas com um anel saturado.
- 2 As sub-divisões foram ordenadas na sequência.
 - 2.1 Metilação em C-2.
 - 2.2 Hidroximetilação em C-2.
 - 2.3 Metilação e/ou hidroximetilação e/ou açúcar em C-1.
 - 2.4 Outro substituinte C-benzílico e/ou açucar em C-2.
 - 2.5 Sem substituinte C-benzílico.

- 3 As sequências foram ordenadas em:
 - 3.1 Sem substituinte oxigenado.
 - 3.2 Com substituinte oxigenado.
 - 3.2.1 Não metoxi ou hidroxilado
 - 3.2.2 Mono a tetrametoxilado
 - 3.2.2.1 Com substituinte C-benzílico e/ou açúcar.
 - 3.2.3 Mono a penta-hidroxilado.
 - 3.2.3.1 Com substituinte C-benzílico e/ou açúcar.
 - 3.2.3.2 Mono a tetrametoxilado.
 - 3.2.3.2.1 Com substituinte C-benzílico.

Radicais relacionados na Tabela 1.

- $R-1 (\beta-D-piranosiloxi)$
- $R-2 (\alpha-L-arabinopiranosiloxi)$
- $R-3 (\alpha-L-xilopiranosiloxi)$
- R-4 (β -D-galactopiranosiloxi)
- $R-5 (\beta-D-glucopiranosiloxi)$
- $R-6 (\alpha-D-glucopiranosiloxi)$
- R-7 (β -D-glucopiranosiloxi) metil.
- R-8 (β -D-glucopiranosiloxi)-di-hidroximetil
- $R-9 (6-0-\alpha-L-manopiranosil)$ oxi
- R-10- (6-desoxi-O-manopiranosil)oxi

- R-11 $(6-\text{desoxi}-\beta-L-\text{manopiranosil})$ oxi
- R-12 $(6-\text{desoxi}-\alpha-\text{L-manopiranosil})$ oxi
- R-13 ((2,3,4-triacetil)-6-dexosi-α-L-manopirano sil oxi
- $R-14 (\beta-L-ramnosiloxi$
- R-15 (α -L-ramnosiloxi
- R-16 (O-xilosil-glucosil)oxi
- R-17 $(4-O-\alpha-L-arabinopiranosil-\beta-D-glucopiranosil$ oxi
- R-18 $(4-O-\beta-D-galactopiranosil-\beta-D-glucopiranosil$ oxi
- R-19 $(6-O-\beta-D-xilopiranosil-\beta-D-glucopiranosil)$ oxi
- $R-20 (6-O-\beta-D-glucopiranosil-\beta-D-glucopiranosil)$ oxi
- R-21 (6-desoxi-4-O- β -D-galactopiranosil- α -L-manopiranosil) oxi .
- R-22 (6-desoxi-4-O- β -D-glucopiranosil- α -L-manopiranosil) oxi .
- R-23 2-0-(desoxi- α -L-manopiranosil)- β -D-glucopiranosil oxi
- R-24 6-O-(6-desoxi- α -L-manopiranosil)- β -D-glucopiranosil oxi.
- R-25 (metoximetil)
- R-26 (etoximetil)
- R-27 (acetoximetil)
- R-28 (etenil)
- R-29 (2-hidroxietil)
- R-30 (propil)

```
R-31 - (1-oxopropil)
```

R-32 - (1-hidroxipropil)

R-33 - 3-(hidroxi)-1-(hidroximetil)-propil

R-34 - 3-(acetoxi)-l-(hidroximetil)-propil

R-35 - 2-(sulfoxi)-propil sal monossódico

R-36 - (3 metil-1-butenil)

R-37 - (3 metil-2-butenil)

R-38 - (3-oxo-1-butenil)

R-39 - (3-metil-2-oxobutil)

R-40 - (2-hidroxipentil)

R-41 - (1-hexenil)

R-42 - (1-hidroxi-hexil)

R-43 - (1 oxo-hexil)

R-44 - (3,7-dimetil-2,6-octadienil)oxi

Tabela 1 - Constituição e ocorrência de antraquinonas naturais registradas na literatura durante o período de 1973 a 1983.

из	1		3	4	5	6	7	8	Nome Trivial	Fam í li a	Ginero ou Espécie	Referência
001					R-8					Rhamnaceae	Mannus françula	1028, 0291
002				QAc:	CAc		R-13			Pharmaceae	Rhamnus franqula	[030]
003	OCH 2		R-19						Longiflorosideo	Rubiaceae	Galium sp.	[031]
004	3			R-22	осн ₃		0013			Rubiaceae	Morinda citrifolia	[032]
005	OH		R-5 -		3		J			Rubiaceae	Asperula besseriana	[033]
							*			Rubiaceae	Calium ruthenicum	10331
006	OH		R-19							Rubiaceae	Coprosma rotundifolia	[034]
007	OH					R-19				Rubiaceae	Morinda lucida	[035]
800	CH.		R-19					•				•
		ou	OH							Rublaceae	Danais fragrans	[036]
009				OH.	R-4			•		Polygonaceae	Rumex nepalensis	[037]
010				Œ	R-5					Litraceae	Woodfordia fruticosa	1038 1
						•				Polygonaceae	Rumex acetosa	1039 1
										Polygonaceae	Ruibarbo	1040 1
011				R-5	OH					Polygonaceae	Runex confertus	1041 1
012				R-20	Cil					Leguminosae (Caesalp.)	Cassia tora	-1042]
013				R-21	OH					Polygonaceae	Rumex hastatus	D43 I
014				OH OU	R-5					Polygonaceae	Rumex alpinus	D44]
			٠	R-5	OH					Leguminosae (Calsalp.)	Chssia rogconi	(045]
015					OH	R-20				Rubi acèae	Morilda tinctoria	(O46)
016				OH	R-5		R-15		Glucofrangolina	Rhamnaloeae	Rixmus frangula	D47, 048)
									В	Rhamnaceae	Frangula alnus	[049]
017				OH	R-5		R-11			Rhamnaceae	Frangula	[050]
018				- OH	R - 5		R-14		Glucofrangulina	Pharmaceae	Rhamnus frangula	[030,049,048,051,05
									A	Phamnaceae	Franqula alnus	[049]
										Rhannaceae	Franqula	[050]
019	OH		R-12					осн ₃		Leguminosae (Caesalp.)	Cassia renigera	(053]

NS	1	3	4	5	6	7	8	Nome Trivial	Familia	Gênero ou Espécie	Referênci
020			OH	R-3		00H ₃			Leguminosae	Cassia marginata	[054]
			-			_			(Caesalp.)		105
021			OH	R-4		OCH ³			Leguminosae (Caesalp.)	Cassia laevigata	[055]
022			OH	R-5		осн ₃			Polygonaceae	Polygonum sachalinense	[056]
									Leguminosae (Caesalp.)	Cassia occidentalis	[057]
023	•		OH	R-18		OCH3			Leguminosae (Caesalp.)	Cassia laevigata	(058)
024			OH	R-20		00Н3			Polygonaceae	Ruibarbo	[059]
025			R-5	OH.		OCH ₃			Polygonaceae	Polygonim sachalinense	[960]
									Leguminosae (Caesalp.)	Cassia alata	[061]
		-							Leguminosae (Cacsalp.)	<u>Cassia rogeoni</u>	[045]
									Leguminosae	Cassia occidentalis	[062]
									(Caesalp.)		
026	OH	R-5			OCH ₃	OСН3			Oxalidaceae	Averrhoa carambola	[063]
027		OH			осн ³	_	осн3		Leguminosae (Caesalp.)	Cassia multijuga	
028	αι	OH					•		Leguminosae (Caesalp.)	Cassia marginata	[064]
029	OH	R-24		OH	•				Leguminosae	Cassia multijuga	[066]
									(Caesalp.)	•	
030	ОH			OH	R-19			Morindona	Rubiaceae	Morinda citrifolia	[067]
							•		Rubiaceae	Morinda tinctoria	[068]
								•	Liliaceae	Allium copa	[069]
031	OH	R-23		OH					Rubiacene	Rubia cardifolia	lo 70 l
									Rubiaceae	Ribia akane	[070]
032	OH	R-5					OH		Dilleniaceae	Dillenia indica	1071 1
033		OH		OH	R-19	•			Rubiaceae	Morinda citrifolia	[067]
034			OH	OH		R-15		Frangulina B	Rhamnaceae	Phamnus franqula	1047, 072]
									И патпа сеае	Frangula alnus	[049]
035			OH	OH		R-1		Grucoemodina	Polygonaceae	Rumex alpinus	[073]
036			OH	OH		R-9		•	Polygonaceae	Rumex sp.	10741
037			OH	OH		R-10			Rhamnaceae	Rhamnus triqueta	[075]
038			OH	OH		R-14		Fragulina A	Rhamnaceae ,	Phamus frangula	(O76)
									Rhamnaceae	Frangula	[050]

145	1	3	4	5	6	7 .	8	Nome trivial	Familia	Género ou Espécie	Referência
039			OH	OH		R-12			Rhamaceae	Mammus francula	[030,047,051,052
									Rhamnaceae	Frangula alnus	1049]
040			OH	OH.		R-22		•	Rhamnaceae	Numnus franquia	1077, 0781
041			OH	R-2		OH			Leguminosae (Caesalp.)	Cassia marginata	1054]
042			OH:	R ~5		Off			Rhamnaceae	Tharmus catharticus	[079]
									Thamnacoae	Phomous frontula	10721
									Rhamna ceae	Francula alnua	[049]
									Polygonaceae	Polygonum sachalinense	1056, 080 1
									Cortinariaceae	Cortinarius	[081]
043			Off	R-19		OH			Rhamnao≥ae	Pharmus catharticus	[079]
. 044			ai	n-20		OI!			Rhannaceae	Rhammus catharticus	[079]
								•	Phamnaceae	Rhamnus framula	[082]
045			OH.	R-17			OH		Polygonaceae	Antigorem laptopus	[083]
046			P -5	OH		OH			Polygonaceae	Polygonum collinerve	1084)
			•						Polygonaceae	Polyconum andullinense	10601
									Polygonaceae	Rumex acetosa	10391
									Polygonaceae	Ruiburbo	10401
047	QH	R-24			oai3		OH		Leguminosae (Caesalp.)	Cassia multijuja	10661
048				ОH	OH	OCH ₂	R-5		Cortinariaceae	Cartinarius	10811
049	OH	R-12	осн ₃	CH		ocH ₃			Leguminosae (Caesalp.)	Senna	10851
050		R-12		OH	oœ1 ₃	och3	OH		Leguminosae (Caesalp.)	Cassia renigera	10531
051	OH:	OH		OH	R-19				Rubiaceae	Morinda citrifolia	[067]
052		***	OH	R-12		OН	OH		Leguminosae	Cassia javanica	10861
							•		(Caesalp,)		
053	Œ	OH		ОН		CH ₃	R-6	Nodosideo	Leguminosae (Caesalp.)	Cassia nodosa	10871

No	1	3	4	5	6	7	8	Name trivial	Familia	Cênero ou Espécie	Referência
054	Cit	R~5							Rubiaceae	Asperula beseriana	[033]
									Rubiaceae	Galium ruthenicum	10331
055	OH!	R-19						Lucidina-	Rubiaceae	Rubia cordifolia	[070]
	•							primoverosídoo	Rubiaceae	Rubia akane	[070]
				•					Rubiacuae	Asperula besseriana	[033]
								•	Publiconne	Morimia citrifolia	10671
				•					Rubiaceae	Mortoda lucida	10351
								•	Rubiaccae	Caltum mollum	[088, 089]
									Rubiaceae	Galium ruthenicum	10331
									Rubiaceae	Galium s.	10311
056	ΟH	R-19		OH	ОH				Rubiaceae	Morinda citrifolia	[067]

М	1	2	3	4	5	6	7	8	Nome trivial	Familia	Gênero ou Empécie	* Referência
057	P←24		OH			∞at ₃	C	хэн3		Leguminosae (Caesalp.)	Cassia multijuga	[064]
058	Œ	R-19								Aspergillaceae	Aspergillus parasiticus	10901
		. –								Rubiaceae	Asperula besseriana	[033]
										Rubiaceae	Rubia tinctorum	1091 }
										Rubiacene	Calium ruthenicum	10331
059		R-7		OH	OH					Polygonaceae	Ruibarbo	[040]

NA	1	3	4	5	6	7	8	Nome trivial	Familia	Gênero ou espécte	Referência
060 061 062			он он осл ³	011 OH	C1 C1	ogi ₃		Fragilina	Caloplacaceae	Astroplaca opaca Astroplaca opaca Caloplaca ferruginea Astroplaca opaca	[092] [092] [093, 094] [092]

•

NΦ	1	3	4	5	6	7	8	Nome trivial	Familia	Gênero ou espécie	Referência
063	NO ₂	NO ₂	OH	OH	NO ₂		NO ₂	Acido Alcético	Liliaceæ	Aloe barbadonsis	[095]

NΘ	1	3	4	. 5	6	7	8	Nome trivial	Familia	Côneiro ou espécie	Re ferência
64								Tectoquinona	Euphorbiaceae	Acalipha indica	10961
								•	Euphorbiaceae	Euphorbia pulcherrima	[097]
										Prismatomeris tetrandra	1098]
									Bignoniaceae	Markhamia Stipulata	10991
									Verbenaceae	Tectona grandis	[100, 101]
									Rutacese	Clausena heptafila	[102]
									Rubiaceae	Morinda lucida	[103]
5	00313								Scrophulariaceae	Digitalis pupures	[104]
6	,	00H ₃							Rubiaceae	Hedyotis diffusa	[105]
7	0CH ₃	0CII3			*		,•··		Rubiaceae	Davinacanthus subspinosus	[106]
8	OH.	•							Rubiaceae	Rubia condifolia	[070, 107]
	•								Rubiaceae	Rubta akane	[070]
							•		Rubiaceae	Plocalma pendula	[108]
									Rubiaceae	Putoria calabrica	[109 , 110]
									Rubiaceae	Morinda lucida	[103]
				•					Gesraniaceae	Streptocarpus dunnii	[111]
									Bignoniaceae	Catalpa ovata	[1]2]
									Verbenace ae	Tecnona grandis	[100]
									Scrophulariaceae	Digitalis shischkinii	[113]
9		OH					•		Rubiaceae	Hedyotis diffusa	[105]
									Rubiaceae	Coprogra sp.	1034]
0			OH					Pachibasina	Verbenaceae	Tectona grandia	toot
									Scrophulariaceae	Digitalis shischkinii	[113]
							•		Scrophulariaceae	Digitalis orientalis	[114]
									Sphaeropsidaceae	Ascochyta plai	[115]
1	OH:	OCH ₃							Rubiacese	Galium album	[116]
2	OH	•	осн ₃					Madeirina	Scrophulariaceae	Digitalis orientalis	[114]
3	OH .		,	oœ₁3					Rubiaceae	Ploclama pendula	[108]
	٠.			ŭ					Leguminosae (Caesalp.)	Cassia	[117]
4	OH						0013		Scrophylariaceae	Digitalis viridiflora	[118]
75	OCH,	OH:					,			Prismotomeris tetandra	[098]

NO	1	3	4	5	6	7	8	Nome trivial	Familia	Genero ou Espécie	Referênc
	0C11 ₃	OH							Rubiaceae	Сортоним вр.	[034]
	•								Rubiaceae	Galium sp,	10311
									Rubiaceae	Morinda lucida	[103]
076		OH	ocai3					Migitoluteina	Rubiaceae	Nedyotis diffusa	[105]
			•						Scrophulariaceae	Digitalis schiedkinii	[113, 119]
									Scrophulariaceae	Digitalis grandiflora	[120]
							•		Scrophulariaceae	Digitalis orientalis	[114]
									Scrophulariaceae	Digitalis purpurea	[104]
									Scrophulariaceae	Digitalis viridiflora	[118]
									Scrophulariaceae	Isoplexia conariensia	[121]
									Verbenaceae	Tectona grandis	[122]
077				110		001 ₃			Domitiaceae	Alternaria solani	[123]
						J			Domatiaceae	Alternaria porri	[124]
									Domatiaceae	Alternaria bataticola	[125]
									Valsaceae	Phomopsis juniperovora	[126]
078			осн ³				OH		Scrophulariaceae	Digitalis schischkinii	[113,119,
079	αı	ocH³				:	ocH ₃		Leguminosae (Caesalp.)	Cassia renigera	[128]
080			Oli	OCH ₃		, осн _з			Cortinariaceae	Cortinarius sp.	[129]
				3		3			Rubiaceae	Morinda citrifolia	[032]
081	÷	0013	och,	Œ	,				Liliaceae	Nomerocallis citrina	[010]
082		осн ₃		OH		∞ai ₃			Valsaceae	Phomopsis juniperovera	[126]
083		OH 3	∞31 ³	∞H ³	осн ₃	осн ₃		Crisobtusina	Leguminosae (Caesalp.)	Cassia	[130]
084	QH	OH						Rubiadina	Leguminosae (Caesalp.)	Cassia multijuga	[056]
									Leguminosae (Caesalp.)	Cassia auriculata	[131]
									Rubiaceae	Galium album	[116, 132
									Rubiaceae	Galium semiamictum	[133]
									Rubiaceae	Galium sp.	1031)
		•							Rubiaceae	Cinchona lodgeriana	[134]
						•			Rubiaceae	Morinda citrifolia	1067, 135
									Rubiaceae	Morinda lucida	[103]
					٠,				Rubiaceae	Rubia cordifolia	[136]
		•							Rubiaceae	Putoria calabrica	(109, 110
									Rubiaceae	Ploclama pendula	[108]
					,				Rubiaceae	Commitheca liebrechtsiana	[137]
			•						Rubiaceae	Coprostra	[034]
									Rubiaceae	Danais fragrans	10361
										Prismatomeris tetandra	[860]

М	1	3	4	5	6	7	8	Nome trivial	Familia	Cênero ou Espécie	Referência
085	ОН	 	OH						Rubiaceae	Rubia cordifolia	[138]
		i		•					Scrophulariaceae	Digitalia Schischkinii	[113, 119]
									Scrophulariaceae	Digitalis purpurea	[104]
086	OH			OH					Rubiaceae	Ploclama pendula	[108]
087	OH	•				OH		Isocrisofanol	Leguminosas (Cresalp.)	Cassia alata	(061)
									leguminosae (Cresalp.)	Cassia occidentalis	[139]
									Scrophulariaceae	Digitalis dischkinii	[113]
									Scrophulariaceae	Digitalis orientalis	[114]
									Scrophulariaceae	Digitalia purpurea	[104]
88		OH	OH						Scrophulariaceae	Digitalis schischkinii	[113]
								·	Scrophulariaceae	Digitalis purpurea	[104]
089			OH	OH				Crisofanol	Liliaceae	Aloe saponaria	[140, 141]
									Liliaceae	Alon barbadensis	1095 J
									Liliaœae	Aloc absinica	[142]
									Liliaceae	Aloe eru	[142]
						· ·			Liliaceae	Aloe sp.	[143]
									Liliaceae	Hemerocallis citrina	[010]
									Liliaceae	Hemerocallis minor	[008, 009]
									Liliaceae	Asphorblus	[144]
									Liliaceae	Asphodelus fistulosus	[145]
									Liliaœae	Asphodelus microcarpus	[145]
									Liliaceae	Ruscus aculeatus	[146]
									Leguminosae (Caesalp.)	Cassia	[117, 130,147]
									Leguminosae (Caesalp.)	Cassia didymobotria	[148]
			•						Leguminosae (Caesalp.)	Causia marginata	[065]
					* •				Leguminosae (Caesalp.)	Cassia occidentalis	[149, 150, 151]
									Leguminosae (Cuesalp.)	Cassia sophera	[152]
									Leguminosae (Caesalp.)	Cassia fistula	0.54)
									(Caesalp.)	Cassia auriculata	ft#1.I
									Leguminosa e (Caesalp.)	Cassia torosa	155, 156)
									Leguminosae (Caesalp.)	Cassia lacvigata	1058, 157]

М	1	3	4	, 5	6	7		8	Nome Trivial	Familia	Genero ou Especie	Referência
		,	OH	ОН					Crisofanol	Leguminosae (Caesalp.)	Cassia absus	[158]
										Leguminosae (Caesalp.)	Cassia gurretiana	[159]
										Leguminosae (Caesalp.)	Cassia angolensis	[160]
			•				•			Leguminosae (Caesalp.)	Cassia abtusifolia	[161]
										Leguminosae	Cassia siamea	[162, 163]
										(Caesalp.)		•
			•	•					•	Leguminosae (Caesalp.)	Cassia tora	[164, 165]
										Leguminosae (Caesalp.)	Cassia javanica	[166]
										Leguminosae (Caesalp.)	Cassia alata	[167, 168]
							,			Leguminosae (Caesalp.)	Cassia quinquanqulata	[169]
										Leguminosae (Caesalp.)	Cassia rogeoni	[045]
										Leguminosae	Cassia senna	[170]
										(Caesalp.)		
		•								Leguminosae (Caesalp.)	Cassia angustifolia	[171]
									•	Leguminosae (Caesalp.)	Senna	[085, 172, 173]
	•			. *						Leguminosae (Faboid.)	Abrus cantoniensis	[174]
										Leguminosae		[175]
										Parmelia ceae	Asahinea scholanderi	[176]
			•							Parmeliaceae	Asahirea chrysantha	[177]
										Unbeliferae	Liquation charging	[178]
										Guttiferae	Psorospermum febrifum	m[179]
										Outtiferae	Vismia quaramirandae	[180]
					•					Polygonaceae	Rutbarbo	1172,181,182,183,184,185
					,					Polygonaceae	Runex obtunifolium	[186]
										Polygonaceae	Rumax acctoria	[039, 187]
										Polygonaceae	Runex chalepensis	[188]
										Polygonaceae	Runex	1074,189,190,1911
			•							Polygonaceae	Pumex jaronica	[192]
~										Polygonaœae	Rung sp.	1193, 194
										Polygonaceae	Rimex alpinus	[044, 073]

No	1	3	4	5	6	7	8	Nome trivial	Familia	Gênero ou Especie	Peferência
			ÓН	OH				Crisofanol	Polygonaceae	Rumex hastatus [14	131
									Polygonaceae	Runcx acetosella [19	
									Polygonaceae	Ramex rechingerianus [19	
									Polygonaceae	Rumox crispus 119	19 1
									Polygonaceae	Banva repolensis [0]	37 1
									Polygonaceae	Rumex confertus 20	00 l
•									Polygonaceae	Rumex orientalis [20	11
									Polygonaceae	Rumrex wallichii [20)2
									Polygonaceae	Micom Jailnatum [20	3,204,205,206
									Polygonaccae	Polygonim lanigerum 20	77
									Polygonaceae	Muchlerbeckta [20	180
	•								Polygonaceae	Muchlembeckia sp. 20	91
									Polygonaceae	Rhei radix 20	02 I
									Iridaceae	Eleutherine bulbosa [2]	101
									Dematiaceae	Drechslera holmii [2]	111
									Dematiaceae	Diechslera ravenelii [20	91
		•							Dematiaceae	Drechslera catenaria 2	1 2 J
									Simarobaceae	Picramnia parviflora [2]	13]
									Simarobaceae	Picramnia selowii [2]	L 4 }
									Simarobaceae	Alvorcoba amorphoides 2	L 5]
									Dipterocarpaceae	Shorea sp. [2]	16]
							•	:	Dipterocarpaceae	Shorea worthingtonii [2]	17]
	•								Rhamnaceae	Rhamnus alaternus [2]	18,219,220,22
									Rhamnaceae	Mismus catharticus [2	22 J
							•		Rhamnuceae	Rhamnus oleoides graecus	3 223
									Rhamnaceae	Rhamnus purshiena [2]	2 4 j
									Rhamnaceae	Pharmus stadoo [2	25]
									Rhamnaceae	Frangula alnus 10	49 l
			-						Rhamnaceae	Frangula 12	26 I
									Rhamnaceae	Ventilago medaraspatana	1 227]:
									Rhamnaceae	Karwinskia humioldtiana	[228]
								2 0 4	Acanthaceae	Rhinacanthus communis	[229]
									Aspergillaceae	Penicillium islandicum	[230, 231]
					,				Aspergillaceae	Penicillium rugulosum	[227]
										Pseudospiropes simplex	[232]
									Sphaeropsidacea	Ascochyta pisi	[115]
090			OH			OH:		Digitoemodina ou	Sphaeropsidaceae	Pyrenochaeta terrestris	[233]

NO NO	1 ,	3	4 -	5	6	7	8	Nome trivial	Família	Genero ou Espécie	Referência
			OH			OH		Digitocmodina ou	Scrophulariaceae	Digitalis shischkinii	[113, 119]
								Fomarina	Scrophulariaceae	Digitalis orientalis	[114]
091			OH				OH	Ziganeina	Scrophulariaceae	Digitalis schischkinii	(113,119,127
									Scrophulariaceae	Digitalis orientalis	[114]
092				OH			011		Rubiaceae	Rubia cordifolia	[107]
093				OH on	OH	OH ou	Oil		Rubiaceae	Соргонна	[034]
094			OH	OH		R-44			Outtiferae	Paorospermum fehrifugum	1179]
095	OH	OH	OŒH ₃						Scrophulariaceae	Digitalia achischkimii	11191
									Scrophulariaceae	Digitalis purpurea	[104]
096	OH		CH	осн ₃					Rubiaceae	Rubia cordifolia	[136]
097	OH		OH				осн ³		Rubiaceae	Rubia cordifolia	[136]
098	OH			осн ₃	OH				Rubiaceae	Morinda lucida	[035]
									Rubiaceae	Ploclama pendula	[108]
099	OH		oαi ₃				OH		Scrophulariaceae	Digitalis schischkinii	[113, 119]
									Scrophulariaceae	Digitalis trojana	[234]
100		OH	∞a₁3	OH				Obtusifilina	Liliaœae	Hemerocallis citrina	[010]
101		OH .		OH			осн ₃	Macrosporina	Demottaceae	Alternaria solani	[123, 235]
					•				Dematiaceae	Alternaria batationla	[125]
					•				Valsaceae	Phonopsis juniperovora	1126]
102		OH		осн ₃		OH		Cajaquinona	Leguminosae (Faboid.)	Cajanus cajan	[236]
103		Off	OCH ₃				OH		Scrophulariaceae	Digitalis schischkinii	[113, 119]
									Scrophulariaceae	Digitalis orientalis	[114]
									Scrophulariaceae	Digitalis viridiflora	[118]
104			OH	OH		OCH ₃			Leguminosae (Caesalp.)	Cassia morginata	1065 1
					•				Leguminosae (Caesalp.)	Cassia occidentalis	[057,149,151,
									Leguminosae (Caesalp.)	Cassia sophera	[152]
									Leguminosae (Caesalp.)	Cossia lacvigata	[055, 157]
									Leguminosae (Caesalp,)	Cassia	[130]
									Leguminosae (Caesalp.)	Cassia angolensis	[160]
									Leguminosae (Caesalp.)	Cassia obtusifolia	[161]

NA	1	3	4	5	6	7	8	Nome trivial	Familia	Gênero ou Espócie	Referência
		,	OH	. OH		ocsi ³		Fisciona	Leguminosae (Caesalp.)	Cassia siamea	[162, 163]
									Leguminosae (Caesalp.)	Cassia alata	[167]
								•	Logumonosae (Caesalp.)	Cassia spectabilis	1 238 1
									Leguminosae (caesalp.)	Cassia royconi	1 045 1
									Leguminosae (Coesalp.)	Cassia torosa	[156, 239]
									Leguminosae (Caesalp.)	Cassia tora	1 165 1
				•					Leguminosae (Cansalp.)	Cassia senna	[170]
		•							Leguminosae (Caesalp.)	Cassia angustifolia	[171]
									Leguminosae (Caesalp.)	Senna	[085, 172]
									Leguminosae (Faboid.)	Abrus contoniensis	[174]
									Polygonaceae	Ruibarbo	{172,182, 183, 185,240}
									Polygonaceae	Polygonum sachalinense	[056, 060, 080]
									Polygonaceae	Polygonum coliinerue	[084]
									Polygonaceae	Polygonum multiflorum	[241]
									Polygonaceae	Rumex obtusifolius	[186]
									Polygonaceae	Rumex acetosa	[039, 187]
									Polygonaceae	Rumex chalepensis	[188]
									Polygonaceae	Rumex	[074, 189]
									Polygonaceae	Rumex japonica	[192]
									Polygonaceae	Pamex sp.	[193, 194]
									Polygonaceae	Rumex alpinus	[044]
			•						Polygonaceae	Rumex hastatus	1 043]
									Polygonaceae	Rumex rechingerianus	1 196, 197, 198
									Polygonaceae	Rumex nepalensis	[037, 242]
									Polygonaceae	Rumex orientalis] 201]
									Polygonaceae	Rheum palmatum	[205, 206]
						•		,	Polygonaceae	Rhei radix	1 2051
									Caloplacaceae	Caloplaca fulgens	[243]
									Caloplacaceae	Caloplaca ferruginea	[093, 094]
•									Caloplacaceae	Caloplaca murorum	[244]
									Caloplacaceae	Caloplaca	[245]

NO	1	3	4	5	6	7	8	Nome trivial	Familia	Cônero ou Espôcie	Roferência
			OH	OH		∞31 ³		Fisciona	Rhamnaceae	Phannus alaternus	{218,219,220,221,246
		,		•		•			Rhamnaceae	Rhamnus catharticus	[222]
				•					Rhamnaceae	Rhamnus nipalensis	[247]
									Rhamnaceae	Rhamnus oleoides grad	cus [223]
									Phamnaceae	Rhamnus purchiana	[224]
					•				Rhamnaceae	Frangula alnus	10491
									Rhamnaceae	Ventilago madarampata	na 227)
									Sargentodoxaceae	Sargentodoxa currenta	[248]
									Oittiforac	Virmin guarantrangan	[180]
									Oittlforan	Virmin rayoniengiln	12491
									Parmeliaceae	Cetraria cucullata	[250]
									Simarobaceae	Picramia parviflora	[213]
									Simarobaceae	Picramia	[251]
									Simarobaceae	Picramnia sellowi	[214]
									Rubiaceae	Rubia cardifolia	[107]
									Teloschistaceae	Xanthoria sp.	[252]
		•							Teleschistaceae	Xanthoria resendei	[253, 254]
						•			Aspergillaceae	Aspergillus	[255]
									Aspergillaceae	Aspergillus glaucus	[256]
									Aspergillaceae	Aspergillus ruber	1257 1
									Aspergillaceae	Aspergillus chevallie	
				_					Aspergillaceae	Eurotium	[255]
									Aspergillaceae	Eurotium repens ,	[259]
									Aspergillaceae	Ponicillium charlesii	
									Dematiaceae	Alternaria puri	[26]]
									Vochysiaceae		[262]
								* 1	Urticaceae	Bohemeria platinifoli	•
										Cycloplaca almorensis	-
105			. Oii	осн ₃		OH		Questina	Polygonaceae	Polygonum cuspidatum	
				3		•		4	Leguminosae (Caesalp.)	Cassia obtusifolia	[266]
									Ampergillaceae	Aspenyillus	1255 1
									Aspergillaceae	. Appergillus glaucus	(256)
									Amporgillaceae	Ampergillus terreus	1267, 26 6
									Aspergillaceae	Eurotium	1255 1
106			OH	OH		осн ₃		Vismiaquinona	Guttiferae	Vismia japurensis	[249]
						3			Outtiferae	Vismia reichardtiana	[269]
107			ОН	OH	r <u>≓</u> 39	OCH ₃		Vismiaquinona B	Guttiferae	Vismia japurensis	[249]

NO	1	.3	4	5	6	7	8	. Nome trivial	Familia	Gênero ou espécie	Referência
108	OH		OH	,	осн,		0СН3	Ventinona B	Rhamnaceae	Ventilago madaraspatana	[227]
109	OH	CCH ³		∞н3		∞H ³	OH		Leguminosae (Caesalp.)	Cassia renigera	[053]
110		OH	∞1 ₃	QII	oai3	∞1 ₃		Obtusina	Leguminosae (Caesalp.)	Cassia	[130]
111	OH	OH	OH						Scrophulariaceae	Digitalis schischkinii	[113]
112	OH	OH			OH				Rubiaceae	Rubia cordifolia	[070]
									Rubiaceae	Rubia akane	[070]
113	αij	OH					αı		Leguminosae (Caesalp.)	Cassia multijuga	[064]
									Leguminosa e (Caesalp.)	Cassia spectabilia	[238]
114	ОН		ОН	OH				Islandicina	Parmeliaceae	Asahinea scholanderi	[176]
_						•			Parmeliaceae	Asahinea chrysantha	[177]
									Leguminosae (Caesalp.)	Cassia torosa	[155]
									Leguminosae (Caesalp.)	Cassia obtisifolia	[161]
						•			Leguminosae (Caesalp.)	Cassia occidentalis	[151]
									Aspergillaceae	Penicillium islandicum	[230, 231, 270]
									Aspergillaceae	Penicillium rugulosum	[230]
115	OH		OH.				OH	Digitopurpona	Scrophulariaceae	Digitalia schischkinii	[113, 119]
									Scrophulariaceae	Digitalis purpurea	[104]
116	OH			OH	OH				Rubiaceae	Morimia citrifolia	[067, 135, 271]
									Rubiaceae	Morinda tinctoria	[272, 273]
									Rubiaceae	Morimla angustifolia	[274]
117		CH	OH				OH		Scrophulariaceae	Digitalis schischkinii	[113]
118			OH		OH	OH		Emodina ou Emodol	Leguminosae (Caesalp,)	Cassia	[117, 130, 147]
			•						Leguminosae (Caesalp.)	Cassia javanica	[086, 148]
									Leguminosa e (Caesalp.)	Cassia occidentalis	[057, 149, 151]
									Leguminosae (Caesalp.)	Cassia sophera	[152]
									Leguminosae (Caesalp.)	Cassia auriculata	[131, 275]
									Leguminosas (Caesalp.)	Cassia torosa	[155,156,239,276
									Leguminosae (Caesalp.)	Cassia lacvigata	[055]
									Leguminosae (Caesalp.)	Cassia alata	[167, 168, 277]

### OH OH OH Brodits to tequininease (Cessia emplores) [160] #### Received to the product of th	N9
Casala obtusifolis 161, 278	
Consult Cons	
(Casealp.) Legiminosae	
Leguminosae (Caesala). Caesala eema (170) Leguminosae (Caesala). Caesala eema (170) Leguminosae (Caesala). Caesala anquatifolia (171) Leguminosae (Caesala). Serva (172, 173) Leguminosae (Caesala). Leguminosae (Caesala). Leguminosae (Caesala). Polygonaceae P	
Legaminosae (Caesain.) Caesin ampustifolia (171)	
Leguninosae (Chesain). Leguninosae (Chesain).	
Legnminosae	
Polygonaceae	
Polygonaceae	
Polygonaceae	
Polygonaceae	
Polygonaceae Runex citual folius 186 Polygonaceae Runex cottosa 187 Polygonaceae Runex chilerensis 188 Polygonaceae Runex chilerensis 188 Polygonaceae Runex chilerensis 189 Polygonaceae Runex cottosa 192 Polygonaceae Runex chilerensis 192 Polygonaceae Runex chilerensis chil	
Polygonaceae Rimex Accidentation Rimex	
Polygonaceae Runcx chalegersis [188 Polygonaceae Runcx chalegersis [074, 189, 1 Polygonaceae Runcx japonica [192 Polygonaceae Runcx sp. [193, 194 Polygonaceae Runcx sp. [193, 194 Polygonaceae Runcx chalegersis [043 Polygonaceae Runcx acetosela [195 Polygonaceae Runcx acetosela [195 Polygonaceae Runcx chingerianus [196, 197, 1 Polygonaceae Runcx chingerianus [196, 197, 1 Polygonaceae Runcx chingerianus [196, 197, 1 Polygonaceae Runcx chingerianus [281 Polygonaceae Runcx chingerianus [281 Polygonaceae Runcx chingerianus [281 Polygonaceae Runcx chingerianus [282 Polygonaceae Runcx chingerianus [283 Polygonaceae Runcx chingerianus [284 Polygonaceae Runcx chingerianus [285 Polygonaceae	
Polygonaceae Rimex 1074, 189, 1	
Polygonaceae Ramex japonica 192 Polygonaceae Ramex sp. 193, 194 Polygonaceae Ramex alpinus 1044 Polygonaceae Ramex alpinus 1044 Polygonaceae Ramex acetosela 195 Polygonaceae Ramex reciningerianus 196, 197, 1 Polygonaceae Ramex reciningerianus 196 197, 1 Polygonaceae Ramex Ramex Ramex Ramex 1281 Polygonaceae Ramex Ramex Ramex 1281 Polygonaceae Ramex Ramex 1281 Polygonaceae Ramex Ramex 1281 Polygonaceae Ramex Ramex 1281 Polygonaceae Ramex Polygonaceae Polygonaceae Ramex Polygonaceae Polygonaceae Ramex Polygonaceae Polygona	
Polygonaceae Rumex Sp. [193, 194]	
Polygonaceae Rumex alpinus 1044 Polygonaceae Rumex hastatus 1043 Polygonaceae Rumex acetosela 1195 Polygonaceae Rumex rechinquerianus 1196, 197, 1 Polygonaceae Rumex rechinquerianus 1196, 197, 1 Polygonaceae Rumex dentatus 1281 Polygonaceae Rumex dentatus 1281 Polygonaceae Rumex nepulensis 1087, 242 Polygonaceae Rumex pulcher 1283 Polygonaceae Rumex pulcher 1283 Polygonaceae Rumex hotahocase 1284 Polygonaceae Rumex hotahocase 1284 Polygonaceae Rumex hotahocase 1284 Polygonaceae Rumex pulmatum 1204, 205, 206 Polygonaceae Muchlembeckia 1208 Polygonaceae Muchlembeckia 1208 Polygonaceae Rumex	
Polygonaceae Runex hastatus 1943	
Polygonaceae Rumex acetosela [195] Polygonaceae Rumex rechingerianus [196, 197, 1 Polygonaceae Rumex crispus [199] Polygonaceae Rumex dentatus [281] Polygonaceae Rumex nepalensis [087, 242] Polygonaceae Rumex orientalis [201, 282] Polygonaceae Rumex pulcher [283] Polygonaceae Rumex wallichii [202] Polygonaceae Rumex hotahoense [284] Polygonaceae Rumex pulmum [204, 205, 2] Polygonaceae Rumex pulmum [204, 205, 2] Polygonaceae Muchlembeckia [208] Polygonaceae Muchlembeckia sp. [209] Polygonaceae Rhei radix [205]	
Polygonaceae Rumex rechingerianus [196, 197, 1 Polygonaceae Rumex crispus [199] Polygonaceae Rumex dentatus [281] Polygonaceae Rumex nevalensis [087, 242] Polygonaceae Rumex pulcher [283] Polygonaceae Rumex pulcher [283] Polygonaceae Rumex wallichii [202] Polygonaceae Rumex hotahoonse [284] Polygonaceae Rumex pulmatum [204, 205, 2 Polygonaceae Machlemisekia [208] Polygonaceae Machlemisekia sp. [209] Polygonaceae Rimex Rimex Rimex pulmatum [204, 205, 2 Rimex pulmatum [204, 2	
Polygonaceae Rumex dentatus [281] Polygonaceae Rumex nepalensis [087, 242] Polygonaceae Rumex orientalis [201, 282] Polygonaceae Rumex pulcher [283] Polygonaceae Rumex wallichii [202] Polygonaceae Rumex hotahoense [284] Polygonaceae Rumex pulmatum [204, 205, 2] Polygonaceae Muchlembeckia [208] Polygonaceae Muchlembeckia sp. [209] Polygonaceae Rhei radix [205]	
Polygonaceae Rumex orientalis [201, 282] Polygonaceae Rumex pulcher [283] Polygonaceae Rumex pulcher [283] Polygonaceae Rumex wallichii [202] Polygonaceae Rumex hotahoense [284] Polygonaceae Rumex pulmatum [204, 205, 2] Polygonaceae Muchlembeckia [208] Polygonaceae Muchlembeckia sp. [209] Polygonaceae Rhei radix [205]	
Polygonaceae Rumex orientalis [201, 282] Polygonaceae Rumex pulcher [283] Polygonaceae Rumex wallichii [202] Polygonaceae Rumex hotahoense [284] Polygonaceae Rumex pulmatum [204, 205, 2] Polygonaceae Muchlembeckia [208] Polygonaceae Muchlembeckia sp. [209] Polygonaceae Rhei radix [205]	
Polygonaceae Rumex pulcher [283] Polygonaceae Rumex pulcher [283] Polygonaceae Rumex wallichii [202] Polygonaceae Rumex wallichii [202] Polygonaceae Rumex hotahocnse [284] Polygonaceae Rumex pulmatum [204, 205, 2] Polygonaceae Muchlembockia [208] Polygonaceae Muchlembockia sp. [209] Polygonaceae Rhei radix [205]	
Polygonaceae Rumex wallichii [202] Polygonaceae Rumex hotahoense [264] Polygonaceae Rumex palmatum [204, 205, 2 Polygonaceae Muchlembeckia [208] Polygonaceae Muchlembeckia sp. [209] Polygonaceae Rhei radix [205]	
Polygonaceae Ramex hotahoense [284] Polygonaceae Ramex palmatum [204, 205, 2 Polygonaceae Muchlembockia [208] Polygonaceae Muchlembockia sp. [209] Polygonaceae Rhei radix [205]	
Polygonaceae Rumex Intahoense [284] Polygonaceae Rumex palmatum [204, 205, 2 Polygonaceae Muchlembeckia [208] Polygonaceae Muchlembeckia sp. [209] Polygonaceae Rhei radix [205]	
Polygonaceae Rumex palmatum [204, 205, 2 Polygonaceae Muchlembeckia [208] Polygonaceae Muchlembeckia sp. [209] Polygonaceae Rhei radix [205]	
Polygonaceae Muchlembeckia [208] Polygonaceae Muchlembeckia sp. [209] Polygonaceae Rhei radix [205]	
Polygonaccae Muchlombeckia sp. [209] Polygonaccae Rhei radix [205]	
Polygonaccae Rhei radix [205]	
tone 1	
remeiracete aganina comismori (1/0)	

H7	1	3	4	5	6	7	8	Nome trivial	Familia	Cônero ou Espécie	Referência
			OH	oil		OH		Emodina ou	Parmeliaceac	Octraria cucullata	[248]
								Emodol	Cupressaceae	Juniperus fornosana	[285]
									Sargentodoxaœae	Sargentodora cimenta	[250]
									Rhamnaceae	Rhamnus alaternus	[218,219,220,221]
									Rhamnaceae	Rhamnus catharticus	[222]
									Rhamnaceae	Rhamnus frangula	[030,051,078,286,
									Rhamna ceae	Rhamnus nipalensis	[247]
									Rhamnaceae	Rhammus oleoidas graecus	[223]
									Rhamnaceae	Rhamnus purshiana	[224]
									Rhamnaceae	Rhamnus stadoo	[225]
									Rhamnaceae	Rhammus triqueta	[075]
									Rhamnaceae	Frangula alnus	1049]
						*			Rhamnaceae	Frangula	[226]
									Simarobaceae	Picramnia parvifolia	[213]
									Simarobaceae	Picramia	[551]
									Simarobaceae	Picramnia selowi	[214]
									Teleschistaceae	Xanthoria sp.	[252]
									Aspergillaceae	Aspergillus sp.	[288]
		•							Aspergillaceae	Aspergillus glaucus	[256]
									Aspergillaceae	Aspergillus aculeatus	[289]
									Aspergillaceae	Aspergillus terreus	[267, 268]
									Aspergillaceae	Penicillium islandicum	[230]
									Aspergillaceae	Penicillium rugulosum	[230]
									Aspergillaceae	Penicillium tardum	[290]
									Aspergillaceae	Penicillium	[291]
									Cortinariaceae	Cortinarius	[081]
									Shaeropsidaceas	Pyrenochaeta terrestris	[289]
									Caloplacaceae	Caloplaca ferruginea	1094 i
								•	Caloplacaceae	Caloplaca	[245]
									Zingiberaceae	Aframamum giganteium	[292]
									Dematiaceae	Drechslera catenaria	[245]
									Urticaceae	Bochmeria platinifolia	[263]
			•						Eurottiaceae	Talaromyces stipitatus	[293]
119	,		OH	OH		OH		Helmintospor <u>i</u>	Dematiaceae	Dreschslera holmii	[211]
	•						•	na	Dematiaceae	Dreschslera ravenelii	[211]
									Liliaceae	Aloe saponaria	[141]
									Leguminosae	Cassia occidentalis	[151]

HQ	1	3	4	5	6	7	8	Nome trivial	Familia	Gênero ou especie	Referência
120			Off	OH ·	R-37	он			Guttiferae	Psorospermum [ebrifugum	[179]
				•					Guttiferae	Vismia guaramirangae	[180]
121	αı	OH	осн ₃				OH	•	Scrophulariaceae	Digitalis schischkinii	[113, 119]
122	ОН	OH	,		осн ₃		OH		Leguminosae (Caesalp.)	Cassia multijuga	1 066 1
123	OH		OH	OH		осн ₃			Aspergillaceae	Aspergillus ruber	[294]
						•			Aspergillaceae	Aspergillus	[255]
									Aspergillaceae	Aspergillus glaucus	1256 1
									Aspergillaceae	Aspergillus chevallieri	[258]
									Aspergillaceae	Eurotium	[255]
									Aspergillaceae	Eurotium repens	[259]
									Dematiaceae	Alternaria porri	[295]
									Eurottiaceae	Talaromyces stipitatus	[293]
124	OH		OH	00H3		OH		Rubrocristina	Aspergillaceae	Aspergillus	[255]
				3					Aspergillaceae	Aspergillus glaucus	[256]
									Aspergillaceae	Eurotium	[255]
125	OH		OH		OCH ₃		OH		Leguminosae (Caesalp.)	Cassia <u>occidentalis</u>	[139]
126		OH	OH	Œ		∞ii ₃			Denatiaceae	Alternaria solani	1123
		4				3			Domatiaceae	Alternaria porri	1296]
127			CH	OH	OH	0C113		Dermoglaucina	Cortinariaceae	Cortinarius	[081]
128			OH	OH	OCH ₃	3	OH		Liliaceae	Aloe saponaria	[141]
129			OH	OH	3	осн ₃	OH	Xantorina	Teloschistaceae	Xanthoria aureola	[252]
						3			Leguminosae (Caesalp.)	Cassia obtusifolia	[161]
									Leguminosae (Caesalp.)	Cassia torosa	[239, 276]
									Leguminosae (Caesalp.)	Cassia occidentallis	[151]
130	OH	осн ₃	ОН	OH		OCH ₃		Ventinona A	Rhamnaceae	Ventilago madaraspatana	[227]
131		OH	αi	α_{13}	OH	осн ³			Leguminosae (Caesalp.)	Cassia sophera	[297]
132		OH	αı	∞H ³	∞ 13	OH			Leguminosae (Caesalp.)	Cassia sophera	1297 1
133		OH	∞H ₃	at	oca₁³	OH		Aurantiobtusina	Leguminosae (Caesalp.)	Cassia	[130]
			•						Leguminosae (Caesalp.)	Cassia Obtusifolia	[161]
134	aı	OH	OH			OH		•	Scrophulariaceae	Digitalis schischkinii	[113]
135	OH	αı		OH.	OH				Rubiaceae	Morinda citrifolia	1067]
136	OH.		αı	αı		OH		Catenarina	Aspergillaceae	Aspergillus	[255]
	٠.		~-			-			Aspergillaceae	Aspergillus glaucus	[256]

NP	1	3	4	5 .	6	7	8	Nome trivial	Família	Gênero ou espécie	Referência
	OH	•	OH	OH		OH		Catenarina	Aspergillaceae	Eurotium	[255]
137	OH		CH	CH			OH	Cinodontina	Parmeliaceae	Asahinea sholanderi	[176]
									Parmeliaceae	Assibinea chrisantha	[177]
									Aspergillaceae	Aspergillus aculoatus	[289]
									Dematiaceae	Curvularia pallescens	[298]
									Domatiaceae	Curvalaria sp.	[299]
									Dematiaceae	Drechslera sp.	[299]
			•						Dematiaceae	Cercospora cari	1 300 1
									Shaeropsidaceae	Phyrenochaeta terrestris	[233, 289]
									Shaeropsidaceae	Phoma	[301]
138		CH	OH	OH		OH			Rhamnaceae	Rhammus alaternus	1302 1
139			OH	OН			OH		Parmeliaceae	Asahinea scholanderi	[176]
									Parmeliaceae	Asahinea chrysantha	[177]
									Leguminosae (Caesalp.)	Cassia jevanica	[086]
140	OH.	OH			OH	R-28	OH	Soferanina	Leguminosae (Caesalp.)	Cassia sophera	[152]
141	Œ	OH	OH	CH		OCH ₃		Caliculactona	Rhamnaceae	Ventilago calyculata	[303]
142			OH	ОH	CH	осн ₃	OH	Dermocibina	Cortinariaceae	Cortinarius	[081]
143	OН		CH	ОH		OH J	OH		Parmeliaceae	Asahinea crhysantha	[177]
144	ОH		OH	∞H3	OH	OH	OH		Leguminosae (Caesalp.)	Senna	[085]

.

117	1	3	4	5	6	7	В	Nome trivial	Fæmīlia	Cônero ou espécie	Referência
145	OH								Rubiaceae	Cinchena ledgeriona	[134]
									Rubiaceae	Galium Albem	[116]
									Rubiaceae	Rubia tinctorum	[304]
									Scrophulariaceae	Digitalis orientalis	[114]
									Gesraniaceae	Streptocarpus dunii	[305]
146			OH					•	Scrophulariaceae	Digitalis schischkinii	[113]
									Scrophulariaceae	Digitalis trojana	[234]
147	OH						ocн ₃		Scrophulariaceae	Digitalis davisiana	[306]
148	oal ₃	an							Rubiaceae	Coprosiva	[034]
149	OH _	CH1			•			Lucidina	Rubiaceae	Morinda citrifolia	[067, 135]
									Rubiaceae	Galium mollugo	[307]

N9	1	3	4	5	6	7	8	Nome trivial	Familia	Cênero e Espécie	Referência
	ОН	OH							Rubiaceae	Galium sp.	[031]
									Rubiaceae	Coprosma	[034]
									Rubiaceae	Committeen Liebrechts	dana (137)
.50	OH		OH					Digiferol	Rubiaceae	Rubia tinctorum	[304]
									Scrophulariaceae	Digitalis ferruginea	[308]
51			OH	OH				Aloemodina	Leguminosae (Caesalp.)	Cassia	[130, 147]
									Leguminosae (Caesalp.)	Cassia didymobotria	[148]
							•		Leguminosae (Caesalp.)	Cassia occidentalis	[149]
									Leguminosae (Caesalp.)	Cassia absus	[158]
								,	Leguminosae (Caesalp.)	<u>Cassia alata</u>	[061,167,168,277,30
									Leguminosae (Caesalp.)	Cassia obtusifolia	[161]
									Leguminosae (Caesalp.)	<u>Cassia senna</u>	[170]
									Leguminosae (Caesalp.)	Cassia angustifolia	[171]
									Leguminosae (Caesalp.)	Senna	[173]
									Leguminosae (Fabord.)	Sophora prodani	[310]
									Polygonaceae	Ruibarbo	[182,185,240,280]
									Polygonaceae	Rumex chalepensis	[188]
				•			•		Polygonaceac	Rumex sp.	[194]
									Polygonaceae	Rumex dentatus	[281]
									Polygonaceae	Rumex acetosa	[039]
									Polygonaceae	Rumex orientalis	[201]
									Polygonaceae	Rumex	[191]
									Polygonaceae	Rheum palmatum	[205, 206]
									Polygonaceae	Rhei radix	[205]
									Liliaceae	Hemerocaliis citrina	[010]
									Liliaceae	Aloe arixrescens	[311,312,313,314]
									Liliaœae	Alce absinica	l 142 l
				•					Liliaceae	Alœ eru	[142]
								•	Liliaceae	Alce sp.	[143]
									Liliaceae	Aloe barbadensis	[095]
									Liliaceae	Asphodelus	[144]
									Liliaceae	Asphodelus fistulosus	1145 1

147	1	3	4	5	6	7	8	Nome trivial	Familia	Cênero ou Espécie	Referência
			OH	OH				Aloedina	Liliaœae	Asphodelus microcarpus	11451
				•					Rhamnaceae	Rhamnus alaternus	[219, 221]
			*						Rhamnaceae	Rhumus purshiana	[224]
									Thamaceae	Rhamnus franqula	[315]
									Simarobaceae	Picramia parvifolia	[213]
						•				Oroxylum indicum	[316]
									Rubaceae	Morinda angustifolia	[274]
.52			OH				OH		Scrophulariaceae	Digitalis schischkinii	[113]
									Scrophulariaceae	Digitalis trojana	[234]
53		OH	∞1 ₃	OH				Hemerocal	Liliaœae	Homerocallis citrina	[010]
54			OH	OH		OCH ₃		Falacinol ou	Polygonaceae	Polygonum cuspidatum	[265]
								Telochistina	Caloplacaceae	Caloplaca muroum	[244]
									Caloplacaceae	Caloplaca	[245]
55									Teleschistaceae	Xanthoria resendei	[253, 254]:
.56			OH	осн ₃		OH		Questinol	Polygonaceae	Polygonum cuspidatum	[265]
) ')			OII	OH ;		OH		Citreoroseina	Polygonaœae	Polygomum cuspidatum	[265]
								•	Polygonaceae	Ruibarho	[172, 317]
									Teloschistaceae	Xanthoria aureola	[252]
									Leguminosae (Caesalp.)	Senna	[172] .
57	OH	Off		OH	OH				Rubiaceae'	Morinda citrifolia	[067]

•

N9	1	2	3	4 .	5	6	7	8	Nome trivial	Fam ília	Cênero ou Espécie Referência
158	ai ₂ ai									Rubiaceae	Danais fragrans [036]
159	CH ³		OH					OH .	λloesaponarina II	Liliaceae	Alce saponaria [318]
160	αl ₃		OH			OH		СH	Desoxieritrol <u>a</u> cina	Liliaceae	Aloe saponaria [318]

127	1	2	3	4	5	6	7	8	Nome trivial	Familia	Gênero ou Espécia	Peferência
161		R-31	•	осн ₃	0СН3		осн ₃			Polygonaceae	Antigaxam leptopus	[31 9]
162	CH	R-29	ooi₃		_		_	-		Rubiaceae	Galium album	[116]
163	oai3	R-25	OH			•				Rubiaceae	Morinda lucida	[035]
										Rubiaceae	Galium album	[116]
164	осн ₃	R-26	OH	•						Rubiaceae	Putoria calabrica	[109]
165		R-26	OH	осн ₃						Rubiaceae	Ploclama pendula Damnacanthus	[108] [106]
L6 6	ОН	R-26	ОН						Ibericina	Rubiaceae	subspirenus Rubia cordifolia	[070]
										Rubiaceae	Ribia akane	[070]
167	OH	R-26		CH		•			Cristofilina	Rubiaceae	Rubia tinctorum	[304, 320]
L68		R-27		OH	OH					Polygonaceae	Rumex acctosa	[039]
.69		R-38		OH	OH		ocH ³			Teloschist <u>a</u> ceae	Xanthoria aureola	[252]
.70		R -30		OH	OH		OH	•		Echinasteri-	Henricia leviscula	[321]
										dae .	Communities bennetti	[322]
.71		R −32		CH	OH		OH				Comunthus bennetti	[322]
72		R-31		OH	OH .		OH				Comanthus bennetti	[322]
173		R-35		OH	OH		OH			Echinasteri-	Henricia leviscula	[321]
L74		R-40		CH	OH		OH			đae	Communities bennetti	1 322]
175	OH	R-42	OH ,			осн ₃		OH		Peltigeraceae	Solorina crocea	[323]
176	OH	R-43	OH			осн ₃		OH	Acido solorini	Peltigeraceae	Solorina crocea	1 323 1
.77	OCH ³	R-26	αu	ОН	~1		•		Φ	Aspergillaceae	Asperdillus parasition	s [324]
78	OH	R-33	Off	UH	OH	OH				Rubiaceae	Putoria colabrica	[109]
79	OH	R-34	OH			OH		OH	(-)-Versiconol	Aspergillaceae	Aspendillus purasition	5 (325-1
80	au	R-41		•	-	ОН		OH	(-)-Versiconol - acetato	Aspergillaceae	Asperdilles parasition	i 1325 l
81	OH OH	R-41 R-42	OH			OH		ÓН	Averitrina	Melanconiaceae	Dothistroma pini	[326]
	Gi.	K-42	OH			OH		OH	Averantina		Aspergillus parasiticus	
		•				**				Peltigeraceae	Solorina crocca	[323]

107	1	2	3	4	5	6	7	8	Nome trivial	Fam i lia	Gênero ou Especie	Referência
182	СП	R-43	OH			OH		OH	Acido Norsoloríni co		Aspergillus parasiticus Aspergillus flavus	[090,324,327,328, 329,330] [331]
183	OH	R-32		ОН	OH		OH				Solorina crocea Comanthus benetti	[323]

197	1	2	3	4	5	6		7	8	Nome trivial	Familia	Gênero ou Espécie	Referência
184				0СН3	∞н3						Rhamnaceae	Rhamnus frangula	[030]
185	OH	OCH ₃			-						Rubiaceae	Rubia cordifolia	[136]
186	осн ₃	OH ,									Rubiaceae	Cinchona ledgeriana	[134]
											Rubiaceae	Morinda parvifolia	[332]
											Rubiaceae	Morinda lucida	[103]
											Rubiaceae	Galium album	[116]
											Rubiaceae	Ploclama pendula	[108]
187		•		CH	осн ³		.•				Rhamnaceae	Rhammus frangula	[030]
188	OH	OH								Alizarina	Rubiaceae	Rubia cordifolia	[070]
											Rubiaceae	Rubia akane	[070]
•											Rubiaceae	Rubia tinctorum	[091, 304, 32
											Rubiaceae	Cinchona lodgeriana	[134]
											Rubiaceae	Galium album	[116]
											Rublaceae	Galium sp.	[031]
			•							•	Rubiaceae	Morinda citrifolia	[135, 075]
189	OH.			αι	OH					Quinizarina	Rubiaceae	Rubia tinctorum	[304, 320]
190				OH	OH					Crizazina ou	Rubiaceae	Cinchona ledgeriana	[134]
										Dantrona ou Istizina	Rhamnaceae	Rhamnus francula	[030]
											Leguminosae (Caesalp.)	Cissia angolensis	[160]
											Xyridaceae	Xyris scmifuscata	[333] .
											Polygonaceae	Rumex	[334]
											Liliaceae	Asphodelus	[335]
191	OH	осн ₃	OH								Rubiaceae	Coprosma	[034]
											Rubiaceae	Coprosma linarifolia	[034]
192		ocal ³	OH	OH							Xyridaceae	Xyris semifunscata	[334]
193	OH		осн ₃			OH	οu	OH			Rubiaceae	Galium album	[116]

NO	1	2	3	4	5	6	7	8	Nome trivial	Familia	Gênero ou Espécie	Referência
194	OH	OH		OH		-			Purpurina	Rubiaceae	Galium album	[116]
									• •	Rubiaceae	Galium mollugo	[089]
										Rubiaceae	Galium sp.	[031]
105									•	Rubiaceae	Rubia tinctorum	[304]
195	OH	•	, OH			ОН		осн ³		Leguminosae (Caesalp.)	Cassia multijuga	[064]
196	OH		ОН			OH		OH	Recemodina	Aspergill <u>a</u> ceae	Aspergillus versicolor	[336]
										Polygonaceae	Rheum hotacense	[284]
	•									Polygonaceae	Rumex alpinus	[073]
										Polygonaceae	Rumex	[191]

143	1	2	3	4	5	6	7	8	Nome trivial	Famīlia	Gênero ou Espécie	Referência
197		OH	ОН		OH		оат ₃		Altersolanol B ou Dactilari na (25-cis)	Dematiaceae	Alternaria solani	[235]
198	OH	OH	OH		ОН		оаі ³		Altersolanol C ou Dactila- riol lR - (la,26,38)	Dematiaceae	Alternaria solani	[235]
193	OH	OH	OH	OH	OH		och3		Alternolanol Λ 1R-(1 α ,2 β ,3 β ,4 α)	Dematiaceas	Alternaria solani	[235]
200	OH	OH	OH		OII		∞н3		Bostricina ou Rodosporina	Dematiaceae	Alternaria cichomeae	[337]
									1R-(1a, 2a, 3a)	Dematiaceae	Arthrinium phaeospermum	[338]

2- RESULTADOS E DISCUSSÃO

- 2.1 Determinação estrutural das substâncias isoladas de Hemerocallis fulva.
 - 2.1.1 Determinação estrutural de Hf-1
- O espectro na região do ultravioleta (Fig. 1) indicou a natureza aromática da substância e evidenciou a presença de grupamento hidroxila pela modificação ocorrida no espectro após a adição de solução aquosa de hidróxido de sódio. A regeneração da curva após acidificação da solução alcalina com solução aquosa de ácido clorídrico sugeriu a ausência de sistemas orto e/ou para di-hidroxilados.
- O espectro no infravermelho (Fig. 2) além de confirmar a natureza aromática através das absorções em 1570, 1480 e 1460 cm $^{-1}$, indicou bandas correspondentes à presença de duas carbonilas conjugadas em 1680 e 1630 cm $^{-1}$, uma delas em sistema quelatogênico (1630 cm $^{-1}$). As absorções em 845 e 755 cm $^{-1}$ sugeriram a presença de dois sistemas aromáticos, sendo um 1, 2, 3, 5 tetrassubstituido (845 cm $^{-1}$) e o outro 1, 2, 3 trissubstituido.

O espectro de R.M.N. 1 H registrado a 100 MHz (Fig. 3) apresentou um singleto em 2,40 δ correspondente a uma metila benzílica, dois singletos largos em 7,02 e 7,58 δ , dois duplos dubletos (J= 9 Hz e J= 2 Hz) em 7,22 e 7,75 δ e um tripleto (J= 9 Hz) em 7,60 δ , correspondentes a cinco prótons aromáticos, e ainda dois singletos em campo baixo em 11,92 e 12,04 δ representantes de hidroxilas quelatogênicas.

Observou-se após adição de D_2O (Fig. 4) modificação nos sinais que aparecem em 11,92 e 12,04 δ , confirmando a correlação com grupos hidróxila.

Neste ponto foi possível sugerir-se a natureza antraquinônica da substância, que foi confirmada pelo espectro de massas (Fig. 5). Esta dedução baseou-se na presença de cinco carbonos aromáticos não substituidos, sustentando os cinco átomos de hidrogênio revelados pelo espectro de R.M.N. H (Fig. 3) e três substituidos com grupamentos metil e duas hidroxilas (1). A presença das duas carbonilas no espectro de I.V. confirmou a existência de um terceiro anel e ainda afastou a possibilidade de tratar-se de outros tipos estruturais como, por exemplo o xantônico.

A existência de duas hidroxilas quelatogênicas evidenciadas pelo expectro de R.M.N. 1 H (Fig. 3) e a presença de absorções de duas carbonilas no espectro de I.V. permitiram postular a estrutura parcial 2 para Hf-1.

Restou-nos, assim, apenas a definição da posição do grupamento metila, que foi feita através da análise dos deslocamentos químicos dos sinais dos prótons aromáticos no espectro de R.M.N. 1 H (Fig. 3). A presença de dois sinais largos em 7,07 e 7,57 δ , sugeriu a localização do grupo metila em posição meta a uma das hidroxilas (3). Esta dedução apoiou-se em dois fatos:

- a) Os deslocamentos químicos previstos [107, 141 e 249] para os prótons do anel dissubstituido revelaram-se compatíveis com os valores observados para a Hf-1.
 - b) A feição dos dois sinais largos correspondentes

aos prótons 2 e 4, não definidos como dubletos (esperados), sugeriu acoplamento a distância (4 JHH) com os prótons do grupo metila localizado na vizinhança.[107 e 249]

Os dados discutidos permitiram postular a estrutura para a substância Hf-1, conhecida como crisofanol[141].

Os deslocamentos químicos e as feições dos sinais do anel monossubstituido confirmaram a estrutura proposta.

O espectro de massas (Fig. 5) indicou o peso molecular da substância (m/z 254) e picos correspondentes a fragmentos característicos, tais como perda de: CH_3 , OH, HOH e CO (Fig. 5, Tab. 2 e Esq. 1).

0 pico em m/z 270 que aparece no espectro de massas de Hf-1 sugeriu a presença de outra antraquinona como impureza.

Tabela 2 - Principais picos observados no espectro de massas de Hf-1.

m / z	8
254	100
253	4
239	5
237	7
2 2 6	2 0
225	7
211	2
209	2
208	1
198	10
197	12
181	4
180	4

O espectro de R.M.N. ¹H registrado a 100 MHz do derivado acetilado de Hf-1 (Fig. 7) confirmou a estrutura proposta. Todos os sinais dos prótons aromáticos revelaram deslocamentos paramagnéticos quando comparados com o espectro da substância original, desapareceram os sinais dos prótons hidroxílicos e apareceram os sinais correspondentes aos grupos das acetoxilas (Tab. 3).

Tabela 3 - Deslocamentos químicos dos prótons de Hf-1(4) e do derivado acetilado (5)

prótons	Hf-1 (δ)	Hf-1-ac (δ)	Δ
2	7,02	7,21	0,19
4	7,57	8,02	0,45
5	7,75	8,22	0,47
6	7,60	7,75	0,15
7	7,22	7,40	0,18
3-CH ₃	2,40	2,52	0,12
1/8-OH	11,92/12,04	-	-
1/8-OAc	-	2,46	-

Os espectros de infravermelho (Fig. 6) e massas (Fig. 8) de Hf-1 Ac (5) apoiaram as deduções estruturais descritas.

5

2.1.2- Determinação estrutural de Hf-2

A substância Hf-2 foi identificada como sitosterol (6) através de comparação com amostra autêntica, envolvendo cromatografia em camada delgada analítica em três sistemas

de solventes (benzeno - acetona, 97:3; clorofórmio e clorofórmio-metanol, 99:1), ponto de fusão e ponto de fusão misto.

6

2.1.3-Determinação estrutural de Hf-3

O espectro no infravermelho (Fig. 9) revelou a natureza aromática da substância através das absorções em 1560, 1480 e 1445 cm $^{-1}$, indicou também a presença de duas carbonilas conjugadas em 1670 e 1630 cm $^{-1}$, sendo uma quelatogênica (1630 cm $^{-1}$) e ainda a presença de hidroxila em 3300 cm $^{-1}$.

A análise do espectro de R.M.N. 1 H registrado a 100 MHz (Fig. 10) e do espectro de massas (Fig. 12) mostrou tratar-se de uma mistura de duas antraquinonas. Apesar do espectro de R.M.N. 1 H revelar dificuldades para interpretação devido a problemas de solubilidade da substância, foi possível observar com clareza um singleto em 4,73 δ , atribuido a um grupamento hidroximetílico, um sinal largo em 5,34 δ representando duas hidroxilas, dois sinais semelhantes a dubletos (J= 2,5 Hz) em 7,36 e 7,78 δ , um singleto em 7,75 δ atribuidos a prótons aromáticos e um sinal em 12,08 δ representando hidro-

xila quelatogênica. Neste espectro aparece ainda um singleto em 8,05 δ , que deve corresponder a próton de impureza, já que a curva de integração deste sinal não representa um próton. Quando comparado com o -CH $_2$ do grupamento hidroximetílico, observouse uma relação 1:4, por isso, este sinal não foi considerado como representante de um próton presente na molécula da substância principal.

Com a adição de D $_2$ O (Fig. 11), verificou-se modificação no singleto em 4,73 δ e o desaparecimento dos sinais de hidroxilas em 5,34 e 12,08 δ .

A presença do grupamento hidroximetílico na Hf-3 foi confirmada pelo deslocamento qumíco dos prótons metilênicos (4,73 δ) comparado com 4,68 δ (DMSO, da TMS) da 1 hidroxi - 2 hidroximetil - 3 metoxiantraquinona.

O espectro de massas (Fig. 12) mostrou a presença de duas antraquinonas através dos picos m/z 286 e m/z 270. A diferença de dezesseis unidades de massa entre as duas substâncias corresponde a um átomo de oxigênio de grupo hidroxila. Os principais picos observados (Tab. 4) caracterizam perdas de CO, OH e CH₂O (Esq. 2). A fragamentação envolvendo o anel que sustenta o grupamento hidroximetílico foi proposta com base nos resultados observados para o álcool benzílico, investigado com utilização de deutério [339].

Tabela 4 - Principais picos observados no espectro de massas de Hf-3.

m/z	%	
286	32	
270	100	
269	6	
258	2	
257	10	
253	3	
252	3	
242	19	
241	84	
239	3	
225	7	
224	9	
214	6	
213	13	
197	6	
196	7	

Subtraindo-se da antraquinona de maior peso molecular a massa correspondente ao esqueleto antraquinônico ($C_{14}H_8O_2$, 208 daltons), obteve-se uma diferença de 78 unidades. Para atender esta diferença de massa postulou-se a presença de três hidroxilas e um grupamento hidroximetílico, que incorporado ao

esqueleto básico produzem o aumento de 78 daltons. A existência de grupo -CH $_2$ -OH foi revelada pelo sinal em 4,73 δ registrado no espectro de R.M.N. 1 H (Fig. 10).

A tetrassubstituição permitiu cogitar-se três possibilidades em decorrência da distribuição dos quatro grupamentos nos dois anéis: 4/0, 3/1 e 2/2. A possibilidade com anéis trie e monossubstituido (3/1) foi eliminada pela análise do espectro de R.M.N. 1 H (Fig. 10) através da ausência de sinais para anel monossubstituido (7 e 8).

O espectro de R.M.N. 1 H (Fig. 3) de Hf-1 (R=OH) revelou para a situação estrutural 7 dois duplos dubletos em 7,22 e 7,75 δ (J = 9Hz e J = 2Hz) e um tripleto em 7,60 δ (J = 9 Hz) atribuidos respectivamente aos sinais dos prótons H-2, H-4 e H-3.

Para a situação estrutural 8 o espectro de R.M.N. 1 H da 1,6 ou 7 dimetoxi-2 hidroxi- 3 metilantraquinona 340 apresenta para o anel monossubstituido dois dubletos em 7,68 e 8,09 δ e um duplodubleto em 7,22 δ atribuidos respectivamente aos sinais dos prótons H-5, H-8 e H-6 ou 7.

A distribuição 4/10 foi também eliminada por R.M.N. 1 H (Fig. 10) porque na ausência de substituinte num anel antraquinônico ocorre o aparecimento de dois sinais múltiplos conforme observou-se nas estruturas XXVII, XXVIII, XXIX, XXX, XXXI e XXXII [116] em 7,90 δ [H-2 (H-6) e H $_3$ (H-7)] e 8,20 δ [H-1 (H-8) e H-4 (H-5)] (Tab. 5).

Tabela 5 - Deslocamentos químicos dos prótons do anel antraquinônico não substituido. (DMSO, δ e TMS como referência interna) [116]

	н-6 е н-7	Н-5 е н-8	feição do sinal
alizarina(XXVII)	7,93	8,20	m
1-O-metilalizarina (XXVIII)	7,90	8,17	m
rubiadina (XXVIX)	7,90	8,12	m
3-O-metilrubiadina(XXX)	7,93	8,21	m
<pre>1-3-dihidroxi-2 metoximetil antraquinona (XXXI)</pre>	- 7 , 93	8,20	m
<pre>1-hidroxi-2 hidroximetil- 3 metoxiantraquinona (XXXII)</pre>	7,94	8,20	m
incontainer addring () marry	, , , ,	0 ,2 0	111

Restou, assim, a possibilidade de dois anéis dissubstituidos (2/2) que permitiram considerar somente a formulação parcial 9.

9

A localização de um grupo hidroxila para formar ponte de hidrogênio intramolecular em hexanel (sistema quelatogênico) decorreu da presença do sinal em $12,08\delta$ no espectro de R.M.N. 1 H (Fig. 10) e da absorção de carbonila em $1630~{\rm cm}^{-1}$ no espectro de I.V. (Fig. 9) sugerindo, assim, duas possibilidades (9-a e 9-b).

A possibilidade de existência de duas hidroxilas mantendo posição meta entre sí (9-b) foi afastada com base na comparação com dados descritos na literatura (Tab. 6) [107 e 249].

	н-5	н–7	feição do sinal	J (Hz)	referência interna
Н3СО СН3	7,38	6,68	d	2,5	TMS
H3CO CH3	7,22	6 , 55	đ	2,5	HMDS

0 singelto em 7,75 δ que aparece no espectro de R.M.N. 1 H (Fig. 10) da Hf-3 indicou a existência de prótons aromáticos equivalentes sustentados por átomos de carbono, inseridos entre um grupo carbonila e uma função oxigenada (OH). A ausência de sinais característicos de sistema AB para prótons mantendo entre si relação orto afastou as possibilidades de 1,2 $^-$; 3,4 $^-$; 5,6 $^-$ e 7,8 $^-$ dissibstituição.

As substâncias contendo sistemas $1,4^-$ ou $5,8^-$ di-hidro-xilado apresentam singleto representando dois prótons, sendo observado que os prótons dos carbonos $3,4^-$ ou $6,7^-$ do sistema para-dihidroxilado absorvem em campo alto (Tab. 6)[107 e 141]. O sinal simples de 7,75 δ que aparece no espectro de R.M.N. 1 H (Fig. 10) da Hf-3 coaduna-se com o sistema 6,7 di-hidroxilado. (Tab.7)

Tabela 7 - Comparação dos deslocamentos químicos de prótons aromáticos em anéis $1,4^-$ e $6,7^-$ di-hidroxilados (*CDCl $_3$ + DMSO, CDCl $_3$, δ) [107 e 141]

Para o outro anel restou apenas uma possibilidade (1 hidroxi-2 hidroximetil) devido a presença de dois dubletos (J=2,5 Hz) no espectro de R.M.N. H e ausência de sinais compatíveis com sistemas AB de prótons que mantêm entre si relação orto ou para (10)

10

Desta forma tornou-se possível postular para a antraquinona de peso molecular 286, a estrutura 11.

Para a antraquinona de peso molecular 270, tornou-se difícil deduzir uma postulação estrutural apoiada nos dados disponíveis. A diferença de 62 unidades (270-208) pode ser atribuida à presença de um grupamento idroximetílico e duas hidroxilas, resultando numa antraquinona trissubstituida ou à presença de um grupamento metila e três hidroxilas, correspondendo a uma antraquinona tetrassubstituida.

Os dados de R.M.N. 1 H (Fig. 10) afastam a possibilidade de antraquinona trissubstituida pela ausência de sinais compatíveis com anel mono ou não substituído, como foi discutido acima.

Restou, assim, a alternativa de uma antraquinona tetrassubstituida contendo três grupos hidroxila e uma metila. O espectro de R.M.N. 1 H (Fig. 10) revelou a presença de sinal de grupo metila deslocado para campo alto (2,10 δ), aparecendo parcialmente superposto com o sinal do próton das moléculas D_2 CHCOCD $_3$, existentes na (CD $_3$) $_2$ CO utilizada como um dos solventes. A atribuição deste sinal está de acordo com dados da literatura (DMSO, δ e TMS) para as estruturas XXIX e XXX [116]

XXIX

XXX

Se este sinal corresponde realmente a grupo metila, deslocado para compo mais alto por efeito de solvente, a estrutura 12 pode ser cogitada para a antraquinona de peso molecular 270.

Pelo que nos consta, as antroquinonas 11 e 12 ainda não foram descritas na literatura.

2.1.4- Determinação estrutura de Hf-4

O espectro no infravermelho (Fig. 13) revelou a natureza aromática da substância através das absorções em 1585 e $1490~{\rm cm}^{-1}$, sugeriu a presença de carbonila conjugada e quelatogênica (1630 ${\rm cm}^{-1}$) e hidroxila (3475 ${\rm cm}^{-1}$).

O espectro de R.M.N. 1 H registrado a 100 MHz (Figs. 14 e 15) mostrou um singleto em 2,40 δ , atribuido a metila benzílica, dois singletos em 4,01 e 4,04 δ (Fig. 15) atribuidos a duas metoxilas aromáticas, um singleto em 7,67 δ , dois dubletos (J= 9 Hz) em 7,37 (parcialmente superposto pelo sinal do CDCl $_3$) e 8,10 δ atribuidos a três prótons aromáticos (um isolado e dois que mantém entre si relação orto) e ainda dois singletos, 12,10

e 13,0 δ em campo baixo, representando duas hidroxilas quelatogênicas.

Com a adição de D $_2$ O (Fig. 16) observou-se o desaparecimento dos dois sinais em 12,10 e 13,0 δ , confirmando assim a atribuição dos sinais de prótons hidroxílicos.

O espectro de massas (Fig. 17) mostrou o íon molecular em m/z 314, em acordo com um sistema antraquinônico pentassubstituido, sustentando uma metila, duas metoxilas e duas hidroxilas. Observou-se ainda perdas de $\rm CH_3$, $\rm CO$, $\rm OH$ e $\rm CH_2O$ (Tab. 8 e Esq. 3).

Tabela 8- Principais picos observados no espectro de massas de ${\tt Hf-4}$

m/z	%
314	100
299	66
297	11
284	70
271	25
269	11
267	20
241	28
239	15
237	15

O deslocamento químicos 7,67 δ do sinal simples sugeriu a localização de um próton isolado orto a carbonila e ao grupamento metila [340](13)

Consequentemente os dois substituintes restantes devem ser localizados em posições vicinais no outro anel aromático para formar o sistema AB correspondente aos prótons que mantém entre si relação orto.

0 espectro de I.V. (Fig. 13) apresentando apenas frequência de estiramento para um tipo de carbonila em 1630 cm $^{-1}$ permitiu a localização dos grupos hidroxila nos carbonos 1 e 5, confirmado também pelos sinais em 12,10 e 13,0 δ do espectro de R.M.N. 1 H (Fig. 15), resultando na possibilidade estrutural 14 para a Hf-4.

A intensidade do pico em m/z 284 (70%) no espectro de massas (Tab. 8) permitiu suspeitar da possibilidade de existência da antraquinona 15 como impureza. Assim tornou-se possível justificar a presença dos sinais em 2,5 (CH₃), 7,10 (s1, H-2) e 7,6 (s1, H-4), no espectro de R.M.N. H (Fig. 15), sendo que os prótons H-7 e H-8 absorvem praticamente na mesma posição dos prótons H-7 e H-8 da antraquinona 14.

Pelo que nos consta, a antraquinona 14 ainda não foi descrita na literatura.

2.1.5- Determinação estrutural de Hf-5

O espectro na região do ultravioleta (Figs. 18 e 19) sugeriu tratar-se de uma substância aromática. A modificação espectral após a adição de acetato de sódio (Fig. 19) revelouse compatível com a presença de hidroxila em posição para ao grupamento carbonila. Adição de ácido bórico à solução contendo acetato de sódio revelou alteração no espectro que coadunase com a existência de sistema orto di-hidroxilado.

A adição de solução aquosa de hidróxido de sódio Fig.

18) provocou deslocamentos batocrômico e hipercrômico indicativo da presença de hidroxila fenólica. A regeneração da curva original após acidificação da solução alcalina com solução aquosa de ácido clorídrico mostrou a estabilidade da substância em meio alcalino no tempo utilizado para registro dos espectros.

(Fig. 18). Este fato não era previsto, já que a presença de sistema orto di-hidroxilado sugerido pela adição de acetato de sódio e ácido bórico poderia conferir pouca estabilidade para a substância, como ocorre com outras substâncias fenólicas orto ou para di-hidroxilados. [341].

O espectro no infravermelho (Fig. 20) confirmou a natureza aromática da substância através das absorções em 1555 e 1450cm⁻¹. Observou-se também a existência de duas bandas correspondentes a estiramento de carbonilas conjudadas em 1690 e 1630 cm⁻¹, sendo a última quelatogenica. A presença de grupo hidroxila foi deduzida pela absorção em 3400cm⁻¹. As absorções em 860 e 845cm⁻¹ sugeriram a presença de sistemas aromáticos 1,2,3 e 4 e 1,2,3 e 5 tetrassubstituidos, respectivamente.

O espectro de R.M.N. 1 H registrado a 100 MHz (Fig. 21) apresentou dois singletos em 2,46 e 4,04 δ , atribuidos respectivamente a uma metila benzílica e a uma metoxilaaromática, dois singletos largos em 7,08 e 7,61 δ e dois subletos (J= 9 Hz em 7,34 e 8,10 δ correlacionados com quatro prótons aromáticos constituindo dois sitemas de prótons relacionados meta e orto, respectivamente e um singleto observado em 12,74 δ indicativo de

uma hidroxila quelatogênica.

O espectro de massas (Fig. 22) indicou íon molecular m/z 284, compatível com um esqueleto antraquinônico tetrassubstituido sustentando um grupo metila, duas hidroxilas e uma metoxila. Os principais picos observados correspondem a fragmentações envolvendo eliminação de CH_3 , OH, HOH, CO, CH_2O e CH_3O . (Tab. 9 e Esq. 4).

Tabela 9 - Principais picos observados no espectro de massas de ${\tt Hf-5.}$

m / z	%
284	100
283	8
269	5
266	82
265	5
254	10
253	10
251	5
239	40
238	66
237	20
225	10
223	4
210	13
209	10

A presença de um sistema orto di-hidroxilado sugerido pelo espectro de U.V. com a utilização dos aditivos AcOONa e ${\rm H_3BO_3}$ (Fig. 19), a presença de um sistema AB constituido por dois prótons que mantêm entre si posição orto indicado pelo espectro de R.M.N. 1 H (Fig. 21) e a caracterização de uma hidroxila quelatogênica (${\rm V}$ C=O 1630 cm $^{-1}$; 12,74 δ) permitiu propor a unidade parcial 16 para a Hf-5.

Consequentemente, o outro anel aromático deve sustentar os grupos metila e metoxila localizados em posições revelativas meta. Assim, surgiram quatro possibilidades estruturais para a Hf-5 (17, 18, 19 e 20).

A feição dos sinais (a mesma largura na metade da altura = 3 Hz) no espectro de R.M.N. 1 H (Fig. 21) correspondentes aos prótons localizados nos carbonos 2 e 4 afastou as possibilidades 19 e 20, já que a interação próton-próton a longa distância (4 JHH) destes hidrogênios aromáticos com o grupo metila coaduna-se com as estruturas 17 e 18. Esta dedução apoiouse no deslocamento químico de H-4 (7,61 δ) comparado com o observado na Hf-1 (H-4 : 7,57 δ) e em outros modelos descritos na literatura [107, 141 e 249].

A escolha entre as alternativas 17 e 18 com os dados presentes tornou-se difícil, porém observando-se o dubleto em 8,10 δ (J= 9 Hz) da antraquinona 14, descrita anteriormente, relativo a um dos prótons do sistema AB do anel aromático, tornou-se possível cogitar a estrutura 17 para a Hf-5 que possui praticamente o mesmo padrão de substituição no anel.

$$H_3$$
CO OH OCH3

 CH_3
 O OH OCH3

 O OCH3

 O OCH3

 O OCH3

Pelo que nos consta, as antraquinonas 17 e 18 ainda não foram descritos na literatura.

Esquema l - Caminhos principais de fragmentações da Hf-l (4) no espectrômetro de massas.

Esquema 2 - Caminhos principais de fragmentações da Hf-3 (11) no espectrômetro de massas.

Esquema 3 - Caminhos principais de fragmentações de Hf-4

(14) no espectrômetro de massas.

Esquema 4 - Caminhos principais de fragmentações da Hf-5 ($\underline{17}$) no espectrômetro de massas.

2.2-Determinação estrutural das substâncias isoladas de Ocotea cymbarum

2.2.1- Determinação estrutural de Oc-1 e Oc-2

Trata-se de duas substâncias isômeras já conhecidas, apiol e dilapiol (21 e 22), que tiveram suas estruturas confirmadas por comparação de espectros de R.M.N. H [342]. Devido as dificuldades encontradas na separação destas duas substâncias isômeras apenas o apiol (Oc-1) foi obtido em estado de pureza. A presença do dilapiol foi reconhecida através da análise da mistura contendo os dois alilbenzenos (Oc-1 + Oc-2)

O espectro no infravermelho do apiol (Fig. 24) e da mistura contendo apiol e dilapiol (Fig. 30) revelaram-se muito semelhantes. O caráter aromático das substâncias foi revelado pelas absorções em 1610, 1500 e 1450 cm⁻¹. As absorções em 1645, 991 e 915 cm⁻¹ sugeriram a presença de grupo vinila.

O espectro de R.M.N. 1 H registrado a 60 MHz (Fig. 25) do apiol (Oc-1) mostrou um dubleto (J= 7 Hz) em 3,25 6 (CH2-7), dois singletos em 3,85 e 3,90 δ (2 OCH3), um multipleto entre 4,80 a 5,23 δ (CH2-9), um multipleto entre 5,68 a 6,18 δ (CH-8),

um singleto em 5,92 δ (OCH $_2$ O) e um singleto em 6,25 δ (CH-6, próton aromático).

A análise comparativa dos espectros de R.M.N. ¹H a 60 MHz do apiol (Fig. 25) e da mistura apiol/dilapiol (Fig. 31) permitiu reconhecer os sinais de cada uma das substâncias (Tab. 10).

Tabela 10- Dados de R.M.N. 1 H (60 MH $_2$) do apiol (OC-1, 21) e da mistura de apiol (Oc-1, 21) e dilapiol (Oc-2,22). Os valores de deslocamentos químicos foram anotados em δ (ppm) e as constantes de acoplamento em Hz (s = singleto, d=dubleto e m=multipleto)

Prótons	Oc-1(21)		mistura	0) 0 0 (00)
	. ,	c-1 (21) Oc-1 (21)+Oc-2 (2	2) Oc-2 (22)
CH ₂ -7	3,25		3,25	
	(d, J=7)		(d, J=7)	
OCH ₃	3,80	3,87		3,82
	(s)	(s)		(s)
OCH ₃	3,90	3,92		4,05
	(s)	(s)		(s)
CH ₂ -9	4,80-5,23		4,78-5,30	
	(m)		(m)	
CH-8	5,68-6,18		5,66-6,20	
	(m)		(m)	
OCH ₂ O	5,92	5,95		5,90
	(s)	(s)		(s)
CH-6	6,25	6,25		6,40
	(s)	(s)		(s)

Os espectros de massas (Figs. 28 e 34) do apiol e da mistura apiol/dilapiol revelaram-se muito semelhantes, varian-do apenas na abundância relativa dos picos. Os picos observados nos espectros constam da Tab. 11 . No Esquema 5 observam-se somente os principais caminhos de fragamentação da Oc-1 (21, apiol), já que os mesmos picos foram observados nos dois espectros (Fig. 28 e 34).

Tabela 11 - Principais picos observados nos espectros de massas do apiol e dilapiol.

	apiol (Oc-1, 21)	apiol (Oc-1, 21)/ dilapiol (Oc-2, 22)
m/z	%	9
222	100	100
207	22	38
195	10	13
192	2	5
191	7	10
177	16	40
161	5	7
149	22	25
121	9	13
91	8	10

A comparação dos espectros de R.M.N. 13C, registrado A 25,2 MHz, totalmente dsacoplado (Fig. 260 e com acoplamento

residual (Fig. 27) do apiol, revelou a presença de cinco singletos, dois dubletos, três tripletos e dois quartetos, representando, respectivamente, os átomos de carbono não ligados a hidrogênio e ligados a um, dois e três hidrogênios (Tab. 12). A atribuição dos valores de deslocamentos químicos dos carbonos foi feita com base em modelos citados na literatura.

Tabela 12 - Valores de deslocamentos químicos dos carbonos do ${\tt apiol} \ \ ({\tt CDCL_3} \ \, {\tt e} \ \, {\tt TMS} \ \, {\tt como} \ \, {\tt referência} \ \, {\tt interna}) \, .$

C	δ	Feição do sinal
1	125,60	s
2	138,58	s
3	136,30	s
4	135,03	s
5	138,90	S
6	108,25	d
7	34,08	t
8	137,22	d
9	115,15	t
2-OCH ₃	59,96	đ
5-OCH ₃	56,80	d
3,4-0CH ₂ O	101,38	t

Os deslocamentos químicos dos carbonos do grupamento alila (${\rm CH_2-7}$, ${\rm CH-8}$ e ${\rm CH_2-9}$), do metilenodioxi e das metoxilas (${\rm Tab.13}$) foram atribuidos com base na feição dos sinais e com-

paração com os valores das eusiderinas A (XXXIII) E B (XXXIV) [004].

Tabela 13- Deslocamentos químicos (δ) dos carbonos dos grupamentos alila, metilenodioxi e metoxilas, comparados com padrões da literatura [004] em CDCl $_3$ e TMS como referência interna.

C	apiol	eusiderina A	eusiderina B
	(Oc-1, 21)	(XXXIII)	(XXXIV)
7 ou 7'	34,08	39,70	39,37
8 ou 8'	137,22	136,90	137,15
9 ou 9'	115,15	115,30	115,02
2-OCH ₃ ou 4-OCH ₃	59,96	60,72	-
5'-OCH ₃	-	56,10	56,04
3 -OCH ₃	-	56,10	-
5 -OCH ₃	56,80	56,10	-
3,4-0CH ₂ 0	101,38	-	101,13

Restou, assim, apenas a análise dos carbonos do anel aromático. O sinal em 108,25 δ foi correlacionado com C-6, o único dubleto. Ao carbono 1 foi atribuido o valor de 125,60 δ ,

em acordo com os modelos diméricos XXXV e XXXVI, que serviram [343] também para estabelecer a correlação dos deslocamentos químicos com os átomos de carbono 2, 3, 4 e 5.

A diferença observada no deslocamento químico de C-1 é justificada pela ausência de função oxigenada na posição orto dos modelos utilizados. A influência de substituinte oxigenado sobre os carbonos orto, meta e para. Será discutida a seguir.

Pode-se verificar que a introdução de uma metoxila em XXXV: para formar XXXVI origina deslocamentos diamagnéticos, da ordem de 15 ppm para os carbonos orto, 5 ppm em para e praticamente não afeta a posição meta. Assim, observou-se em XXXV os valores 148,10 δ para C-4, 120,0 δ para C-6 e 106,50 δ para C-2. Os deslocamentos químicos observados para estes carbonos no modelo XXXI alcançaram os valores 135,0 δ (C-4, Δ = 17,1 ppm), 105,0 δ (C-6, Δ = 15,0 ppm) e 99,70 δ (C-2, Δ : 6,8 ppm).

A diferença do modelo XXXVI para o grupo atila do apiol (21) reside na presença de mais uma metoxila localizada no C-2. Por isto, efeitos semelhantes aos observados na comparação entre XXXV e XXXVI devem ser esperados para os carbonos C-3, C-1

De fato, verificaram-se os deslocamentos químicos 136,30 ou 135,03 δ para C-3 (Δ_1 = 12,06 e Δ_2 = 13,87 ppm), 125,60 δ para C-1 (Δ = 9,0 ppm) e 138,90 ou 138,58 δ para C-5 (Δ_1 = 4,5 e Δ_2 = 4,82 ppm).

Estes dados permitiram estabelecer as correlações 13 6,30 e 135,03 δ (C-3 e C-4) e 138,90 e 138,58 δ (C-2 e C-5) descritos em (21-b).

Pode-se admitir que os carbonos 2 e 4 apresentam-se mais protegidos do que 3 e 5 devido ao efeito exercido (hiperconjugação) pelo CH $_2$ -7 benzílico do grupo alila. Assim tornou-se possível cogitar a correlação 138,58 δ (C-2), 136,30 δ (C-3), 135,03 δ (C-4) e 138,90 δ (C-5). A pequena diferença entre estes deslocamentos químicos impossibilitou a-

tribuições de finitivas.

A análise comparativa dos espectros de R.M.N. ¹³C do apiol (21, Figs. 26 e 27) e da mistura apiol/dilapiol (21/22, Figs. 8 32 e 33) permitiram reconhecer os sinais dos dois alilbenzenos presentes na mistura. (Tab. 14).

Tabela 14- Valores de deslocamentos químicos dos carbonos do apiol (Oc-1, 21) e da mistura de apiol e dilapiol (Oc-1, 21 e Oc-2, 22). Usou-se CDCl_3 como solvente e TMS como referência interna. A feição dos sinais foi deduzida pela comparação dos espectros totalmente desacoplados e com acoplamentos residuais.

-	apio	ol	Mistura de	apiol	(Oc-1,21)	e dila	piol (Oc-	2,22)
С	(Oc-1,	21)	apiol	a	piol + di	lapiol	dilap	oiol
1	125,60	(s)	125,56 (s)	-		125,61	(s)
2	138,58	(s)		s)	-		137,24	(s)
3	136,30	(s)	136,40 (s)	-		137,24	(s)
4	135,03	(s)	-		135,25	(s)	-	
5	138,90	(s)	-		138,92	(s)	-	
6	108,25	(d)	108,26 (d)	-		102,56	(d)
7	34,08	(t)	34,09 (:)	-		33,91	(t)
8	137,22	(d)	-		137,24	(d)	-	
9	115,15	(t)	115,15 (†	:)	-		115,29	(t)
2-OCH ₃	59,96	(q)	59,92 (1)	-		59,79	(q)
3-OCH ₃	-		-		-		61,08	(q)
5-OCH ₃	56,08	(q)	56,75 (()	-		_	
$3,4-OCH_2O$	101,38	(t)	101,35 (t)	-		_	
4,5-OCH ₂ O	-		-		-		100,97	(t)

Não há dúvida quanto a atribuição dos deslocamentos químicos para os carbonos 1, 6, 7, 8, 9 e dos grupamentos metoxila e metilenodioxi, como foi discutido acima. Somente o deslocamento químico de C-6 mostrou diferença significativa (Δ = 5,68 ppm), o que pode ser justificado pela maior efetividade de doação de eletrons (proteção) do oxigênio do metilenodioxi em comparação com o oxigênio da metoxila. Tal fato deve-se à coplanaridade do sistema heterocíclico de cinco membros envolvendo o grupo metilenodioxi facilitando o entrosamento de orbitais. Este fato pode ser demonstrado pela comparação dos valores encontrados para os modelos XXXV e XXXVII [343] descritos abaixo.

Um exemplo adicional pode ser visto na comparação envolvendo o dilapiol (22) e o modelo XXXVI [343]. Já que a introução de uma metoxila em posição meta não deve afetar significativamente o deslocamento químico de C-6.

A atribuição dos deslocamentos químicos dos carbonos 2, 3, 4 e 5 foi feita utilizando-se novamente a comparação com o modelo XXXVI [343]. A introdução de uma metoxila no carbono 2, como verificado no apiol, deve ocasionar deslocamentos diamagnéticos da ordem de 15 ppm para os carbonos 1 e 3 e de 5 ppm para o carbono 5. Os carbonos 4 e 6 não devem receber influência significativa (Tab. 15).

Tabela 15 - Valores de deslocamento químico dos carbonos aromáticos do modelo XXXVI [343] comparados com os do dilapiol (Oc-2, 22) (CDCl₃ e TMS como referência interna).

С	XXXVI	dilapiol (22)	Δ
1	134,6	125,61	8,99
2	99,7	102,56	- 2,86
3	148,9	138,92	9,98
4	131,0	135,25	- 4,25
5	143,4	137,24	6,16

Observou-se que os deslocamentos diamagnéticos de C-1 (125,61, Δ = 8,99 ppm), C-3 (138,92 Δ = 9,98 ppm) e C-5 (137,24, Δ = 6,16 ppm) no dilapiol (22) alcançaram os valores de proteção previstos na comparação com o modelo XXXVI [343] como anteriormente ocorrera com o apiol (21).

Finalmente, a atribuição dos deslocamentos químicos dos carbonos C-2, C-3, C-4 e C-5 baseou-se na comparação com os dados do apiol (21). Os carbonos 2 e 5 normalmente encontram-se em campo mais baixo do que 3 e 4, por que sentem efeitos orto e para de funções oxigenadas, enquanto os carbonos 3 e 4 encontram-se inseridos entre duas funções oxigenadas.

Os deslocamentos químicos (59,79 e 61,08 δ dos carbonos das metoxilas do dilapiol demostram que estes grupos encontram-se em ambientes estéricamente impedidos 343. Estes dados permitiram caracterizar definitivamente a presença do dilapiol (22) na mistura, já que a distribuição dos grupos substituintes para atender estas exigências espectrais afastou qualquer outro padrão de substituição.

Finalmente, a análise da curva de integração do espectro de R.M.N. ¹H (Fig. 31) da mistura permitiu calcular as percentagens aproximadas do apiol (21, 56%) e do dilapiol (22, 44%). Para este cálculo utilizou-se as intesidades dos sinais correspondentes aos grupos metoxila das duas substâncias (Fig. 31).

2.2.2- Determinação estrutural de Oc-3

O espectro na região do ultravioleta (Fig. 35) sugeriu a natureza aromática da substância e também mostrou a presença de hidroxila fenólica quando foi adicionado solução aquosa de hidróxido de sódio. A regeneração da curva após a adição de ácido clorídrico sugeriu a ausência de sistemas orto-e/ou para di-hidroxilados.

O espectro no infravermelho (Fig. 36) confirmou a aromaticidade da substância através das absorções em 1600 e 1500 cm $^{-1}$. As presenças de hidroxila e ligação dupla vinílica foram reveladas pelas absorções em 3450 (OH), 1650, 990 e 916 cm $^{-1}$ (CH=CH₂).

O espectro de R.M.N. 1 H registrado a 60 MHz (Fig. 37) apresentou sinais característicos de um alilbenzeno trimetoximono-hidroxilado. O espectro forneceu um dubleto (J= 7 Hz) em 3,31 δ (CH $_2$ -7), três singletos em 3,80; 3,86 e 3,92 δ (3 OCH $_3$), um multipleto entre 4,80 e 5,33 δ (CH $_2$ -9), um singleto em 5,57 (OH), um multipleto entre 5,64 a 6,25 δ (CH-8) e um singleto 6,42 δ , atribuído a um próton aromático. O deslocamento químico deste próton aromático afastou as possibilidades de ser localizado em carbono sentindo efeito doador de elétrons das três funções oxigenadas em posições orto, orto e para. Neste caso o deslocamento químico seria menor. [344].

O desaparecimento da absorção em 5,57 δ após a adição de D2O (Fig. 38) confirmou a correlação deste sinal com próton hidroxílico.

O espectro de R.M.N. ¹H da substância original (Fig. 37) não permitiu definir o padrão de substituição do anel aromático. Por isto, a substância foi subemtida a reação de acetilação.

O espectro de R.M.N. 1 H (Fig.43) do derivado acetilado forneceu, além do singleto em 2,37 δ dos prótons metílicos da acetoxila e o desaparecimento do sinal em 5,57 δ correspondente ao próton do grupo hidroxila, as seguintes informações:

a - 0 deslocamento químico do próton aromático não sofreu modificação significativa (Δ = 0,1 ppm), sugerindo a localização da hidroxila em posição meta em relação a este próton. Se este ocupasse posição orto ou para em relação ao grupo OH seria observado maior deslocamento paramagnético [344].

b - 0 ${\rm CH_2}\text{--}7$ benzílico absorveu praticamente na mesma posição. Este comportamento revelou-se incompatível com a presença da hidroxila nos carbonos 2 ou 6.

Os espectros de I.V. (Fig. 42) e de massas (Fig.44, ${\rm M}^{,+}$ 254) do derivado acetilado contribuiram para a caracterização como monoacetato.

Assim, surgiram duas possibilidades estruturais para Oc-3 (23 e 24), sendo a possibilidade 24 improvável devido ao deslocamento químico (6,45 δ) do próton aromático.

A caracterização definitiva da estrutura 23 para Oc-3 foi obtida através da interpretação dos espectros de R.M.N. 13 C registrados a 25,2 MHz, totalmente desacoplado (Fig. 39) e com acoplamento residual (Fig. 40). Os sinais em 60,98 e 60,64 δ correspondem a duas metoxilas estericamente impedidas. Além disto, o carbono δ (107,11 δ , dubleto) revelou-se muito próximo daquele observado para o carbono em posição análoga no apiol (Oc-1, 21).

O espectro de R.M.N.¹³C com acoplamento residual (SFORD) (Fig. 40) revelou ainda a presença de cinco singletos, dois dubletos, dois tripletos e três quartetos representando, respectivamente, os átomos de carbono não protonados, mono-, die triprotonados. A atribuição dos valores dos deslocamentos

químicos dos carbonos foi feita por comparação com modelos (Tab. 16).

Tabela 16- Valores de deslocamentos químicos dos carbonos de ${\rm Oc-3} \ \, ({\rm CDCl_3} \ \, {\rm e} \ \, {\rm TMS} \ \, {\rm como} \ \, {\rm referência} \ \, {\rm interna}) \, .$

C	δ	feição do sinal
1	123,07	S
2	143,46	S
3	140,46	s
4	137,49	S
5	145,01	s
6	107,11	d
7	33,74	t
8	137,49	d
9	115,27	t
2 ou 3 - OCH ₃	60,64	q
3 ou 2 - OCH ₃	60,98	q
5-OCH ₃	56,31	d

Com a experiência adquirida com a interpretação dos dados de R.M.N. 13 C do apiol (Oc-1, 21) e do dilapiol (Oc-2,22), as atribuições dos deslocamentos químicos dos carbonos C-1, C-6, C-7, C-8, C-9 e das metoxilas foi relativamente simples.

Para os carbonos 2, 3, 4 e 5 foram correlacionados os deslocamentos químicos 137,49 δ para C-4 ligado a hidroxila, 140,46 δ para C-3, 143,46 δ para C-2 e 145,01 para C-5. Com

a finalidade de estabelecer esta correlação utilizou-se os argumentos descritos para Oc-1 (21) e Oc-2 (22), além da comparação com Oc-4 (37).

O espectro de massas (Fig. 41) revelou o pico correspondente ao ion molecular em m/z 224 e apresentou outros picos (Tab. 17 e Esq. 6) compatíveis com a estrutura proposta (23).

Tabela 17- Principais picos observados no espectro de massas de $\ensuremath{\text{Oc-3}}$

m/z	ફ
224	100
223	3
209	48
207	2
197	4
195	13
193	7
181	5
179	5
177	35
163	9
149	22
121	10

Pelo o que nos consta a 0c-3 (23) ainda não foi descrita na literatura.

2.2.3 - Determinação estrutural de Oc-4

O espectro na região do ultravioleta (Fig. 45) sugeriu a natureza aromática da substânica. Modificação da curva de absorção após adição de solução aquosa de hidróxido de sódio sugeriu a presença de hidroxila fenólica. Regeneração da curva após a neutralização da solução alcalina com solução aquosa de ácido clorídrico afastou a presença de sistemas ortoe/ou para di-hidroxilados.

O espectro no infravermelho (Fig. 46) confirmou a natureza aromática da substânica através das absorções em 1600, 1500 e 1480 cm $^{-1}$. As absorções em 3400 e 3200 cm $^{-1}$ foram atribuidas a grupamentos hidroxila.

O espectro de R.M.N. 1 H registrado a 100 MHz (C_5D_5N) (Fig. 47) apresentou um multipleto entre 2,06-2,80 δ (2 H), um dubleto (J= 8 Hz) em 3,10 δ (2H), dois singletos em 3,66 δ (6H, 2 OCH3) e 3,78 δ (6H, 2 OCH3), um dubleto (J= 6 Hz) em 4,10 δ (4H, 2 CH2OH), um dubleto (J= 6 Hz) em 5,03 (1H) e dois singletos em 6,75 δ (1H) e 6,90 δ (2H). Estes dois últimos sinais foram atribuidos a tres prótons aromáticos.

A adição de D_2O (Fig. 48), provocou modificação na feição do sinal correspondente aos prótons carbinólicos dos dois CH_2OH , convertendo em multipleto e forneceu três sinais para os grupos metoxila 3,74 δ , 3H (OCH $_3$), 3,84 δ , 3H (OCH $_3$) e 3,70 δ , 6H (2 OCH $_3$).

O espectro de massas (Fig. 51) forneceu o peso molecular de 420 daltons para a substância (${\rm M}^{,+}$ 420, pico base). Os principais picos observados na região de maior m/z correspondem a fragamentações envolvendo perdas de HOH (${\rm m/z}$ 418, M-18), CH₂O (${\rm m/z}$ 390, M-30),CH₂OH (${\rm m/z}$ 389, M-31), compatíveis com a presença de OH e CH₂OH e/ou CH₃O na substância em estudo. Na região de m/z intermediários registou-se picos em m/z 218, 210, 205, 184, 183, 173 e 167 (Tab. 18 e Esq. 7).

Tabela - Principais picos observados no espectro de massas de ${\rm Oc}\text{-}4$

m/z % 420 100 402 22 390 4 389 4 371 18 341 4 301 6 271 4 266 2 249 8 241 4 235 6 218 8 217 28 205 40 173 21 167 48		
402 22 390 4 389 4 371 18 341 4 301 6 271 4 266 2 249 8 249 8 241 4 235 6 218 8 217 28 205 40 173 21	m/z	8
390 4 389 4 371 18 341 4 311 4 301 6 271 4 266 2 249 8 249 8 241 4 235 6 218 8 217 28 205 40 173 21	420	100
389 4 371 18 341 4 311 4 301 6 271 4 266 2 249 8 248 8 241 4 235 6 218 8 217 28 205 40 173 21	402	22
371 18 341 4 311 4 301 6 271 4 266 2 249 8 248 8 241 4 235 6 218 8 217 28 205 40 173 21	390	4
341 4 311 4 301 6 271 4 266 2 249 8 248 8 241 4 235 6 218 8 217 28 205 40 173 21	389	4
311 4 301 6 271 4 266 2 249 8 248 8 241 4 235 6 218 8 217 28 205 40 173 21	371	18
301 6 271 4 266 2 249 8 248 8 241 4 235 6 218 8 217 28 205 40 173 21	341	4
271 4 266 2 249 8 248 8 241 4 235 6 218 8 217 28 205 40 173 21	311	4
266 2 249 8 248 8 241 4 235 6 218 8 217 28 205 40 173 21	301	6
249 8 248 8 241 4 235 6 218 8 217 28 205 40 173 21	271	4
248 8 241 4 235 6 218 8 217 28 205 40 173 21	266	2
241 4 235 6 218 8 217 28 205 40 173 21	249	8
235 6 218 8 217 28 205 40 173 21	248	8
218 8 217 28 205 40 173 21	241	4
217 28 205 40 173 21	235	6
205 40 173 21	218	8
173 21	217	28
	205	40
167 48	173	21
	167	48

A análise comparativa dos espectros de R.M.N. 13 C registrados a 25,2 MHz (C_5D_5N), totalmente desacoplado (Fig. 49) e com acoplamento residual (Fig.50) revelou a presença de oito singletos (C_8), quatro dubletos (C_9), três tripletos (C_9), e três quartetos (C_9), permitindo deduzir o número de átomos de hidrogênio ligados a cada átomo de carbono. As intensidades em 56,27 δ (2 C_9), 107,08 δ (C_9) no espectro totalmente desacoplado (Fig. 49) permitiram deduzir o número de átomos de carbono que cada um representa (C_9)

Quadro 1 - Dados de R.M.N. 13 C da Oc-4 (C $_5$ D $_5$ N, δ e TMS como referência interna).

осн3	^{CH} 2	СН	С
55 , 96	33,72	41,44	126,42
56,27	63 , 89(СН ₂ ОН)	42,24	129,83
56,27	66,27(СН ₂ ОН)	49,19	135,40
59,53		107,08	138,73
		107,08	139,17
		107,08	147,70
			148,01
			148,65
			148,65
(OCH ₃) ₄	(CH ₂) (CH ₂ OH) ₂	(CH) ₆	C ₉

Os dados do Quadro 1 permitiram deduzir uma formulação parcial para a substância: $(OCH_3)_4$ (CH_2) $(CH_2OH)_2$ $(CH)_6$ $(C)_9$ = $C_{22}H_{26}O_6$ = 386 daltons

A diferença de 34 unidades entre o peso molecular da substância (M^{·+} 420) e a massa (386) correspondente a formulação parcial acima descrita foi atribuida a duas hidroxilas, o que permitiu ampliar a formulação parcial e deduzir a fórmula molecular da Oc-4.

$$(OCH_3)_4$$
 (CH_2) $(CH_2OH)_2$ $(CH)_6$ $(C)_9$ $(OH)_2$ = $C_{22}H_{28}O_8$ = 420 daltons

A presença de quatro grupos hidroxila foi confirmada pelos dados espectrais fornecidos pelo derivado acetilado (Fig. 53).

Subtraindo-se da fórmula molecular $C_{22}H_{28}O_8$ os carbonos dos grupamentos metoxila (C_4) obteve-se 18 carbonos para o esqueleto básico.

Os lignoides são substâncias naturais que fornecem o esqueleto básico com 18 átomos de carbono, oriundos da dimerização envolvendo duas unidades $C_6-C_3+C_6-C_3$.

Todos os dados discutidos até este ponto permitiram propor a estrutura parcial 25.

O pico em m/z 167 (48%) que aparece no espectro de massas (Fig. 51 e Esq. 7) sugeriu a presença de duas metoxilas e uma hidroxila em cada um dos anéis aromáticos. (26).

26

0 mesmo deslocamento químico para dois prótons aromáticos equivalentes (6,90 δ , S) e para dois carbonos aromáticos monoprotonados (107,08 δ) possibilitou postular duas possibilidades constitucionais parciais (27 e 28) para 0c-4.

$$H_3CO$$
OH
OCH₃
OH
OH

A estrutura 28 foi afastada porque os deslocamentos químicos dos hidrogenios H-3 e H-5 e dos correspondentes átomos de carbono C-3 e C-5 não seriam os observados, já que ocupariam posições ricas em densidade eletrônica.

A comparação dos espectros de R.M.N. 1 H do derivado acetilado Oc-4 Ac (Fig. 53) e do derivado dimetilado (Fig. 55) confirmou esta dedução. O pequeno deslocamento paramagnético (Δ = 0,05 ppm) não coaduna-se com a estrutura parcial 27. (Tab. 19).

Tabela 19 - Comparação dos deslocamentos químicos dos prótons $\text{H-2 e H-6 do anel aromático C nos derivados acetilado e dimetilado (CDCl}_3, \ \delta \ \text{e TMS como referência interna.}$

	Oc-4 Ac	Oc-4 Me ₂
Н ₂ е Н ₆	6,30	6,35

Esta análise permitiu postular a constituição parcial 28 para Oc-4.

Já que o sinal do próton aromático sustentado pelo anel A também não revelou deslocamento significativo na comparação dos espectros de R.M.N. 1H dos derivados acetilado (Fig. 53) e dimetilado (Fig. 55), foi possível deduzir que este átomo de hidrogênio ocupa posição meta em relação a hidroxila. Assim, tornou-se possível postular quatro alternativas decorrentes da localização dos substituintes do anel A (30 a 33).

$$H_3$$
CO H_3 H_3 CO H_3

As estruturas 30 (improvável pela previsão biogenética) e 33 foram afastados com base na análise do espectro de R.M.N. 13 C (Figs. 49 e 50) já que estas alternativas não fornecem nenhuma metoxila estericamente impedida para justificar o deslocamento químico 59,53 δ .

A estrutura 31 também foi descartada com base na análise do espectro de R.M.N. 1 H (Fig. 53) do derivado acetilado que revelou a presença de uma metoxila deslocada para campo alto (3,20 δ), sentindo assim, o efeito anisotrópico de proteção do anel aromático C [344].

Assim, definiu-se a constituição 34 para a Oc-4.

A estrutura 34 é uma substância conhecida como lio-

niresinol [345].

Os dados de R.M.N. 1H da Oc-4 e de seus derivados acetilado e dimetilado foram também comparados com modelos XXXVIII a XLVII citados na literatura [345] (Tab. 20), sendo que as substâncias XLIV e XLVII tiveram configuração absoluta estabelecida.

XL/
$$R = H$$
, $R_1 = R_2 = CH_2OH$
XLI $R = H$, $R_1 = CH_2ORh$, $R_2 = CH_2OH$
XLII $R = Ac$, $R_1 = R_2 = CH_2OAc$
XLIII $R = CH_3$, $R_1 = R_2 = CH_2OH$
XLIV $R = CH_3$, $R_1 = R_2 = CH_2OH$
XLV $R = Ac$, $R_1 = CH_2ORh$ (Ac) 3, $R_2 = CH_2OAc$
XLVI $R = CH_3$, $R_1 = R_2 = CH_2OAc$
XLVI $R = CH_3$, $R_1 = R_2 = CH_2OAc$

Os dados da Tab. 20 demonstraram que os dados da Oc-4 receberam a interpretação correta.

A constante de acoplamento de 6 Hz observada nos sinais do próton H-7 e H-8 permitiu deduzir que H-7 ocupa posição axial, adotando o anel ciclohexênico a conformação 35 (trans Ar/CH₂OH). Mesma dedução pode ser obtida pela observação da interação H-7' e H-8' (J= 8Hz).

A configuração 36 corresponde ao enanciômero de 35 e, por isto, não pode ser distinguido pelos dados disponíveis.

Assim, tornou-se possível estabelecer a configuração relativa $\underline{37}$ para a 0c-4.

Tabela 20 - Dados de R.M.N. 1 da Oc-4 (37), seus derivados acetilado e dimetilado e outros lignoides descritos na literatura.

Subst. Solvente H-2 H-6 H-7			11-7	н-7 н-8 н-9 - 9 - н-2 - н-7	11-7°	K-8,	-ocii ₃							-OAc				
	404401149				•					3-oc# ₃	4-ocit ₃	5-0CH ₃	3'-ocii 3	4'-ocH3	2,-UCH ³	4-OAc	4'-0AC	9-GA c
0c-4	C ₅ D ₅ N	6,90 (m)	6,90 (m)	5,03 (d) J=6 Hz	2,06-2,80 (m)	4,10 (d1) J=6 Hz	6,75 (*)	3,10 (d) J=8 Hz	2,06-2,80 (m)	3,78	-	3,78	3,66	-	3,66	-	-	-
0e-4 Ac	coc13	6,30 (a)	6,30 (s)	. 4,12-4,400	1,94-2,36-	4,12-4,40 (m)	6,50 (m)	2,76 (d) J-7 Hz	1,94-2,363	3,72	-	3,72	3,60	-	3,20	2,28	2,28	2,08 ou 2,04 Z
Oc=4 (Me) 2	coc13	6,35 (s)	6,35 (m)	3,55-4,09-	1,67-2,07 (m)	3,55-4,09≞	6,48 (m)	2,55-2,68 (m)	1,67-2,07 (m)	3,86 ou 3,78 ou 3,77	3,86 ou 3,78 ou 3,77	3,86 ou 3,78 ou 3,77	3,86 ou 3,78 ou 3,77	3,86 ou 3,78 ou 3,77	3,23	-	-	-
xxxviii .	(CD ₃) ₂ CO	6,40 (a)	6,40 (m)	. 5,05	-	-	6,95 (m)	7,67 (s)		3,70	- 1	3,70	3,90	7	3,63		-	-
XXVIX	coci3	6,29 (s)	6,29 (s)	5,01 (d) J=1 Nz	4,08 (d) J=1 Hz	-	6,72 (*)	7,65 (a)	-	3,73	3,78	3,73	3,89	3,89	3,66	-	-	- '
Xt,	(CD ₃) ₂ CO	6,50 (m)	6,50 (a)	4,32 (d) J=5,5 Hz	-	3,62 (p)	6,63 (*)	2,60-2,72 (m)		3,77	-	3,77	3,87	-	3,42	-	, ,	
NL I	(CD ₃) ₂ C0	6,40 (a)	6,40 (s)	4,34 (d) J≃6 Hz	-	3,50 (m)	6,57 (m)	2,69 (d) J=7 Hz	-	3,72		1,72	3,83	-	3,40	-	-	-
KPII	enci3 ·	6,35 (s)	6,35 (*)	4,33 (m)	2,10 (n)	4,17 (m)	6,55 (a)	2,77 (d) J=7 Hz	2,10 (m)	3,73		3,73	3,82	- "	3,22	2,28	2,28	2,08 ou 2,04 · 2,
XLIII	с ₅ 0 ₅ и	6,78 (a)	6,78 (s)	4,87 (d) J=5,5 Hz	-	4,03 (m)	6,70 (m)	3,03 (m)	-	3,80 ou 3,73 ou 3,61	3,80 ou 3,73 ou 3,61	3,80 ou 3,73 ou 3,61	3,80 ou 3,73 ou 3,61	3,80 ou 3,73 ou 3,61	3,53 -	-		- ,
XLIA	CDC13	6,30 (m)	6,30 (#)	3,96 (d) J=7,5 Hz .	1,82 (m)	3,36-3,75 (m)	6,42 (a)	2,65 (d) J=6 Hz	1,82 (m)	3,83 ou 3,77 ou 3,74	3,83 ou 3,77 ou 3,74	3,83 ou 3,77 ou 3,74	3,83 ou 3,77 ou 3,74	3,83 ou 3,77 ou 3,74	3,22	-	-	-
XLV	coc13	6,30 (a)	6,30 (s)	4,30 (m).	-	. 3,50 (m)	6,50 (m)		-	3,70	-	3,70	3,80	-	3,31	2,26	2,26	- 2, ou
XI.V I	coc13	6,33 (s)	6,33 (s)	4,17 (n)	2,10 (m)	4,07-4,23 (n)	6,52 (s)	2,73 (d) J=7 Hz	2,10 (m)	3,88 ou 3,80 ou 3,78	3,88 ou 3,89 ou 3,78	3,88 ou 3,80 ou 3,78	3,88 ou 3,80 ou 3,78	3,88 ou 3,80 ou 3,78	3,33	2,09	2,09	2,03
XLVI	C5D5N	-	-	4,20-4,54 (n)	-	4,20~5,54 (m)	• -	2,82 (d) J=7 Hz	-	3,83 ou 3,81 ou 3,78 ou 3,70	3,83 ou 3,81 ou 3,78 ou 3,70	3,83 ou 3,81 ou 3,78 ou 3,70		3,83 ou 3,81 ou 3,78 ou 3,70	3,50	2,03	2,03	2,00
XLVII	coc13	6,33 (a)	6,33 (m)	4,17 (m)	2,10 (n)	4,06-4,25 (n)	6,51 (m)	2,73 (d) J=7 Hz	2,10 (n)	3,88 ou 3,80 ou 3,78	3,88 ou 3,80 ou 3,78	3,88 ou 3,80 ou 3,78	3,88 ou 3,80 ou 3,78	3,88 ou 3,80 ou 3,78	3,33	2,09	2,09	2,03
KEVII	C _S D _S N	-	-	4,21-4,56 (n)	-	4,21-4,56 (n)	•	2,84 (d) J=7 Hz	:		3,84 ou 3,82 ou 3,78 ou 3,70	3,84 ou 3,82 ou 3,78 ou 3,70		3,84 ou 3,82 ou 3,78 ou 3,70	3,50	2,03	2,03	2,00

A comparação dos deslocamentos químicos dos carbonos de Oc-4 com as das substâncias modelo XLVIII | 346] e XLIX [347] , citadas na literatura (Tab. 21) corroborou para a confirmação da estrutura proposta 37 para a Oc-4.

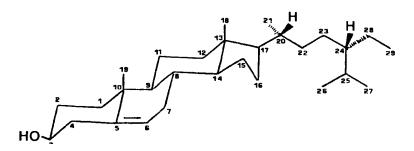
XLVIII

$$H_3$$
CO CH_2 OH CH_2 OH CH_2 OH OCH_3

XLIX

Tabela 21 - Comparação dos deslocamentos químicos dos carbonos da Oc-4 com XLVIII [346] e XLIX [347] (δ e TMS como referência interna.

С	$0c-4 (C_5D_5N)$	XLVIII(C ₅ D ₅ N)	XI'IX (CD3COCD3)
1'	129,33	129,5	128,1
2'	107,08	107,3	110,7
3'	147,70	147,9	147,3
4'	139,17	139,4	147,0
5 '	148,01	148,2	111,9
6 '	126,42	126,6	133,6
7'	33,72	33,8	33,2
8'	41,44	41,6	39,9
9 '	66,27	66,4	66,2
1	138,73	138,9	131,7
2	107,08	107,3	112,8
3	148,65	148,9	148,9
4	135,40	135,8	146,9
5	148,65	148,9	110,8
6	107,08	107,3	121,7
7	42,24	42,2	48,0
8	49,19	49,4	48,2
9	63,82	64,1	62,9
3'-OCH ₃	55 , 96	56,1	55,7
5'-осн ₃	59 , 53	59,4	<u>-</u>
3 -OCH ₃	56,27	56,4	55,7
5 -OCH ₃	56,27	56,4	_
4 -OCH ₃	-	_	55 , 7
4'-OCH ₃	-	_	55 , 7


2.2.4- Determinação estrutural de Oc-5

Os dados fornecidos pelos espectros de I.V.(Fig. 57), de R.M.N. 1 H (Fig. 58 e 59) e de massas (Fig. 64) sugeriram tratar-se de β -sitosterol. Comparação com Hf-2 por cromatografia em camada delgada e ponto de fusão misto corroborou com esta dedução.

O espectro de R.M.N. 1 H registrado a 100 MHz (Fig. 58) confirmou a natureza esteroidal da substância e contendo insaturação devido ao multipleto entre 5,25 e 5,40 δ .

O espectro de massas (Fig. 64) revelou-se compatível com a fórmula molecular $C_{29}H_{50}O$ (414 daltons). Este espectro revelou ainda a presença de duas impurezas, em menor quantidade, através da observação dos picos m/z 412 e 400.

Os espectros de R.M.N. 13 C, registrados a 25,2 MHz, totalmente desacoplado (Fig. 60) e com acoplamento residual (Fig. 62) aliados a comparação com dados de modelos L, LI e LII (Tab. 22), citados na literatura [348 e 349] confirmaram a proposta estrutural para Oc-5 (38, = β -sitosterol).

L

LI

LII

Tabela 22 - Comparação dos valores de deslocamentos químicos dos carbonos de Oc-5 com os correspondentes dos modelos L, LI e LII [348 e 349](CDCl₃, δ e TMS como referência interna).

С	Oc-5	L	LI	LII
1	37,25	37,3	3	6,8
2	31,61	31,6	1 2	27,4
3	71,63	71,6	7	3,9
4	42,26	42,2	3	3,8
5	140,63	140,6	4	0,0
6	121,52	121,4	2	9,5
7	31,88	31,9	11	7,2
8	31,88	31,9	13	9,5
9	50,13	50,2	4	2,9
10	36,45	. 36,5	3	4,2
11	21,09	21,1	2	1,4
12	39,75	39,8	3	9,5
13	42,26	42,3	4	3,3
14	56 , 72	56,8	5	4,9
1,5	24,30	24,3	2	3,0
16	28,25	28,3	2	7,9
17	56,03	56,2	56,0	55 , 8
18	11,87	11,9	1	1,8
. 19	19,40	19,4	1	.2,9
20	36,13	35,8	36,6	36,4
21	18,78	18,8	1	8,9
22	33,94	36,2	3	3,8
23	26,12	23,9	26,1	26,4
24	45,81	39,5	45,8	46,0
25	29,16	28,0	29,1	28,9
26	19,81	22,6	19,8	19,0
27	19,06	22,8	19,0	19,6
28	23,09	_	2	3,0
. 29	11,98	_	11,9	12,3

2.2.5- Determinação estrutural de Oc-6

O espectro na região do ultravioleta (Fig. 65) revelou-se compatível com uma substância aromática. Inalteração do espectro após adição de solução aquosa de hidróxido de sódio evidenciou a ausência de hidroxila fenólica.

0 espectro no infravermelho (Fig. 66) sugeriu a natureza aromática da substância através das absorções em 1605, 1500 e 1490 cm $^{-1}$, indicou a presença de grupamento hidroxila (3260 cm $^{-1}$) e sugeriu também a presença de grupamento éter aromático (1355, 1340 e 1240 cm $^{-1}$).

O espectro de R.M.N. 1 H registrado a 60 e 100 MHz (Fig. 67 e 69) apresentou um singleto largo em 2,40 δ , um dubleto (J = 6 Hz) em 2,73 δ , um multipleto entre 3,42 e 3,60 δ , dois singletos atribuidos a duas metoxilas aromáticas em 3,84 e 3,92 δ , um singleto atribuido aos prótons de um grupamento metilenodioxi em 5,94 δ e um singleto em 6,30 δ atribuído a um próton aromático.

Após a adição de D_2O (Fig. 68) à solução em $CDCl_3$ verificou-se o desaparecimento do sinal em 2,40 δ , indicando que este sinal corresponde a prótons hidroxílicos. A curva de integração do espectro sugeriu a presença de dois grupos hidroxila.

Estes dados sugeriram a existência de um sistema aromático pentassubstituido, sustentando duas metoxilas, um grupamento metilenodioxi e um radical R contendo duas hidroxilas.

A formulação parcial 39 corresponde a: $(OCH_3)_2(OCH_2O) \quad (CH) \quad (C)_5(OH)_2 = C_9H_{11}O_6 = 215 \quad daltons.$

O espectro de massas (Fig. 72) indicou para a substância o peso molecular de 256 daltons, compatível com a fórmula molecular $C_{12}H_{16}O_6$. Na comparação da fórmula molecular com a da formulação parcial obteve-se a diferença C_3H_5 (41 daltons), que foi atribuida ao grupamento R. Esta dedução permitiu ampliar a formulação parcial para:

 $(OCH_3)_2(OCH_2O)$ $(CH_2)_2(CH)_2(C)_5(OH)_2$ = $C_{11}H_{16}O_6$ = 256 daltons O espectro de massas (Fig. 72 e Tab. 23) ainda apresentou picos correspondentes a fragmentação envolvendo perdas de CHO, CH_2OH , CH_3 , CO, $C_2H_4O_2$ e $C_2H_5O_2$ (Tab. 23 e Esq. 8), sendo que os picos em m/z 195 (97%) e 196 (100%) foram extremamente informativos para caracterizar a presença de uma unidade $C_2H_5O_2$, representanto um diol vicinal (Esq. 8).

A obtenção do derivado acetilado de Oc-6 (Oc-6 Ac) novamente caracterizou a presença do diol através dos deslocamentos paramagnéticos revelados pelos sinais dos prótons carbinólicos observados no espectro de R.M.N.¹H registrado a 60 MHz (Fig. 74), quando comparados com os mesmos da substância original (Tab. 24).

Tabela 23 - Principais picos observados no espectro de massas de Oc-6.

m/z	ફ
256	100
238	8
226	5
225	38
208	1
196	97
195	100
181	73
180	59
165	38
153	· 7
152	7
151	21
137	21
135	62
123	6
109	16

Tabela 24 - Comparação dos deslocamentos químicos dos protons carbinólicos de Oc-6 (Fig. 69) e Oc-6 Ac (Fig. 74) (CDCl $_3$, δ e TMS como referência interna).

	Oc-6 (100 MHz)	0C-6 Ac (60 MHz)
CH-OR	3,72-3,96	5,10-5,45 (m)
CH ₂ -OR	3,42-3,60 (m)	4,07-4,30 (m)

a - sinal superposto

Estes dados permitiram formular a estrutura parcial 40 para 0c-6, apoiada nos espectros de R.M.N. 1 H (Figs. 67e-69) e de massas (Fig. 72).

40

A semelhança dos valores dos deslocamentos químicos dos protons das metoxilas, do grupamento metilenodioxi e do anel aromático com os correspondentes do apiol (Oc-1, 21) sugeriu que tratava-se de um derivado di-hidroxilado de Oc-1 (apiolglicol), já que notou-se a ausência dos sinais representando os protons do grupo vinila.

Este fato foi posteriormente confirmado através da conversão de uma mistura de apiol (Oc-1, 21) e dilapiol (Oc-2,

22) em seus glicóis derivados [350] (Fig. 73).

A comparação dos deslocamentos químicos (Figs. 31 e 67) dos protons correspondentes de Oc-1, Oc-2 e Oc-6 (Tab.25) permitiram sugerir a estrutura 41 para a Oc-6.

	Oc-6 (100 MHz)	Oc-1 (60 MHz)	Oc-2 (60 MHz)
Осн ₃	3,84 e 3,92	3,85 e 3,92	3,61 e 4,06
3,4 - OCH ₂ O	5,94	5,93	
4,5 - OCH ₂ O			6,0
Ar H-6	6,30	6,36	6,41

Os espectros de R.M.N. 13 C registrados a 25,2 MHz, totalmente desacoplado (Fig. 70) e com acoplamento residual (Fig. 71) apresentaram cinco singletos (C-1, C-2, C-3, C-4 e C-5), dois dubletos (CH-6 e CH-8), três tripletos (OCH $_2$ O e CH $_2$ -9) e dois quartetos (2 OCH $_3$).

A comparação dos valores dos deslocamentos químicos dos carbonos de Oc-6 (41) com Oc-1 (21) (Tab. 25) permitiu confirmar a estrutura proposta para a Oc-6.

Tabela 26 - Comparação dos valores de deslocamentos químicos $\mbox{dos carbonos de Oc-6 e Oc-1 (CDCl}_3, \ \mbox{\boldmathδ} \ \mbox{e TMS como}$ $\mbox{referência interna)}.$

С	Oc-6	0c-1	Feição do sinal
1	123,98	125,60	S
2	138,37	138,58	S
3	136,63	136,30	S
4	135,34	135,03	S
5	138,88	138,90	S
6	109,27	108,25	d
7	34,46	34,08	t
8	72,41	137,22	đ
9	65,92	115,15	t
2-0CH ₃	59,81	59,96	ď
5-OCH ₃	56,92	56,80	q
3,4 OCH ₂ O	101,27	101,38	t

Dos glicois derivados do apiol, dilapiol, isoapiol e isodilapiol somente o isodilapiolglicol (42) foi encontrado como produto natural, de Ostereicum citriodorum [351].

42

Tanto o apiolglicol (41) como o dilapiolglicol não foram ainda relatados como produtos naturais. Existe apenas uma referência [352] sobre a obtenção sintética destas duas substâncias.

A confirmação definitiva da estrutura da Oc-6 (41) foi verificada pela obtenção desta substância quando a mistura de apiol (Oc-1, 21) e dilapiol (Oc-2, 22) foi submetida a tratamento com tetróxido de ósmio [350].

Esquema 5 - Caminhos principais de fragmentações da Oc-l (21) no espectrômetro de massas.

squema 6 - Caminhos principais de fragmentações da Oc-3 ($\underline{23}$) no espectrômetro de massas.

Esquema 7 - Caminhos principais de fragmentações da Oc-4
(37) no espectrômetro de massas.

Esquema 8 - Caminhos principais de fragmentações da Oc-6 (41) no espectrômetro de massas.

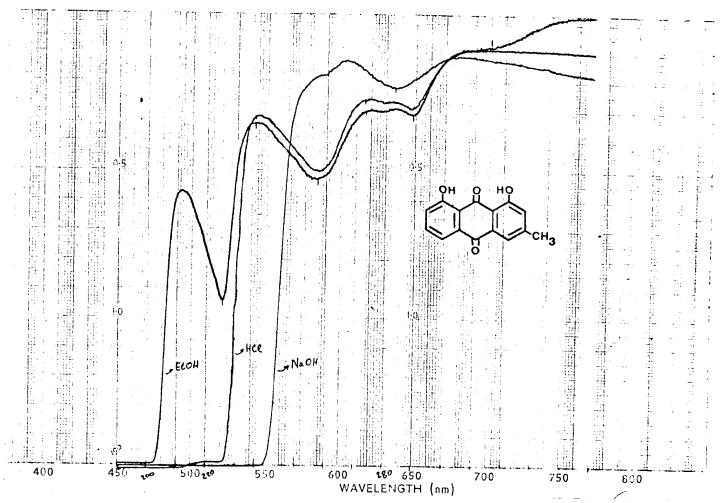


Fig. 1 - Espectro de U.V. da Hf-1 (4), EtOH e aditivos (NaOH e HC1).

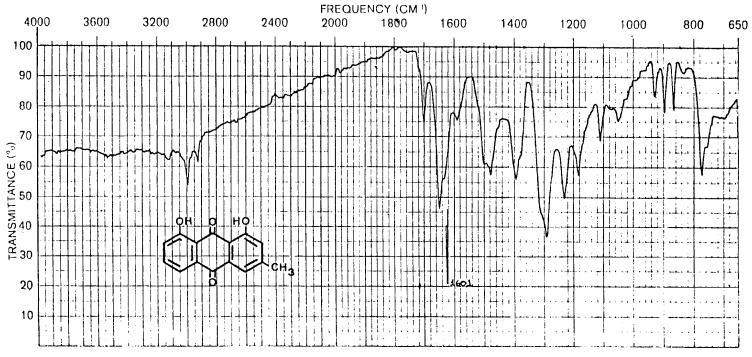


Fig. 2 - Espectro de I.V. da Hf-l $(\underline{4})$ em KBr .

Fig. 3 - Espectro de R.M.N. 1 H (100 MHz) da Hf-l ($\underline{4}$) em CDCl $_3$ e TMS como referência interna.

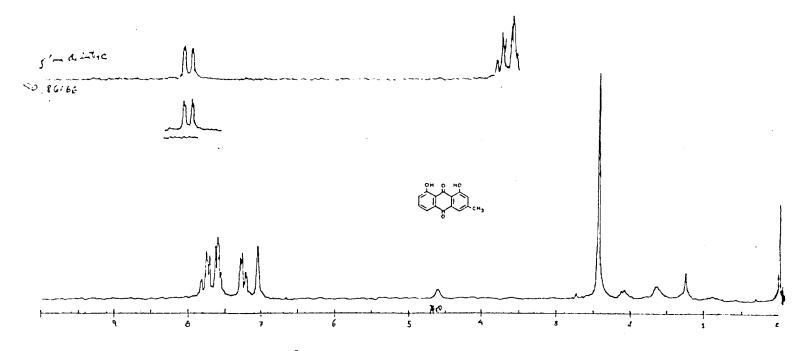


Fig. 4 - Espectro de R.M.N. 1 H (100 MHz) da Hf-l ($\underline{4}$) em CDCl $_3$ + D $_2$ O (gota) e TMS como referência interna.

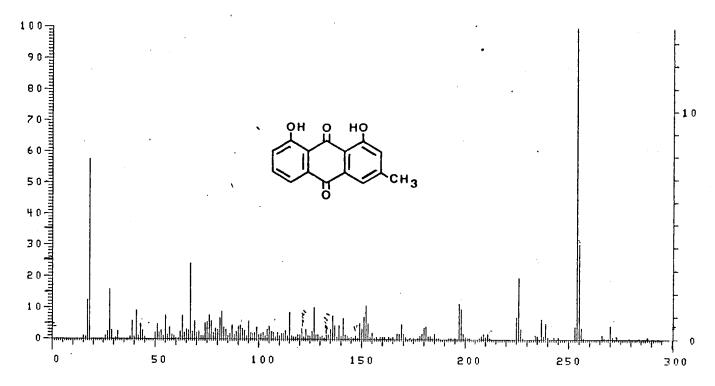


Fig. 5 - Espectro de massas da Hf-1 ($\underline{4}$).

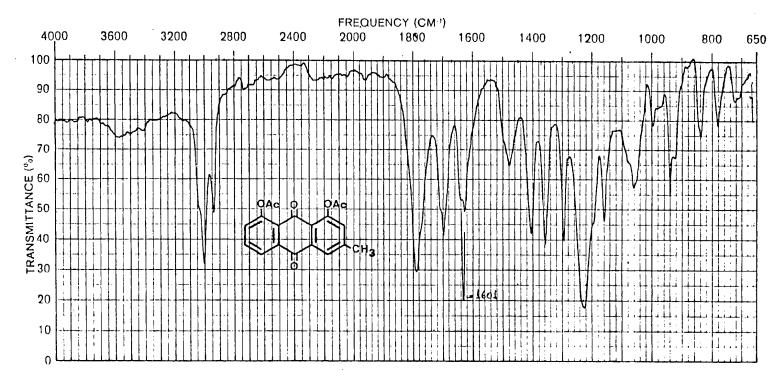


Fig. 6 - Espectro de I.V. da Hf-1 Ac (5) em KBr.

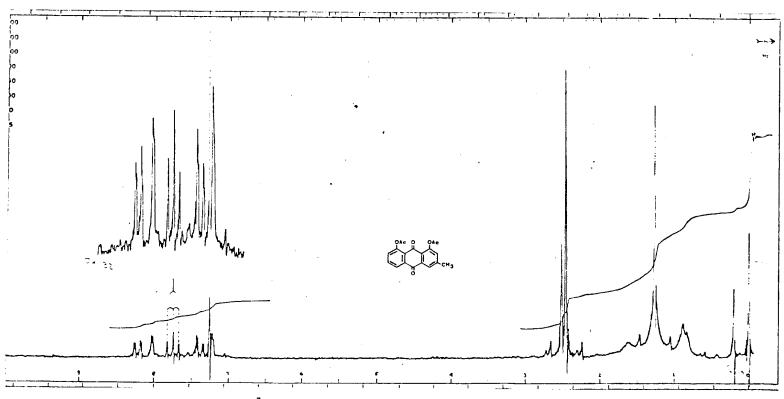


Fig. 7 - Espectro de RMN 1 H (100 MHz)da Hf-1 Ac ($\underline{5}$) em CDCl $_3$ e TMS como referência interna.

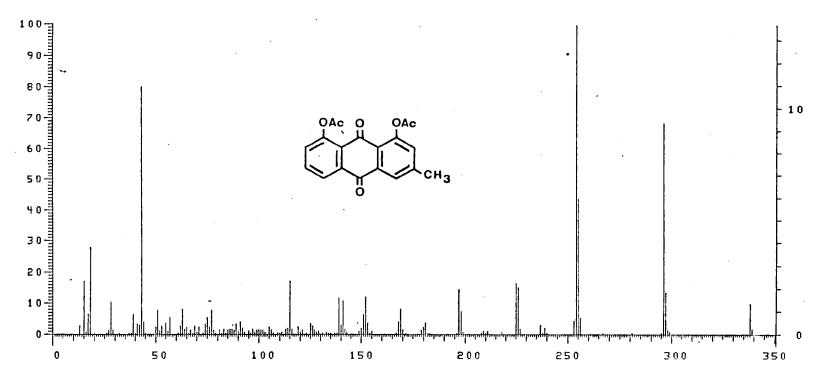


Fig. 8 - Espectro de massas da Hf-1 Ac (5) .

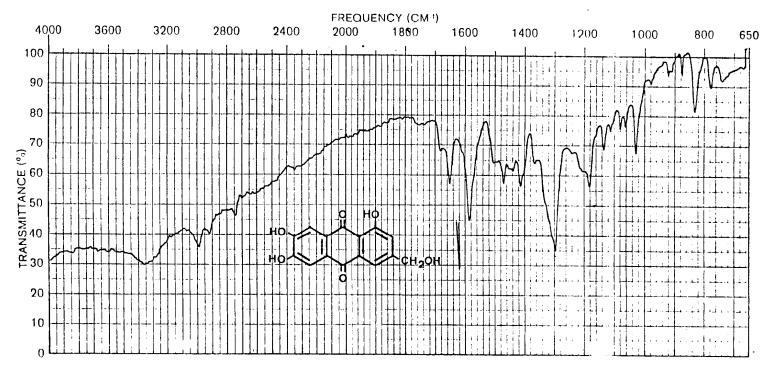


Fig. 9 - Espectro de I.V. da Hf-3 (11) em Kbr .

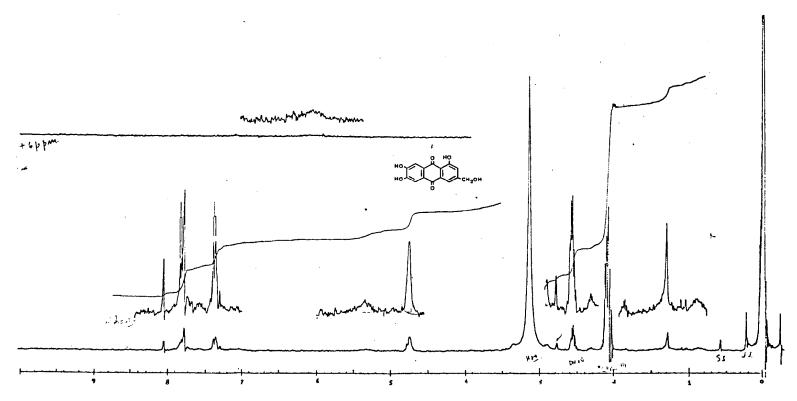


Fig. 10 - Espectro de R.M.N. 1 H (100 MHz) da Hf-3 ($\underline{11}$) em CDC1 $_3$ + (CD $_3$) $_2$ CO + (CD $_3$) $_2$ SO e TMS como referência interna.

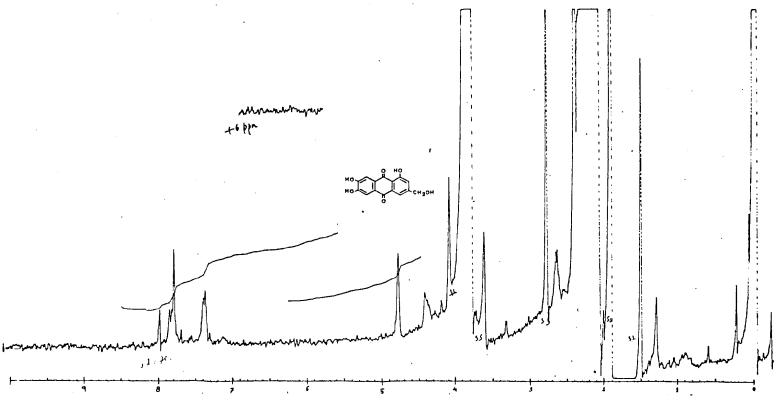


Fig. 11 - Espectro de R.M.N. 1 H (100 MHz) da Hf-3 ($\underline{11}$) em CDCl $_3$ + (CD $_3$) $_2$ CO + (CD $_3$) $_2$ SO + D $_2$ O (gota) e TMS como referência interna.

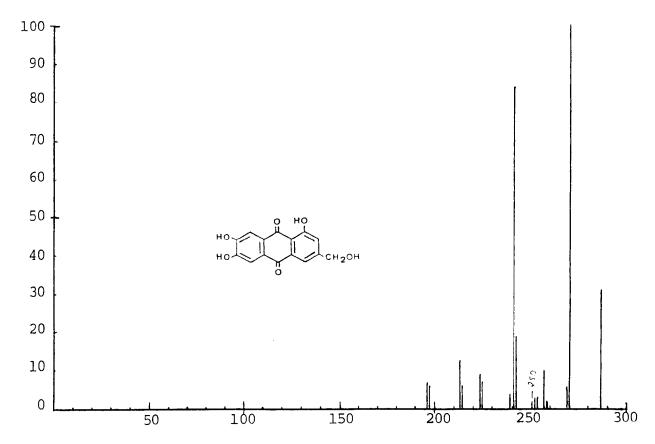


Fig. 12 - Espectro de massas da Hf-3 ($\underline{11}$).

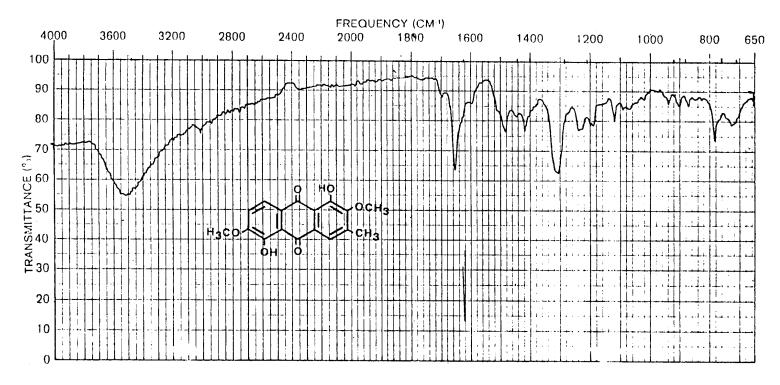


Fig. 13 - Espectro de I.V. da Hf-4 (14) em KBr .

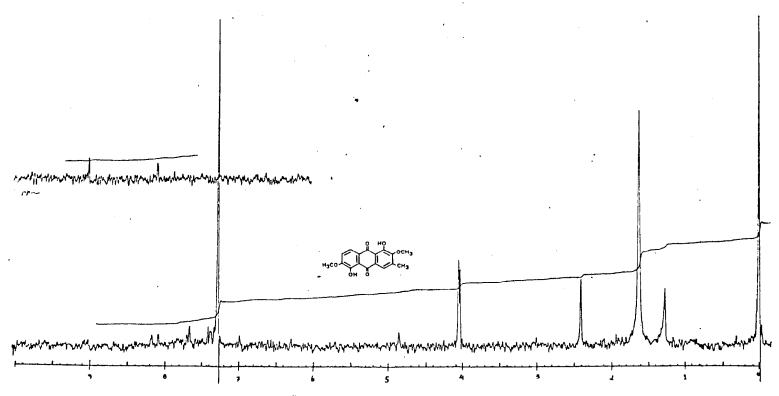


Fig. 14 - Espectro de R.M.N. H (100 MHz) da Hf-4 (14) em CDCl 3 e TMS como referência interna.

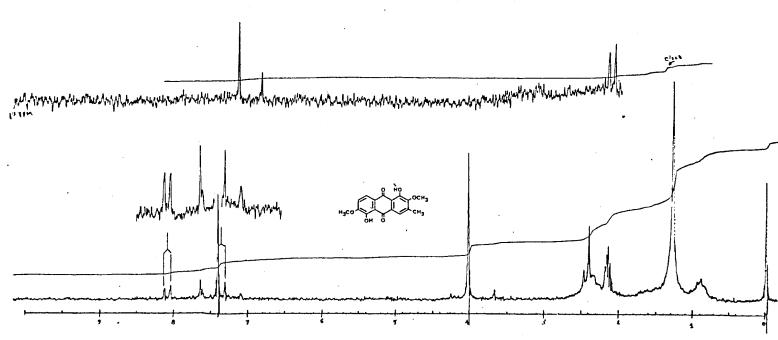


Fig. 15 - Espectro de R.M.N. 1 H (100 MHz) da Hf-4 (14) em CDCl $_3$ + (CD $_3$) $_2$ CO e TMS ∞ mo referência interna.

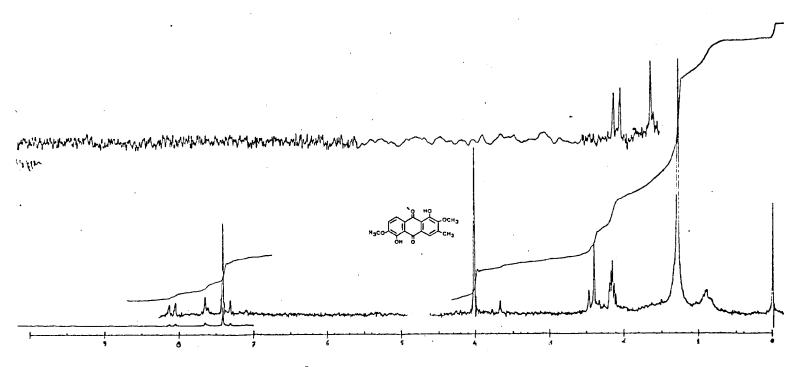
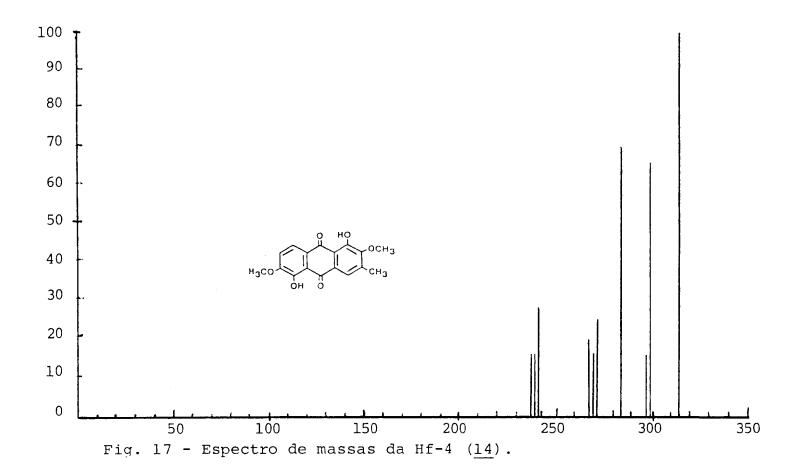



Fig. 16 - Espectro de R.M.N. 1 H (100 MHz) da Hf-4 ($\underline{14}$) em CDCl $_3$ + (CD $_3$) $_2$ CO + D $_2$ O (gota) e TMS como referência interna.

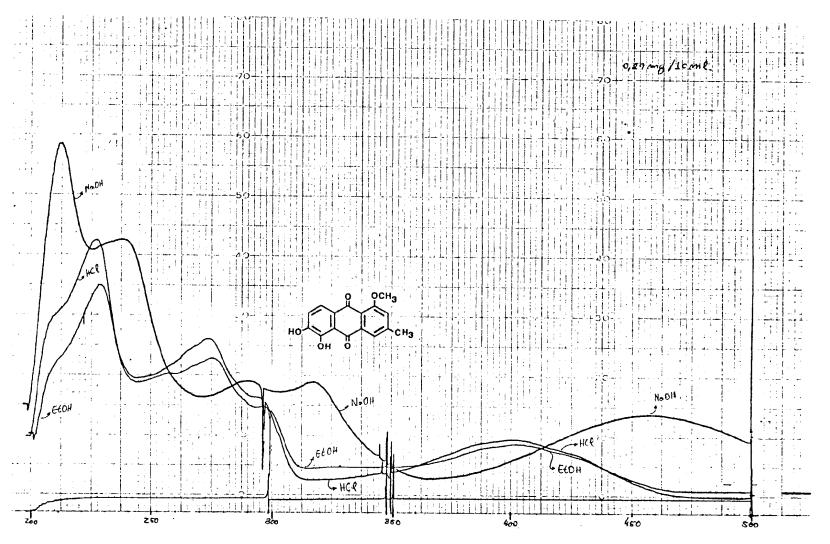


Fig. 18 - Espectro de U.V. da Hf-5 (17), EtOH e aditivos (NaOH e HCl).

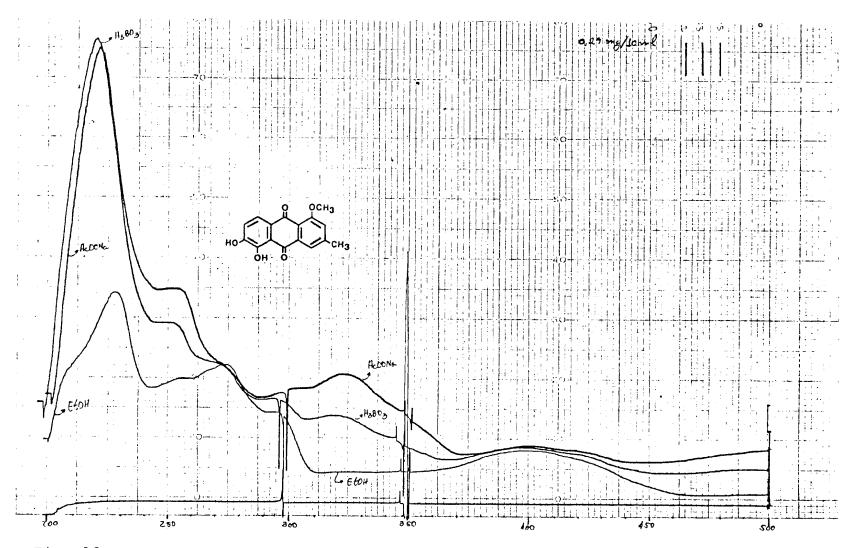


Fig. 19 - Espectro de U.V. da Hf-5 (17), EtOH e aditivos (AcOONa e H_3BO_3).

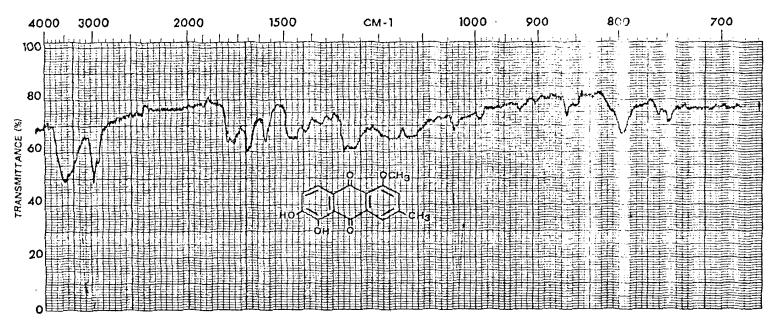


Fig. 20 - Espectro de I.V. da Hf-5 (17) em KBr.

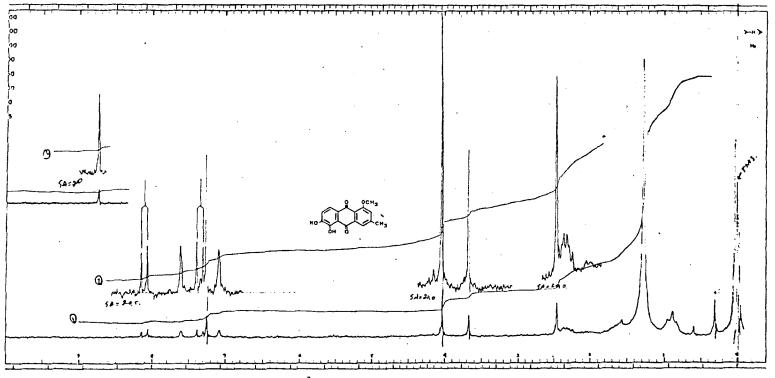


Fig. 21 - Espectro de R.M.N. H (100 MHz) da Hf-5 (17) em CDCl 3 e TMS como referência interna.

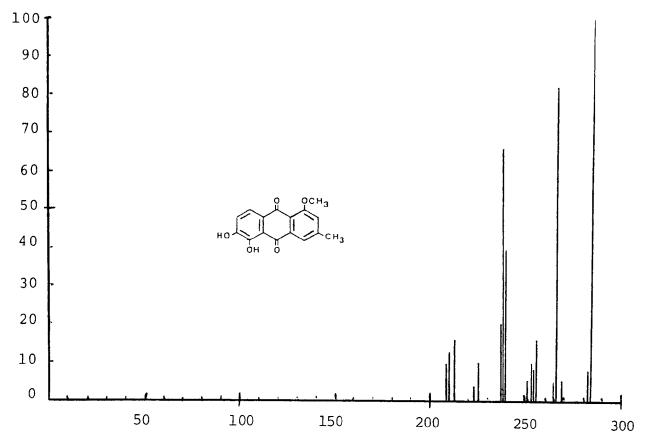


Fig. 22 - Espectro de massas da Hf-5 (17).

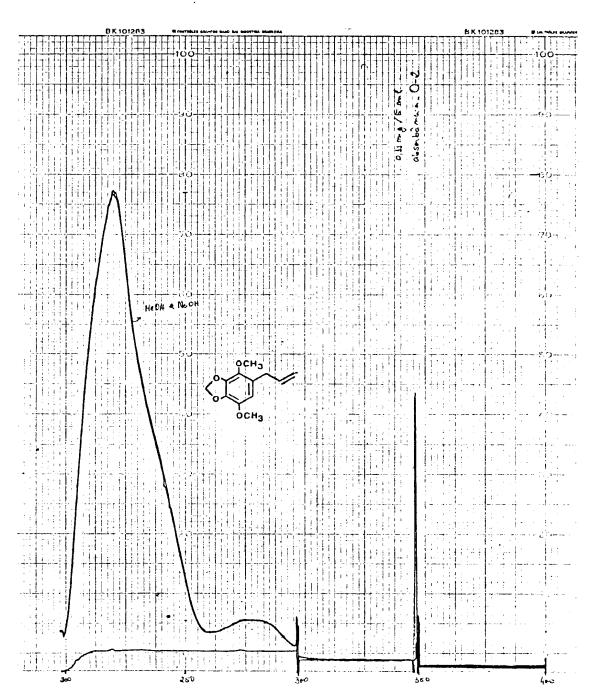


Fig. 23 - Espectro de U.V. da Oc-l ($\underline{21}$), MeOH e aditivo (NaOH).

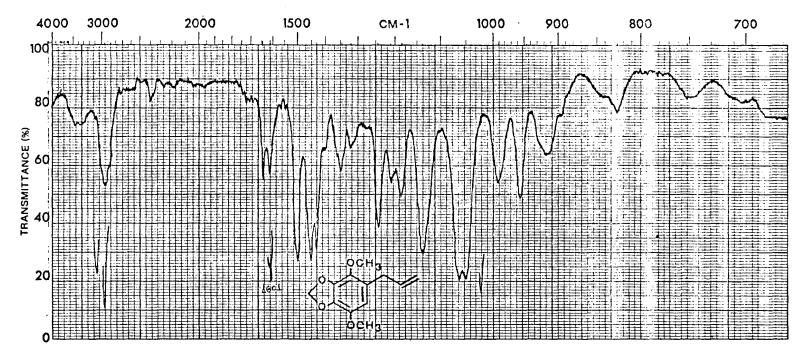


Fig. 24 - Espectro de I.V. da Oc-l (21) em filme.

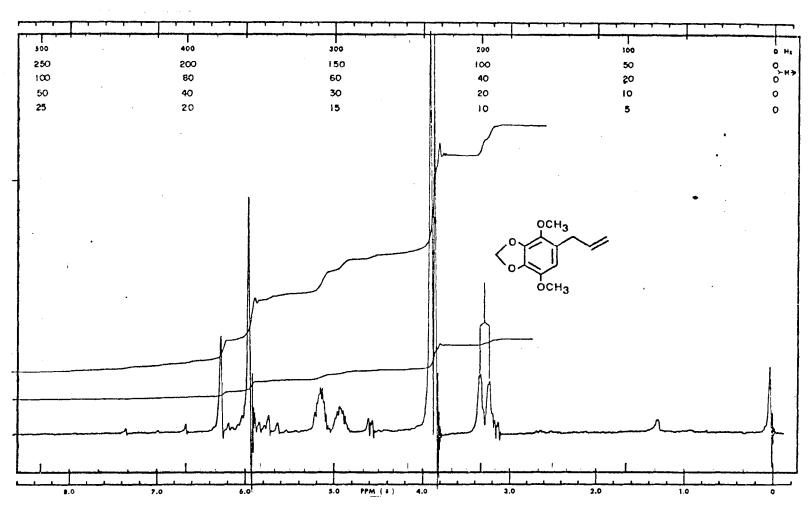


Fig. 25 - Espectro de R.M.N. 1 H (60 MHz) da Oc-1 ($\underline{21}$) em CDCl $_3$ e TMS como referência interna.

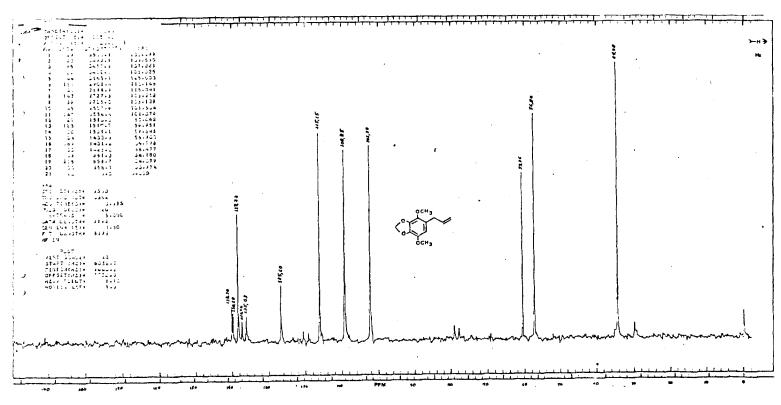


Fig. 26 - Espectro de R.M.N. 13 C (25,2 MHz) totalmente desacoplado, da OC-1($\underline{21}$) em CDCl $_3$ e TMS como referência interna.

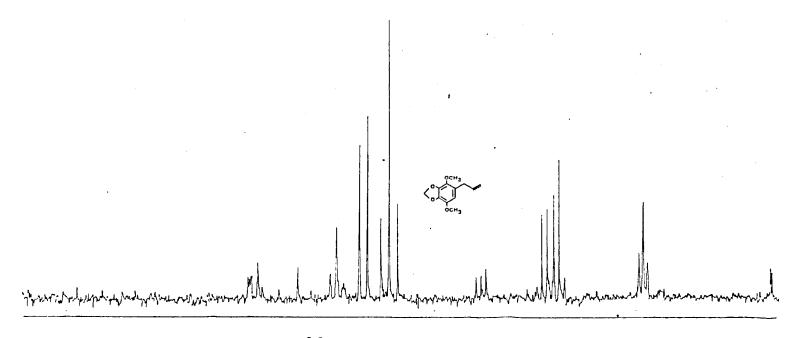


Fig. 27 - Espectro de R.M.N. 13 C (25,2 MHz) com acoplamento residual da Oc-L (21) em CDCl $_3$ e TMS como referência interna.

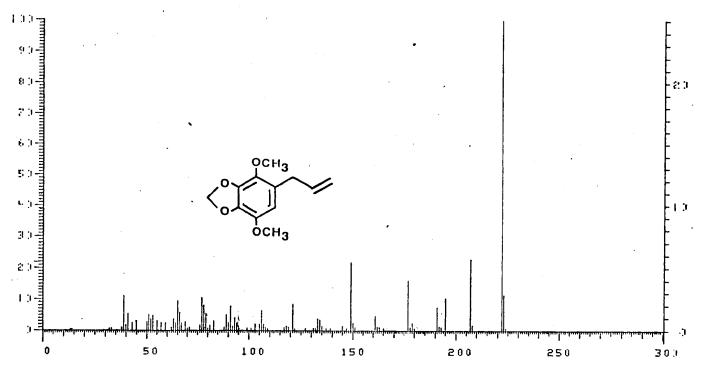


Fig. 28 - Espectro de massas da Oc-1 (21).

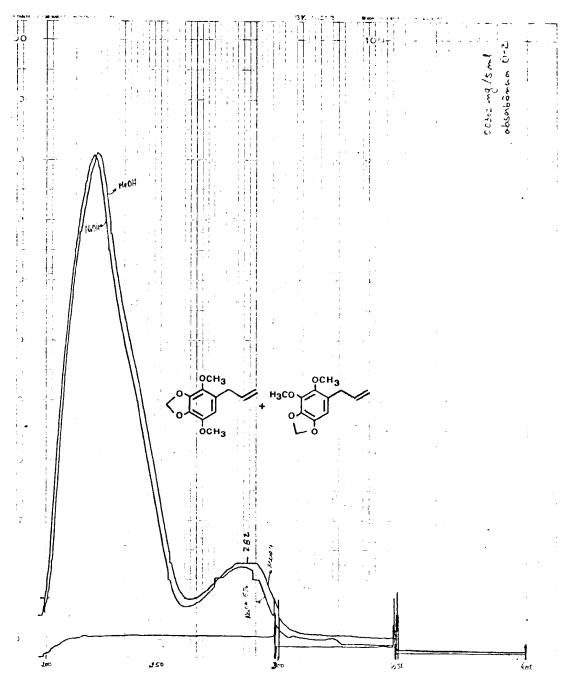


Fig. 29 - Espectro de U.V. da mistura de Oc-1 $(\underline{21})$ e Oc-2 $(\underline{22})$, MeOH e aditivo (NaOH).

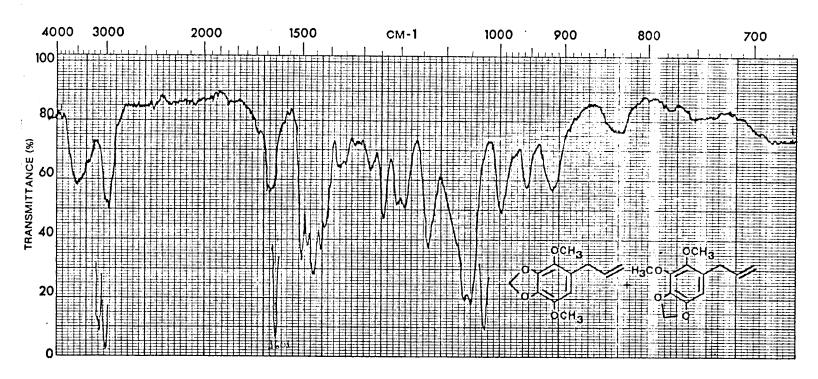


Fig. 30 - Espectro de I.V. da mistura de Oc-l ($\underline{21}$) e Oc-2 ($\underline{22}$)em filme.

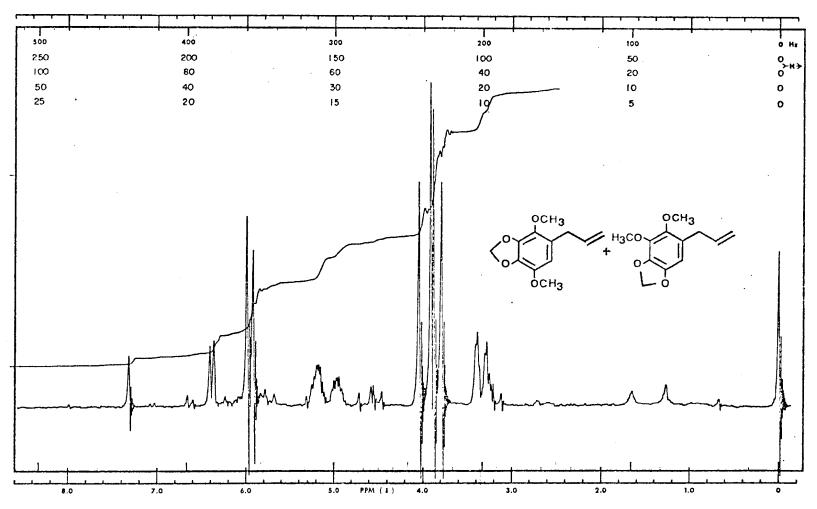


Fig. 31 - Espectro de R.M.N. H (60 MHz) da mistura de Oc-l (21) e Oc-2 (22) em CDCl 3 e TMS como referência interna.

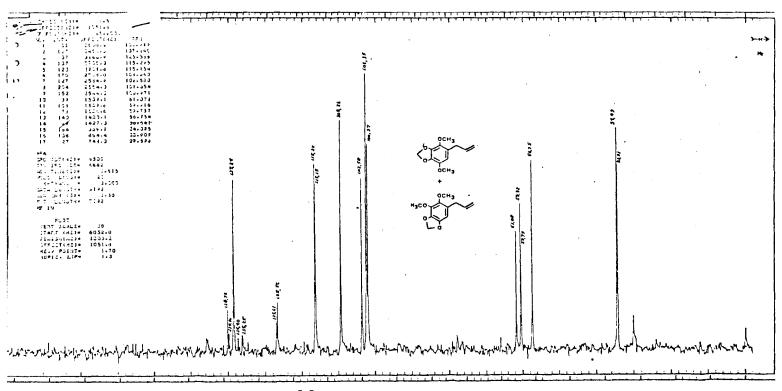


Fig. 32 - Espectro de R.M.N. 13 C (25,2 MHz) totalmente desacoplado, da mistura de Oc-1 (21) e Oc-2 (22) em CDCl $_3$ e TMS como referência interna.

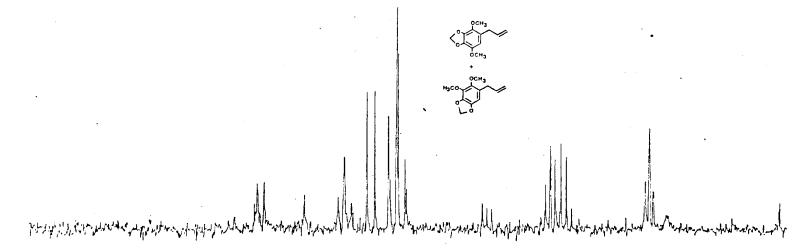


Fig. 33 - Espectro de R.M.N. 13 C (25,2 MHz) com acoplamento residual, da mistura de Oc-1 ($\underline{21}$) e Oc-2 ($\underline{22}$) em CDCl $_3$ e TMS como referência interna.

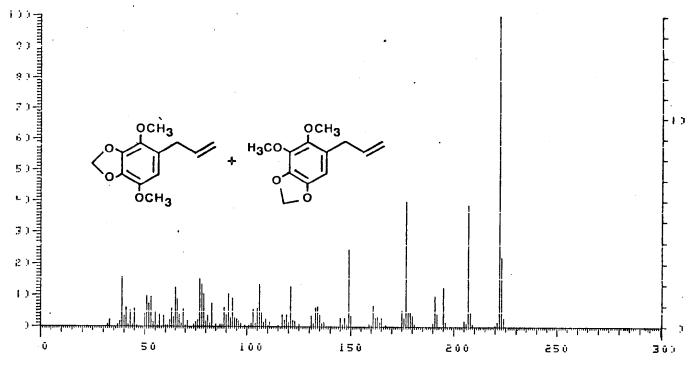


Fig. 34 - Espectro de massas da mistura de Oc-1 (21)e Oc-2 (22).

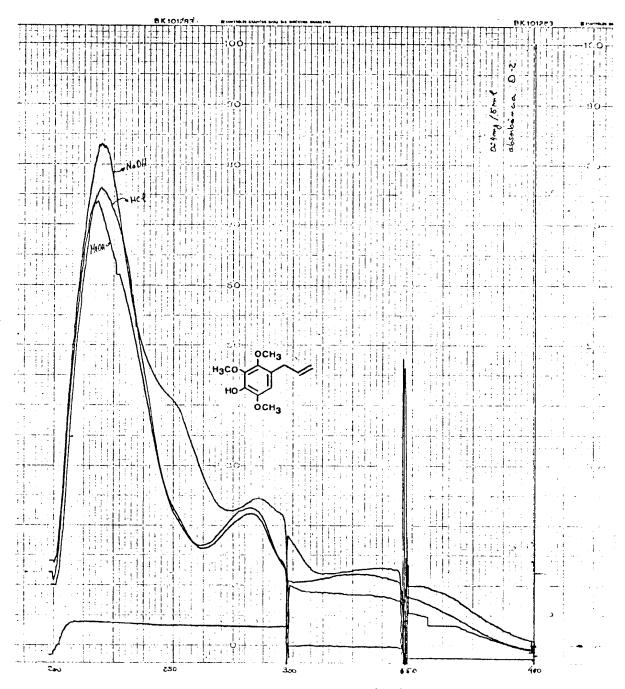


Fig. 35 - Espectro de U.V. da Oc-3 $(\underline{23})$, MeOH e aditivos (NaOH e HCl).

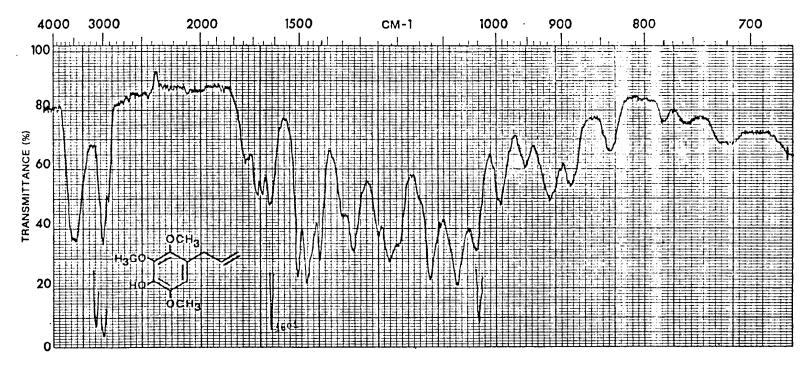


Fig. 36 - Espectro de I.V. da Oc-3 (23) em filme.

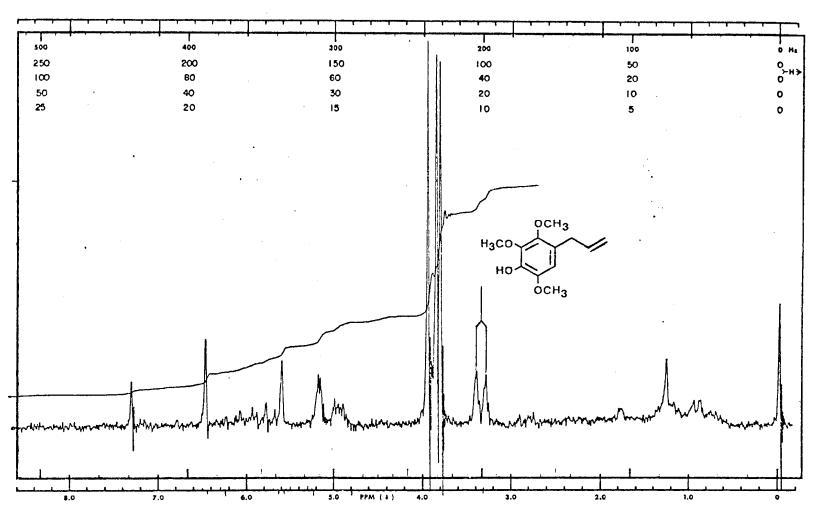


Fig. 37 - Espectro de R.M.N. 1 H (60 MHz) da Oc-3 ($\underline{23}$) em CDCl $_3$ e TMS como referência interna.

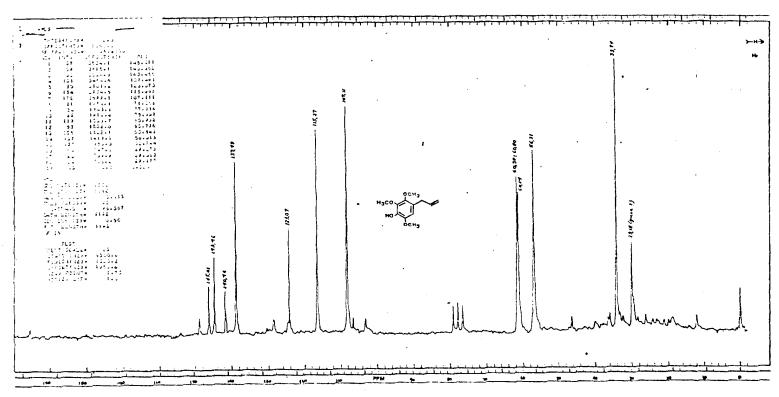


Fig. 39 - Espectro de R.M.N. 13 C (25,2 MHz) totalmente desacoplado, da Oc-3 (23) em CDCl $_3$ e TMS como referência interna.

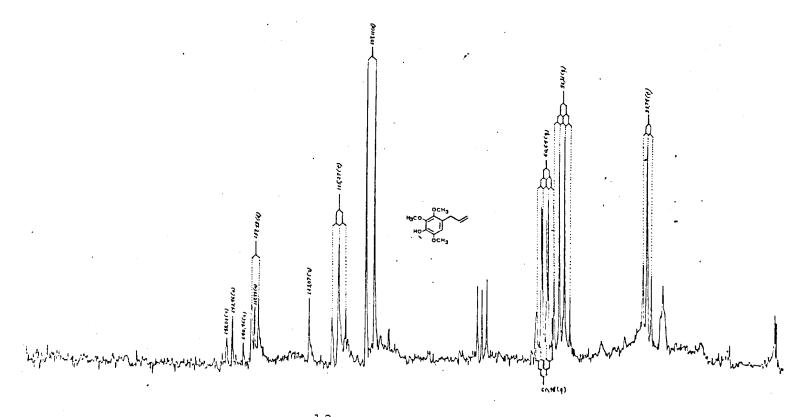


Fig. 40 - Espectro de R.M.N. 13 C (25,2 MHz) com acoplamento residual, da Oc-3 (23) em CDCl $_3$ e TMS como referência interna.

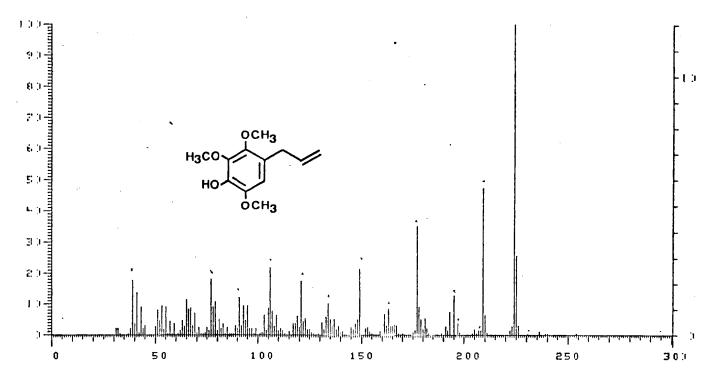


Fig. 41 - Espectro de massas da Oc-3 (23).

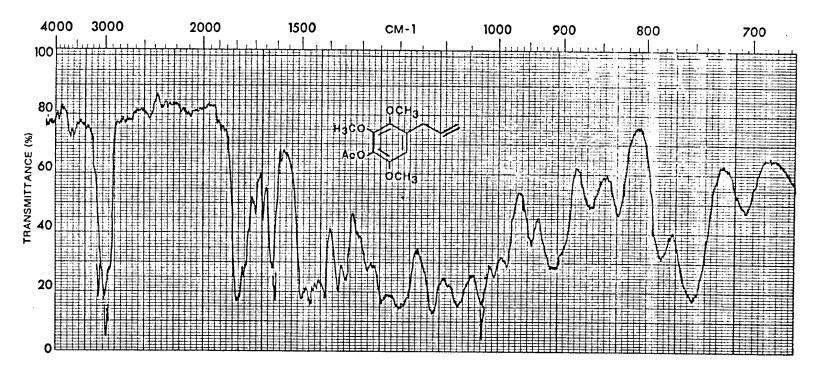


Fig. 42 - Espectro de I.V. da Oc-3 Ac em filme.

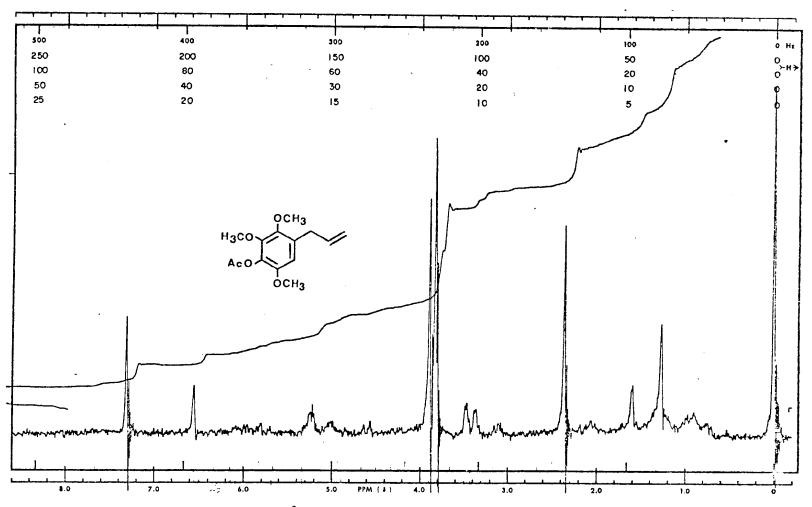


Fig. 43 - Espectro de R.M.N. H (60 MHz) da Oc-3 Ac em CDCl₃ e TMS como referência interna.

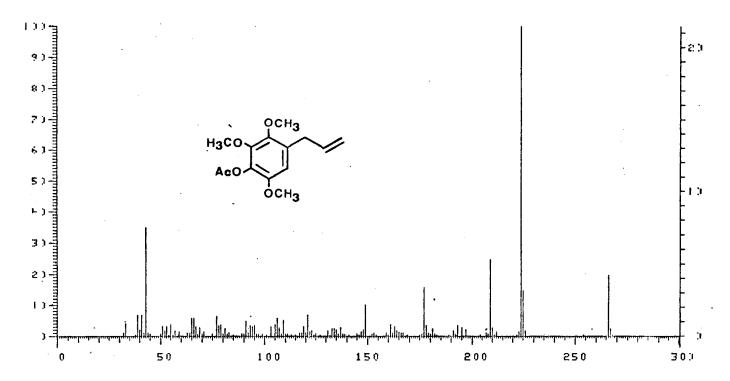


Fig. 44 - Espectro de massas da Oc-3 Ac.

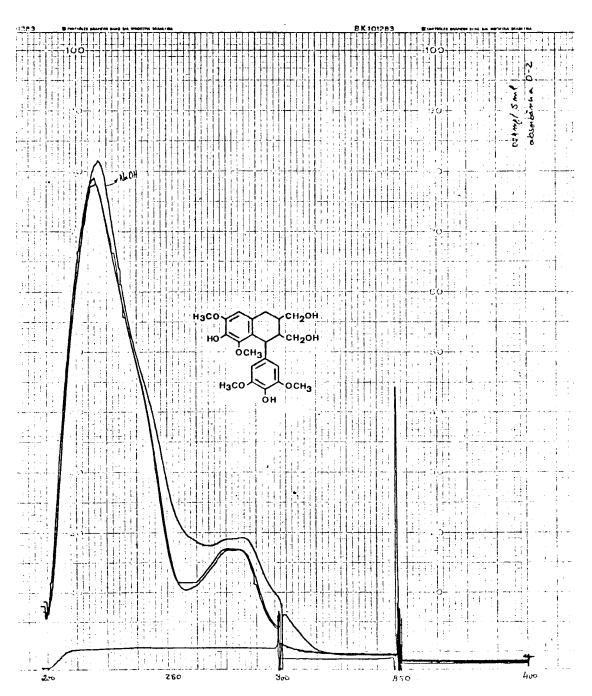


Fig. 45 - Espectro de U.V. da Oc-4 $(\underline{37})$, MeOH e aditivos (NaOH e HCl).

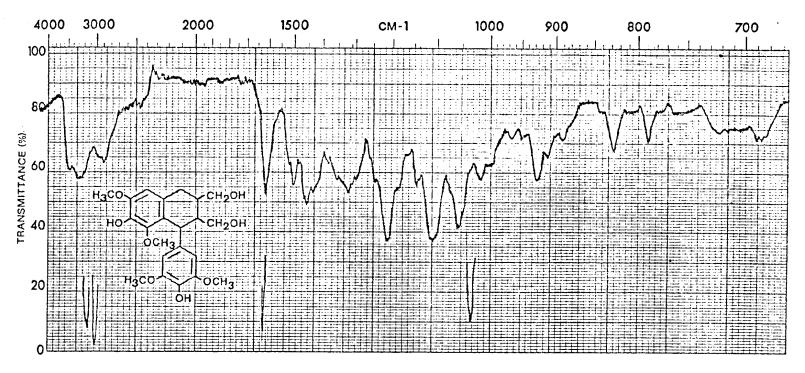


Fig. 46 - Espectro de I.V. da Oc-4 (37) em KBr.

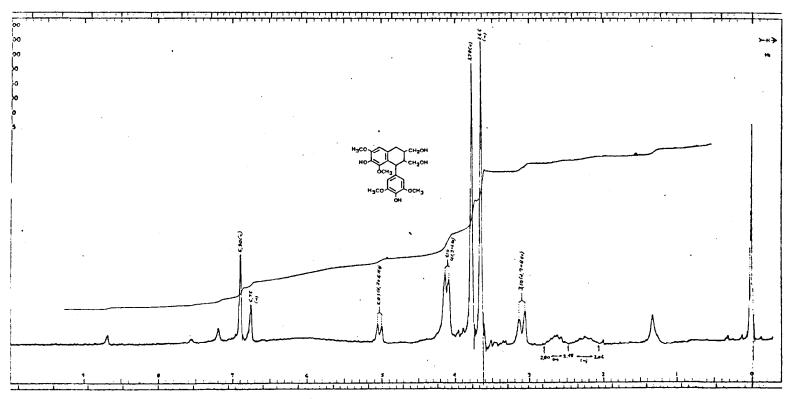


Fig. 47 - Espectro de R.M.N. 1 H (100 MHz) da Oc-4 ($\underline{37}$) em $^{\rm C}_5{^{\rm D}}_5{^{\rm N}}$ e TMS como referência interna.

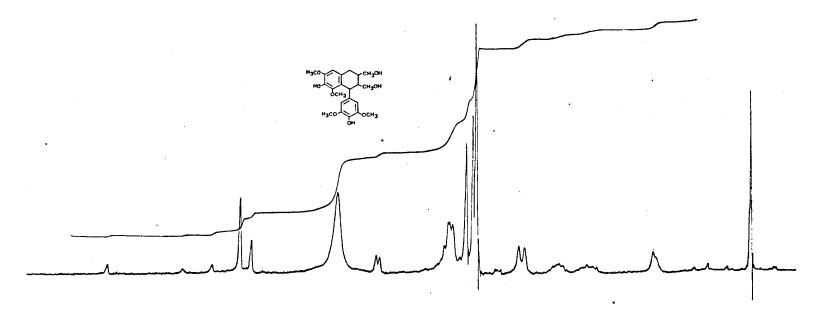


Fig. 48 - Espectro de R.M.N. 1 H (100 MHz) da Oc-4 ($\underline{37}$) em $^{\rm C}_5^{\rm D}_5^{\rm N}$ + $^{\rm D}_2^{\rm O}$ (gota) e TMS como referência interna.

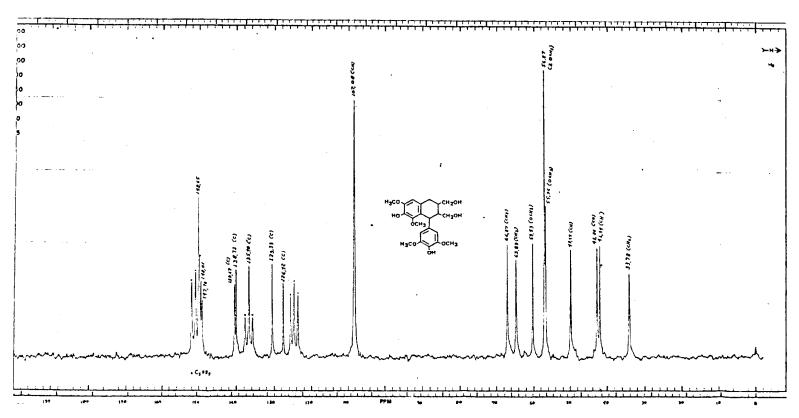


Fig. 49 - Espectro de R.M.N. 13 C (25,2 MHz) totalmente desacoplado, da Oc-4 ($\underline{37}$) em C $_5$ D $_5$ N e TMS como referência interna.

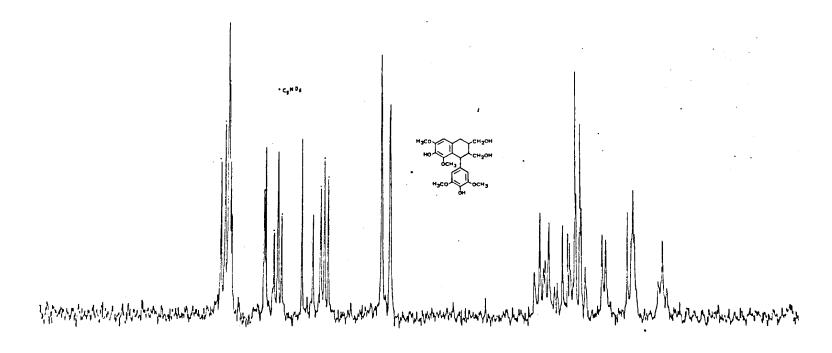


Fig. 50 - Espectro de R.M.N. 13 C (25,2 MHz) com acoplamento residual, da Oc-4 (37) em C $_5$ D $_5$ N e TMS como referência interna.

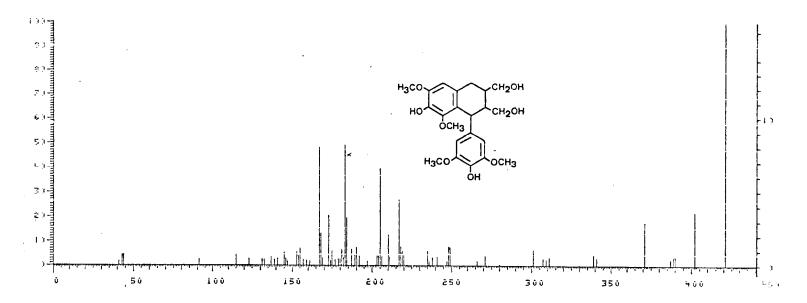


Fig. 51 - Espectro de massas da Oc-4 ($\underline{37}$).

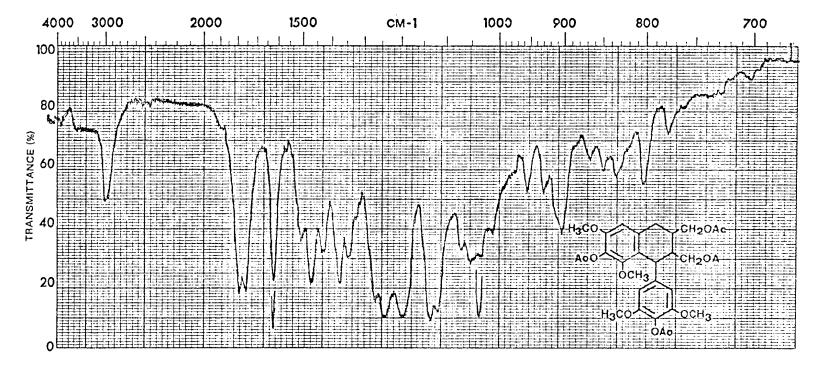


Fig. 52 - Espectro de I.V. da Oc-4 Ac em KBr.

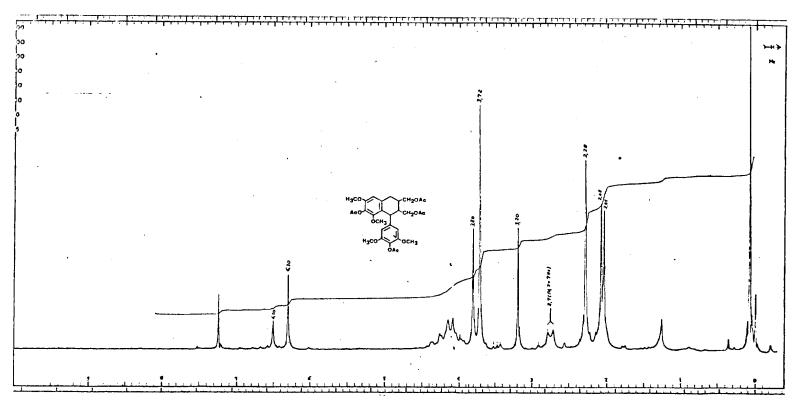


Fig. 53 - Espectro de R.M.N. H (100 MHz) da Oc-4 Ac em CDCl e TMS como referência interna.

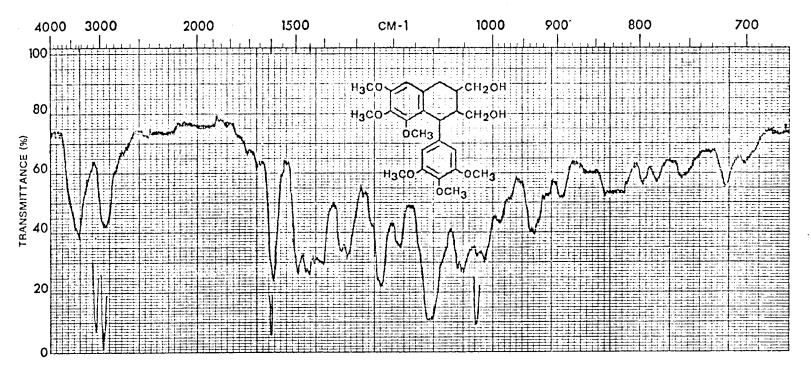


Fig. 54 - Espectro de I.V. da Oc-4 (me) $_2$ em KBr.

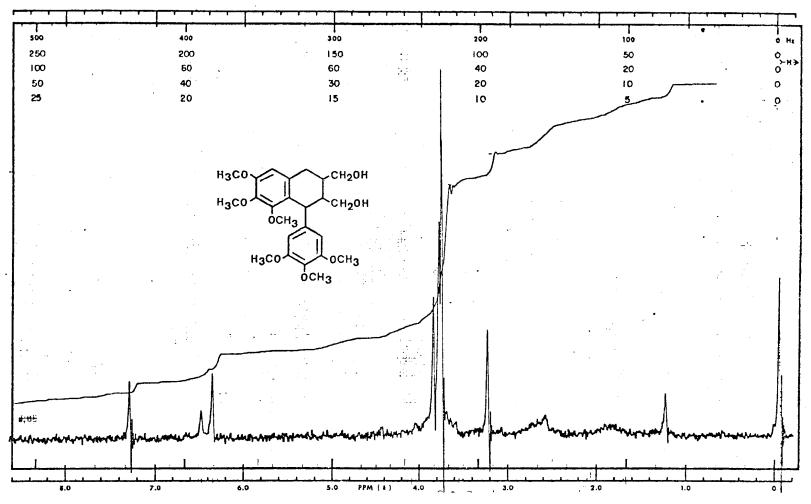


Fig. 55 - Espectro de R.M.N. ¹ F (60 MHz) da Oc-4 (Me) em CDCl em CD

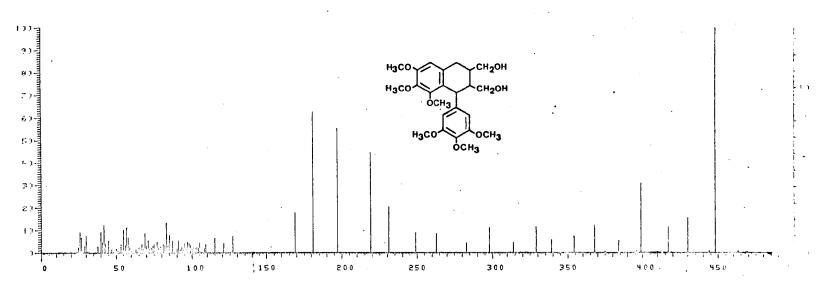


Fig. 56 - Espectro de massas da Oc-4 (Me)₂.

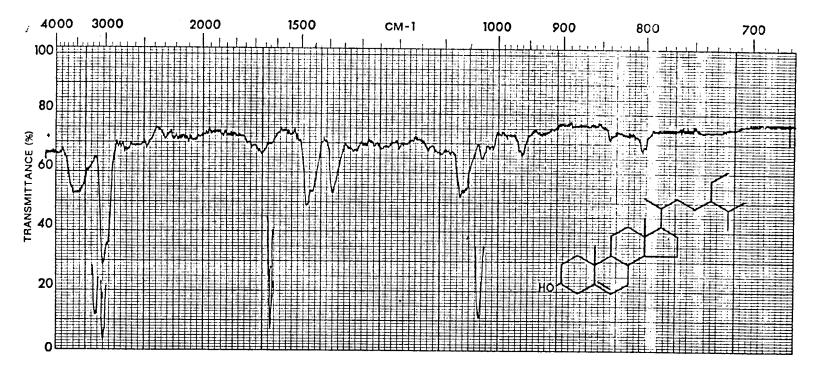


Fig. 57 - Espectro de I.V. da Oc-5 (38) em KBr.

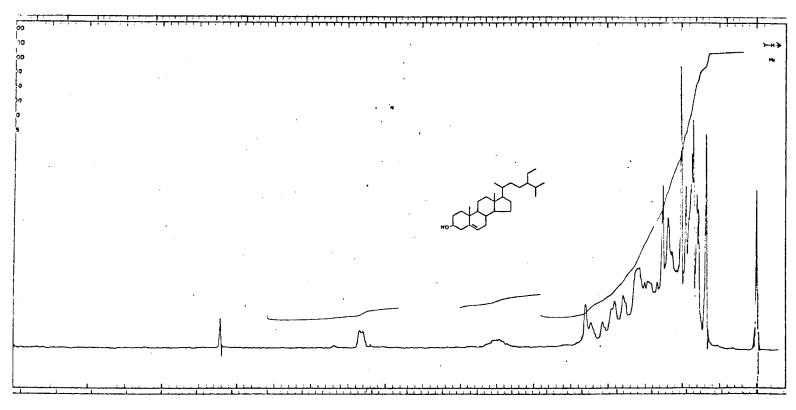


Fig. 58 - Espectro de R.M.N. H (100 MHz) da Oc-5 (38) em CDCl₃ e TMS como referência interna.

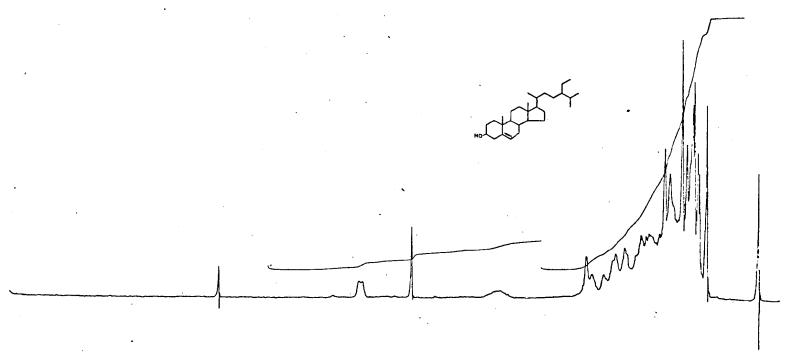


Fig. 59 - Espectro de R.M.N. 1 H (100 MHz) da Oc-5 ($\underline{38}$) em CDCl $_3$ + D $_2$ O (gota) e TMS como referência interna.

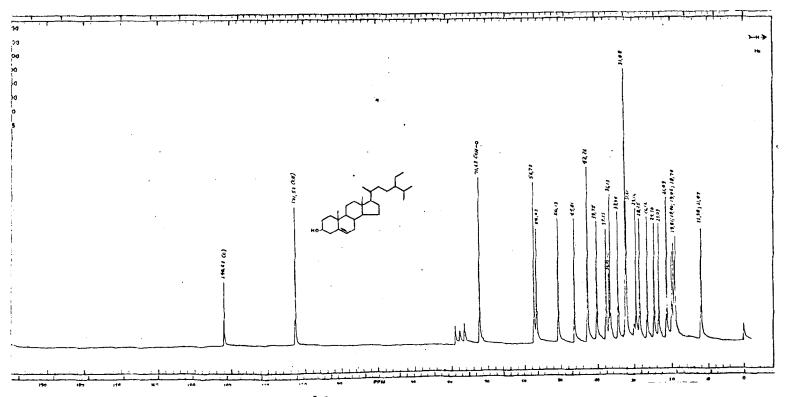


Fig. 60 - Espectro de R.M.N. 13 C (25,2 MHz) totalmente desacoplado, da Oc-5(38) em CDCl $_3$ e TMS como referência interna.

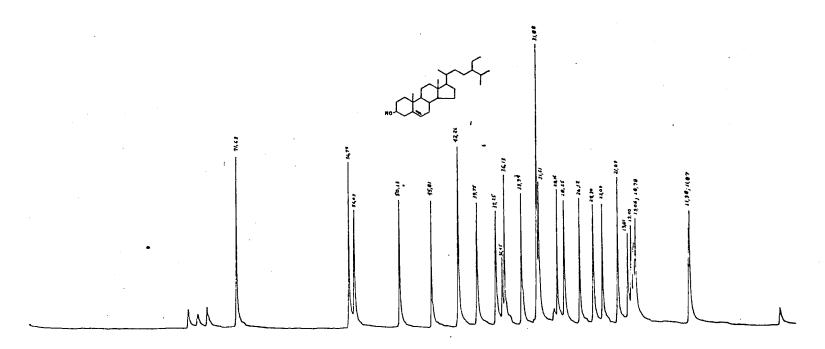


Fig. 61 - Expansão da faixa de 0,0 a 71,63 ppm corrspondente ao espectro da Figura 60.

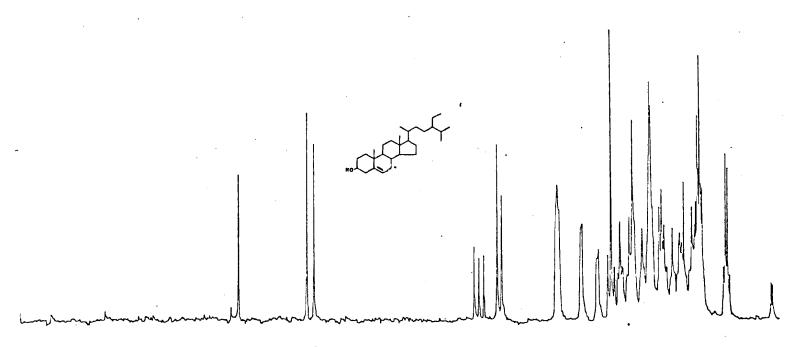


Fig. 62 - Espectro de R.M.N. 13 C (25,2 MHz) com acoplamento residual, da Oc-5 ($\underline{38}$), em CDCl $_3$ e TMS como referência interna.

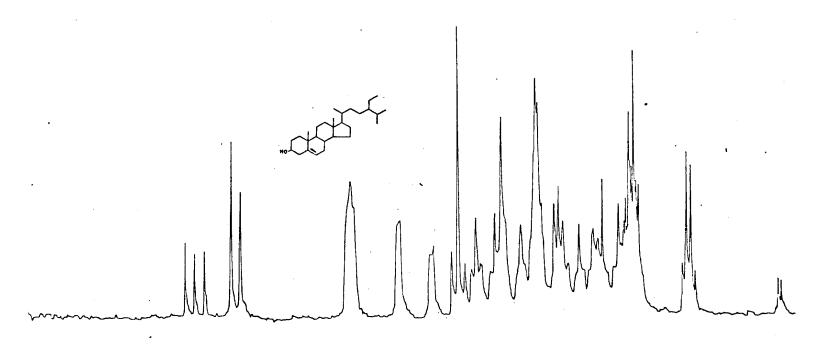


Fig. 63 - Expansão da faixa de 0,0 a 71,63 ppm correspondente ao espectro da Figura 62.

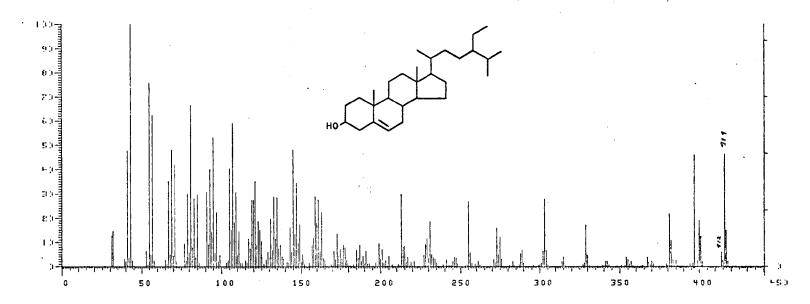


Fig. 64 - Espectro de massas da Oc-5 (38).

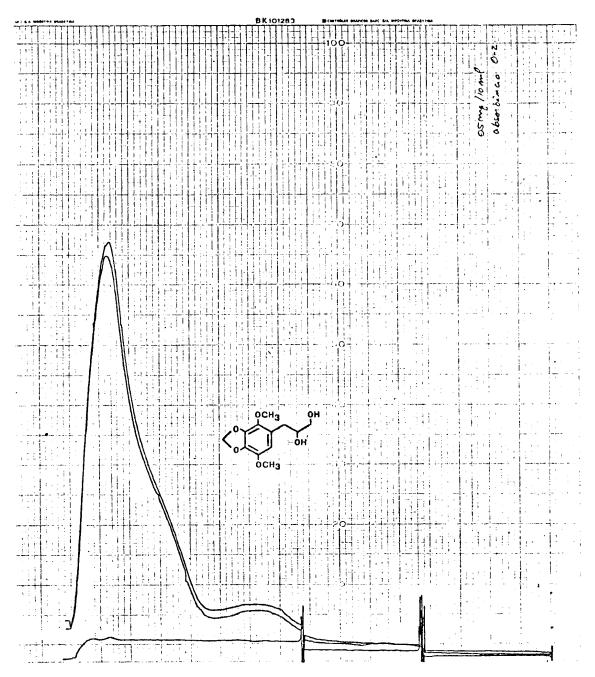


Fig. 65 - Espectro de U.V. da Oc-6 $(\underline{41})$, MeOH e aditivo (NaOH).

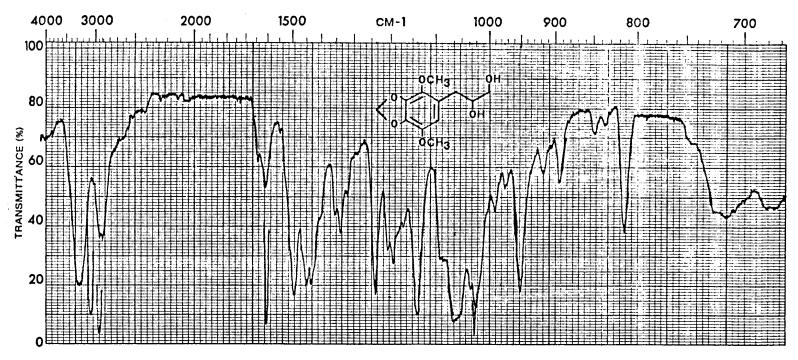


Fig. 66 - Espectro de I.V. da Oc-6 (41) em KBr.

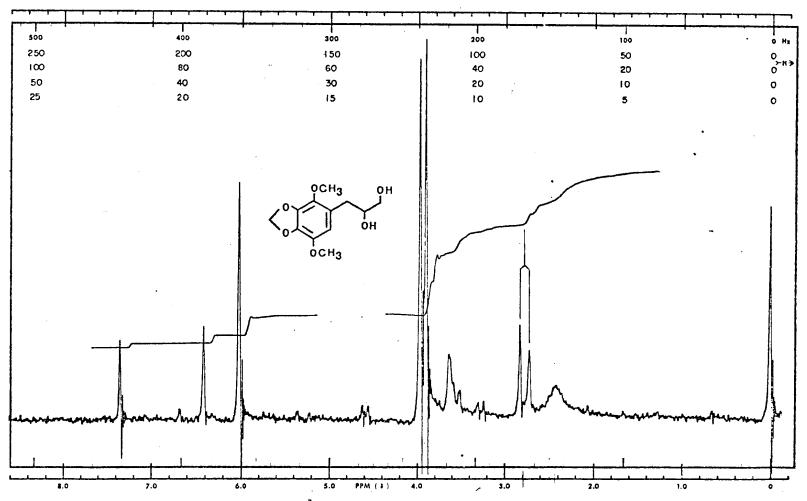


Fig. 67 - Espectro de R.M.N. 1 H (60 MHz) da Oc-6 ($\underline{41}$) em CDCl $_3$ e TMS como referência interna.

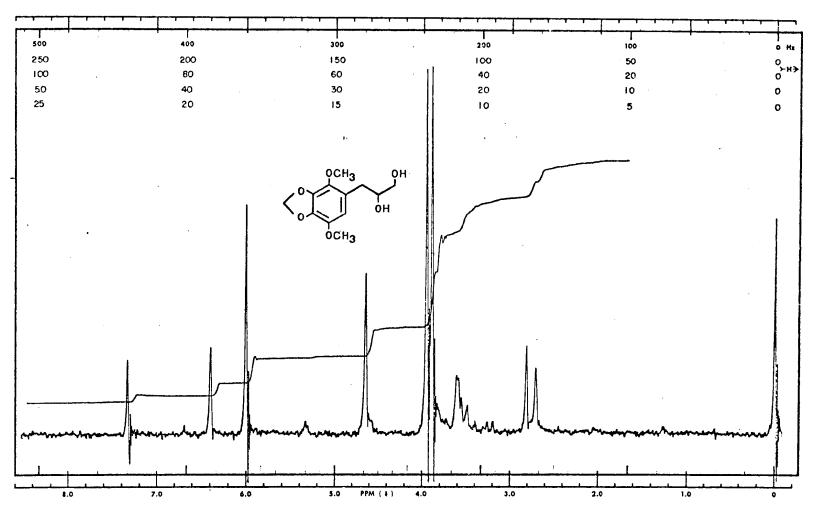


Fig. 68 - Espectro de R.M.N. 1 H (60 MHz) da Oc-6 ($\underline{41}$) em CDCl $_3$ + D $_2$ O (gota) e TMS como referência interna.

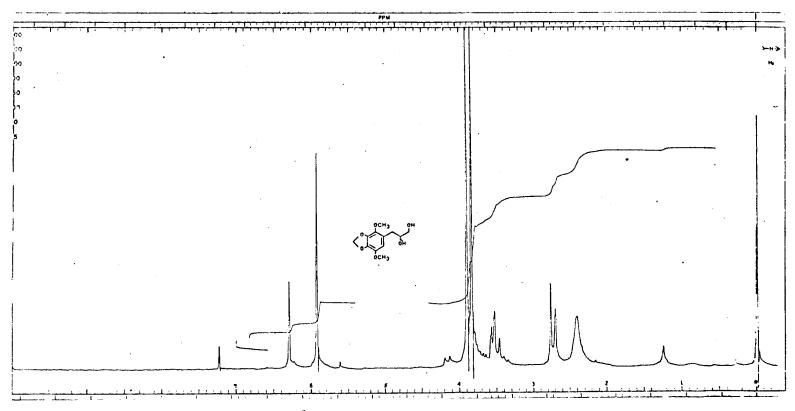


Fig. 69 - Espectro de R.M.N. H (100 MHz) da Oc-6 (41) em CDCl₃ e TMS como referência interna.

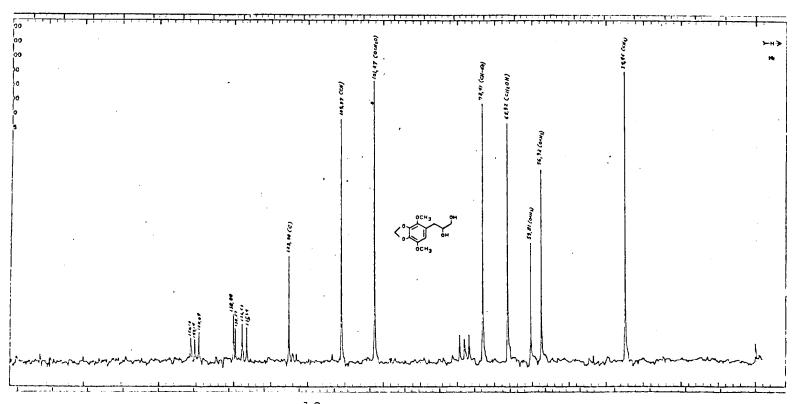


Fig. 70 - Espectro de R.M.N. 13 C (25,2 MHz) totalmente desacoplado, da Oc-6 (41) em CDCl $_3$ e TMS como referência interna.

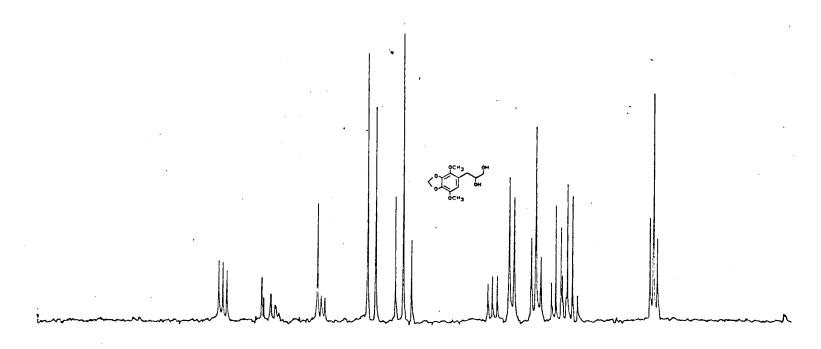


Fig. 71 - Espectro de R.M.N. 13 C (25,2 MHz) com acoplamento residual, da Oc-6 (41) em CDCl $_3$ e TMS como referência interna.

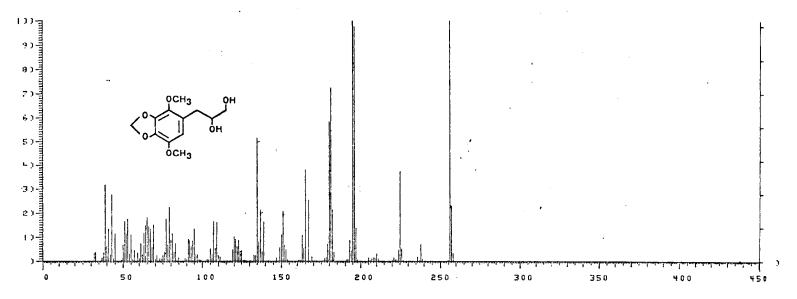


Fig. 72 - Espectro de massas da Oc-6 (41).

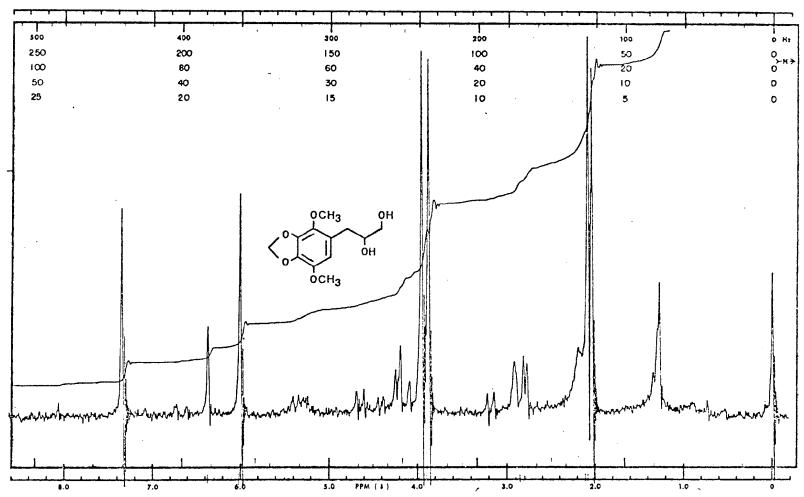


Fig. 73 - Espectro de R.M.N. 1 H (60 MHz) da mistura de Oc-6 ($\underline{41}$) e do glicol derivado de Oc-2 (obtidos por síntese a partir da mistura de Oc-1 ($\underline{21}$) e Oc-2 ($\underline{22}$), em CDCl $_3$ e TMS como referência interna.

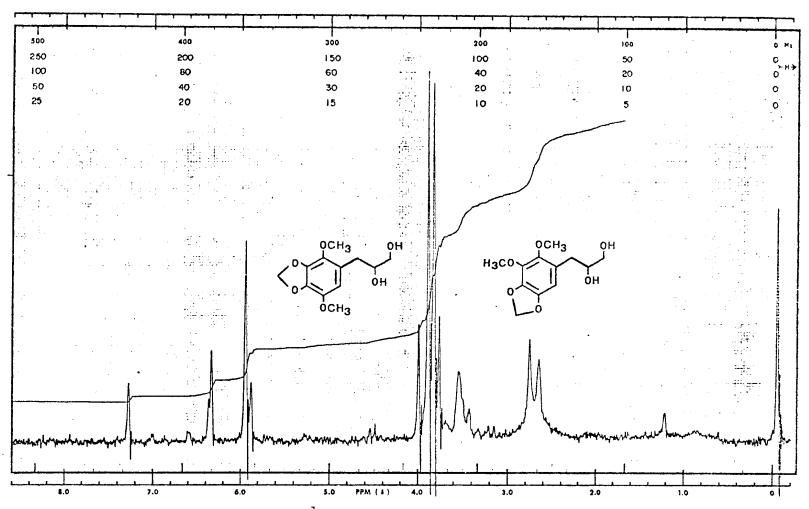


Fig. 74 - Espectro de R.M.N. H (60 MHz) da Oc-6 Ac em CDCl 3 e TMS como referência interna.

3 - BIOSSÍNTESE DE ANTRAQUINONAS.

São conhecidas duas rotas principais para biossíntese de antraquinonas, via acetato e via ácido chiquímico, que são caracterizadas principalmente pelo padrão de substituição nos dois anéis benzênicos.

A origem policetédica de muitas antraquinonas presentes em plantas superiores pode ser identificada pela presença de susbtituintes oxigenados nos dois anéis benzênicos.

A emodina (LIII), catenarina (LIV), helmintosporina (LV), fomarina (LVI) e o crisofanol (LVII) podem representar esta classe de antraquinonas naturais [353, 355], observando-se que a emodina conserva o padrão de oxigenação estabelecido pelo precursor. (Esq. 9).

Esquema 9 - Postulação biossintética para antraquinonas pol \underline{i} cetídicas.

A ausência de função oxigenada na posição prevista com base no precursor (LV, LVI, LVII) e a incorporação em outros carbonos devem-se a modificações metabólicas posteriores. É possível admitir que a eliminação de grupo hidroxila ocorre através da redução da forma cetônica seguida da eliminação de uma molécula de água (Esq. 9) [355], enquanto que a reação de substituição eletrofílica envolvendo +OH (ou seu equivalente biológico) pode representar a incorporação de grupamento hidroxila em posição não prevista (Esq. 9) (LIV e LV).

A outra via biossintética, utiliza os ácidos chiquímico (LIII), L-glutâmico (LIX) e mevalônico (LX). Esta rota fornece as antraquinonas encontradas nas famílias Verbenaceae (gênero Tectona), Bignoniaceae (gêneros Catalpa e Tabebuia) e algumas da família Rubiaceae (gênero Galium). [354]. A hipótese biossintética [354] para antraquinonas que contém um anel benzênico não substituido baseou-se na utilização de precursores marcados: ácido 1,6- 14 C_2 -(±)- chiquímico, 14 C -L-glutâmico e 2- 14 C - mevalónico. Os ácidos (LVIII) e (LIX) produzem anaftoquinona (LXI) que reage com γ , γ - dimetilalilpirofosfato (LXII), originado do ácido mevalônico (LX), que através de transpara produzir prenilnaftoquinona (LXIII) formações químicas oxidativas oriundas de processos metabóliconvertem a prenilnaftoquinona(LXIII) em antraquinonas cos (LXI a LXXII), Esq. 10). [354].

Esquema 10 - Postulação biossintética para antraquinonas or \underline{i} ginadas da condensação do ácido chiquímico, gl \underline{u} tânico e mevalônico.

As antraquinonas isoladas de Hemerocallis fulva, família Liliaceae, contendo substituintes oxigenados nos dois anéis benzênicos (4, 11, 12, 14, 15 e 17) retratam a rota biossintética policetídica. Com base nos dados descritos na literatura [353 e 355] pode-se postular a sequência que aparece no Esquema 11.

Uma evidência adicional às propostas biossintéticas de Hf-3 e Hf-4 (Esq. 10) foi o fato que nos dois casos seus precursores postulados 12 e 15 foram isolados em quantidades muito pequenas identificados principalmente pelos espectros de massas (figs. 12 e 17) e RMN¹H (fig. 10 e 15).

Esquema 11 - Postulação biossintética para as antraquinonas isoladas de <u>Hemerocallis fulva</u>, família Liliaceae.

4 - PARTE EXPERIMENTAL

4.1 - MATERIAIS E MÉTODOS

- 4.1.1 Os critérios de pureza adotados foram principalmente a precisão do ponto de fusão e o aparecimento de uma mancha única em cromatografia em camada delgada, utilizando-se diversos sistemas de solventes.
- 4.1.2 No isolamento e purificação das substâncias por processos cromatográficos foram utilizados a cromatografia em coluna úmida e coluna seca, usando-se como adsorvente sílica Kiesegel Merck (0,05 0,20 mm) e cromatografia em camada delgada preparativa, usando-se como adsorvente sílica Kiesegel Merck (Tipo 60 P.F. 254).
- 4.1.3 A análise das substâncias foi feita por cromatografia em camada delgada utilizando-se como adsorvente sílica Kiesegel Merck G e H (tipo 60).
- 4.1.4 Nas colunas cromatográficas foram utilizadas colunas de vidro, com ou sem torneira, de diversos tamanhos e diâmetros escolhidas de acordo com a quantidade de material a

ser cromatografado.

- 4.1.5 As placas em camada delgada preparativas foram preparadas manualmente em placas de vidro 20 x 20 cm, aplicando-se uma suspensão de sílica em água destilada numa proporção de 25 g em 80 ml por placa. A espessura da camada de sílica foi superior a 1 mm.
- 4.1.6 As placas em camada delgada analítica foram preparadas em placas de vidro 20 x 20 cm, 20 x 5 cm e lâminas para microscopia. A aplicação da suspensão de sílica em água foi feita em espalhador Quickfit. A espessura da camada de sílica foi de 0,25 mm.
- 4.1.7 A revelação das placas analíticas foi feita em cuba de vidro saturada de iodo e também com aplicação de sulfato cérico em ácido sulfúrico e posterior aquecimento.
- 4.1.8 A revelação das placas preparativas foi feita através de luz ultravioleta.
- 4.1.9 Foram utilizados solventes e reagentes das marcas: Merck, Carlo Erba, Grupo Química, Hoechst e outros.
- 4.1.10 A destilação dos solventes foi feita em evaporador rotatório Janke e Hunkel, modelo R.V. 05 (ASKA).
- 4.1.11 Pontos de fusão foram determinados no bloco de Kofler e não foram corrigidoso.
 - 4.1.12 A determinação estrutural das substâncias i-

soladas envolveu a interpretação de espectros de:

 ${\rm 4.1.12.1} \quad - \quad {\rm Resson\^ancia} \quad {\rm magn\'etica} \quad {\rm prot\^onica}$ (R.M.N. $^{1}{\rm H}).$

- a) Os espectros a 60 MHz foram registrados em espectrômetro Varian, modelo T-60 existente na U.F.R.R.J., Departamento de Química.
- b) Os espectros a 100 MHz foram registrados em espectrômetro Varian, modelo XL-100 existente na U.F.R.J.-N.P.P.N., por gentileza do Prof. Antônio Jorge.
- $4.1.12.2 Ressonância magnética de Carbo- \\ no-13 (R.M.N. ^{13}C).$

Os espectros foram registrados a 25,2 MHz em espectrômetro Varian, modelo XL-100 existente na U.F.R.J.-N.P.P.N., por gentileza do Prof. Antônio Jorge.

Os deslocamentos químicos foram dados em δ (ppm). As constantes de acoplamento (J) foram dadas em Hz. Como solventes foram utilizados CCl4, CDCl3, (CD3)2CO, (CD3)2SO e C5D5N. 3 TMS foi usado como referência interna.

4.1.12.3- Infravermelho (I.V.)

Foram registrados em espectrômetros Perkin-Elmer modelos, 700 existente na U.F.C.E., por gentileza do Prof. Afrânio de Aragão Craveiros e 137-B existente na U.F.R.J. N.P.P.N., por gentileza do Prof. Antonio Jorge.

4.1.12.4 - Massas (baixa resolução)

Foram registrados em espectrômetro Micro Mass, modelo existente na U.F.R.J. - N.P.P.N., por gentileza do Prof. Antio Jorge.

4.1.12.5 - Ultravioleta (U.V.)

Foram registrados em espectrômetros Varian modelo 402 existente na U.F.R.R.J., Departamento de Química e Beckman modelo existente na U.F.R.J.-N.P.P.N., por gentileza. do Prof. Antônio Jorge. Usou-se como solventes etanol e metanol de pureza espectroscópica (Uvasol) Merck.

4.2 - Coleta do Material

4.2.1 - Hemerocallis fulva, L

A coleta de material para estudo foi efetuada em julho de 1978, numa chácara de floricultura, em Friburgo, Rio de Janeiro, gentilmente cedido pelo Sr. Paulo Athayde. A espécie foi classificada como Hemerocallis fulva, L., família Liliaceae, pela floricultura, já que trata-se de uma planta ornamental. Por isto, esta classificação requer confirmação de sistemática botânica.

O material coletado foi separado nas partes subterrânea (raiz) e aéreas (bulbo e folhas), secas em estufa de circulação de ar mantida a 60° (U.F.R.J.-N.P.P.N.) e em seguida moida no Jardim Botânico do Rio de Janeiro).

Preparou-se o extrato metanólico dos bulbos para estu-

do químico.

4.2.2 - Ocotea cymbarum,

O extrato etanólico da madeira de um espécime de Ocotea cymbarum, família Lauraceae, foi gentilmente cedido pelo Instituto Nacional de Pesquisas da Amazônia, onde encontra-se catalogada com o número 407. Esta espécie é conhecida popularmente como Louro Inhamuí.

4.3 - Isolamento dos constituintes químicos

4.3.1 - Extrato metanólico de Hemerocallis fulva, L.

O extrato metanólico, 20,7g, foi submetido a filtração em sílica para coluna, utilizando-se como eluentes:benzeno, clorofórmio e metanol. O eluato benzénico forneceu 5,2g, o clorofórmico 7,5g e o metanólico 6,9g. Com base em análise por cromatografia em camada delgada foram estudados os eluatos benzênico e o clorofórmico.

4.3.1.1 - Eluato benzênico

Este material (5,2g) foi fracionado em coluna de sílica (780 g) usando-se como eluente inicial benzeno. O fracionamento cromatográfico envolveu aumento de polaridade do solvente (Tab. 26). As frações coletadas (150 ml) foram concentradas e analizadas por cromatografia em camada delgada e reunidas em grupos (Tab. 26).

Tabela 27- Fracionamento cromatográfico do eluato benzênico (5,2g) do extrato metanólico (20,7g) de <u>Hemerocallis</u> fulva, L.

Eluente		Frações reunidas	Grupo	Substância Isolada
Benzeno		1- 3	01	
Benzeno		4-15	02	Hf-1
Benzeno		16-26	03	Hf-1
Benzeno-Clorofórmio	(5%)	27-42	04	Hf-2
Benzeno-Clorofórmio	(5%)	43-78	05	Hf-2
Benzeno-Clorofórmio	(10%)	79-90	06	Hf-3
Benzeno-Clorofórmio	(10%)	91-98	07	Hf-3
Benzeno-Clorofórmio	(10%)	99-111	08	
Benzeno-Clorofórmio	(50%)	112-126	09	
Benzeno-Clorofórmio	(50%)	127-183	10	Hf-4
Clorofórmio		184-217	11	Hf-4
Clorofórmio		218-239	12	
Clorofórmio-Metanol	(5%)	240-288	13	
Clorofórmio-Metanol	(5%)	289-315	14	
Clorofórmio-Metanol	(5%)	316-352	15	
Clorofórmio-Metanol	(10%)	353-382	16	
Clorofórmio-Metanol	(10%)	383-402	17	
Clorofórmio-Metanol	(50%)	403-445	18	
Clorofórmio-Metanol	(50%)	446-482	19	
Metanol		483-522	20	

Os grupos 02 e 03 forneceram após purificação em coluna seca de sílica e placa preparativa 43 mg de uma substância denominada Hf-1. Os grupos 04 e 05, separadamente, foram subemtidos a recristalizações em metanol e forneceram 52 mg de Hf-2. Os grupos 06 e 07 foram reunidos, após análise por cromatografia em camada delgada em diversos sistemas de solventes, e submetidos a purificações por colunas cromatográficas de sílica, úmidas e secas, e por placas preparativas de sílica para conseguir-se o isolamento da substância Hf-3, 13 mg. Mesmo procedimento foi efetuado para os grupos 10 e 11 quando foram isolados 11 mg de Hf-4.

Tentativas de purificação dos grupos restantes não conduziram a resultados satisfatórios.

4.3.1.2 - Eluato Clorofórmico.

O eluato clorofórmico (7,5~g) foi subemtido a cromatografia em coluna de sílica (1125~g) usando-se como eluente inicial o $CHCl_3$. O fracionamento cromatográfico foi efetuado com o aumento de polaridade do solvente (Tab.~27). Análise por cromatografia em camada delgada de sílica permitiu reunir as frações coletadas em grupos (Tab.~27).

Tabela 28 - Fracionamento cromatográfico do eluato clorofórmico (7,5 g) do extrato metanóli(20,7 g) de <u>Hemerocallis fulva</u>, L

Eluente	Frações reunidas		Grupo	Substância isolada	
Clorofórmio	1 -	2	01		
Clorofórmio	3 -	8	02	Hf-1	
Clorofórmio	9 -	15	03		
Clorofórmio	16 -	32	0 4	Hf-2	
Clorofórmio	33 -	52	0.5	Hf-2	
Clorofórmio	53 -	78	06	Hf-2	
Cloroformio-metanol (2%)	79 –	115	07	Hf-5 e $Hf-6$	
Clorofórmio-metanol (2%)	116 -	137	08		
Clorofórmio-metanol (2%)	138 -	162	09	Hf-7	
Clorofórmio-metanol (2%)	163 -	201	10		
Clorofórmio-metanol (2%)	202 -	220	11	Hf-8 e Hf-9	
Clorofórmio-metanol (5%)	221 -	235	12		
Clorofórmio-metanol (5%)	236 -	249	13	Hf-10	
Clorofómrio-metanol (5%)	250 -	293	14		
Clorofórmio-metanol(10%)	294 -	311	15		
Cloroformio-metanol(10%)	312 -	335	16		
Cloroformio-metanol(10%)	336 -	348	17		
Clorofórmio-metanol(10%)	349 -	376	18		
Clorofórmio-metanol(50%)	377 -	· 393	19		
Cloroformio-metanol(50%)	394 -	409	20		
Clorofórmio-metanol(50%)	410 -	431	21		
Metanol	432 -	445	22		
Metanol	446 -	478	23		

Do grupo 02 isolou-se mais 12 mg da substância Hf-1, através do mesmo método de purificação citado anteriormente. Os grupos 04, 05 e 06 forneceram por recristalizações em metanol mais 32 mg de Hf-2. O grupo 07 forneceu após purificação por cromatografia em placa preparativa de sílica duas substâncias Hf-5, 5,74 mg e Hf-6, 2,78 mg. Do grupo 09, após purificação por cromatografia em placa preparativa conseguiu-se 1,48 mg de Hf-7. O grupo 11, utilizando-se o mesmo processo de purificação dos grupos anteriores, forneceu as substâncias Hf-8, 1,88 mg e Hf-9, 2,91 mg. O grupo 13, ainda purificado por placa preparativa, forneceu 1,44 mg de Hf-10.

Tentativas de purificação dos grupos restantes não conduziram ao isolamento de outras substâncias.

Somente de Hf-5 (5,74 mg) conseguiu-se a obtenção de dados espectrais. As quantidades obtidas das outras substâncias impossibilitaram estudos adicionais.

O eluato metanólico não foi estudado devido a sua natureza polar, deixando-o assim para análise posterior.

4.3.2 - Extrato etanólico de Ocotea cymbarum

Uma parte deste extrato (56 g) foi submetido a extração com clorofórmio, na temperatura ambiente. Destilação do CHCl3 forneceu 9,3 g de material, que foi utilizado em cromatografia em camada delgada preparativa. Usou-se clorofórmio-metanol (2%) como eluente. Este procedimento conduziu ao isolamento de três substâncias, que foram denominadas Oc-1, Oc-2 e

Oc-3.

O material insolúvel em CHCl_3 foi dissolvido em acetato de etila e filtrado em sílica de coluna (250 g). Obteve-se 6,8 g de material, que foi fracionado em coluna de sílica (280g) preparada com diclorometano. Os solventes utilizados neste fracionamento cromatográfico constam na Tabela 28.

Análise das frações dos grupos 02, 03 e 04 por cromatografia em camada delgada e espectros de R.M.N. H (60 MHz) permitiu reconhecer a presença de três substâncias oleosas Oc-1, Oc-2 e Oc-3. Estas substâncias não foram purificadas por que já haviam sido previamente isoladas. Do grupo 06 obteve-se uma pequena quantidade, 9 mg, de Oc-5, após recristalização em metanol. Da elaboração das frações dos grupos 10 e 11, isolou-se por recristalização em acetato de etila 172 mg de Oc-6. Os grupos restantes foram reservados para trabalho futuro.

Outra parte do extrato etanólico (95 g) foi submetida a coluna de sílica (750 g) preparada com clorofórmio. Os solventes utilizados como eluentes no fracionamento desta coluna constam na Tabela 29.

Os grupos 02, 03 e 04 forneceram três substâncias oleosas, Oc-1 30,1 g, Oc-2, 9,1 g e Oc-3, 152,2 mg que foram purificadas por camada delgada preparativa. Dos grupos 05 e 06 após cromatografia em coluna e posterior recristalização em metanol obteve-se 92,2 mg de Oc-5. Dos grupos 15, 16 e 17, isolou-se após recristalização em acetona 415 mg de Oc-4, material cristalino, branco e bastante polar. Esta substância foi traba-

lhada com maior facilidade após a obtenção do derivado acetilado. As frações intermediárias, bem como as finais foram reserva das para trabalho futuro.

Tabela 29 - Fracionamento cromatográfico em coluna de sílica (280 g) do elutato acetato de etila (6,8 g).

Eluente	Frações reunidas	Grupo	Substância isolada
Diclorometano	01	01	
Diclorometano	02-03	02	Oc-1, Oc-2 e Oc-3
Diclorometano	04-05	03	Oc-1, Oc-2 e Oc-3
Diclorometano	06-07	04	Oc-3
Diclorometano	08-14	05	
Diclorometano	15-26	06	Oc-5
Diclorometano	27-40	07	
Diclorometano	41-80	80	
Diclorometano	81-96	09	
Diclorometano-metanol (2%)	97-98	10	Oc-6
Diclorometano-metanol (2%)	99-110	11	Oc-6
Diclorometano-metanol (2%)	111-116	12	
Diclorometano-metanol (5%)	117-140	13	
Diclorometano-metanol (5%)	141-150	14	
Diclorometano-metanol (5%)	151-156	15	
Diclorometano-metanol (5%)	157-169	16	
Diclorometano-metanol (5%)	170-181	17	
Diclorometano-metanol (5%)	182-200	18	
Diclorometano-metanol(10%)	201-210	19	
Diclorometano-metanol(10%)	211-242	20	
Diclorometano-metanol(10%)	243-262	21	
Diclorometano-metanol(20%)	263-286	22	
Diclorometano-metanol(20%)	287-328	23	
Metanol	329-340	24	

Tabela 30 - Fracionamento cromatográfico em coluna de sílica do extrato etanólico de Ocotea cymbarum,.

Eluente		Frações reunidas		Substância isolada
Clorofórmio		1 - 2	01	
Clorofórmio		3 - 25	02	Oc-1 e Oc-2
Clorofórmio		26 - 45	03	Oc-1, Oc-2 e Oc-3
Clorofórmio		46 - 105	04	Oc-3
Clorofórmio		106 - 145	05	0c - 5
Clorofórmio		146 - 200	06	0c-5
Clorofórmio		201 - 275	07	
Clorofórmio		276 - 300	08	
Cloroformio		301 - 400	09	
Clorofórmio-metanol	(2%)	401 - 450	10	
Clorofórmio-metanol	(2%)	451 - 470	11	
Clorofórmio-metanol	(2%)	471 - 510	12	
Clorofórmio-metanol	(2%)	511 - 700	13	
Clorofórmio-metanol	(5%)	701 - 794	14	
Clorofórmio-metanol	(5%)	795 - 800	15	Oc-4
Clorofórmio-metanol	(5%)	801 - 844	16	Oc-4
Clorofórmio-metanol	(5%)	845 - 970	17	Oc-4
Clorofórmio-metanol	(10%)	971 -1045	18	
Clorofórmio-metanol	(10%)	1046 -1067	19	
Clorofórmio-metanol	(10%)	1068 -1089	20	
Clorofórmio-metanol	(10%)	1090 -1137	21	
Cloroformio-metanol	(50%)	1138 -1191	22	
Clorofórmio-metanol	(50%)	1192 -1238	23	
Clorofórmio-metanol	(50%)	1239 -1305	24	
Metanol		1306 - 1321	25	
Metanol		1322 -1346	26	

4.4 Reações de obtenção de derivados

4.4.1 - Acetilação de Hf-1. [356]

A Hf-1 (10 mg) foi submetida a acetilação com anidrido acético (0,5 ml) e piridina (0,5 ml). Deixou-se a mistura reacional a temperatura ambiente durante 48 h. Adicionou-se um pouco de gelo moído a mistura e extraiu-se com clorofórmio. A fase clorofórmica foi lavada com solução de ácido clorídrico (10%) e depois com água destilada. A solução clorofórmica foi filtrada em sulfato de sódio anidro, concentrada e purificada em coluna seca, obtendo-se 11 mg do produto (Hf-1 Ac).

4.4.2 - Hidroxilação da mistura de Oc-1 e Oc-2 para obter Oc-6 e o derivado correspondente de Oc-2. [350].

A mistura de Oc-1 e Oc-2 (900 mg) foi solubilizada em piridina (5 ml) e adicionou-se uma solução de tetróxido de ósmio (1 g) em piridina (10 ml) num balão de 125 ml. A mistura no balão fechado foi agitada durante três horas. A seguir adicionou-se 50 ml de uma solução de bissulfito de sódio (1,2 g) dissolvido em 30 ml de piridina e 20 ml de água destilada e manteve-se a agitação por mais 30 minutos. O bissulfito de sódio utilizado foi previamente testado com solução de iodo. Terminada esta agitação, a mistura reacional foi colocada em funil de separação e extraiu-se exaustivamente com diclorometano. A fase orgânica foi seca com sulfato de sódio anidro e concentrada

evaporador rotatório. Análise por cromatografia emdelgada revelou baixo rendimento, por isto subemteu-se os produtos obtidos a tratamento com 30 ml de solução aquosa de ácido clorídrico (10%) para a hidrólise dos ésteres ósmicos admitidos como produtos principais da reação. Após agitação (30'), extraiu-se com clorofórmio. A solução clorofórmica foi lavada água destilada e seca com sulfato de sódio anidro e concentrada em evaporador rotatório. Obteve-se deste modo maior quantidade dos dois produtos, sendo que um deles revelou o mesmo Rf da 0c-6 em cromatografia em camada delgada. Posteriormente estrutura, bem como a do derivado corespondente de Oc-2, foi confirmada pela interpretação do espectro de R.M.N. 1H (Fig.

4.4.3 - Acetilação de Oc-3. [356].

Utilizou-se o mesmo procedimento descrito na acetilação de Hf-1 variando-se apenas o tempo de reação de 48 para 24 horas. Acetilou-se 13 mg de Oc-3 e obteve-se 13,2 mg de Oc-3 Ac.

4.4.4 - Acetilação de Oc-4. [356].

Acetilação de 20 mg de Oc-4 através do mesmo procedimento acima descrito forneceu 19,3 mg de Oc-4 Ac. A reação foi realizada em 48 horas.

4.4.5 - Acetilação de Oc-6. [356].

Acetilação de 15 mg de Oc-6 através do mesmo procedimento acima descrito forneceu 16,2 mg de Oc-6 Ac. A reação foi realizada em 24 horas.

4.4.6 - Metilação de Oc-4. [356].

A Oc-4 (20 mg) dissolvida em éter etílico (40 ml) foi metilada com diazometano, obtido de N-nitrosometilureia por tratamento com solução aquosa de NaOH (1:1). A solução aquosa de NaOH foi colocada em funil de separação e adicionou-se éter etílico. A N-nitroso-metilureia foi adicionada em pequenas quantidades até que a fase etérea adquiriu coloração amarelada persistente. A fase etérea foi cuidadosamente separada e adicionada a um balão ao qual foi fechado, envolvido com papel alumínio e deixado em repouso por 48 horas. Após este período o éter foi evaporado e o resíduo cristalino foi purificado em coluna seca, obtendo-se 18,9 mg de Oc-4-Me 2.

- 5 CARACTERÍSTICAS FÍSICAS E QUÍMICAS DAS SUBSTÂNCIAS ISO-LADAS DE <u>Hemerocallis</u> <u>fulva</u> e <u>Ocotea cymbarum</u> E SEUS DE-RIVADOS.
 - 5.1 Crisofanol, Hf-1 $(\underline{4})$.

 Cristais alaranjados, P.f. 203-205°.

U.V. EtOH, nn (ϵ); 225 (23918) e 255 (13468) (Fig. 1).

I.V. $(KBr., cm^{-1})$: 2980-2775, 1680, 1630, 1570 e 1480 (Fig. 2).

R.M.N. 1 H (100 MHz, CDCl $_{3}$, δ) : 2,40 (s, CH $_{3}$), 7,02 (s1, CH $_{2}$), 7,22 (dd, CH $_{3}$), 7,58 (s1, CH $_{4}$), 7,60 (t, CH $_{6}$), 7,75 (dd, CH $_{5}$), 11,92 (s, OH) e 12,04 (s, OH) (Figs. 3 e 4).

E.M. m/z (%) . 254 (M^{*+} , 100), 239 (5), 237 (7), 226 (20), 225 (7), 198 (10), 197 (12) e 180 (4) (Fig. 5).

5.2 - Hf-1 Ac (5).

Cristais amarelo,s P.f. 225-227°.

I.V. (KBr, cm^{-1}) : 2920-2870, 1760, 1670, 1600 e 1450. (Fig. 6).

R.M.N. 1 H (100 MHz, CDCl₃, δ) : 2,46 (s, OAc), 2,52(s,CH₃), 7,21 (d, CH-2), 7,40 (dd, CH-7), 7,75 (t, CH-6), 8,02 (d, CH-4) e 8,22 (dd, CH-5). (Fig. 7).

5.3- β -sitosterol, Hf-2 (6) = Oc-5.

5.4 - Hf - 3 (11)

Cristais avermelhados, P.f. 241-245°.

I.V. (KBr, cm^{-1}): 3330, 1670, 1630, 1560, 1480 e 1445. (Fig. 9),

R.M.N. 1 H (100 MHz, CDCl₃ + (CD₃)₂ CO + (CD₃)₂ SO, δ) : 4,73 (s, CH₂OH), 5,34 (s, OH), 7,36 (d, CH-2), 7,75 (s, CH-5), 7,75 (s, CH-8), 7,78 (d, CH-4) e 12,08 (OH). (Figs. 10 e 11).

E.M. m/z, (%) : 286 (M^{*+} , 32), 269 (6), 258 (2), 257 (10), 241 (84), 239 (3) e 213 (13). (Fig. 12).

5.5 - Hf-4 (14).

Cristais alaranjados, Pf. 218-220°.

I.V. (KBr, cm^{-1}) : 3475, 1630, 1585 e 1480. (Fig. 13).

R.M.N. 1 H (100 MHz, CDCl₃ + (CD₃)₂ CO, δ): 2,40 (s, CH₃), 4,01 (s, OCH₃), 4,04 (s, OCH₃), 7,37 (d, CH-7), 7,67 (s, CH-5), 8,10 (d, CH-8), 12,10 (s, OH) e 13,00 (s, OH) (Figs. 14 e 16).

E.M. m/z, (%): 314 (M^{*+} , 100) 299 (66), 297 (11), 284 (70), 271(25), 269(11), 267(20), 241(28), 239(15) e 337 (15) (Fig. 17).

5.6 - Hf-5 (17).

Cristais alarajanados, P.f. 213-216°.

U.V. EtOH, nn (ϵ): 227 (6857) e 275 (4505) (Fig 18 e 19). I.V. (KBr, cm⁻¹): 3400, 1690, 1630, 1555 e 1450. (Fig.20).

R.M.N. H (100 MHz, CDCl₃, δ): 2,46 (s, CH₃), 4,04 (s, OCH₃), 7,08 (sl, CH-2), 7,34 (d, CH-7),7,61 (sl, CH-4), 8,10 (d, CH-8) e 12,74 (s, OH). (Fig. 21).

E.M. m/z, (%): 284 (M^{*+} 100), 283 (8), 266 (82), 254 (10), 253 (10), 239 (40), 238 (66), 237 (20), 225 (10), 210 (13) e 209 (10). (Fig. 22).

5.7 - apiol, Oc-1 (21).

Oleo castanho.

U.V. MeOH, nn (ϵ): 220 (13535), 279 (1111). (Fig. 23).

I.V. (Filme, NaCl, cm^{-1}): 1645, 1610, 1500, 1450, 991 e 915. (Fig. 24).

R.M.N. 1 H (60 MHz, CDCl₃, δ): 3,25 (d, CH₂-7), 3,85 (s, OCH₃), 3,90 (s, OCH₃), 4,80 - 5,23 (m, CH₂-9), 5,68 - 6,18 (m, CH-8), 5,92 (s, OCH₂O) e 6,25 (s, CH-6). (Fig. 25).

 $R.M.N^{13}C$ (25,2 MHz, $CDCl_3$, δ): 34,08 (t, C-7), 56,80 (q, OCH_3 -5), 59,96 (q, OCH_3 -2), 101,38 (t, OCH_2 0), 108,25 (d, C-6), 115,15 (t, C-9), 125-60 (s, C-1),135,03(s, C-4), 136,30 (s, C-3), 137,22 (d, C-8), 138,58 (s, C-2) e 138,90 (s, C-5). (Figs. 26 e 27).

E.M. m/z, (%) : 222 (M^{*+} , 100), 207 (38), 195 (13), 191 (10), 177 (40), 149 (25), 121 (13) e 91 (10) (Fig. 28).

5.8 - dilapiol, Oc-2 (22).

bleo castanho.

R.M.N. 1 H (60, MHz, CDCl₃, δ): 3,25 (d, CH₂-7), 3,82 (s, OCH₃); 4,05 (s, OCH₃), 4,78-5,30 (m, CH₂-9), 5,66-6,20 (m, CH-8), 5,90 (s, OCH₂O) e 6,40 (s, CH-6). (Fig. 31).

R.M.N. 13 C (25,2 MHz, CDCl₃, δ): 33,91 (t, C-7), 59,79 (s, OCH₃), 61 ,08 (q, OCH₃), 100 ,97 (t, OCH₂O), 102 ,56 (d, C-6), 115 ,29 (t, C-9), 125 ,61 (s, C-1), 135 ,25 (s, C-4), 137 ,24 (s, C-2), 137 ,24 (s, C-3), 137 ,24 (d, C-8) e 138 ,92 (s, C-5). (Figs. 32 e 33).

5.9 - Oc - 3 (23).

Óleo amarelo.

U.V. MeOH, nn (ϵ): 218 (6909) e 283 (2054). (Fig. 35)

I.V. (Filme, NaCl, cm⁻¹): 3450, 1650, 1600, 1500, 990 e
916. (Fig. 36).

R.M.N. 1 H (60 MHz, CDCl₃, δ): 3,31 (d, CH₂-7), 3,80 (s, OCH₃), 3,86 (s, OCH₃), 3,92 (s, OCH₃)4,80-5,33 (m, CH₂-9), 5,57 (s, OH), 5,64-6,25 (m, CH-8) e 6,42 (s, CH-6). (Figs.37 e 38).

R.M.N. 13 C (25,2 MHz, CDCl₃, δ): 33,74 (t, C-7), 56,31 (q, OCH₃-5), 60,64 (q, OCH₃), 60,98 (9, OCH₃), 107,11 (d, C-6), 115,27 (t, C-9), 123,07 (s, C-1), 137,49 (s, C-4), 137,49 (d, C-8), 140,46 (s, C-3), 143,46 (s, C-2) e 145,01 (s, C-5). (Figs. 39 e 40).

E.M. m/z, (%) : 224 (M^{*+} , 100), 209 (48), 195 (13), 117 (35), 163 (9), 149 (22) e 121 (10). (Fig. 41).

5.10 - Oc-3.Ac.

Oleo amarelo.

I.V. (Filme, NaCl, cm^{-1}): 1775, 1655, 1615, 1490, 984 e 913. (Fig. 42).

R.M.N. 1 H (60 MHz, CDCl₃, 3): 2,28 (s, OAc), 3,42 (d, CH₂-7), 3,80 (s, OCH₃), 3,82 (s, OCH₃), 3,90 (s, OCH₃), 4,90-5,34 (m, CH₂-9), 5,69-6,15 (m, CH-8) e 6,55 (s, CH-6). (Fig. 43).

5.11 - lioniresinol, Oc-4 (37)
Cristais brancos, P.f. 195-197

U.V. MeOH, nn, (ε) : 220 (13660) e 267 (2977). (Fig. 45), I.V. (KBr, cm⁻¹): 3400, 3200, 1600, 1500 e 1480. (Fig. 46)

R.M.N. 1 H (100 MHz, $C_{5}D_{5}N$, δ) : 2,06-2,80 (m, CH-8),2,06-2,80 (m, CH-8'), 3,10 (d, CH-7'), 3,66 (s, OCH₃), 3,66 (s, OCH₃), 3,78 (s, OCH₃), 3,78 (s, OCH₃), 4,10 (d, H-9),4,10 (d, H-9'), 5,03 (d, H-7), 6,75 (s, CH-2'), 6,90 (s, CH-2) e 6,90 (s, CH-6). (Figs. 47 e 48).

E.M. m/z, (%): 420 (M°+, 100), 402 (22), 390 (4), 389 (4), 371 (18), 301 (6), 249 (8), 248 (8), 241 (4),235 (6), 218 (8), 217 (28),205 (40), 173 (21) e 167 (48). (Fig. 51)

5.11 Oc-4 Ac.

Cristais brancos, P.f. 144-146.

I.V. (KBr, cm^{-1}): 1790, 1725, 1600, 1505 e 1470. (Fig. 52)

R.M.N. 1 H (100 MHz, CDCl₃, δ): 2,04 (s, OAc), 2,08 (s, OAc), 2,28 (s, OAc), 2,28 (s, OAc), 2,76 (d, CH₂-7'), 3,20 (s,

OCH₃-5') 3,72 (s, OCH₃), 3,72 (s, OCH₃), 3,80 (s, OCH₃), 4,12-4,40 (m, CH-7), 4,40 (m, CH₂-9), 4,40 (m, CH₂-9'), 6,30 (s, CH-2), 6,30 (s, CH-6) e 6,50 (s, CH-2'). (Fig. 53).

 $5.12 - Oc-4 (Me)_2$.

Cristais brancos, P.f. 168-170°.

I.V. (KBr, cm^{-1}) : 3340, 1600, 1500 e 1450. (Fig. 54).

R.M.N. 1 H (60 MHz, CDC1 $_{3}$, δ): 1,67-2,07 (m, CH-8), 1,67-2,07 (m, CH-8'), 3,23 (s, OCH $_{3}$ -5'), 3,77 (s, OCH $_{3}$), 3,77 (s, OCH $_{3}$), 3,77 (s, OCH $_{3}$), 3,78 (s, OCH $_{3}$), 3,86 (s, OCH $_{3}$), 6,35 (s, CH-2), 6,35 (s, CH-6) e 6,48 (s, CH-2'). (Fig.55)

5.13 - β -sitosterol, Oc-5 ($\underline{38}$).

Cristais brancos, P.f. 135-136°.

I.V. (KBr, cm^{-1}) : 3500 (fig. 17).

R.M.N. 13 C (25,2 MHz, CDCl₃, δ): 11,87 (q, C-18), 11,98 (q, C-29) 18,78 (q, C-21), 19,06 (q, C-27), 19,40 (q, C-19), 19,81 (q, C-26), 21,09 (t, C-11), 23,09 (t, C-28), 24,30 (t, C-15), 26,12 (t, C-23), 28,25 (t, C-16), 29,16 (d, C-25), 31,61 (t, C-2), 31,88 (t, C-7), 31,88 (d, C-8), 33,94 (t, C-22), 36,13 (d, C-20), 36,45 (s, C-10), 37,25 (t, C-1), 39,75 (t, C-12), 42,26 (t, C-4), 42,26 (s, C-13), 45,81 (d, C-24), 50,13 (d, C-9), 56,03 (d, C-17), 56,72 (d, C-14), 71,63 (d, C-3), 121,52 (d, C-6) e 140,63 (s, C-5). (Figs. 60, 61, 62 e 63).

5.14 - apiolglicol, Oc-6 (41). Cristais brancos, P.f. 100-101°.

U.V. MeOH, nn (ϵ) : 216 (6656) e 280 (558). (Fig. 65)

I.V. (KBr, cm⁻¹): 3260, 1605, 1500 e 1490. (Fig. 66)

R.M.N. 1 H (100 e 60 MHz, CDCl $_{3}$, δ) : 2,40 (s1, OH), 2,73 (d, CH $_{2}$ -7), 3,42 - 3,60 (m, CH $_{2}$ -9), 3,84 (s, OCH $_{3}$), 5,94 (s, OCH $_{2}$ O) e 6,30 (s, CH-6). (Figs. 67, 68 e 69).

R.M.N. 13 C (25,2 MHz, CDCl₃ + C₅D₅N, δ): 34,46 (t, C-7), 56,92 (q, OCH₃-5), 59,81 (q, OCH₃-2), 65,92 (t, C-9), 72,41 (d, C-8), 101,27 (t, OCH₂O), 109,27 (d, C-6),123,98 (s, C-1), 135,34 (s, C-4), 136,63 (s, C-3),138,37 (s, C-2), e 138,88 (s, C-5). (Figs. 70 e 71).

E.M. m/z, (%): 256 (M^{*+} , 100), 238 (8), 225 (38), 196 (97), 195 (100), 181 (73), 180 (59), 165 (38), 151 (21), 137 (21), 135 (62) e 109 (16). (Fig. 72).

15- Oc-6 Ac.

Cristais brancos, P.f. 110-112°.

R.M.N. 1 H (60 MHz, CDCl₃, δ): 2,08 (s, OAc), 2,11 (s, OAc), 2,85 (dd, CH₂-7), 3,90 (s, OCH₃), 3,99 (s, OCH₃), 4,08-4,29 (m, CH₂-9), 5,15-5,45 (m, CH-8), 6,01 (s, OCH₂O) e 6,38 (s, CH-6). (Fig. 74).

6 - REFERÊNCIAS BIBLIOGRÁFICAS

- 001 Wagner, H., Wolff, P. (1979) New Products and Plant Drugs with Pharmacological, Biological or Therapeutical Activity, 227-48.
- 002 Figlioulo, R. (1979) Tese de Mestrado, Instituto de Ciências Exatas - U.F.R.R.J.
- 003 Alegrio, L.V. (1980) Tese de Mestrado, Instituto de Ciências Exatas - U.F.R.R.J.
- 004 Carvalho, M.G. (1981) Tese de Mestrado, Instituto de Ciên cias Exatas - U.F.R.R.J.
- 005 Barbosa, A.M.N. (não apresentada) Tese de Mestrado, Instituto de Ciências Exatas - U.F.R.R.J.
- 006 Silva, W.D. (não apresentada) Tese de Mestrado, Instituto de Ciências Exatas U.F.R.R.J.
- 007 Eigsti, O.J., Dustin Jr., P. (1955) Colchicine in Agriculture, Medicine, Biology and Chemistry 142-5, 175-201, 274-91, 383-90.

- 008 Mishchenko, N.P., Krivoshchekova, O.E. (1980) Khim. Prir. Soedin., (6), 829-30, Chemical Abstracts (1981)94 (21), 171044r, 389.
- 009 Xiu, S., Ma, H., Wang, X., Shi, J., Zhuang, Y. (1982)
 Zhongcaoyao, 13 (2), 1-4. Chemical Abstracts (1982), 97
 (13), 107026t, 335.
- 010 He, X., Yu, Q., Zhao, Z., Song, G. (1982) Zhiwu Xuebao, 24 (2), 154-8. Chemical Abstracts (1982), 97 (13), 107044x, 336.
- 011 Bahadur, B., Sarna, R.K., Bhide, V.G. (1981) Mol. Cryst.
 Liq. Cryst., 75 (1-4), 121-32. Chemical Abstracts (1982),
 96 (2), 14001v, 508.
- 012 Dzokic, D., Mladenovic, S. (1981) Hem. Vlakna, 21 (3-4), 8-11. Chemical Abstracts (1982), 96 (16), 124397m, 84.
- 013 Kharkharov, A.A., Sklizneva, O.V., Minina, N.I., Nesmelov, N.A. (1981) Isv. Vyssj. Uchebn. Zaved. Tekhnol. Teskst. Prom-Sti., (5), 57-9. Chemical Abstracts (1982),96 (6), 36725m, 78.
- 014 Zemaitaitiene, R., Libonas, J., Paskevicius, V. (1980) Liet.

 TSR Aukst. Mokyklu Mokslo Darb., Chem. Chem. Technol.,

 22, 34-7. Chemical Abstracts (1982), 96(8), 53685r, 77.
- 015 Mossa, J.S., Al-Yahya, M.A., Al-Meshal, I.A., Tariq, M. (1983) Fitoterapia, 54 (4), 147-52. Chemical Abstracts (1984), 100 (22), 180000 q, 317.

- 016 Lu, Y., Lian, S., Liu, Y. (1982), Yuhuan Yaowu Fenxi Zazhi,
 2 (4), 217-21. Chemical Abstracts (1983), 98 (6), 40650s,
 368.
- 017 Fuzellier, M.C., Mortier, F., Lectard, P. (1982), Ann.
 Pharm. Fr., 40 (4), 357-63. Chemical Abstracts (1983),
 98 (11), 86112w, 288.
- 018 Williamson, J. Scott-Finnigan, T.J., Hardman, M.A., Brown, J.R. (1981), Nature, 292 (5822), 466-7.
- 019 Capasso, F., Mascolo, N., Autore, G., Duraccio, M.R. (1983)

 Prostaglandins, 26(4), 557-62. Chemical Abstracts(1984),

 100 (14), 114821g, 44.
- 020 Weisburger, E.K. (1983) Basic Life Sci., 24(Organ Species Specif. Chem. Carcinog.), 23-47. Chemical Abstracts (1983), 98 (17), 138762 e, 176.
- 021 Ramanathan, R., Reddy, T.V., Weisburger, E.K. (1981),
 Toxicol. Appl. Pharmacol., 60 (2), 204-12.
- 022 Tikkanen, L., Matsushima, T., Natori, S. (1983), Mutat.

 Res., 116 (3-4), 297-304.
- 023 Nishio, A., De Feo, F., Cheng, C.C., Uyeki, E.M. (1982)
 Mutat. Res., 101 (1), 77-86.
- 024 Von Hoff, D.D., Coltman Jr., C.A. Forseth, B. (1981) Cancer Res., 41 (5), 1853-5.
- 025 Dodd, N.J.F., Mukherjee, T., (1984) Biochm. Pharmacol., 33 (3), 379-85.

- 026 Tritton, T.R., Yee, G. (1982) Science, 217, 248.
- 027 Devon, T.K., Scott, A.I. (1975) Naturaly Occurring Compounds, Vol.2, 333-59.
- 028 Rosca, M., Cucu, V. (1975) Planta Med., 28 (4), 343-5.

 Chemical Abstracts (1976), 84 (15), 102311d, 303.
- 029 Rosca, M., Cucu, V. (1975) Farmacia, 23(2), 111-4. Chemical Abstracts (1976), 84 (9), 56533c, 282.
- 030 Longo, R. (1980) Boll. Chim., 119 (11), 669-89. Chemical Abstracts (1981), 94 (21), 168030z, 94.
- 031 Borisov, M.I. (Pub. 1973) Fenol'Nye Soedin. Ikh. Fisiol.

 Svoistva, Mater, Vses. Simp. Fenol'nym Soedin., 2 ND

 1971, 162-8. Chemical Abstracts (1974), 81 (25), 166330e,

 288.
- 032 Tiwari, R.D., Singh, J. (1977) J. Indian Chem. Soc., 54(4), 429-30. Chemical Abstracts (1978), 88(7), 51123s, 575.
- 033 Borisov, M.I. (1975) Rastit. Resur., 11 (3), 363-8. Chemical Abstracts (1975), 83 (23), 190344z, 222.
- 034 Briggs, L.H., Beazhen, J.F., Cambie, R.C., Dudman., N.P.B., Steggles, A.W., Rutledge, P.S. (1976) J. Chem. Soc., Perkin Trans. 1, (16), 1789-92. Chemical Abstracts(1977), 86 (1), 2348u, 216.
- O35 Demagos, G.P., Baltus, W., Hoefle, G. (1981) Z. Natur Forsch., B: Anorg. Chem., Org. Chem., 36B (9), 1180-4. Chemical Abstracts (1982), 96 (2), 11549u, 324.

- 036 Andre, R., Bailleul, F., Delaveau, P. (1976) Plant. Med.

 Phytother., 10 (2), 110-18. Chemical Abstracts (1977),

 86 (1), 2386e, 219.
- 037 Sharma, M., Rangaswami, S., Sharma, P. (1978) Indian. J.

 Che., Sect. B., 16B (4), 289-91. Chemical Abstracts

 (1978), 89 (13), 103739q, 431.
- 038 Chauhan, J.S., Srivastava, S.K., Srivastava, S.D. (1979)

 Planta Med., 36 (2), 183-4. Chemical Abstracts (1979),

 91 (15), 120360t, 319-20.
- 039 Sharma, M., Rangaswami, S. (1977) Indian J. Chem., Sect.

 B, 15B (10), 884-5. Chemical Abstracts (1978), 88 (13),

 242.
- 040 Okabe, H., Matsuo, K., Nishioka, I. (1973), Chem. Pharm.

 Bull., 21 (6), 1254-60. Chemical Abstracts (1973) 79

 (17), 102811 p. 231.
- 041 Mukhamed Yarova, M.M., Chumbalov, T.K. (1979) Khim.Prir.

 Soedin., (6), 853. Chemical Abstracts (1980), 93 (1),

 3897d, 374.
- 042 Raghunathan, K., Hariharan, V., Rangaswami, S. (1974) Indian
 J. Chem., 12 (12), 1251-3. Chemical Abstracts (1975),
 82 (25), 171354r, 589.
- 043 Tiwari, R.D., Sinha, K.S. (1980) Indian J. Chem., Sect. B,

 19 B (6), 531-2. Chemical Abstracts (1980), 93 (21),

 200949y, 367.
- 044 Van Den Berg, A.J.J., Labadie, R.P. (1981) Planta Med.,

- 41 (2), 169-73. Chemical Abstracts (1981), 94 (25), 205458t, 311-2.
- 045 Haag-Berrurier, M., Garnier, P. Anton, R. (1977) Planta Med., 31 (3), 201-11. Chemical Abstracts (1977),87 (3), 18997m, 308.
- 046 Vermes, B., Wagner, H. (1980), Phytochemistry, 19 (11), 2493-4. Chemical Abstracts (1981), 94 (23), 192636x, 695.
- 047 Forni, G.P. (1980) Fitoterapia, 51 (1), 13-33. Chemical Abstracts (1981), 94 (10), 71574s, 388.
- 048 Rosca, M., Cucu, V. (1975) Planta Med., 28 (2), 178-81.

 Chemical Abstracts (1976), 84(5) 28018v, 222.
- 049 Savonius, K. (1980) Acta Pharm. Fenm., 89 (4), 231-42.

 Chemical Abstracts (1981), 94 (11), 80277z, 386.
- 050 Auterhoff, H., Eujen, E. (1982) Deut. Apoth.-ZTG., 112 (40), 1533-5. Chemical Abstracts (1973), 78 (18),115262q, 258.
- 051 Forni, G.P. (1978) Bull. Liaison, Groupe Polypenols, 8, 353-63. Chemical Abstracts (1979), 91 (6),44553r,326.
- 052 Terracciano, M., Gambero, P., Percaccio, G., Donatelli,
 I., Quercia, V. (1977), Boll. Chim. Farm., 116 (7),4029. Chemical Abstracts (1978), 88(16), 110563k, 337.
- 053 Tiwari, R.D., Richards, A. (1979) Planta Med., 36 (1),91-4. Chemical Abstracts (1979), 91 (13), 105188z, 348.
- 054 Duggal, J.K., Misra, K. (1982). Planta Med., 45 (1), 48-

- 50. Chemical Abstracts (1982), 97 (11), 88698v, 441.
- 055 Singh, J., Tiwari, A.R., Tiwari, R.D. (1980), Phytochemistry,
 19 (6), 1253-4. Chemical Abstracts (1980), 93 (25),
 2398349, 898.
- 056 Umek, A., Bohinc, P. (1983) Acta Pharm. Jugosl. 33 (1), 51-7. Chemical Abstracts (1983), 98 (25), 212855 f, 325.
- 057 Niranjan, G.S., Gupta, P.C. (1973) Planta Med., 23 (3), 298-300. Chemical Abstracts (1973)), 79 (9), 50757d, 156.
- 058 Tiwari, R.D., Singh, J. (1979), Phytochemistry, 18 (2), 347. Chemical Abstracts (1979), 91 (25), 211744n, 719.
- 059 Holzchuh, L., Kopp, B., Kubelka, W. (1982) Planta Med., 46 (3), 159-61. Chemical Abstracts (1983), 98 (7), 50369w, 383.
- 060 Kang, S.S., Woo, W.S. (1982) Saengyak Hakhoe Chi (Hanguk Saengyar Hakhoe), 13 (1), 7-9. Chemical Abstracts (1982), 97 (17), 141734g, 395.
- 061 Smith, R.M., Ali, S. (1979) N.Z.J. Sci., 22(2), 123-5.

 Chemical Abstracts (1980), 92 (1), 3189d, 314.
- 062 Lal, J., Gupta, P.C. (1973) Experientia, 29 (2), 141-2.

 Chemical Abstracts (1973), 78 (21), 133356c, 145.
- 064 Singh, J. (1981) Planta Med., 41 (4), 397-9. Chemical

- Abstracts (1981), 95 (3), 21295b, 364.
- 065 Duggal, J.K., Yadava, V.S., Misra, K. (1982) Proc. Natl.

 Acad. Sci., India, Sect. A, 52 (2), 189-93. Chemical

 Abstracts (1983), 99 (15), 119333v, 382.
- 066 Mikola, L. (1983) Biochim. Biophys. Acta, 747 (3),241-52.

 Chemical Abstracts (1983), 99 (25), 209845t, 408.
- 067 Inoue, K., Nayeshiro, H., Inouye, H., Zenk, M. (1981)

 Phytochemistry, 20 (7), 1693-700. Chemical Abstracts

 (1982), 96 (5), 31595j, 343.
- 068 Rao, P.S., Reddy, G.C.V. (1977), Indian J. Cehm., Sect. B, 15B (5), 497-8. Chemical Abstracts (1977), 87 (19), 148687w, 298.
- 069 Reddy, P.V., Rao, P.S., Subramanyam, S. (1976) Curr. Sci., 45 (14), 528-9. Chemical Abstracts (1976), 85(19),13846ln, 145.
- 070 Itokawa, H., Mihara, K., Takeya, K. (1983) Chem. Pharm.

 Bull., 31 (7), 2353-8. Chemical Abstracts (1983), 99

 (23), 191678d, 473.
- 071 Tiwari, K.P., Srivastava, St. S.D. (1979) Planta Med., 35 (2), 188-90. Chemical Abstracts (1979), 90 (25), 200304x, 298.
- 072 Savonius, K. (1973) Farm. Aikak., 82 (9-10), 136-9. Chemical Abstracts (1974), 81(8), 41319b, 259.
- 073 Elmazova, L. (1980) Farmatsiya, 30 (4), 38-41. Chemical

- Abstracts (1981), 94 (11), 80248r, 384.
- 074 Sayed, M.D., Balbaa, S.I., Afifi, M.S.A. (1974) Egypt. J.

 Pharm. Sci., 15(1), 1-10. Chemical Abstracts (1975), 82

 (19), 118701a, 5.
- 075 Ahmad, S.A., Zaman, A. (1973) Phytochemistry, 12 (7), 1826.

 Chemical Abstracts (1973), 79 (15), 89509z, 209.
- 076 Wagner, H., Demuth, G. (1972) Tetrahedron Lett., (49), 5013-14. Chemical Abstracts (1973), 78 (17), 111622j, 515.
- 077 Forni, G.P. (1980) Bull. Liaison Groupe Polyphenols, (9) 30-4. Chemical Abstracts (1981), 94 (12), 90465y, 427.
- 078 Kubiak, M. (1977) Herba Pol., 23 (4), 307-12. Chemical Abstracts (1978), 89(23), 193912t, 326.
- 079 Rauwald, H.W. (1983) Z. Naturforsch., C: Biosci, 38c (3-4), 170-8. Chemical Abstracts (1983), 99 (1), 3035v, 3027.
- 080 Chi, H.J., Moon, H.S., Lee, Y.J. (1983) Yakhak Hoe Chi, 27 (1), 37-43. Chemical Abstracts (1983), 99 (6), 43356g, 302.
- 081 Noculak, A. (1979) Acta Mycol., 15 (2), 183-212. Chemical Abstracts (1980), 92 (9), 160543g, 313.
- 082 Demuth, G., Hinz, H., Seligmann, O., Wagner, H. (1978)

 Planta Med., 33(1), 53-6. Chemical Abstracts (1978),

 89 (7), 60026k, 587.

- 083 Tiwari, K.P., Minocha, P.K. (1980) Indian J. Chem., Sect.

 B, 19B (5), 431-2. Chemical Abstracts (1980), 93 (7),

 66155f, 512.
- 084 Han, D.S., Cho, H.J. (1981) Saengyak Hakhoe Chi (Hanguk Saengyak Hakhoe), 12(4), 221-6. Chemical Abstracts (1982), 97 (3), 20714s, 437.
- 085 Tiwari, R.D., Sharma, M.N. (1981) Planta Med.43 (4), 381-3. Chemical Abstracts (1982), 96 (15), 119011b, 364.
- 086 Tiwari, R.D., Sing, J. (1979) Phytochemistry, 18(5),906.

 Chemical Abstracts (1979), 91 (25), 207372x, 340.
- 087 Misra, B.N., Gupta, S.K., Rizvi, S.A.I. Saxena, O.C. (1973)

 Planta Med., 23 (2), 115-8. Chemical Abstracts (1973),

 78 (23), 148187x, 406.
- 088 Inoue, K., Shiobara, Y. Nayseshiro, H., Inouye, H., Wilson, G., Zenk, M.H. (1979), J. Chem. Soc., Chem. Commun., (21), 957-9. Chemical Abstracts (1980), 92 (15), 125023r, 360.
- 089 Bauch, H.J., Leistner, E. (1978) Planta Med., 33(2), 105-23. Chemical Abstracts (1978), 89 (1), 3155c, 290.
- 090 Kronberg, F.G., Goodman, L.A., Seltman, M.A.(1983)Mycologia
 75(2), 202-8. Chemical Abstracts (1983), 99 (11), 84790n,
 285.
- 091 Grinberg, L.A., Khalmatov, Kh. Kh. (Pub. 1972) Mater.

 Yubileinoi Resp. Nauchn. Konf. Farm., Posuyashch. 50-

- Letiyu Obraz. SSSR SEP 1982., 49-51. Chemical Abstracts (1975), 82 (25), 167495v, 267.
- 092 Glombitza, K.W., Wagner, A., Poelt. J. (1974) Phytochemistry,
 13 (1), 273-4. Chemical Abstracts (1974),80(19), 105884w,
 200.
- 093 Renner, B., Gerstner, E.(1980) Naturwissenschaften,67(7), 352-3. Chemical Abstracts (1980), 93 (13),128455q, 317.
- 094 Renner, B., Gerstner, E. (1978) Naturwissenschaften, 65
 (8), 439-40. Chemical Abstracts (1978), 89(19),160145s,
 298.
- 095 Hoffenberg, P. (1979) Seifen, Oele, Fette, Wachse, 105 (17), 499-502. Chemical Abstracts (1980),92 (26), 220543u, 315.
- 096 Talapatra, B., Goswami, S., Talapatra, S.K. (1981) Indian
 J. Chem., Sect. B, 20B (11), 974-7. Chemical Abstracts
 (1982), 96(15), 119016g, 364.
- 097 Mahato, S.B., Sahu, N.P., Pal, B.C., Chakravarti, R.N.

 (1977) J. Indian Chem. Soc., 54(4), 388-90. Chemical

 Abstracts (1977), 87 (23), 180760a, 306.
- 098 Tu, D., Pang, Z., Bi, N. (1981) Yaoxue Xuebao, 16 (8),631-4. Chemical Abstracts (1982), 96 (9), 65676b, 323.
- 099 Sigh, P., Singh, A. (1980) Pharmazie, 35(11), 701-2.

 Chemical Abstracts, (1981), 94(11), 80227h, 382.
- 100 Dayal, R., Seshadri, T.R. (1979) J. Indian Chem. Soc., 56

- (9), 940-1. Chemical Abstracts (1980), 92(21), 177472f, 333.
- 101 Joshi, K.C., Singh, P., Pardasani, R.T. (1977) Planta.

 Med., 32(1), 71-5. Chemical Abstracts (1977), 87 (21), 164227b, 265.
- 102 Chakraborty, D.P., Islam. A., Roy, S. (1978) Phytochemistry,
 17 (11), 2043. Chemical Abstracts (1979), 90,(19),
 148442z, 301.
- 103 Adesogan, E.K. (1973) Tetrahedron, 29 (24), 4099-102.

 Chemical Abstracts (1974), 81(7), 37421m, 376.
- 104 Bhakuni, D.S., Bittner, M., Carmona, A., Sames, P.G.,Silva, M. (1974) Rev. Latinoam. Quim., 5 (4), 230-5.Chemical Abstracts (1975), 82(16), 103070v, 352.
- 105 Tai, D., Lin, Y., Chen, F. (1979) Hua Hsueh, (3), 60-1.

 Chemical Abstracts (1981), 94 (1), 1996 g, 200.
- 106 Li, G., Zhao, Z., Xu, R., Ying, B., Pan, Q. (1981) Yaoxue Xuebao, 16 (8), 576-81. Chemical Abstracts (1982), 96 (7), 48971b, 321.
- 107 Tessier, A.M., Delaveau, P., Champiom, B. (1981) Planta Med., 41 (4), 337-43.
- 109 Gonzales, A.G., Barroso, J.T., Cardona, R.J., Medina, J.M.,

- Rodriguez Luis, F. (1977) An. Quim., 73 (4), 538-45. Chemical Abstracts (1979), 91 (9) 71688v, 340.

- 112 Ueda, S., Inoue, K., Shiobara, Y., Kimura, I., Inouye, H.

 (1980) Planta Med., 40 (2), 168-78. Chemical Abstracts

 (1981), 94 (3), 12775k, 196.
- 113 Imre, S., Oztunc, A. (1976) Z. Naturforsch., C: Biosci, 31c (7-8), 403-7. Chemical Abstracts (1976), 85 (15), 106680s, 298.
- 114 Imre, S., Buyuktimkin, N. (1975) Phytochemistry, 14 (10), 2310-11.
- 115 Rodig, O.R., Quante, J.M., Coomes, R.M.(1974) Phytochemistry,
 13(1), 272-3. Chemical Abstracts (1974), 80 (19),
 105660v, 181.
- 116 Kuiper, J., Labadie, R.P. (1981) Planta Med., 42(4), 390-9. Chemical Abstracts (1981), 95 (21), 183886x, 351.
- 117 Oliveira, A.B., Fernandes, M.L.M., Shaat, V.T., Vasconcelos, I.A., Gottileb, O.R. (1977) Rev. Latinoam. Quim.,
 8 (2), 82-5. Chemical Abstracts (1977), 87(9), 65302r, 288.

- 118 Imre, S. (1973) Z. Naturforsch., Teil C, 28 (7-8), 436-9.

 Chemical Abstracts (1974), 80 (3), 12465v, 218.

- 121 Baudouin, G., Paris, R. (1975) Plant. Med.Phytother., 9(4), 278-88. Chemical Abstracts (1976), 84 (19),132614x, 243.
- 123 Stoessl, A., Unwin, C.H., Stothers, J.B. (1983) Can. J. Chem., 61(2), 372-7. Chemical Abstracts (1983), 98 (23), 194705a, 344.
- 124 Suemitsu, R., Kida, A., Horiuchi, K., Hiura, M. (1974) Agric.
 Biol. Chem., 38 (11), 2277-8. Chemical Abstracts (1975),
 82 (17), 108504z, 223.
- 125 Nakajima, S. (1973) Chem. Pharm. Bull., 21(9), 2083-5.

 Chemical Abstracts (1973), 79 (25), 144079m, 133.
- 126 Weeler, M.M., Wheeler, D.M.S., Peterson. G.W. (1975) Phytochemistry, 14 (1), 288-9. Chemical Abstracts (1975), 82 (19), 121325m, 238-9.

- 127 Imre, S., Oztunc, A., Buyuktimkin, N. (1974) Phytochemistry, 13(3), 681-2. Chemical Abstracts (1974), 81 (21), 132766m, 166.
- 128 Tiwari, R.D., Bajpai, M., Tiwari, A.R., Singh, J. (1977)

 Planta Med., 32 (4), 371-4. Chemical Abstracts (1978),

 88 (13), 86005g, 241.
- 129 Besl, H., Halbauer, R., Steglich, W. (1978) 7. Naturforsch.,
 C: Biosci., 33C (3-4), 294-5. Chemical Abstracts (1978),
 89 (13), 103673p, 425.
- 130 Koshioka, M., Ikemoto, C., Choji, N., Mayumi, I., Yasuko, T. (1978) Shoyakugaku Zasshi, 32 (4), 267-72. Chemical Abstracts (1979), 91 (6), 44434c, 316.
- 131 Lohar, D.R., Garg, S.P., Chawan, D.D. (1981) J. Indian Chem.
 Soc., 58 (8), 820. Chemical Abstracts (1981), 95 (16),
 138468f, 372.
- 132 Kuiper, J., Labadie, R.P. (1983) Planta Med., 48(1), 24-6.

 Chemical Abstracts (1983), 99 (15), 119317t, 381.
- 133 Zhuravlev. N.S. (1974) Khim. Prir. Soedin., (5), 656.

 Chemical Abstracts (1975), 82 (13), 83008a, 258.
- 135 Leistner, E. (1975) Planta Med., (Suppl.), 214-24. Chemical Abstracts (1975), 83(21), 175451p, 292.

- 136 Dosseh, C., Tessier, A.M., Delaveau, P. (1981)Planta Med.,
 43 (4), 360-6. Chemical Abstracts (1982),96/15), 119007
 e, 364.
- 137 Hocquemiller, R., Fournet, A., Bouquet, A., Bruneton, J.,
 Cave, A. (1976) Plant. Med. Phytother., 10(4), 248-50.
 Chemical Abstracts (1977), 86(25), 185922u, 285.
- 138 Dosseh, C., Tessier, A.M., Delaveau, P. (1981), Planta Med.,
 43 (2), 141-7. Chemical Abstracts (1982), 96(9), 65668a,
 322.
- 139 Lal, J., Gupta, P.C. (1974) Experientia, 30 (8), 850-1.

 Chemical Abstracts (1974), 81(25), 166391a, 293.
- 140 Yagi, A., Shoyama, Y., Nishioka, I. (1983) Phytochemistry,
 22 (6), 1483-4. Chemical Abstracts (1983) 99 (25), 209801a,
 404.
- 141 Yagi, A., Makino, K., Nishioka, I. (1977) Chem. Pharm.
 Bull., 25(7), 1764-70.
- 142 Abdurakhmanova, G. Kh., Nikonova, L.P., Nikonov. G.K.,

 Davydova, R.A. (1978) Farmatsiya, 27(2), 40-2. Chemical

 Abstracts (1978), 89(2), 12032n, 361-2.
- 144 Abdel-Gawad, M., Raynaud, J., Netien, G. (1976) Planta

 Med., 30 (3), 232-6. Chemical Abstracts (1977), 86 (3),

 13842b, 198.

- 145 Hammouda, F.M., Rizk, A.M., El-Nasr, M.M.S. (1974)Pharmazie,
 29(9), 609-10. Chemical Abstracts (1975), 82(4), 21752e,
 338.
- 146 El-Sohly, M., Knapp, J.E., Slatkin, D.J., Schiff, P.L.Jr.,
 Doorembos, N.J., Quimby, M.W. (1975) Lloydia, 38 (2),
 106-8. Chemical Abstracts (1975), 83 (1), 5036q, 445.
- 147 Rai, P.P., Shok, M. (1982) Plant Tissue Cult., Proc. Int.
 Congr. Plant Tissue Cell Cult., 5th, 277-8. Chemical
 Abstracts (1983), 99 (19), 155194j, 342.
- 148 El-Sayyad, S.M., Ross, S.A. (1983) J. Nat. Prod., 46 (3), 431-2. Chemical Abstracts (1983), 99 (7), 50328c, 272.
- 149 Rai, P.P., Shok, M. (1983) Indian J. Pharm. Sci., 45 (2), 87-8. Chemical Abstracts (1983), 99 (19), 155215s, 344.
- 150 Tiwari, R.D., Singh. J. (1977) Planta Med., 32(4), 357(7).

 Chemival Abstracts (1978), 88(13), 86006h, 241.
- 151 Kudav, N.A., Kulkarni (1974) Indian J. Chem., 12 (10),1042-4. Chemical Abstracts (1975), 82(19), 121681z, 269.
- 152 Malhorta, S., Misra, K. (1982) Planta Med., 46(4), 247-9.

 Chemical Abstracts (1983), 98(11), 86265y, 301.
- 153 Tiwari, R.D., Misra, G. (1975) Planta Med., 28(2), 182-5.

 Chemical Abstracts (1976), 84(5), 28019w, 222.
- 154 Patil, A.D., Deshpande, V.H. (1982) Indian J. Chem., Sect. B, 21B(7), 626-8. Chemical Abstracts (1982), 97 (19), 159534b, 406.

- 155 Takahashi, S., Takido, M., Yeh, S., Otsuka, H., Noguchi,
 H., Iitaka, Y., Sankawa, U. (1981) Shoyakigaku Zasshi,35
 (1), 22-5. Chemical Abstracts (1981), 95 (19), 165685b,
 422.
- 156 Takahashi, S., Takido, M., Sankawa, U., Shibata, S. (1976)
 Phytochemistry, 15(8), 1295-6. Chemical Abstracts(1977),
 86(3), 13802p, 194.
- 157 Tiwari, R.D., Richards, A. (1979). J. Indian Chem. Soc., 56(9), 942. Chemical Abstracts (1980), 92(21), 177473g, 333.
- 158 Rao, R.V.K., Rao, J.V.L.N.S., Vimaladevi, M. (1979) J. Nat. Prod., 42(3), 299-300. Chemical Abstracts (1979),91(11), 87298d, 412.
- 159 Hata, K., Baba, K., Kosawa, M. (1978) Chem. Pharm. Bull., 26(12), 3792-7. Chemical Abstracts (1979), 90 (21), 168913g, 634.
- 160 Alves, A.C., Costa, M.A.C., Paul, M.I., Souza, A.E. (1978)
 Rev. Port. Farm., 28(1), 1-6. Chemical Abstracts (1978),
 89(13), 103731f, 430.
- 162 Wagner, H., El-Sayyad, S.M., Seligmann, O., Chari, V.M.

 (1978) Planta Med., 33(3), 258-61. Chemical Abstracts

 (1978), 89(13), 103743m, 431.

- 163 Rai, P.P. (1977) Curr. Sci., 46(23), 814-5. Chemical Abstracts (1978), 88(14), 94728k, 326.
- 164 Desai, H.B., Shukla, P.C. (1978) Gujarat Agric. Univ. Res.
 J., 4(1), 60-1. Chemical Abstracts (1978), 89 (21),
 178346t, 473.
- 166 Kostova, I.N., Rangaswami, S. (1978) Indian J.Chem., Sect.
 B, 16B (5), 437-9. Chemical Abstracts (1978), 89(15),
 126129e, 314.
- 167 Harrison. J., Garro, V.C. (1977) Rev. Perv. Bioquim.,1(1),
 31-2. Chemical Abstracts (1978), 88(15), 105586t, 260.
- 168 Villaroya, M.L.E., Bernal-Santos, R. (1976) Asian J.Pharm., 3(1), 10-12, 17-24. Chemical Abstracts (1977), 86(7), 40173r, 255.
- 169 Ogura, M., Cordell, G.A., Farnsworth, N.R. (1977) Lloydia,
 40 (4), 347-51. Chemical Abstracts (1978), 88 (4),
 27714q, 281.
- 170 Rai, P.P., Tuner, T.D., Greesnsmith, S.L. (1974) J. Pharm.

 Pharmacol., 26(9), 722-6. Chemical Abstracts (1975),

 82 (17), 108818e, 251.
- 171 Friedrich, H., Baier, S. (1973) Phytochemistry, 12(6), 1459-62. Chemical Abstracts (1973), 79(11), 63522y, 216.

- 172 Oshio, H., Naruse, Y., Tsukiu, M. (1978) Chem.Pharm.Bull.,
 26 (8), 2458-64. Chemical Abstracts (1978), 89 (24),
 204278u, 422.
- 173 Friedrich, H., Baier, M. (1973) Planta Med., 23(1), 74-87.

 Chemical Abstracts (1973), 79 (1), 2725v, 251.
- 174 Wong, S.M., Chiang, T.C., Chang, H.M. (1982) Planta Med.,
 46 (3), 191-2. Chemical Abstracts (1983),98 (5), 31430t,
 396.
- 175 Formiga, M.D., Gottleib, O.R., Mendes, P.H., Koketsu, M., Almeida, M.E.L., Pereira, M.O.S., Magalhães, M.T. (1975)

 Phytochemistry, 14(3), 828-9. Chemical Abstracts (1975),
 83 (11), 93852f, 314.
- 176 Krivoshchekova, O.E., Stepanenko, L.S., Mishchenko, N.P.,

 Denisenko, V.A., Maksimov. O.B. (1983) Khim. Prir.Soedin.,

 (3), 283-9. Chemical Abstracts (1983), 99 (13), 102263z,

 348.
- 177 Mishchenko, N.P., Stepanenko, L.S., Krivoshchekova, O.E.,

 Marksimov, O.B. (1980) Khim. Prir. Soedin., (2), 160-5.

 Chemical Abstracts (1980), 93(11), 110555n, 398.
- 178 Cao, F., Liu, W., Wen, Y., He, Z., Qin, W.(1983) Zhongcaoyao, 14 (6), 241-2. Chemical Abstracts (1983), 99(19), 155182d, 341-2.
- 179 Botta, B., Monache, F.D., Monache, G.D., Bettolo, G.B.M.,
 Oguakwa, J.U. (1983) Phytochemistry, 22(2), 539-42.
 Chemical Abstracts (1983), 99 (21), 172804a, 370.

- 180 Camele, G., Monache, F.D., Monache, G.D., Bettolo, G.B.M.,
 Lima, R.A. (1982) Phytochemistry, 21(2), 417-9. Chemical
 Abstracts (1982), 97 (5), 36065s, 311.
- 181 Wang, N., Chen, Y. (1983) Zhongyao Tongbao, 8(3), 28-30.

 Chemical Abstracts (1983), 99 (22), 181329b, 341.
- 182 He, L. Luo, S. (1980) Yao Hsueh Hsueh Pao, 15(9), 555-62.

 Chemical Abstracts (1981), 94 (12), 90422q, 423-4.
- 183 Xiao, P., Chen, B., Wang, L., Ho, L., Luo, S., Guo, H.

 (1980) Yao Hsueh Hsueh Pao, 15(1) 33-9. Chemical Abstracts

 (1980), 93(26), 245330f, 377.
- 184 Furuya, T., Ayabe, S. Noda, K. (1975) Phytochemistri, 14 (5-6), 1457. Chemical Abstracts (1975), 83 (19),160766w, 285.
- 185 Asahi, Y., Shinozaki, K., Mitani. M., Ohtsuka, H. (1974).

 Chem. Pharm. Bull., 22(2), 254-61. Chemical Abstracts

 (1974), 80(25), 142602y, 152.
- 187 Tamano, M., Koketsu, J. (1982) Agric. Biol. Chem., 46(7).,
 1913-4. Chemical Abstracts (1982), 97(13), 107083j, 340.
- 188 Fang, Z., Yu, J. (1982) Zhongcaoyao, 13(7), 6-7,5.Chemical Abstracts (1982), 97(16), 133423q, 388.
- 189 Hsiao, P., Ho, L., Cheo, P., Kuo, H. (1980) Yao Hsueh T'ung

- Pao, 15(7), 48. Chemical Abstracts (1981), 95(4),30277z, 328-9.
- 191 Dedio, I. (1973) Herba Pol., 19 (4), 309-17. Chemical Abstracts (1974), 81(23), 148607w, 254.
- 192 Xu, Z. (1981) Chung Yao T'ung Pao, 6(2), 29-30. Chemical Abstracts (1981), 95 (16), 138455v, 369.
- 193 He, L., Chen, B., Xiao, P. (1981) Yao Hsueh Hsueh Pao, 16
 (4), 289-93. Chemical Abstracts (1981), 95(20), 175626x,
 412.
- 194 Grznar, K., Rada, K. (1978) Farm. Obz. 47(5), 195-9. Chemical Abstracts (1978), 89(25), 211983y, 309.
- 195 Martinod, P., Arteaga, M. (1978) Politecnica, 4(1), 34-44.

 Chemical Abstracts (1980), 92(5), 37745x, 424.
- 196 Gontar, E.M., Vysochina, G.I. (1980) Rastit. Resur., 16(1), 101-4. Chemical Abstracts (1980), 92 (17), 143314r, 295.
- 197 Vysochina, G.I., Gontar, E.M. (1977) Rastit. Resur., 13(1), 68-71. Chemical Abstracts (1977), 86 (19), 136389s, 279.
- 198 Vysochina, G.I., Gontar, E.M. (1976) Rastit. Resur., 12(3), 394-7. Chemical Abstracts (1976), 85 (23), 174255g, 269.
- 199 Siqueira, N.C.S., Silva, G.A.S., Bauer, L., Sant'ana, B.M.S. (1977) Rev. Cent. Cienc. Biomed., Univ. Fed. St. Maria,

- 5(3-4), 69-74. Chemical Abstracts (1979),90(13), 100123u, 273.
- 201 Sharma, M., Sharma, P., Rangaswami, S. (1977) Indian J.
 Chem., Sect. B, 15B (6), 544-5. Chemical Abstracts (1977),
 87 (25), 197286y, 372.
- 202 Ciulei, I., Istudor, V. (1973) Farmacia, 21(2), 85-8. Chemical Abstracts (1978), 79 (17), 102756z, 227.
- 203 Jiang, W., Mao, S. (1981) Zhong Yao Tongbao, 6(5), 20-3.

 Chemical Abstracts (1982), 96(6), 40798e, 368.
- 204 Rai, P.P. (1978) Lloydia, 41(2), 114-6. Chemical Abstracts (1978), 89 (1), 3186p, 292.
- 205 Zwaving, J.H. (1974) Pharm. Weekbl., 109 (50), 1209-13.

 Chemical Abstracts (1975), 82(14), 90002x, 253.
- 206 Zwaving, J.H. (1974) Pharm. Weekbl., 109 (48), 1169-77.

 Chemical Abstracts (1975), 82 (13), 82949w, 253.
- 207 Tiwari, K.P., Kumar, P., Masood, M. (1978) Vijnana Parishad

 Anusandhan Patrika, 21(2), 179-84. Chemical Abstracts

 (1979), 90 (21), 164748j, 278.

- 209 Martinod, P., Gallardo, G.G. (1973) Cienc. Nat., 14 (1), 2-10. Chemical Abstracts (1975), 83-(21), 175432h, 290.
- 210 Weniger, B., Haag-Berrurier, M., Anton, R. (1982)

 Ethnopharmacol., 6(1), 67-84. Chemical Abstracts (1982),

 97 (10), 78755x, 407.
- 211 Van Eijk, G.W., Roeymans, H.J. (1981) Exp. Mycol. 5 (4), 373-5. Chemical Abstracts (1982), 96(1), 3389b, 305.
- 212 Van Eijk, G.W. (1974) Phytochemistry, 13(3), 650. Chemical Abstracts (1974), 81 (15), 87643f, 160.
- 214 Cam, J.J.L. (1973) Bol. Soc. Quim. Peru, 39(4), 204-10. Chemical Abstracts (1974), 81 (21), 132855q, 171.
- 215 Villaroto, B.S., Gonzales, F.G. Polonsky, J., Baskevitch-Varon, Z. (1974) Phytochemistry, 13 (9), 2018-19. Chemical Abstracts (1975), 82(7), 40772m, 221.
- 216 Gunawardana, Y.A., Geevananda P., Sultanbawa, M.U.S.,
 Balasubramanian, S. (1980) Phytochemistry, 19(6), 109922. Chemical Abstracts (1981), 94(1), 1973x, 198.
- 217 Gunawardana, Y.A., Geevananda, P., Guanawardana, P. Kumar, N.S., Sultanbawa, M. V.S. (1979) Phytochemistry, 18(6), 1017-9. Chemical Abstracts (1980), 92(7), 55032s, 355-6.
- 218 Abou-Chaar, C.I., Kabbara, R.A. (1982) Int. J. Crude Drug

- Res., 20 (1), 9-11. Chemical Abstracts (1982), 96 (25), 214352x, 419.
- 219 Abou-Chaar, C.I., Shamlian, S.N. (1980) Q.J. Crude Drug
 Res., 18 (1), 49-55. Chemical Abstracts (1981), 95 (7),
 57379w, 291.
- 220 Abou-Chaar, C.I., Shamlian, S.N. (1980) Q.J. Crude Drug Res., 18 (1), 49-55. Chemical Abstracts (1980), 93 (15), 146650f, 391.
- 221 Abou-Chaar, C.I., Shamlian, S.N. (1980) Q.J. Crude Drug Res., 18(1), 49-55. Chemical Abstracts (1980), 93 (22), 210152x, 358.
- 222 Rawald, H.W., Just, H.D. (1981) Planta Med., 42(3), 244-9.
 Chemical Abstracts (1981), 95(13), 111749g, 364.
- 223 Baytop, T., Sutlupinar, M. (1977) Istanbul Univ. Eczaciilik
 Fak. Mecm., 13(1), 1-6. Chemical Abstracts (1978),88(21),
 148948c, 304.
- 224 Quercia, V. (1976) Boll. Chim. Farm., 115 (4), 309-16.

 Chemcial Abstracts (1976), 85(22), 451.
- 225 Pourveru, A. (1973) J. Pharm. Belg., 28(6), 681-94. Chemical Abstracts (1974), 80(23), 130495c, 236.
- 226 Proske, G. (1975) Dtsch. Apoth.-ZTG., 115 (23), 801-3.

 Chemical Abstracts (1975), 83(14), 120937w, 442.
- 227 Rao, G.S.R., Hunumaiah, T., Rao, K.V.J. (1980) Indian J. Chem., Sect. B, 19B (2), 97-100. Chemical Abstracts(1980), 92 (25), 211804c, 311.

- 228 Dreyer, D.L., Arai, I., Bacnman, C.D., Anderson. W.R.Jr., Smith, R.G., Daves, G.D.Jr. (1975) J. Am. Chem. Soc., 97 (7), 4985-90. Chemical Abstracts (1975), 83 (19), 160779c, 285.
- 229 Ho Dac An, H. (1979) Duoc Hoc, (3), 12-6. Chemical Abstracts (1980), 93 (5), 37562f, 122.
- 230 Stark, A.A., Townsend, J.M., Wogan, G.N., Demian, A.L.,

 Manmade, A., Ghosh, A.C. (1978) J.Environ. Pathol. Toxicol.,

 2(2), 313-24. Chemical Abstracts (1979), 90 (13),98323p,

 116.
- 231 Ghosh, A.C., Manmade, A., Kobbe, B., Townsend, J.M., Demian, A.L. (1978) Appl. Environ. Microbiol., 35(3), 563-6.

 Chemical Abstracts (1978), 89(13), 105862y, 622-3.
- 232 Van Eijk, G.W., Roeymans, H.J. (1978) Phytochemistry, 17 (10), 1804-5. Chemical Abstracts (1979), 90 (23), 182855w, 308.
- 233 Gunasekaran, M., Weber, D.J. (1981) Mycologia, 73 (5),844-52. Chemical Abstracts (1981), 95(23), 200229e, 342.
- 234 Imre, S., Sar, S., Thomson, R.H. (1976) Phytochemistry, 15
 (2), 317-20. Chemical Abstracts (1976), 84(23), 161795n,
 221.
- 235 Stoessl, A., Unwin, C.H., Stothers, J.B. (1979) Tetrahedron Lett., (27), 2481-4. Chemical Abstracts (1980), 92 (9), 72375y, 315.

- 236 Tiwari, R.D., Richards, A. (1979) Planta Med., 36 (1), 91-4. Chemical Abstracts (1979), 91(13),105188z,348.
- 237 Lal, J., Gupta, P.C. (1973) Phytochemistry, 12(5), 1186.

 Chemical Abstracts (1973), 79(9), 50727u, 154.
- 238 Mulchandani, N.B., Hassarajani, S.A. (1977) Planta Med. 32(4), 357-61. Chemical Abstracts (1978), 88(13),86004f, 241.
- 239 Takido, M., Takahashi, S., Masuda, K., Yasukawa, K. (1977) Lloydia, 40 (2), 191-4. Chemical Abstracts (1977), 87(9), 65320v, 290.
- 240 Tan, Y., Yang, Y., Yan, Y. (1983) Yaowu Fenxi Zazhi, 3(2), 74-8. Chemical Abstracts (1983), 99(10),76951a, 375.
- 241 Yan, X. (1981) Shang-Hai Ti l I Hsueh Yuan Hsuen Pao, 8(2), 123-6. Chemical Abstratcs (1981), 95 (14), 121033h, 359.
- 242 Suri, J.L., Dhar, K.L., Atal, C.K. (1976) J. Indian Chem.
 Soc., 53(11), 1158-9. Chemical Abstracts (1977), 87
 (9), 65350e, 293.
- 244 Denisova, O.A., Fesenko, D.A., Glyzin, V.I., Patudin, A.V., Novruzoc, V.S. (1978) Khim. Prir. Soedin., (6), 799. Chemical Abstracts (1979), 90(25), 200276q,296.

- 245 Yosioka, I., Hino, K., Fujio, M., Kitagawa, I. (1973)

 Chem. Pharm. Bull., 21(7), 1547-53. Chemical Abstracts

 (1974), 80(3), 14698x, 412.
- 246 Abou-Chaar, C.I., Kabbara, R.A., Shamlian, S.N. (1982)

 J. Crude Drug Res., 20(1), 13-18. Chemical Abstracts

 (1982), 97(1) 3584g, 361-2.
- 247 Tripathi, V.D., Agarwal, S.K., Rastogi, R.P. (1979)

 Indian J. Chem., Sect. B, 17B (1), 89-90. Chemical

 Abstracts (1979), 91(13), 348.
- 248 Wang, Z., Wang, X., Yang, Z. (1982) Zhongcaoyao, 13(3), 7-9. Chemical Abstracts (1982), 97(13), 107021n,334,
- 249 Miraglia, M.C.M., Mesquita, A.A.L., Varejão, M.J.C., Gottlieb, O.R. Gottlieb, H.E. (1981) Phytochemistry, 20(8), 2041-2.
- 250 Krivoshchekova, O.E., Maximov. O.B., Stepanenko, L.S., Mishchenko, N.P. (1982) Phytochemistry, 21(1), 193-6.
 Chemical Abstracts (1982), 96/25), 214247s, 411-2.
- 251 Leon, J.J.C. (1975) Bol. Soc. Quim. Peru, 41(4), 14-30. Chemical Abstracts (1976), 84(7), 44436k, 533.
- 252 Krivoshchekova, O.E., Maximov, O.B., Mishchenko, N.P., Stepanenko, L.S. (1981) Khim. Prir. Soedin., (1), 96-7.
 Chemical Abstracts (1981), 95(3), 21262p, 361-2.
- 253 Gonzales, A.G., Martin, J.D., Perez, C. (1974) Phytochemistry, 13(8), 1547-9. Chemical Abstracts (1974), 81(25), 166402e, 294.

- 254 Gonzalex, A.G., Martin, J.D., Perez, C. (1973) An.
 Quim., 69(6), 805-6. Chemical Abstracts (1973),79(17),
 104996b, 405.
- 255 Anke, H., Kolthoum, I., Zaenher, H., Laatsch, H. (1980)
 Arch. Microbiol., 126(3), 223-30. Chemical Abstracts
 (1980), 93(23), 217635r, 258.
- 256 Anke, H., Kolthoum, I., Laatsch, H. (1980) Arch. Microbiol. 126 (5), 231-6. Chemical Abstracts (1980), 93 (19), 180220y, 116-7.
- 257 Engstrom. G.W., McDorman, D.J., Maroney, M.J. (1980) J.

 Agric. Food Chem., 28(6),1139-41. Chemical Abstracts

 (1980), 93(19), 182714m. 347.
- 258 Bachmann, M., Luethy, J., Schlatter, C. (1979) J.Agric.
 Food Chem. 27(6), 1342-7. Chemical Abstracts (1979),
 91(23), 187673r, 150.

- 261 Suemitsu, R., Iwai, J., Kawaguchi, K. (1975) Agric.

 Biol. Chem., 39 (11), 2249-50. Chemical Abstracts

 (1976), 84(9), 56318 m, 262.

- 262 Correa, D.B., Bircha, E., Aguilar, J.E.V., Gottlieb,
 O.R. (1975) Phytochemistry, 14(4), 1138-9. Chemical
 Abstracts (1975), 83(13), 111132c, 295.
- 263 Matsuura, S., Lee, L., Iinuma, M. (1973) Yakugaku Zasshi, 93 (12), 1682-4. Chemical Abstracts (1974), 80 (13), 68392m, 157.
- 264 Darbawar, M., Sundaramurthy, V., Rao, N.V.S. (1974)

 Curr. Sci., 43(3), 74. Chemical Abstracts (1974), 80

 (19), 105900 y.
- 265 Kumura, Y., Kozawa, M., Baba, K. Hata, K. (1983) Planta Med., 48(3), 164-8. Chemical Abstracts (1983),99(23), 191680y, 473.
- 266 Kitanaka, S., Takido, M. (1980) Nihon Daigaku Yakugaku Kenkyu Hokoku, 19, 30-1. Chemical Abstracts (1981), 94 (4), 20287t, 299-300.
- 267 Kiriyama, N., Mitta, K., Sakaguchi, Y., Taguchi, Y., Yamamoto, Y. (1977) Chem. Pharm. Bull., 25 (10),2593-601. Chemical Abstracts (1978), 88(7), 47259y, 256.
- 268 Fujimoto, H., Flasch, H., Franck, B. (1975) Chem. Ber., 108 (4), 1224-8. Chemical Abstracts (1975), 83 (1), 4696t, 418.
- 269 Gonçalves, M.L., Mors, W.B. (1981), Phytochemistry, 20 (8), 1947-50. Chemical Abstracts (1982)96(7),48925q, 316-7.

- 270 Ghosh, A.C., Manmade, A., Demian, A.L. (1977) Micotoxins
 Hum. Anim. Health, Proc. Conf. 1976, 625-38. Chemical
 Abstracts (1978), 88(21), 148657g, 277.
- 271 Leistner, E. (1973) Phytochemistry, 12(7), 1669-74.

 Chemical Abstracts (1973), 79(21), 123749q, 186.
- 272 Mishra, G., Gupta, N. (1982), J. Inst. Chem., 54 (1),22. Chemical Abstracts (1982), 96(19), 159377g, 457.
- 273 Eswaran, V., Narayanan, V., Neelakantan, S., Raman, P.V.

 (1979) Indian J. Chem., Sect. B, 17B (6), 650-1.

 Chemical Abstracts (1980), 93 (17), 164309d, 344.
- 274 Rao, R.V.K., Rao, J.V.L.N.S., Sudhakar, C.V. (1978) Indian J. Pharm. Sci., 40(5), 169-70. Chemical Abstracts (1979), 90 (11), 83617p, 300.
- 275 Varshney, S.C., Rizvi, S.A.I., Gupta, P.C. (1973) Planta Med., 23(4), 363-9. Chemical Abstracts (1973), 79(11), 63528e, 216.
- 276 Takido, M., Takahashi, S., Masuda, K., Yasukawa, K.

 (1977) Nihon Daigaky Yakugaku Kenkyu, Hokuku, 17,

 19-20. Chemical Abstracts (1978), 89(11), 87157r, 248.
- 277 Rai, P.P. (1978) Curr. Sci., 47(8), 271-2. Chemical Abstracts (1978), 89(1), 3194p, 292-3.
- 278 Roy, D.K., Pal, P.R. (1977) Indian J. Pharm., 39(5),116-17. Chemical Abstracts (1978), 88(9), 60136a, 197.
- 279 Hubik, J., Karmazin, M., Kamenikova, M. (1979) Cesk.

- Farm., 28(5), 205-9. Chemical Abstracts (1980), 92 (14), 116326q, 347.
- 280 Castagnola, V., Pettinari, G., De Vries, G.A. (1976)

 Boll. Chim. Farm., 115(5), 376-82. Chemical Abstracts

 (1977), 86(9), 52294u, 178.
- 281 Bhadoria, B.K., Gupta, R.K. (1977) J. Indian Chem. Soc., 54 (12), 1200-1. Chemical Abstracts (1978), 89 (11), 87167u, 249.
- 282 Suri, J.L., Dhar, K.L., Atal, C.K. (1978) J. Indian Chem. Soc., 55(3), 292-3. Chemical Abstracts (1978), 89(23), 193821n, 318.
- 283 Harborne, J.B., Mokhatari, N. (1977) Phytochemistry, 16 (8), 1314-5. Chemical Abstracts (1977), 87(15), 114600x.
- 284 Li, C., Yu, Po. (1980) Yao Hsueh T'ung Pao, 15(6), 1-2.

 Chemical Abstracts (1981), 94(12), 90120g, 397.
- 285 Kuo, Y.H., Wu, T.R., Lin, Y.T. (1982) J. Chin. Chem. Soc., 29(3), 213-5. Chemical Abstracts (1982),92(25), 212698m.
- 286 Lemli, J., Cuveele, J. (1978) Planta Med., 34(3),311-8.

 Chemical Abstracts (1979), 90(10), 76458j, 275.

- 288 Jesenka, Z., Polakova, O. (1980) Prum. Potravin, 31(11), 655-6. Chemical Abstracts (1981), 94(17), 137936v, 612.
- 289 Kurobane, I., Vining, L.C., McInnes, A.G. (1979) J.

 Antibiot., 32 (12), 1256-66. Chemical Abstracts (1980), 92(13), 106993r, 318.
- 290 Tatsuno, T., Kobayashi, N., Okubo, K., Tsunoda, H.

 (1975) Chem. Pharm. Bull., 23(2), 351-4. Chemical

 Abstracts (1975), 83(1), 1909d, 187.
- 291 Sankawa, V., Ebizuka, Y., Shibata, S. (1973) Tetrahedron
 Lett., (23), 2125-8. Chemical Abstracts (1974), 80
 (5), 24609h, 204.
- 292 Bernardi, M., Vidari, G., Vita-Finzi, P. (1976) Phytochemistri, 15(11), 1785-6. Chemical Abstracts (1977), 86(5), 27667k, 188.
- 293 Van Eijk, G.W. (1973) Experientia, 29(5),522-3.Chemical Abstracts (1973), 79(7), 39926n, 151.
- 294 Engstrom, G.W., Stenkamp, R.E., Mc Dorman, D.J., Jensen,
 L.H. (1982) J. Agric. Food Chem., 30(2),304-7. Chemical
 Abstracts (1982), 96(13), 100576t, 382.
- 295 Suemitsu, R., Iwai, J., Kawaguchi, K., Hatani, N., Kitagawa, N. (1977) Agric. Biol. Chem., 41(11), 2289-90. Chemical Abstracts (1978), 88(5), 34556t, 252.
- 296 Suemitsu, R., Kitagawa, N., Shinomaru, H., Tomoyoshi, T.

- (1977) Agric. Biol. Chem., 41(1), 207. Chemical Abstracts (1977), 86(13), 85876p, 231.
- 297 Malhorta, S., Misra, K. (1982) Phytochesmistry, 21(1), 197-9. Chemical Abstracts (1982), 96(25), 214248t,412.
- 298 Mabadeje, S.A., Jefferson, W.E.Jr., Wander, J.D. (1978) Exp. Mycol., 2(4), 359-65. Chemical Abstracts (1979), 90(21), 164430z, 251.
- 299 Van Eijk, G.W., Roeymans, H.J. (1977) Experimentia, 33 (10), 1283-4. Chemical Abstracts (1978), 88(1), 3087m, 287.
- 300 Assante, G., Locc, R., Camarda, L., Merlini, L., Nasini, G. (1977) Phytochemistry, 16(2), 243-7. Chemical Abstracts (1977), 86(23), 167893f, 273-4.
- 301 Takahashi, C., Sekita, S., Setsuko, Y., Yoshihira, K., Natori, S., Undagawa, S., Kurata, H., Enomoto, M., Ohtsubo, K., Umeda, M., Saito, M. (1973) Chem. Pharm. Bull., 21(10), 2286-91. Chemical Abstracts (1974),80 (13), 67230v, 61.
- 302 Rosell. G. (1980) Circ. Farm., 38(269), 445-58. Chemical Abstracts (1981), 95(2), 12633h, 355.
- 303 Misra, G.S., Chandhok, S.M. (1981) Indian J. Chem., Sect.

 B, 20 (B) 8, 721. Chemical Abstracts (1982), 96 (2),

 8113s, 80-1.
- 304 Berg, W., Hesse, A., Herrmann, M., Kraft, R. (1975)

- Pharmazie, 30(5), 330-4. Chemical Abstracts (1975),83 (33), 190341w, 222.
- 305 Stoecking. J., Srocka, U., Zenk, M.H. (1973) Phytochemis try, 12(10), 2389-91. Chemical Abstracts (1973), 79 (25), 144177s, 143.
- 306 Buyuktimkin, N., Imre, S., Thomson, R.H. (1981) Phytoche mistry, 20(10), 2441. Chemical Abstracts (1982), 96 (15), 118977j, 361.
- 307 Bauch, H.J., Leistner, E. (1978) Planta Med., 33 (2), 124-7. Chemical Abstracts (1978), 88 (21),149035q,310.
- 308 Imre, S., Ersoy, L. (1973) Z. Naturforsch., Teil C, 28 (7-8), 471-3. Chemical Abstracts (1974) 80(3),12466w, 218-9.
- 309 Rao, J.V.L.N.S., Sastry, P.S.R., Rao, R.V.K., Vimaladevi, M. (1975) Curr. Sci., 44(20), 736-7. Chemical Abstracts (1976), 84(9), 56497u, 279.
- 310 Paslarasu, N., Feodorov-Rinciog, E. (1976) Farmacia, 24(4), 219-26. Chemical Abstracts (1977), 86 (18), 127152g, 368.
- 311 Kameyama, S., Shinho, M. Jpn. Kokai Tokkyo Koro 79,151,

 113 (CI. A 61K35/78), 28 Nov 1979, Appl. 78/56,995,13

 May 1978; 5 pp, Chemical Abstracts (1980), 93 (2),

 13075y, 316.
- 312 Hirata, T., Suga, T. (1977) Z. Naturforsch., C: Biosci, 32c (9-10), 731-4. Chemical Abstracts (1978), 88(2),

- 11786d, 290.
- 313 Siqueira, N.S., Sant'ana, B.M.S., Bauer, L., Silva, G.
 A.A.B., Alice, C.B. (1976) Rev. Bras. Farm., 57(1-4),
 27-32. Chemical Abstracts (1977), 86(12),78613x, 394.
- 314 Adamski, R., Kodym, A. (1974) Herba Pol., 20(1), 26-31.

 Chemical Abstracts (1975), 82(4), 21837m, 345.
- 315 Kupchan, S.M., Karim, A. (1976) Lloydia, 39(4), 223-4.

 Chemical Abstracts (1976), 85(16), 112694x, 269.
- 316 Dey, A.K., Mukherjee, A., Das, P.C., Chatterjee. (1978)

 Indian J. Chem., Sect. B, 16B (11), 1402. Chemical

 Abstracts (1979), 90 (23), 183194s, 337.
- 317 Oshio, H. (1978) Shoyakugaku Zasshi, 32(1), 19-23.

 Chemical Abstracts (1978), 89(8), 65178w, 334.
- 318 Yagi, A., Makino, K., Nishioka, I. (1974) Chem. Pharm.

 Bull., 22(5), 1159-66. Chemical Abstracts (1974), 81

 (23), 148447u, 243.
- 319 Minocha, P.K., Masood, M., Tiwari, K.P. (1981) Indian
 J. Chem., Sect. B, 20B (3), 251-2. Chemical Abstracts
 (1981), 94 (25), 205415b, 308.
- 320 Berg, W., Hesse, A., Kraft, R., Herrmann, M. (1974)Phar mazie, 29(7), 478-82. Chemical Abstracts (1975), 82 (9), 54163 s, 282.
- 321 Utkina, N.K., Maksimov, O.B. (1979) Khim. Prir.Soedin.,
 (2), 148-51. Chemical Abstracts (1979), 91 (23),
 189992t, 360.

- 322 Bartolini, G.L., Erdman, T.R., Schever, P.J. (1973) Tetrahedron, 29(22), 3699-702. Chemical Abstracts (1974), 80(25), 145882a, 419.
- 323 Steglich, W., Jedtke, K.F. (1976) Z. Naturforsch., C:
 Biosci., 31C(3-4), 197-8. Chemical Abstracts (1976),
 84 (23), 161787m, 220.
- 324 Detroy, R.W., Freer, S., Ciegler, A. (1973) Can. J. Microbiol., 19(11), 1373-8. Chemical Abstracts(1974), 80(11), 57344w, 154.
- 325 Steyn, P.S., Vleggaar, R., Wessels, P.L., Cole, R.J., Scott, D.B. (1979) J. Chem. Soc., Perkin Trans. 1, (2), 451-9. Chemical Abstracts (1979), 91(19), 156847w, 566.
- 326 Danhs, A.V., Hodges, R. (1974), Aust. J. Chem., 27(7), 1603-6. Chemical Abstracts (1974), 81(19), 117093w, 254.
- 327 Dunn, J.J., Lee, L.S., Bennett, J.W. (1980) Biotechnol.

 Lett., 2(1), 17-22. Chemical Abstracts (1980),92(17),

 141306r, 109-10.
- 328 Bennett, J.W., Wheeler, D.G., Dunn, J.J. (1981) Adv.
 Biotechnol., Proc. Int. Ferment. Symp., 6 th 1980,
 3,417-22. Chemical Abstracts (1982), 96(13), 100763b,
 400.
- 329 Steyn, P.S., Vleggaar, R., Wessels, P.L. (1981) S. Afr.

 J. Chem., 34(1), 12-17. Chemical Abstracts (1981),

- 95 (3), 21002 d, 337-8.
- 330 Scott, G.R., Marascalco, B.A., Bennett, J.W. (1979)

 Bios (Madison, N.J.), 50(2), 77-89. ChemicalAbstracts

 (1979), 91 (7), 52536c, 335.
- 331 Papa, K.E. (1982) J. Gen. Microbiol., 128 (6), 1345-8.

 Chemical Abstracts (1982), 97 (15), 123689s, 369.
- 332 Chang, P., Lee, K.H., Shingu, T., Hirayama, T., Hall, I.H., Huang, H.C. (1982) J. Nat. Prod., 45 (2), 206-10. Chemical Abstracts (1982), 97(1), 3565b, 360.
- 333 Fornier, G., Bercht, C.A.L., Paris, R. Paris, M.R.(1975)

 Phytochemistry, 14(9), 2099. Chemical Abstracts (1976),

 84(5), 28040w, 223.
- 334 Csajtai, M. (1975) Gyogyszereszet, 19(9), 333-5.Chemical Abstracts (1976), 84(6), 35239w, 292-3.
- 335 Hammouda, F.M., Rizk, A.M., El-Nasr, S.M.M. (1974) Z.

 Naturforsch., Teil C, 29(7-8), 351-4. Chemical abstracts
 (1974), 81(7), 101828d, 239.
- 336 Berger, Y. (1980) Phytochemistry, 19(12), 2779-80. Chemical Abstracts (1981), 94(19), 153097c, 331.
- 337 Stevens, K.L., Badar-UD-Din, Ahmad, A., Ahmad, M. (1979)

 Phytochemistry, 18(9), 1579-80. Chemical Abstracts

 (1980), 92(13), 106982m, 317.
- 338 Van Eijk, G.W. (1975) Experientia, 31(7). 783-4. Chemical Abstracts (1975), 83(11), 93473h, 278-9.

- 339 Budzikewik, H. Djerassi, C., Williams, D.H. (1967) Mass Spectrometry of Organic Compounds, 119.
- 340 Imre, S., Wagner, H. (1969) Phytochemistry, 8, 1601-2.
- 341 Gottlieb, O.R. (1968) Anal. Chem. Acta, 42,311-20.
- 342 Koketsu, M. (1977) Tese de Mestrado, Instituto Militar de Engenharia, 81.
- 343 Wenkert, E., Gottlieb, H.E., Gottlieb, O.R., Pereira, M.O.S., Formiga, M.D. (1976) Phytochemistry, 15-1547-51.
- 344 Gottlieb, O.R. (1968) Introdução a Espectrometria de Ressonância Magnética Protônica, 49.
- 345 Hostettler, F.D., Seikel, M.K. (1969) Tetrahedron, 25, 2325-7.
- 346 Miyamura, M., Nohara, T., Tominatsu, T., Nishioka, I. (1983) Phytochemistry, 22, 215-18.
- 347 Fonseca, S.F., Campello, J.P., Barata, L.E.S., Rúveda, E.A. (1978) Phytochemistry, 17, 499-502.
- 348 Blunt, J.W., Stothers, J.B. (1977) Organic Magnetic Ressonance, 9, 439-64.
- 349 Itoh, T., Yoshida, K., Tamura, T., Matsumoto, T. (1982)

 Phytochemistry, 21, 727-30.
- 350 Fieser, F.L., Fieser, M. (1967) Reagents for Organic Synthesis, Vol. I, 761.

- 351 Ding, Y., Zhang, H., Yuan, C., Dong, Y. (1983) Zhiwu Xuebao, 25(3), 250-3. Chemical Abstracts (1983), 25 (3), 191691c, 250.
- 352 Dallacker, F., Van Wersch, H. (1975) Chem. Ber., 108(2), 561-8.
- 353 Leistner, E. (1971) Phytochemistry, 10, 3015-20.
- 354 Haslam, E. (1974) The Shikimate Pathway, 275-9.
- 355 Geissman, T.A., Crout, D.H.G. (1969) Organic Chemistry of Secondary Plant Metabolism. 113-5.
- 356 Braz Filho, R. (1971) Tese de Doutorado, U.F.R.R.J.,325 e 346-7.