ÁCIDOS AMINADOS NÃO PROTEICOS E FLAVONÓIDES COMO MARCADORES

EVOLUTIVOS DE MIMOSOIDEAE E CAESALPINIOIDEAE

CÉLIA MARIA CARVALHO MENDES

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS CURSO DE PÓS-GRADUAÇÃO EM QUÍMICA ORGÂNICA

ÁCIDOS AMINADOS NÃO PROTEICOS E FLAVONÓIDES COMO MARCADORES EVOLUTIVOS DE MIMOSOIDEAE E CAESALPINIOIDEAE

CÉLIA MARIA CARVALHO MENDES

SOB A ORIENTAÇÃO DO PROFESSOR DOUTOR

EUCLIDES LAMEIRAS BARREIROS

Tese submetida como requisito parcial para obtenção do grau de Mestre em Química Orgânica Área de Concentração em Sistemática Química Vegetal.

Itaguaí, Rio de Janeiro
- Julho, 1990

À minha mãe, meus irmãos. Ao Sidnei e Tiago.

AGRADECIMENTOS

Ao Professor Doutor EUCLIDES LAMEIRAS BARREIROS pela orientação, amizade e estímulo durante a execução deste trabalho.

Ao Professor Doutor OTTO RICHARD GOTTLIEB pelas valiosas sugestões.

Professora Doutora MARIA AUXILIADORA COELHO KAPLAN pela inestimável colaboração.

Aos amigos VILMA MOTA DA SILVA e CARLOS EDUARDO GRAULT pela amizade e agradável convivência.

ÀS amigas CARLA MARIA DE MELO STELING, KELLY NEOB C. CASTRO, ZAIDA BORGES e MARLEIDE DE MELO pela convivência e participação.

Aos amigos ANA MARGARETH MANHÃES SEABRA DAN, MARCOS ANTÔNIO MARIA, JORGECÉIA DA SILVA BRANDÃO e MARCELO DA SILVA pela amizade e colaboração.

Ao Professor Doutor ANSELMO ALPANDE DE MORAIS pela amizade e estímulos.

À amiga ÁUREA DE ALMEIDA pela convivência e amizade.

A todos aqueles que de alguma forma contribuíram para a realização deste trabalho.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela bolsa concedida.

BIOGRAFIA

Célia Maria de Carvalho Mendes, nasceu em Floriano-PI, filha de Luiz Gonzaga de Sousa Mendes e Maria das Dores de Carvalho. Graduou-se em Química (Bacharelado) pela Universidade de Fortaleza em 1982.

Foi estagiária do Departamento de Tecnologia de Alimentos da Universidade Federal do Ceará no período de 1981 a 1982, foi Professora da Escola Municipal Maria Creusa do Carmo Rocha no período de 1980 a 1982.

Atualmente exerce o cargo de Químico de Desenvolvimento na "Cyanamid Química do Brasil Ltda".

ÍNDICE

			Págs.
1.	INTRODUÇÃO		1.
2.	METODOLOGIA	QUIMIOTAXONÔMICA	4.
	2.1. Flavor	óides	4.
	2.1.1.	Cálculo do índice de trans:	formação do
		anel A	4.
	2.1.2.	Cálculo do índice de trans:	formação do
		anel B	7.
	2.1.3.	Cálculo dos parâmetros de av	anço evolu-
		tivo referente às transfor	mações dos
		anéis A e $B(AE_{TA}$ e $AE_{TB})$	9.
	2.2. Ácidos	aminados não proteicos	10.
3.	RESULTADOS		11.
4.	DISCUSSÃO	DOS RESULTADOS	189.
	4.1. Flavo	nóides	189.
	4.2. Ácidos	aminados não proteicos	191.

			Págs.
5.	CONCLUSÕES		214.
6.	REFERÊNCIAS	BIBLIOGRÁFICAS	216.

ÍNDICE DAS TABELAS

			Págs.
Tabelas	1-1	la. Distribuição de Estilbenos e Flavonóides	
		em Caesalpinioideae	13-16
Tabelas	1.1	. a 1.15. Estrutura e ocorrência de Estilbe-	
		nos e Flavonóides em Caesalpinioideae	24a 85
Tabela	2.	Distribuição de Flavonóides em Mimosoideae .	86
Tabelas	2.1	l. a 2.17. Estrutura e ocorrência de Flavo-	
		nóides em Mimosoideae	90 a 188
Tabela	3.	Distribuição de ácidos aminados não protei-	
		cos (codificados de 1 a 29) na subfamília Mi-	
		mosoideae	199

			Págs.
Tabela	4.	Distribuição de ácidos aminados não proteicos	
		(codificados de 1 a 29) no gênero Acacia (Bi-	
		pinnatae)	201
Tabela	4a.	. Distribuição de ácidos aminados não protei-	
		cos no gênero <i>Acacia</i> (Phyllodineae)	202.
Tabela	5.	Distribuição de ácidos aminados não proteicos	
		(codificados de 1 a 29) na subfamília Caesal-	
		pinioideae	204.
Tabela	6.	Distribuição de ácidos aminados não proteicos	
		(codificados de 1 a 29) nas tribos de Caesal-	
		pinioideae e Mimosoideae	205.
Tabela	7.	Distribuição de ácidos aminados não proteicos	
		(codificados de 1 a 24) no gênero Acacia	206.

ÍNDICE DAS FIGURAS

			Págs.
Figura	1.	Correlação dos valores ${\tt AE}_{{\tt TA}}/{\tt AE}_{{\tt TB}}$ para os gru-	
		pos de Caesalpinioideae	195.
Figura	2.	Correlação dos valores ${\rm AE_{TA}}/{\rm AE_{TB}}$ para os gê-	
		neros de Mimosoideae	196.
Figura	3.	Correlação dos valores ${ t AE}_{ extbf{TA}}/{ t AE}_{ extbf{TB}}$ para as tri-	
		bos de Mimosoideae	197.
Figura	4.	Linhas de derivação para os principais gru-	
		pos da família Leguminosae <i>(sensu</i> Polhill).	198.

RESUMO

subfamílias Caesalpinioideae e Mimosoideae As são caracterizadas pela capacidade de biossintetizar flavonóides. Além da ocorrência geral nas duas subfamílias, substâncias possuem também uma grande variabilidade estrutural. Características estruturais referentes ao grau de transformação dos anéis A e B foram quantificadas, originando respectivamente os índices de avanço por substância, ITA e ITB. As médias ponderadas das ocorrências desses índices de avanço, por espécie, para um determinado táxon, constituem os parâmetros de avanço evolutivo referentes às transformações anéis A e B (AE_{TA} e AE_{TB}). Esses parâmetros quando correlacionados com o mais moderno sistema morfológico de classififamília Leguminosae mostrou uma perfeita corresponcação da dência Química-Morfologia.

Além dos flavonóides, uma outra classe de metabólitos secundários possui também ocorrência bastante significativa em Caesalpinioideae e Mimosoideae: os ácidos aminados não proteicos. Estudos comparativos da distribuição dessas substâncias nas duas subfamílias indicam as mesmas tendências evolutivas observadas com base na Química flavonoídica.

ABSTRACT

The subfamilies Caesalpinioideae and Mimosoideae are well characterized by the ability to elaborate flavonoids. Besides the general occurence in the two subfamilies, these substances also possess a great structural diversity. Structural features based on the degree of transformation of A- and B-rings, were quantified, giving rise to advancement indices, respectively ITA and ITB. The average of these advancement indices occurrence, taking the species as the basic taxonomic unit, constitute the evolutionary advancement parameters based on the transformations of A- and B-ring (AE_{TA} and AE_{TB}). The comparison of these results modern morphological classificatory system against the most showed a close relationship between Chemistry and Morphology.

Besides the flavonoids, another class of secondary metabolites occurs significantly in Caesalpinioideae and Mimosoideae: the non protein amino acids. Comparative studies

concerning the distribution of these substances within the two subfamilies indicate the same evolutionary trends described by the flavonoid chemistry.

GLOSSÁRIO DE SIGLAS

$^{\mathrm{AE}}\mathrm{TA}$	Avanço evolutivo em termos de transformações do anel A
$^{\rm AE}_{ m TB}$	Avanço evolutivo em termos de transformações do anel E
ITA	Índice de transformações do anel A
ITB	Índice de transformações do anel B
Glic	Glicuronila
Xil	Xilosila
Gal	Galactosila
Galo	Galoíla
Gli	Glicosila
Glc	Ácuçar indeterminado
Ara	Arabinosila
Ме	Metila
Mal	Malonila
Neo	Neohesperidosila
Rha	Rhamnosila
Rut	Rutinosila
sp.	Espécie

spp. Espécies

var.

ssp. Subespécie

Variedade

1. INTRODUÇÃO

O esfôrço de adaptar-se com eficiência às descontinuidades do universo biológico levou a mente humana ao desenvolvimento atual, pois o desejo de desvendar as causas da diversificação da Natureza constitui a força propulsora mais pujante das Ciências Biológicas. É impossível chegar a essas causas e até mesmo a qualquer esforço analítico e criativo do Homem com respeito a vida sem uma abordagem ordenada, sistemática e classificadora.

O arranjo sistemático de plantas de acordo com critérios estabelecidos é conhecido como taxonomia vegetal. A palavra "Taxonomia" origina-se dos vocábulos gregos taxis e nomos, que têm como sentido "dispor segundo uma lei ou um princípio". A palavra "Sistemática" também possui origem grega (syn e histanai) e significa "colocar com" ou "juntar". Atualmente, ambos os termos são empregados praticamente como sinônimos.

O objetivo prático imediato de um esquema taxonômica é fornecer um meio de identificar plantas e desenvolver um arranjo racional no qual essas plantas podem ser agrupadas similaridades aue exsitem entre elas. Estudos temáticos revestem-se de grande importância, não apenas porpossuem aplicações práticas imediatas, mas principalmente que ser Sistemática uma disciplina científica básica. É importante destacar que a Sistemática não deve ser entendida simcomo а identificação de espécimens, mas principalcomo a reconstrução da história evolutiva dos vegetais. mente Assim sendo, Sistemática é importante porque todos OS seres vivos são o produto de suas histórias evolutivas. Da mesma forma que é impossível tentar entender os conflitos políticos da América Central ou do Oriente Médio sem entender a história dos seus povos, pouco se pode entender a respeito da diversisem o conhecimento filogenético fornecido dade dos organismos pelos Sistematas. A consideração da Sistemática apenas como e colecionador de dados procedimento catalogador não corresponde ao seu verdadeiro status de ciência básica e dinâmica fundamentada filogênese. Lamentamos que Sistemática em ensinada nas Universidades dentro de disciplinas não faaue Sistemática não tem atraído abordagem evolutiva. A uma OS mais brilhantes os verdadeiros invocadores estudantes da teoria e da prática - porque tem sido tratada simplesmente tarefa de identificação. Em suma, a Sistemática deve um papel de destague entre as ciências que estudam vegetais devido ao desafio intelectual que ela representa, de reconstruir a história evolutiva.

Dentro dessa linha de raciocínio, o presente trabalho tem por objetivo estudar as possíveis tendências químicas e morfológicas relacionadas para as subfamílias Caesalpinioideae e Mimosoideae de Leguminosae. Tal objetivo foi conseguido por intermédio do uso de flavonóides e ácidos aminados não proteicos como caracteres qumiossistemáticos evidenciadores de polaridades evolutivas e afinidades dessas subfamílias comparativamente ao mais moderno sistema de classificação morfológica das Leguminosae.

2. METODOLOGIA QUIMIOTAXONÔMICA

2.1. Flavonóides

Os flavonóides são características diferenciadoras do grau evolutivo e reveladoras de afinidades em Caesalpinioideae e Mimosoideae devido possuirem ocorrência bastante geral e forte variabilidade estrutural nessas subfamílias. Essas informações contidas ao nível molecular foram quantificadas através da determinação dos índices de transformação dos anéis A e B (ITA e ITB). A determinação de diferentes índices para os anéis A é justificada em função de suas origens biossintéticas distintas.

2.1.1. Cálculo do índice de transformação do anel A

O anel A dos flavonóides origina-se biossinteticamente de três unidades de acetato e dessa forma, a sua situação primitiva de substituição envolve a ocorrência de funções oxi-

genadas nas posições 5 e 7. Qualquer modificação dessa situação constitui, portanto, um passo evolutivo. Ao padrão primitivo 5, 7 atribui-se valor zero. À falta de oxigenação em uma dessas posições (geralmente em 5) ou à oxigenação adicional em 6 ou 8, atribui-se valor 1.

Os anéis aromáticos dos flavonóides são de natureza fenólica e, portanto, bastante reativos frente a agentes eletrofílicos devido ao forte efeito doador de elétrons dos grupos hidroxila. A facilidade de oxidação desses sistemas aromáticos é paralela à sua reatividade frente à substituição eletrofílica. Acredita-se que as plantas, na "tentativa de preservar" o esqueleto flavonoídico de possíveis reações de oxidação, utilizam basicamente 2 formas de desativação das hidroxilas fenólicas: uma envolvendo acetalização com açúcares (glicosilação) e outra através de eterificação com 5 - adenosilmetionina (metilação). Harborne considera a metilação, por envolver um gasto energético menor, um processo mais avançado que a glicosilação.

Com base nessas informações, o índice de transformação do anel A dos flavonóides pode ser calculado através da atribuição aditiva de pontos de acordo com os seguintes critérios:

- a) ausência de oxigenação na posição 5: 1,0 ponto.
- b) oxigenação adicional em 6 ou 8: 1.0 ponto.
- c) formação adicional de ligação a carbono por parte de um dos átomos de carbono do anel A: 1.0 ponto.

- d) para cada 0 metilação: 1,0 ponto.
- e) para cada 0 glicosilação: 0,5 ponto.

Exemplos:

2.1.2. Cálculo do índice de transformação do anel B

Considera-se que os padrões de oxigenação 4'; 3', 4' e 3', 4', 5' sejam características estruturais primitivas devido à sua ocorrência ubíqua no Reino Vegetal. Oxigenações em 2' ou 6' são incomuns e constituem portanto um passo evolutivo. Igualmente incomum é a falta de oxigenação no anel B.

Os conceitos de proteção discutidos anteriormente para o anel A são também aplicados para o anel B.

Dessa maneira, o índice de transformação do anel B pode ser calculado através do somatório de pontos atribuídos da seguinte maneira:

- a) oxigenação em 4'; 3', 4', e 3' 4', 5': zero
- b) oxigenação em 2' ou 6': 1,0 ponto.
- c) ausência de oxigenação no anel B: 1,0 ponto.
- d) formação adicional de ligação a carbono por parte de um dos átomos de carbono do anel B: 1,0 ponto.
- e) para cada 0 metilação: 1,0 ponto.
- f) para cada 0 glicosilação. 0,5 ponto.
- g) para cada dioximetilenação: 1,0 ponto.

ome

ORha

Exemplos:

2.1.3. Cálculo dos parâmetros de avanço evolutivo referente às transformações dos anéis A e B (AE $_{
m TA}$ e AB $_{
m TB}$)

Esses parâmetros foram calculados com o objetivo de expressar numericamente o grau evolutivo dos diferentes táxons com base em sua química flavonoídica. As expressões matemáticas usadas na determinação desses parâmetros de avanço evolutivo serão descritas abaixo e representam a média ponderada dos índices das substâncias por espécie.

$$\frac{AE}{TA} = \frac{(ITA1.a) + (ITA2.B) + (ITA3.c) + ... + (ITAn.x)}{a + b + c + ... + x}$$

$$AE_{TB} = \frac{(ITB1.a) + (ITB2.b) + (ITB3.c) + ... + (ITBn.x)}{a + b + c + ... + x}$$

onde:

ITA = índice de transformação do anel A

ITB = índice de transformação do anel B

 ${\rm AE}_{
m TA}$ = parâmetro de avanço evolutivo referente às transformações do anel A

a, b, c x = número de ocorrências de substâncias com um determinado índice, por espécie.

2.2. Ácidos aminados não proteicos

Cerca dе 300 ácidos aminados de ocorrência natural e suas estruturas determinadas. Vinte dest.êm sido isolados ácidos aminados são comuns a todos os organismos vivos coconstituintes de proteínas. Um pequeno número de outros áciornitina, citrulina e ácido \(\frac{1}{2} \)-aminobutíaminados, como a rico, ocorrem geralmente como intermediários metabólicos. ácidos aminados proteicos, por serem de ocorrência geral todos os seres vivos, possuem uso limitado em estudos comparativos. Por vezes, a diferença de distribuição quantitativa desses ácidos aminados é usada como critério taxonômico, embora não se possa garantir que essa diferença tenha origem genética. A concentração de um determinado ácido aminado, em uma mesma espécie, pode variar com o meio ambiente, com o estágio de desenvolvimento da planta e de órgão para órgão. Os aminados não proteicos, por outro lado, apresentam uma variação em seu padrão de distribuição no Reino Vegetal. Alsão encontrados em diversos organismos, enquanto outros possuem ocorrência restrita a uma única família, um gênero ou até mesmo a uma única espécie.

Várias espécies da família Leguminosae acumulam ácidos aminados não proteicos. O padrão de distribuição desses ácidos aminados foi empregado, nesta tese, como critério evidenciador de afinidades dentro das subfamílias Caesalpinioideae e Mimosoideae. Nesses estudos comparativos os ácidos aminados não proteicos foram agrupados de acordo com as suas origens biogenéticas.

3. RESULTADOS

bibliográfico "Chemical Abstracts" levantamento no de 1907 até 1987 (inclusive) permitiu que dados fossem acumurespeito da ocorrência de flavonóides e ácidos lados a aminanão proteicos nas subfamílias Caesalpinioideae dos е Mimosoideae de Leguminosae.

As informações aqui apresentadas foram obtidas através da análise dos resumos do "Chemical Abstracts" e dos artigos originais indicados por esses resumos. Os artigos das publicações disponíveis nas principais bibliotecas do país foram obtidos através do sistema de comutação bibliográfica (COMUT).

As tabelas numeradas de 1.1 a 1.15 e de 2.1 a 2.17 fornecem informações a respeito da estrutura, ocorrência, índices de avanço (ITA e ITB) e referências bibliográficas* das subs-

^{*} As referências bibliográficas apresentadas nas tabelas são constituídas de 2 campos (volume do "Chemical Abstracts": número do resumo). Essa maneira de fornecer referências bibliográficas pode ser justificada em função da enorme quantidade de artigos periódicos consultados e que os próprios resumos do "Chemical Abstracts" são auto-suficientes no tocante ao fornecimento de informações a respeito de bibliografia.

tâncias flavonoídicas que ocorrem em Caesalpinioideae e Mimosoideae. Esses índices foram utilizados na determinação dos parâmetros de avanço evolutivo (AE $_{TA}$ e AE $_{TB}$) para os diversos táxons das subfamílias. Esses parâmetros foram utilizados na construção de diagramas de correlação (Figuras 1 a 3 e tabelas 1, 1a e 2) que forneceram subsídios para a avaliação das tendências evolutivas dos táxons.

As tabelas numeradas de 3 a 7 fornecem a distribuição ácidos aminados não proteicos em Caesalpinioideae e Mimosoideae.

TABELA 1.

DISTRIBUIÇÃO DE ESTILBENOS E FLAVONÓIDES EM CAESALPINIOIDEAE

Tá	xon		stilbe deriv			alcor			Auron	as	Diidro- flavonóis		
		NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}
1)	Caesalpinieae la) Grupo de Gledtsia lh) Grupo de Dimorphandra ld) Grupo de Peltophorum le) Grupo de Caesalpinia	0 0 3 0	- 0 -	- - 0 -	0 0 3 0	0,5	0,17	0 0 0 0	- - -	- - -	2 1 0 0	1 0 -	0 0 - -
4)	Detarieae	6	0,8	0	12	0,92	0,08	2	1	0	7	0,71	0
5)	Amherstieae	0	-	100-	0	-	_	0	-	_	0	_	_
2)	Cassieae 2a) Ceratoniinae 2b) Dialiinae 2d) Cassiinae	0 0 8	- 0,5	- 0,5	0 0 4	- 1,88	0,5	0 0 0	- - -	- - -	0 0 2	- 0,5	- - 0
3)	Cercideae 3a) Cercidinae 3b) Bauhiniinae	0 0	<u>-</u>	<u>-</u>	0 4	_ 1,63	0,38	0 0	- -	- -	0 1	- 0	- 0

TABELA 1. Continuação

Ta	xốn	Flavonois			F	lavor	nas		4-Di:	_	3-Hidrox <u>i</u> flavanas		
		NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}
1)	Caesalpinieae												
	la) Grupo de Gledtisia		0,75		1	2	0	1	1	0	2	0	0
	1h) Grupo de Dimorphandra	2	_	0	0 0 9	- - 1	-	0	_	_	0	_	_
	1d) Grupo de Peltophorum		0,27		0	-	_ 0	3 1	0 1	0 0	1	0 0	0 0
	le) Grupo de Caesalpinia	3	0	0	9	1	υ	1	1	U	T	U	U
4)	Detarieae	12	0,42	0	4	0,13	0	32	0,88	0	8	0,38	0
5)	Amherstieae	0	-	_	8	0,75	0	1	0	0	1	O	1
2)	Cassieae												
-,	2a) Ceratoniinae	3	0	0	1	1	0	2	0	0	12	0	0
	2b) Dialiinae			2,22			2	0		_	0	- 0	_
	2d) Cassiinae	74	0,26	0,25	11	0,29	0,41	17	0,41	0,18	10	0	0
3)					_								
	<pre>3a) Cercidinae</pre>	5	0	0	0 6	-		Ü	_	-	0	_	_
	3b) Bauhiniinae	29	0,07	0	6	3	2,66	0	-	-	2	0	0

4

TABELA 1. Continuação

Тá	xon	Ant	ociani	dinas		toginó: tochal		Homoisoflavo- nóides			
		NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	
1)	Caesalpinieae la) Grupo de Gleditsia lh) Grupo de Dimorphandra ld) Grupo de Peltophorum le) Grupo de Caesalpinia	0 0 5 0	- 0,6 -	- 0,4	0 0 0 0	- - - -	- - -	0 0 0 9	- - 1,22	- - - 1	
4)	Detarieae	1	0	0	42	1,17	1,98	1	2	1	
5)	Amherstieae	1	0	0	0	_	_	0	<u>-</u>	_	
2)	Cassieae 2a) Ceratoniinae 2b) Dialiinae 2d) Casiinae	3 0 3	0,17 - 0,33	0 - 0,33	0 2 0	- 2 -	_ 2 _	0 0 0	- - -	<u>-</u> -	
3)	Cercideae 3a) Cercidinae 3b) Bauhiniinae	0 7	0,07	- 0,86	0 0		- -	0 0	- -	<u>-</u> 	

NO = Número de ocorrência; AE_{TA} = Avanço evolutivo referente às transformações do \underline{A} nel A; AE_{TB} Avanço evolutivo referente às transformações do Anel B.

TABELA 1a.

DISTRIBUIÇÃO DE ESTILBENOS E FLAVONÓIDES EM CAESALPINIOIDEAE

Тá	xon		E	stilbe	nos	C	Chalconas			lavano	nas	Auronas		
			NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}
1)	Caesa]	lpinieae												
		leditsia	0	_	_	0	_		0	_	_	0	_	_
	1d) De	elonix	0	_	_	1	0,5	0,5	1	0,5	0	0	_	_
		eltophorum	0	_	_	0	_		1	0,5	Ċ	0		_
		оиасарона	3	0	0	0	-	_	0	_	_	0	_	_
		aesalpinia	0	-	-	0	-	_	0	_	_	0	_	
	На	aematoxylon	0		-	0	-	-	0	_	_	0	_	_
		arkinsonia	0	-	_	0	_		0	-	_	0		_
		agatea	0	-	-	0	_	_	0	-	_	0	_	-
		imorphandra	0	-	-	0	***	-	0	_	-	0	_	
٠.		rythrophleum	0	_	_	0		-	0		_	0	_	_
2)						_								
		ratonia	0	_		0	-	-	0	-	-	0	-	_
		puleia	0			0	-	_	0	-	`	0	_	-
		istemonanthus	0	<u> </u>	_	0			0			0		_
21		assia	8	0,55	0,44	2	2,25	0,5	2	1,5	0,5	0		_
3)			0						_					
	3a) Ce		0	-	-	0		_	0			0	_	-
	3b) Bo	auhinia	0	_	-	2	2,25	0,25	2	1	0,5	0	-	-

TABELA la. Continuação

Táz	kon		E	stilbe	nos	C	halcon	as	F	lavano	nas	Auronas		
			NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}
4)	Deta	rieae												
	4a)	Schotia	3	0	0	0	-	-	0		-	0	_	_
		Umtiza	0		-	0		-	2	1	0	1	1	0
	4b)	Afzelia	0	-	-	0	_	-	0	_	_	0	_	_
		Intsia	2	0	0	0	_	_	1	0	0	0		_
		Saraca	0	_	-	0	-	-	0	-	_	0	_	_
	4c)	Peltogyne	0	_	-	2	1	0	4	1	0	0	_	
	4d)	Colophospermum	0	-	-	Ó		-	0	_		0	_	-
		Crudia	0	_	-	0		_	0		_	0	-	_
		Guibourtia	1	0,5	0	0	-	_	0	-	_	0	_	_
	4e)	Baikiaea	0	_	_	0		_	0	-	_	0	_	_
		Copaifera	0		-	0	_	_	0	_	_	0		
		Goniorrhachis	0	-	_	0	_	_	0	_		0	_	_
		Pseudosindora	0	-	_	2	1	0,5	1	1	0	2	1	0
	4f)	Brownea	0	-		0	-	_	0	_		0	-	
		Eperua	0	-	_	0	_	-	0		_	0		_
5)	Amh	erstieae												
• ,	5a)		0	_	-	0	_	-	0	_	_	0	_	-
	5b)	Humboldtia	0	_	_	0	***	_	0	-	_	0	-	_
	32,	Tamarindus	0	-	_	0	-	-	0	-	-	0	-	-
*	Trac	hylobium	0	_	_	1	1	0	0	_		0	-	_

^{*} Não citado pelo Polhill. Citado pelo Engler e Hutchinson.

TABELA la. Continuação

Тá	xon	Diid	drofla	vonóis	F	Flavonóis			Flavon	as	3,4-Diidroxi- flavanas		
		NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}
1)	Caesalpinieae												
	la) Gleditsia	2	1	0	4	0,86	0	1	2	0	1	1	0
	ld) Delonix	0		_	6	0,1	0	0	_	-	ī	0	0
	Peltophorum	0		_	5	0,6	0,1	0	-	_	2	0	0
	Vouacapoua	0	-		0	-	<u>-</u>	0	_		0	_	_
	le) Caesalpinia	0	_	_	2	0	0	2	0,5	0	i	1	0
	Haematoxylon	0	_		0		-	0	_		0	_	_
	Parkinsonia	0	-	-	0	_	_	7	1,6	0	0	_	_
	Wagatea	0	-	_	1	0	0	0		-	0		_
	1h) Dimorphandra	0			1	0	0	0	-	_	0	_	_
٠.	Erythrophleum	1	0	C	0	_		0		-	0	_	
2)		_											
	2a) Ceratonia	0	-	-	3	0	0	1	1	0	2	0	0
	2b) Apuleia	0	_	-	10	2,14	1,86	0	-	_	0		_
	Distemonanthus	•		_	18	1,6	2,24	1	6	2	0	_	
2.	2d) Cassia	2	0,5	0	74	0,18	0,17	11	0,31	0,35	17	0,52	0,32
3)		_			_	_	_						
	3a) Cercis	0	_	_	5	0	0	0	_		0		-
	3b) Bauhinia	1	0	0	29	0,06	0	6	3	2,66	0	-	_

TABELA la. Continuação

Táxon		Diidroflavonóis		Flavonóis			Flavonas			3,4-Diidroxi- flavanas				
			NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}
4)	Deta	arieae												
	4a)	Schotia	0	_	_	0	_		0		_	0		_
		Umtiza	1	1	0	1	1	0	1	1	0	2	1	0
	4b)	Afzelia	1	0	0	3	0	0	0	_	_	0	_	_
		Intsia	1	0	0	2	0,5	0	0	_	_	1	0	0
		Saraca	0	-	-	3	Ó	0	1	0,5	0	3	0	Ō
	4c)	Peltogyne	4	1	0	0	_		0	_	_	2	1	0
	4d)	Colophospermum	0	_		1	1	0	0	_	_	2	ī	Ō
		Crudia	0	-	-	0	_	_	1	0	0	0	_	_
		Guibourtia	0	_	_	2	1	0	0	-	_	22	1	0
	4e)	Baikiaea	0		_	0	-	-	0	_	_	0	_	_
		Copaifera	0	-	-	0	-	-	0	_	_	0	_	_
		Goniorrhachis	0	_	_	0	_	-	0	-	_	0	_	_
		Pseudosindora	0	_	_	0	_	-	0		_	0	_	
	4f)	Brownea	0	-	-	0		-	0	-	_	0		
		Eperua	0	_	-	0	-	-	1	0	2	0	_	_
5)		erstieae												
	5a)	Julbernardia	0	-	_	0		_	0	-	_	0	_	-
	5b)	Humboldtia	0	-		0	_	_	1 7	0	0	0		-
		Tamarindus	0	-	-	0	-	***	7	0,91	0	1	0	0
* Trachylobium		2	1	0	0	•		0	_	_	0	-	_	

^{*} Não citado por Polhill. Citado por Engler e Hutchinson.

TABELA la. Continuação

Tấxon		3-	3-Hidroxifl <u>a</u> vanas			ociani	dinas	Peltoginóides + Peltochalconas			
		NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	
1)	Caesalpinieae										
	la) Gleditsia	2	0	0	0		_	0	_	_	
	ld) Delonix	0	_	_	3	0	0	Ő	_	_	
	Peltophorum	1	0	0	2	1	1	Õ	_		
	Vouacapoua	0	_	_	0	-	-	Õ	_	_	
	le) Caesalpinia	1	0	0	0	-	-	Ô		_	
	Haematoxylon	0		_	0	_	_	Õ	_	_	
	Parkinsonia	0	_	_	0	_	•••	Ö		_	
	Wagatea	0	_		0	_		0		_	
	1h) Dimorphandra	0		· <u> </u>	0	_		Õ		_	
	Erythrophleum	0	-	_	0	_	_	Ö	_	_	
2)	Cassieae							•			
	2a) Ceratonia	12	0	0	3	0,12	0	0	_	_	
	2b) Apuleia	0	_		0	_	-	0		_	
	Distemonanthus	0	_		0		_	4	2	2	
	2d) Cassia	10	0	0	3	0,33	0,33	0	_	_	
3)						•	•	J			
	3a) Cercis	0	_	_	0		_	0		_	
	3b) Bauhinia	2	0	0	7	0	0,86	0	_	_	

TABELA la. Continuação

Тa	xón	3-	Hidrox vana		Ant	ociani	dinas	Pel Pel	toginó tochal	ides + conas
		NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}
4)	Detarieae									
	4a) Schotia	2	0	0	0	_	_	0	_	
	Umtiza	0	_	-	0	_		1	1	2
	4b) Afzelia	2	0,33	0	0	_	_	0		_
	Intsia	0	_	_	0	_		0	_	
	Saraca	0	_	_	0	_	_	0	_	
	4c) Peltogyne	0	_	_	0		_	23	1	2
	4d) Colophospermum	3	0,8	0	0		_	8	1	2
	Crudia	0	_	-	0	_		0	_	_
	Guibourtia	1	0	0	0	_	_	0		_
	4e) Baikiaea	0		_	0	_	-	0		
	Copaifera	0		_	0	_	_	3	1	2
	Goniorrhachis	0	-	-	0	_		10	1,7	2,9
	Pseudosindora	0	-	-	0	-	_	0	_	-
	4f) Brownea	0	_	-	1	0	0	0	_	_
	Eperua .	0	_		0	_	_	0		_
5)										
	5a) Julbernardia	. 0	_	_	0			0	_	_
	5b) Humboldtia	1	0	1	0	_	_	0	_	_
	Tamarindus	0			1	0	0	0		_
*	Trachylobium	0		_	0	_	•••	1	1	2

^{*} Não citado por Polhill. Citado por Engler e Hutchinson.

TABELA la. Continuação

Táx	kon	I	soflav	ona	Pt	erocar	pano		moisof onóide	
		NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}
1)	Caesalpinieae									
-,	1a) Gleditsia	1	0	1	0	_	_	Λ		
	1d) Delonix	0	-	_	0	_	_	0	_	-
	Peltophorum	0	_	_	Ô	_	_	0	_	_
	Vouacapoua	0	-		Ö	-	_	0	_	_
	le) Caesalpinia	0		_	0	_	_	6	1	1
	Haematoxylon	0	_	_	0	_	_	3	1,66	1
	Parkinsonia	0	_	_	0	_		0	1,00	T
	Wagatea	0	_	_	0	_	_	0	_	_
	1h) Dimorphandra	0	_	_	0	_	_	n	_	-
	Erythrophleum	0	_	_	0	_	~~	ñ	_	
2)	Cassieae							v	_	_
	2a) Ceratonia	0		_	0	_	_	0		
	2b) Apuleia	0	_	_	1	3	4	0	_	_
	Distemonanthus	0	_	_	0	_	-	0		_
	2d) Cassia	0	_		0	_		0 0	_	_
3)	Cercideae							U	_	_
•	3a) Cercis	0		_	0	_	_	n		
	3b) Bauhinia	0	~~	_	0	_		n	_	_

TABELA la. Continuação

тá:	xon		I	soflav	ona	Pt	erocar	pano		moisof vonóid	
			NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}
4)	Deta	arieae									
	4a)	Schotia	0	-		0	_		0	_	-
		Umtiza	0	_	_	0	_	_	0	_	_
	4b)	Afzelia	0	_	-	0		_	0	_	-
		Intsia	0		_	0	_		0		_
		Saraca	0	_	_	0	_	_	1	2	1
	4c)	Peltogyne	0	_	_	0	_	_	0	_	_
	4d)	Colophospermum	0	_	-	0	_	_	0	-	
		Crudia	0	_	_	0	_	_	0	-	_
		Guibourtia	0		_	0	-	_	0	_	_
	4e)	Baikiaea	0	_		0	-		0	_	_
		Copaifera	0	_	_	0	_	_	0	_	
		Goniorrhachis	0	-	_	0	_	-	0	-	
		Pseudosindora	0		_	0	_		0	_	
	4f)	Brownea	0	_		0	_	-	0	_	_
		Eperua	0	_	_	0		_	0	_	_
5)	Amh	erstieae									
	5a)	Julfernardia	0	_	_	0	_	_	0	_	
	5b)	Humboldtia	0		_	0	-		0		_
		Tamarindus	0	****	-	0	-		0	-	-
*	Trac	hylobium	0	_	_	0	-	_	0	_	-

^{*} Não citado por Polhill. Citado por Engler e Hutchinson.

TABELA 1.1. Estrutura e ocorrência de Estilbenos e derivados em Caesalpinioideae

ITA	ITB	Tino		,	Subs	titui	ição	do e	sque1	eto			_	
		Tipo	R	2	3	5	7	2'	3'	4'	5'	Nome trivial	Ocorrência	Referências
0	0	I	Δ		OH	OH				OH		3,5,4'-Trii droxiestilbe no	Intsia bij <u>u</u> ga	73:134.379
2	2	I	Δ	OH	ОН			OH	OH			2,3,2',3'-Te traidroxies tilbeno	Cassia siamea	71:57.574
0	0	I	Δ		OH	ОН			ОН	ОН		Piceatanol	Cassia java nica C. garrettia na Vouacapoua macropetala V. america na Schotia bra chypetala	89:126.129 101:3.766 91:52.692 76:11.972 51:4.329 81:49.360

TABELA 1.1. Continuação

TOD	THE	m!		S	ubsti	tuiç	ção d	do es	quelet	to		Nome trivial	Ocorrência	Referências
ITA	I'I'B	Tipo	R	2	3	5	7	2'	3'	4'	5'	Nome crivial	Ocorrencia	Referencias
						-							Cassia ma <u>r</u> ginata	69:49.761
													Intsia bij <u>u</u> ga	79:134.379
0,5	0	I	Δ		Œli	ОН			OH	OH		3-0-Glicosi <u>l</u> piceatanol	Guibourtia coleosperma	99:209.825
1	1	I	H		ОН				OH			3,3'-Diidroxi diidroestilbe no	Cassia garr <u>e</u> ttiana	91:52.692
1	0	I	Н		ОН				ОН	OH		3,3',4'-Trii droxidiidroes tilbeno	Cassia garr <u>e</u> ttiana	91:52.692
0	0	I	н		OH	ОН			OH	ОН		3,5,3',4'-Te traidroxidi <u>T</u> droestilbeno	Cassia garr <u>e</u> ttiana	91:52.692
0	0	II			ОН	OH			ОН	ОН	ОН	3,5,3',4',5'PentaidroxiCis-estilbeno	Schotia br <u>a</u> chypetala	81:49.360
1	1	III		ОH	OН	OH	OH					2,3,5,7-Tetrai droxi-9,10-Dii drofenantreno	Cassia garr <u>e</u> ttiana	91:52.692

TABELA 1.1. Continuação

TMA	TOD	m!		S	ubst.	itui	ção d	do es	quele	to		Name Andreit 1		
ITA	ITB	Tipo	R	2	3	5	7	2'	3'	4'	5'	Nome trivial	Ocorrência	Referências
0	0	I	Δ		ОН	ОН			ОН	ОН	ОН	3,5,3',4',5'Pentaidroxies	Schotia bra chypetala	81:49.360 76:11.972
												tilbeno	Vouacapoua macropetala	76:11.972 51:4.329

TABELA 1.2. Estrutura e ocorrência de Chalconas em Caesalpinioideae

ITA	ITB		Su	ıbsti	ituição	do	esque	leto			None buissis 1	0	
1114	IID	α	2'	3'	4'	5'	6 '	3	4	5	Nome trivial	Ocorrência	Referências
0,5	0		OGli		ОН		OH		OH		Isosalipurpo sideo	Delonix regia	85:74.901
1	0		ОН		OH			OH	OH		Buteina	P. palustris	93:222.098
1	1		ОН		OH			OH		ОН	Pseudosindor <u>i</u> na	Pseudosindora palustris	93:222.098
1,5	0		ОН		Œli			ОН	OH		Coreopsina	Cassia marginata	69:103.772
1,5	0		ОН		0-Gal Ara			OH	ОН		4'-0-Arabino galactosilbu teina	Bauhinia purpurea	91:193.567
1	0	OH	OH		OH			OH	OH		α,2',3,4,4'- -Pentaidroxi chalcona	Peltogyne pube <u>s</u> cens P. venosa	82:28.572 82:28.572

TABELA 1.2. Continuação

tma	Tmp.		S	ubsti	tuiçã	o do	esque	eleto)		N	0	D. C. C.
ITA	ITB	α	2'	3'	4'	5 '	6'	3	4	5	Nome trivial	Ocorrência	Referências
												Trachylobium verucosum	82:28.572
3	1		OH			ОН			OMe		2',5'—Diidro xi—4—Metoxi chalcona	Cassia javanica	92:55.042
3	0,5							OH	O-Ga Ara		3-Hidroxi-4- -0-Arabinoga lactosilchal cona	Bauhinia pwrp <u>u</u> rea	96:65.649

TABELA 1.3. Estrutura e ocorrência de Flavanonas em Caesalpinioideae

TODA	TOD		Subst	titu	ição do	esq	ueletc)			
ITA	ITB	2	5	6	7	8	3 '	4'	Nome trivial	Ocorrência	Referências
0	0	в –н	OH		ОН			ОН	Naringenina	Intsia bijuga	79:134.379
0,5	0	β –Н	Œli		OH			OH	5-0-Glicosiln <u>a</u> ringenina	Delonix regia	85:74.901
0,5	0		OH		Œli			ОН	7-0-Glicosiln <u>a</u> ringenina	Peltophorum inermis (= P. ferrugineum)	71:67.929
0	0,5		ОН		ОН			OGli Rha	5,7-Diidroxi-4'- 0-Rhamnoglicosi <u>l</u> flavanona	Bauhinia variegata	91:137.128
0,5	1		OH		ORha			0Me	5-Hidroxi-4'-Me toxi-7-0-Rhamno silflavanona	Cassia renigera	88:86.005
2	0,5		OMe		OMe			OGli Rha	5,7-Di-0-Metil- 4'-0-Rhamnogli cosilnaringenina	Bauhinia variegata	92:211.813

TABELA 1.3. Continuação

ITA	TOD		Subs	titu	ição	đo e	esque	eleto	Nama kuisial	Ozamanata	D-5
11A	ITB	2	5	6	7	8	3'	4'	Nome trivial	Ocorrência	Referências
2,5	1		ОН	СН3	CH ₃ ORha CH ₃			OMe	7-0-Rhamnosi <u>l</u> matteucinol	Cassia occidentalis	21
1	0				OH		OH	ОН	Butina	Pseudosindora palustris	96:183.009
1	0				OH		OH	ОН	(-)-Butina	Umtiza listerana	100:188.733
1	0				ОН		ОН	OH	(±)-Butina	Peltogyne pubescens P. venosa	82:28.572 82:28.572
1	0				ОН			ОН	(—)—Liquirit <u>i</u> genina	Umtiza listerana	100:188.733
1	0				ОН			ОН	(±)—Liquirit <u>i</u> genina	Peltogyne pubescens P. venosa	82:28.572 82:28.572

TABELA 1.4. Estrutura e ocorrência de Auronas em Caesalpinioidea

ITA	ITB	Substit	uição	do e	sque	leto	Nome trivial	Ocorrência	D-5
IIA	110	α β	4'	6'	3	4	None criviar	Ocorrencia	Referências
1	0	CH	ОН		OH	OH	(+)-2,6,3',4'- -Tetraidroxi-2- Benzil Benzofu ran-3-(2H)ona	Umtiza listerana	100:188.733
1	0	Δ	ОН	OMe	ОН	OH	Rengasina	Pseudosindora palustris	93:222.098
1	0	Δ	OH		OH	OH	Sulfuretina	Pseudosindora palustris	93:222.098

TABELA 1.5. Estrutura e ocorrência de Diidroflavonóis em Caesalpinioideae

†ma	TOD			Sub	stit	uição	do	esque:	leto		NI 1		
ITA	ITB	R	2	3	5	7	3'	4'	5'	Ind.	Nome trivial	Ocorrência	Referências
0	0	Н			OH	ОН		ОН			Caturanina ≡ (+)-Diidrok <u>a</u> empferol	Afzelia sp.	50:4.929
0	0	Н			OH	ОН		OH			Diidrokaempf <u>e</u> rol	Cassia fistula	97:159.534
0	0	R			OR	OR	OR	OR		4R=4H R=Rha	Rhamnosiltax <u>i</u> folina	Bauhinia sp.	88:148.934
1	0	Gli			OH	MeO	OH	OH			3-0-Glicosi <u>l</u> diidroisorham netina	Cassia javanica	75:137.486
0	0	Н			ОН	ОН	ОН	OH	ОН		Diidromiric <u>e</u> tina	Erythrophleum africanum	55:14.443
												Intsia bijuga	79:134.349

TABELA 1.5. Continuação

TIDA	7.07		5	Subst	itu	ição	do es	squele	eto		N		
ITA	ITB	R	2	3	5	7	3'	4'	5'	Ind.	Nome trivial	Ocorrência	Referências
1	0	Н				ОН	ОН	ОН			(+)-Fustina	Umtiza list <u>e</u> rana	100:188.733
1	0	Н				ОН	OH	ОН			Fustina	Gleditsia <u>ja</u> ponica	50:10.659 52:4.105
												Gleditsia tri <u>a</u> canthos	49:12.621
1	0	Me Me	β – H α – H			ОН	OH	OH OH			(-)-2,3-Cis- -3-0-Metilfus	Peltogyne p <u>u</u> bescens	82:28.572
											tina	P. venosa	82:28.572
												Trachylobium verucosum	82:28.572
1	0	Me Me	β_H α_H			OH	OH	OH OH			(-)-2,3-Trans- -3-0-Meti1fus	Peltogyne p <u>u</u> bescens	82:28.572
											tina	P. venosa	82:28.572
												Trachylobium verucosum	82:28.572

TABELA 1.6. Estrutura e ocorrência de Flavonóis em Caesalpinioideae

ITA	ITB			Subs	stitui	ção d	lo esqu	eleto	_		Nome trivial	Ocorrência	Referências
	110	R	5	6	7	8	2'	3'	4 '	5'	None criviar	CONTENCIA	Referencias
0	0	Н	ОН		ОН				ОН		Kaempferol	Cassia nodosa	73:73.816 76:83.513 99:50.328
												Cassia fistula	66:35.387 76:83.513 77:123.802 97:159.534
												C. occident <u>a</u> lis	66:35.387
												C. angustif <u>o</u> lia	8:990 ⁸ 34:1.443 ⁷ 36:2.685 ³ 62:9.458 63:17.797 91:35.718

TABELA 1.6. Continuação

ITA	ITB		S	Subs	titui	ção	do es	quele	eto		Nome trivial	Ocorrência	Referências
	110	R	5	6	7	8	2'	3'	4 '	5 '		CONTRICIA	referencias
0	0	Н	OH		ОН				OH		Kaempferol	Cassia acut <u>i</u> folia	8:990 ⁸ 62:9.458 91:35.718
												C. obtusa	79:123.630
												C. auriculata	78:2.013
												C. marginata	73:73.816 89:126.129 92:37.739
												Cassia sp.	101:126.919
												C. javanica	65:14.012 99:50.328
												C. alata	84:56.497 92:3.189
												C. siamea	90:3.121
												C. obtusifolia	89:193.900
0	0	Н	ОН		OH				OH		Kaempferol	Ceratonia sil <u>i</u> qua	76:83:513
												Delonix regia	50:436 59:11.800 65:20.506
												Afzelia sp.	50:4.929

TABELA 1.6. Continuação

			St	ıbst.	ituiç	ção d	do esc	quele	to		Nome trivial	Ocorrência	Referências
ITA	ITB	R	5	6	7	8	2'	31	4'	5'	Nome trivial	Ocorrencia	Referencias
												Afzelia bipi <u>n</u> densis	65:1.036
												Bauhinia ho <u>o</u> keri	76:83.513
												Cercis chinen sis	76:83.513
0	0	Me	ОН		ОН				ОН		3-0-Metilkaem pferol	Cassia javan <u>i</u> ca	99:50.328
1	0	Н	OH		OMe				ОН		Rhamnocitrina	Cassia garr <u>e</u> ttiana	91:52.692
												C. javanica	99:50.328
0	0	Gli	OH		ОН				ОН		Astragalina	Cassia obtus <u>i</u> folia	89:193.900
												C. marginata	89:126.129 92:37.739
				•								C. fístula	88:148.947
0	0	Gli	ОН		OН				ОН		Astragalina	Saraca indica	85:156.527
												Bauhinia vari <u>e</u> gata	68:10.188
												B. purpurea	68:10.188
0	0 ((Gli) ₂	ОН		ОН				ОН		3-0-Digli∞ silkaempferol	Cassia tora	45:3.999

TABELA 1.6. Continuação

ITA	ITB			S	ubsti	tui	ção do	o esq	ueleto)		Nome builded - 1	2	
114	116	R	5	6	7	8	2'	3'	4'	5 '	Ind.	Nome trivial	Ocorrência	Referências
0	0	R	OR		OR		,		OR		3R=3H R=Gli	Glicosilkaem pferol	Cassia acuti folia	8:9908
													C. obtusa	79:123.630
													C. tora	77:85.614
0	0	R	OR		OR				OR		3R=3H R=Glc	Clitorina	Cassia fist <u>u</u> la	88:148.947
0	0	R	OR		OR				OR		3R=3H R=G1c	Glycosilkaem pferol	Cassia al <u>a</u> ta	92:3.189
													Bauhinia valhii	88:148.934
													B, varieg <u>a</u> ta	88:148.934
0	0	Neo	ОН		ОН				ОН			3-0-Neohespe ridosilkaem pferol	Cassia fist <u>u</u> la	88:148.947
0	0	Rut	OH		OH				ОН			3-0-Rutino silkaempfe	Cassia jav <u>a</u> nica	75:137.486
												rol _	Bauhinia v <u>a</u> riegata	76:83.513
													B. candicans	100:48.550

TABELA 1.6. Continuação

ITA	ITB		Sı	ıbst	itui	ção (do es	quele	to		Nome trivial	Ocorrência	Referências
117	1115	R	5	6	7	8	2'	3'	4'	5'	Nome crivial	correncia	Referencias
0	0	Gli Rha	ОН		OH				ОН		3-0-Rhamnogl <u>i</u> cosilkaempf <u>e</u> rol	Bauhinia v <u>a</u> riegata	65:17.362 68:10.188
0,5	0	Rut	OH		ORha	:			ОН		3-0-Rutinosil- -7-0-Rhamnosil kaempferol	Bauhinia ca <u>n</u> dicans	100:48.550
0	0	Ara	OH		OH				ОН		Juglanina	Cassia obtus <u>i</u> folia	89:193.900
0	0	Gal	OH		OH				OH		3-0-Galactosi <u>l</u> kaempferol	Bauhinia vari <u>e</u> gata	65:17.362 76:83.513
0	0	Rha	ОН		ОН				ОН		Afzelina	Cassia javanica	65:14.012
												C. didymobotrya	99:50.328
												C. nodusa	99:50.328
												C. obtusa	79:123.630
												Afzelia sp.	44:5.353 50:4.929
0,5	0	Rha	OH		ORha				OH		Kaempferitr <u>i</u> na	Cassia obtusa	79:123.630

TABELA 1.6. Continuação

ITA	ITB			Su	bstit	uiçâ	ão do	esqu	eleto			None builded 1	0	
	110	R	5	6	7	8	2'	3'	4'	5'	Ind.	Nome trivial	Ocorrência	Referências
0	0	Gli Man	ОН		ОН				ОН			3-0-Manogli∞ silkaempferol	Cassia gra <u>n</u> dis	95:21.296
0	0	R	OR		OR				OR		3R=3H R=Gli	Kaempferina	C. angusti <u>fo</u> Lia	8:990 ⁸
0	0	Н	OH		ОН			ОН	ОН			Quercetina	Cassia sieb <u>e</u> riana	69:25.083
													C. occident <u>a</u> lis	63:17.797
													C. glauca	62:13.433
													C. javanica	75:137.486 93:235.100 99:50.328
													C. laevigata	90:69.101 98:50.309
													C. sophera	96:214.248
													C. torosa	95:165.685
													C. marginata	89:126.129 92:37.739

TABELA 1.6. Continuação

	+		St	ıbst	ituiç	ção d	do es	quele	to		Mana bada 1 3	2 1	
ITA	ITB	R	5	6	7	8	2'	3'	4'	5'	Nome trivial	Ocorrência	Referências
0	0	Н	OH		OH			ОН	OH		Quercetina	Cassia absus C. garrettiana C. obtusifolia C. fistula	91:87.298 91:52.692 89:193.900 76:83.513
												Distemonanthus benthamianus	92:107.324
												Ceratonia siliqua	69:95:240 76:83.513
												Delonix regia	50:436 59:11.800 65:20.506 76:1.781
												Peltophorum ferr <u>u</u> ginium	89:211.965
												Wagatea spicata Saraca indica Bauhinia purpurea	97:141.756 85:156.527 68:10.188

TABELA 1.6. Continuação

IΤΑ	ITB		St	ıbst	itui	ção d	do es	quele	to		Name today 1		
IIA	IIB	R	5	6	7	8	2'	3'	4'	5 '	Nome trivial	Ocorrência	Referências
0	0	Н	OH		ОН			ОН	ОН		Quercetina	Bauhinia toment <u>o</u> sa	48:12.237 60:4.459 65:17.362 68:10.188
												B. reticulata	62:9.458 65:17.362
												Cercis chinensis	76:83.513
0	. 0	Rha	OH		ОН			ОН	OH		Quercitrina	Cassia sieberi <u>a</u> na	69:25.083
												C. obtusifolia	89:193.900
												Bauhinia retic <u>u</u> lata	33:8.698 ⁸ 60:4.459
												Bauhinia sp.	88:148.934
0,5	0	Rha	ОН	(O-Rha	t		OH	ОН		3,7-Di-0-Rha mnosilquerce tina	Cassia laevigata	92:177.473
0	0	Gli	OH		ОН			OH	OH		Isoquercitr <u>i</u>	Cassia sieberiana	69:25.083
											na	C. didymobotria	99:50.328
												C. obtusifolia	89:193.900

TABELA 1.6. Continuação

ITA	ITB			s	ubsti	itui	ção do	esq	ueleto)		Nome trivial	Ocorrência	Referências
	110	R	5	6	7	8	2'	3'	4'	5 '	Ind.	wite crivial	CONTENCIA	Referencias
0	0	Gli	OН		OH			ОН	OН			Isoquercitr <u>i</u> na	Cassia ma <u>r</u> ginata	89:126.129 92:37.739
													Delonix el <u>a</u> ta	59:11.800 65:20.506
													D. regia	85:74.901
													Saraca ind <u>i</u> ca	85:156.527
													Bauhinia t <u>o</u> mentosa	60:4.459 68:10.188
													B. purpurea	68:10.188
													B. retusa	91:207.390
													Bauhinia sp.	88:148.934
													Cercis can <u>a</u> densis	44:2.605
0	0	(Gli) ₂	ОН		ОН			ОН	ОН			3-0-Digli∞ silquercetina	Peltophorum pterocarpum	98:122.802
0	0	R	OR		OR			OR	OR		3R=3H 2R=2Gli	Diglicosi <u>l</u> quercetina	Gleditsia triacanthos	60:14.829

TABELA 1.6. Continuação

ITA	ITB			Su	bstit	uiça	io do	esque	eleto			Nome trival	Ocorrência	Referências
		R	5	6	7	8	2'	3'	4'	5'	Ind.			referencias
O	0	Gal	ОН		ОН			ОН	ОН			Hiperina	Cassia margin <u>a</u> ta	89:126.129 92:37.739
													Caesalpinia japonica	94:205.409
0	0	Ara	OH		ОН			ОН	OH			3-0-Arabin <u>o</u> silquercetina	Velonix regia	85:74.901
υ	0	R	OR		OR			OR	OR		4R=4H R=Glc	Glicosilque <u>r</u> cetina	Bauhinia v <u>a</u> Lhci	88:148.934
													B. varieg <u>a</u> ta	88:148.934
													B. malabar <u>i</u> ca	88:148.934
1	0	Н	ОН		OMe			OH	OH			Rhamnetina	Cassia garr <u>e</u> ttiana	91:52.692
													Peltophorum pterocarpum	98:122.802
													Bauhinia Thonningic	62:9.458

TABELA 1.6. Continuação

ITA	ITB			Sı	ubsti	tuiç	ão do	esqu	e1eto)		Nome trivial	Ocorrência	Referências
		R	5	6	7	8	2'	3'	41	5 '	Ind.			
1	0	Gli	ОН		OMe			OH	OH			3-0-Glicosi <u>l</u> rhamnetina	Cassia sophera	84:28.019
													Peltophorum pterocarpum	98:122.802
1	0	(Gal) ₂	OH		OMe			OH	OH			3-0-Digalacto silrhamnetina	Cassia laevig <u>a</u> ta	98:50.309
0	1	H	OH		OH			OMe	OH			Isorhamnetina	Cassia obtusa	79:123.630
													C. angus tí <u>fo</u> Lia	8:990 ⁸ 34:1.443 ⁷ 36:2.685 ³ 93:3.908
													C. acutifolia	8:990 ⁸
0	1	R	OR		OR			OMe	OR		3R=3H R=Gli	Glicosiliso rhamnetina	C. acutifolia	8:990 ⁸
0	1	$m{Gli}_{Gal}$	OH		ОН			OMe	ОН			Cassiglucina	Cassia mult <u>i</u> juga	93:3.908
1	1	Н	OН		OMe			OH	OMe			Ombuina	Cassia laev <u>i</u> gata	92:177.393 93:239.83

TABELA 1.6. Continuação

ITA	ГТВ		Sı	ubst	itui	ção	do es	quele	to		Nome trivial	Ocorrência	Referências
		R	5	6	7	8	2'	31	4'	5'			referencias
												Bauhinia retusa Bauhinia sp.	91:207.390 88:148.934
1	2	(Gal)	OH		OMe			OMe	OMe		3-0-Galactoga lactosil-5-Hi droxi-3',4',7- -Trimetoxifla vona	Cassia laevigata	90:69.101
1,5	1	Ме	ОН	OMe	ORha	a		OMe	ОН		7-0-Rhamnosi <u>l</u> jaceidina	Cassia occident <u>a</u> lis	21
1	0	Н			OH				OH		4',7-Diidroxi flavonol	Guibourtia coleo <u>s</u> perma	60:4.095
1	0	Н			ОН			ОН	OH		Fisetina	Delonix regia	76:83.513
												Peltophorum africanum Gleditsia japonica	76:83.513 50:10.659 52:4.105

TABELA 1.6. Continuação

ITA	1TB		Sı	ubst	itui	ção d	do es	quele	to		Nome trivial	Ocorrência	Referências
		R	5	6	7	8	2'	3'	4'	5'			
												G. triacanthos	49:12.621
												Colophospermum mopane	67:79.644
												Gurbourtia c <u>o</u> leosperma	60:4.095
												Umtiza listerana	100:188.733
												Bauhinia hookeri	76:83.513
0	0	Н	ОН		ОН			ОН	ОН	ОН	Miricetina	Ceratonia sil <u>i</u> qua	69:95.240 76:83.513
												Intsia bijuga	65:1.036 79:134.379
U	0	Н	ОН		ОН			ОН	ОН	ОН	Miricetina	Bauhinia hookeri	76:83.513
												Cercis chine <u>n</u> sis	76:83.513
0	0	Rha	ОН		ОН			OH	OH	ОН	Miricitrina	Caesalpinia pu <u>l</u> cherrima	62:12.154 68:908
												Vercis siliqua <u>s</u> trum	33:5.406 ⁶ 62:12.154

TABELA 1.6. Continuação

ITA	ITB			Su	bstit	uiçâ	io do	esqu	eleto			Nome trivial	Ocorrência	Referências
		R	5	6	7	8	2'	3'	4'	5'	Ind.			
1	1	Gal	ОН		OMe			ОН	OMe			3—0—Galact <u>o</u> silombuina	Cassia laeviga ta	90:69.101
1	1	Neo	ОН		OMe			ОН	OMe			3—0—Neohespe ridosilombuina	Cassia laevigata	1 92:177.393
1	2	Rha	ОН		OMe			OMe	OMe			3',4',7-Tri- -0-Metil-3- -0-Rhamnosil quercetina	Cassia javanica	75:137.486
0	0	Rut	ОН		ОН			ОН	OH			Rutina	Cassia pum <u>i</u> la	101:226.840
													C. absus	91:87.298
													C. auricul <u>a</u> ta	69:35.870
													Dekonix regia	85:74.901
													Dimorphandra mollis	79:113.234
													Bauhinia tome <u>n</u> tosa	48:12.237 60:4.459 62:9.458 66:1.736

TABELA 1.6. Continuação

ITA	ITB			S	ubst	ituiç	ão do	o esq	ueleto	0		Nome trivial	Ocorrência	Referências
		R	5	6	7	8	2'	3'	4'	5'	Ind.			
														68:908 75:86.880
0	0	R	OR		OR			OR	OR	OR	5R=5H R=G1c	Glycosilmir <u>i</u> cetina	Bauhinta v <u>a</u> riegata	88:148.934
2	0	Н	OH			ОН		ОН	ОН	OH		3,5,8,3',4', 5'-Hexaidro xiflavona	Cassia tora	100:206.500 101:207.636
1	0	Н				ОН		ОН	ОН	ОН		Robinetina	Gleditsia monosperma	26:5.958 ⁸ 49:12.621
													Intsia bijuga	65:1.036 79:134.379
2	1	H	OH		OMe	Rha	OH	OH	OH			8-C-Rhamnosil- 7-Metoxi-3,5, 2',3',4'-Pen taidroxiflavo na	Cassia sophera	95:76.876

TABELA 1.6. Continuação

ITA	ITB			S	Substi	Ltuiç	ção de	o esq	uelet	o		Nome trivial	Ocorrência	Referências
		R	5	6	7	8	2'	3'	4'	5 '	Ind.			North Carolina
		H									4 OH 1 OMe 1 Rha	Taliflavono losídeo	Erythrophleum guineense	42:1.388
1	1	Н	ОН	ОН	ОН		OH	ОН	ОН			5,6,7,2',3', 4'-Hexaidro xiflavonol	Dístemonanthus benthamianus	92:107.324
2	4	Me	OH	ОН	OMe		OMe		OMe	OMe		Distemonatina	Distemonanthus benthamianus	99:22.169 95:58.028
2	3	Me	OH	ОН	OMe		OMe		OMe	OH		5,5',6-Trii droxi-2',3, 4',7-Tetrame toxiflavona	Distemonanthus benthamianus	96:48.957
2	2	Me	ОН	ОН	OMe		OH	OH	OMe			Apuleisina	Apuleia lei <u>o</u> carpa	75:72.455 75:137.428
1	2	Me	ОН		OMe		OH	OH	OMe			Apuleidina	Apuleia lel <u>o</u> carpa	75:137.428 76:110.252

TABELA 1.6. Continuação

ITA	ITB		5	Subs	titui	ção	do es	squel	eto		Nome trivial	000000000000000000000000000000000000000	D-5
11A	116	R	5	6	7	8	2'	3'	4'	5 '	Nome trivial	Ocorrência	Referências
3	3	Мe	OMe	ОH	OMe		OMe		OMe	ОН	5',6-Diidroxi- -2',3,4',5,7- -Pentametoxi flavona	Distemonanthus benthamianus	96:48.957
3	3	Me	OMe	ОН	OMe		OH		OMe	OMe	6,2'-Diidroxi- -3,5,7,4',5'- -Pentametoxi flavona	Distemonanthus benthamianus	92:107.324
3	2	Me	OMe	ОН	OMe			ОН	OMe	OMe	Apuleirina	Apuleia leioca <u>r</u> pa	75:147.428 76:110.252
4	2	Me	OMe	OMe	OMe		OH		OMe	ОН	Apuleina	Apuleia leioca <u>r</u> pa	70:822 70:35.022 75:137.428
4	4	Мe	OMe	OMe	OMe		OMe	OMe	OMe		3,5,6,7,2',3', 4'-Heptametox <u>i</u> flavona	Distemonanthus sp.	101:191.436

TABELA 1.6. Continuação

Tma	TOD		S	ubst.	ituiç	ão d	do esc	luele	to		Nome twisted	0.70	D= F===2==1==
ITA	ITB	R	5	6	7	8	2'	3'	4'	5'	Nome trivial	Ocorrência	Referências
4	4	Мe	OMe	OMe	OMe		OMe		OMe	OMe	3,5,6,7,2',4', 5'-Heptametoxi flavona	Distemonanthus benthamianus	95:58.028
3	2	Me	ОН	OMe	OMe		OH		OMe	ОН	5-0-Desmetil <u>a</u> pule i na	Apuleia leiocarpa	70:822 70:35.022 75:137.428
2	2	Me	OH	ОН	OMe			ОН	OMe	OMe	Apuleitrina	Apuleia leiocarpa	75:72.455 75:137.428
1	1	Ме	OH		OMe			ОН	OMe		Aianina	Apuleia leiocarpa	75:72.455 75:137.428
												Distemonanthus benthamianus	46:9.097 49:14.748 75:137.428 92:107.324
0	1	Н	ОН		ОН		ОН		ОН	ОН	5,7,2',4',5', Pentaidrox <u>i</u> flavonol	Distemonanthus benthamianus	92:107.324

TABELA 1.6. Continuação

ITA	ITB		Sı	ıbst	ituiç	ão d	do es	quelet	to		Nome trivial	Ocorrência	Referências
		R	5	6	7	8	2'	3'	4'	5'			
1	2	Me	OH		OMe			OMe	OMe		5-Hidroxi-3,7, 3',4'-Tetrame toxiflavona	Distemonanthus benthamianus	92:107.324
1	2	Me	ОН		OMe		ОН		OMe	ОН	Oxiaianina A	Apuleia leiocarpa	70:35.022 75:72.455 75:137.428
												Distemonanthus benthamianus	49:14.748 70:822 70:35.022 75:72.455 75:137.428
1	3	Ме	OH		OMe		ОН		OMe	OMe	5,2'-Diidroxi- 3,7,4',5'-Te trametoxifla vona	Distemonanthus benthamianus	92:107.324
1	4	Me	OH		OMe		OMe		OMe	OMe	5-Hidroxi-3,7, 2',4',5'-Pen tametoxifla vona	Distemonanthus benthamianus	92:107.324

TABELA 1.6. Continuação

ITA	ITB			Subs	titui	ção do	esque]	eto		Nome trivial	Ocorrência	Referências
		R	5	6	7	8 2'	3'	4'	5 '			
2	1	Мe	ОН	ОН	OMe		ОН	OMe		Oxiaianina B	Apuleia leioca <u>r</u> pa	75:72.455 75:137.428
											Disthemonanthus benthamianus	49:14.748 70:822 75:137.428 92:107.324
2	2	Me	ОН	OH	OMe		OMe	OMe		5,6-Diidroxi- -3,7,3',4'-Te trametoxifla vona	Disthemonanthus benthamianus	92:107.324
2	3	Ме	OMe		OMe	OH		OMe	OMe	2'-Hidroxi-3, 5,7,4',5'-Pen tametoxiflavo na	Disthemonanthus benthamianus	92:107.324
2	4	Мe	OMe		OMe	OMe	2	OMe	OMe	3,5,7,2',4'- 5',Hexametox <u>i</u> flavona	Disthemonanthu s benthamianus	92:107.324

TABELA 1.6. Continuação

ITA	ITB		Su	bsti	tuição	do €	squele	to			Nome trivial	O∞rrência	Referências
		R	5	6	7	8	2'	3'	4'	5'	Nome criviar	ownencia	Referencias
2	2	Me	OMe		OMe		OH		OMe	OH	5-0-Metilox <u>i</u> aianina A	Apuleia lei <u>o</u> carpa	70:35.022 75:137.428 91:20.256

 TABELA 1.7. Estrutura e ocorrência de Flavonas em Caesalpinioideae

ITA	ITB		5	Subs	titui	Lção	do es	squele	eto		Nome trivial	0corrência	Referências
		3	5	6	7	8	2'	3'	4'	5 '	wone criviar	COTTENCIA	referencias
0	0		ОН		OH				ОН		Apigenina	Cassia absus	88:47.530
												C. jaegeri	72:39.781
												C. siamea	90:3.121
												Caesalpinia	94:205.409
												japonica	
												Humboldtia	99:172.807
												lauri fo lia	
												Crudia amaz <u>o</u>	79:89.465
												nica	
0,5	0		OH		OGli				OH		7-0-Glicosil <u>a</u> pigenina	Saraca indica	85:156.527

TABELA 1.7. Continuação

ITA	ITB		Sul	bsti	tuiçã	io do	esq	ıelet	.0		Nome trivial	Ocorrência	Do F a . 2
117	110	Ind.	5	6	7	8	2'	3'	4'	5 '	Notice Clivial	Correncia	Referências
0,5	0		OH		OGal				ОН		Thalictiina	Cassia siamea	89:103.747
0	1,5		OH		OH			Me	ORha		Javanina	Cassia javanica	101:167.145
0,5	0	2R=2H R=Rha Gli	OR		OR				OR		Rhamnoglic <u>o</u> silapigenina	Tamarindus ind <u>i</u> ca	59:5.493
1	0		ОН		OH	Gli			ОН		Vitexina	Ceratonia sil <u>i</u> qua	43:8.452
												Parkinsonia <u>a</u> culeata	94:209.092
												Tamarindus i <u>n</u> dica	61:10.911 61:15.033 64:13.090 74:20.326
1	0		ОН	Gli	OH				ОН		Isovitexina	Parkinsonia <u>a</u> culeata	94:209.092
												Tamarindus i <u>n</u> dica	64:13.090

TABELA 1.7. Continuação

ITA	ITB		5	Subs	titui	ição	do e	squel	eto				
	118	3	5	6	7	8	2'	31	4'	5'	Nome trivial	Ocorrência	Referências
0,5	0		ОН		ОН			ОН	ОН		Luteolina	Cassia absus	88:47.530
												C. mimosoides	73:73.817
0,5	0		ОН		OG1i			OH	ОН		7-0-Glicos <u>i</u> lluteolina	Cassia mimosoides	72:51.792 73:73.817
												Tamarindus ind <u>i</u> ca	59:5.493
0	1		OH		ОН			ОН	OMe		Diosmetina	Cassia marila <u>n</u> dica	69:16.786
2	2		OMe		OMe			OMe	OMe		5,7,3',4'- -Tetrameto xiflavona	Bauhinia cha <u>m</u> pionii	100:171.568
0,5	1		ОН		OGli			ОН	OMe		7-0-Glicosi <u>l</u> diosmetina	Cassia marila <u>n</u> dica	69:16.786 72:103.661
1	0		ОН		OH	Gli		ОН	ОН		Orientina	Parkınsonia ac <u>u</u> leata	94:209.092
												Tamarindus ind <u>i</u> ca	64:13.090

TABELA 1.7. Continuação

ITA	ITB			Subs	titu	ição	do es	quele	to		Nome trivial	Ocorrência	Referências
		3	5	6	7	8	2'	3'	4'	5'		COTTENCIA	Referencias
1	0		ОН		OH	Gli		ОН	ОН		Epiorientina	Parkinsonia ac <u>u</u> leata	64:18.027 64:19.746
1	0		ОН	Gli	OH			OH	ОН		Isoorientina (Homoorient <u>i</u>	Tamarindus indi ca	64:13.090
											na)	Parkinsonia ac <u>u</u> leata	94:209.092
2	0		OMe		OH	Gli		ОН	ОН		Parkinsonina A	Parkinsonia ac <u>u</u> leata	64:18.027 64:19.746
3	0		OMe		OMe	Gli		OH	ОН		Parkinsonina B	Parkinsonia ac <u>u</u> leata	64:18.027 64:19.746
1	0		OH		OH	Gli		ОН	ОН		Lutexina (Orientina)	Tamarindus ind <u>i</u> ca	61:10.911 61:15.033
1,5	1		ORha		OMe			OMe	OH		5-0-Rhamnosi <u>1</u> velutina	Cassia nodosa	97:123.922
4	2		OMe	OMe	OMe			OMe	OMe		5,6,7,3',4'- Pentametox <u>i</u> flavona	Bauhinia champi <u>o</u> nii	100:171.568
0	2		ОН		ОН			OMe	ОН	OMe	Tricina	Eperua bijuga	79:89.465

TABELA 1.7. Continuação

ITA	ITB			Subs	titu	ição	do €	squel	eto		Nome trival	Ocorrência	Referências
		3	5	6	7	8	2'	3'	4'	5'	TWIC CITYAL	COTTENETA	Referencias
2	0		ОН		ОН	OMe		ОН	ОН	ОН	Acrammerina	Gleditsia tri <u>a</u> canthos	42:4.173 60:14.829
6	2		OMe	OMe	OMe	OMe		OMe	OH	OMe	4'-Hidroxi-5, 6,7,8,3',5'- Hexametoxifla vona	Distemonanthus sp.	101:191.436
4	. 3		OMe	OMe	OMe			OMe	OMe	OMe	5,6,7,3',4', 5'-Hexametox <u>i</u> flavona	Bauhinia champi <u>o</u> nii	100:171.568 100:102.998
2	3		OMe		OMe			OMe	OMe	OMe	5,7,3',4',5'- Pentametox <u>i</u> flavona	Bauhinia champi <u>o</u> nii	100:171.568
4	3		OMe	OMe	OMe			OCT	1 ₂ O	OMe	5,6,7,5'-Tetra metoxi-3',4'- metilenodioxi flavona	Bauhinia champi <u>o</u> nii	100:102.998 100:171.568
2	3		OMe		OMe			oa	¹ 2 ^O	OMe	5,7,5'-Trimeto xi-3',4'-meti lenodioxiflavo na	Bauhinia champi <u>o</u> nci	100:102.998 100:171.568

TABELA 1.7. Continuação

TITIA	TUD			Subst	ituiç	ão do	esqu	e1eto					
ITA	ITB	3	5	6	7	8	2'	3'	4'	5'	Nome trivial	Ocorrência	Referências
1	0				ОН				ОН		4',7-Diidrox <u>i</u> flavona	Caesalpinia japonica	94:205.409
1	0				ОН			ОН	ОН		7,3',4'-Trii droxiflavona	Umtiza li <u>s</u> terana	100:188.733

TABELA 1.8. Estrutura e ocorrência de 3,4-Diidroxiflavanas e derivados em Caesalpinioideae

ITA	ITB	Tim.			Suk	osti	tuiç	ão do	esc	quele!	.0			Nome Audus 1	0	
IIA	110	Tipo	R	2	3	4	5	7	8	2'	3'	4'	5'	Nome trivial	Ocorrencia	Referencias
0	0	I	Н				OH	OH				ОН		Leucopelargo nidina	Saraca as <u>o</u>	94:80.249
															Cassia <u>ja</u> vanica	65:14.012
															Cassía si <u>e</u> beriana	67:97.608 69:25.083 68:112.140
0	0	Ι	H				OH	OH				OH		Goratensid <u>i</u> na	Cassia aur <u>i</u> dulata	58:8.231 78:82.082
															C. goraten sis (C. sin gueana)	58:8.231
0	0	I	Н				OH	ОН				ОН		(-)-Leucope largonidina	Cassia ma <u>r</u> ginata	61:11.009

TABELA 1.8. Continuação

ITA	ITB	Tipo)	S	Subs	tit	uiç	ão	do	esqu	elet	o		Nome trivial	Ocorrência	Referências
			R	2	3	4	5	7	8	2'	3'	4'	5'			
0	0	I	Gli				ОН	ОН				OH		3-0-Glicosilleu copelargonidina		94:80.249
0	0	Ι	Rha				ОН	ОН				OH		3-0-Rhamnosi <u>l</u> leucopelargon <u>i</u> dina	Cassia tora	77:85.614
1	0	II	Н				ОН	OH				ОН		Margicassidina	Cassia marginata	64:17.525 89:126.129
1	0	11	(Gli) 2			OH	ОН				ОH		3-0-Digli∞si <u>l</u> margicassidinā	Cassia marginata	89:126.129
0	0	I	Н				ОН	OH			ОН	ОН		(+)-Leucocian <u>i</u> dina	Peltophorum fe <u>r</u> rugineum	61:10.879 89:211.965
0	0	I	Н				ОН	ОН			ОН	ОН		Leucocianidina	Cassia javanica	99:50.328
															Saraca asoca	94:80.249
															Peltophorum fe <u>r</u> rugineum	76:83.513
															Tamarindus ind <u>i</u> ca	59:5.493 51:5.922 52:11.186
															Intsia bijuga	79:134.379
															Ceratonia sil <u>i</u> qua	69:95.240

TABELA 1.8. Continuação

TITIN	TIND	m! -				Sul	ost	it	uição	do	esc	rue le	eto			•	_
ITA ——	ITB	Tipo	1	R	2	3	4	ı	5 7	8	2'	3'	4'	5 '	Nome trivial	0corrência	Referências
																Ceratonia sil <u>i</u> qua	69:95.240
																Delonix regia	65:20.506
																Cassia sieb <u>e</u> riana	67:97.608
0	0	Ι	Rł	na				(ОН ОН			ОН	OH		3-0-Rhamnosi <u>l</u> leucocianid <u>i</u> na	Cassia javan <u>i</u> ca	93:235.100
0	1	I	Gā	a1				C	ЭН ОН			OMe	ОН		3-0-Glacto silleucopeoni dina	Cassia javan <u>i</u> ca	75:137.486
0	1	I	Rh	na				C	ЭН ОН			OMe	ОН		3-0-Rhamnosi <u>1</u> leucopeonid <u>i</u> na	Cassia javan <u>i</u> ca	93:235.100
0	0	I	H	ł				C	но но			ОН	OH	ОН	Leucodelfini dina	Ceratonia s <u>i</u> liqua	69:95.240 60:16.396
1	0	I	H	Ī					ОН				OH		Guibourtacac <u>i</u> dina	Guibourtia c <u>o</u> leosperma G. tessmannii G. demeusii	60:4.095 53:16.276 53:16.276 53:16.276

TABELA 1.8. Continuação

ITA	ITB	Tipo		S	Subs	tit	uiç	ão	đo	esqu	elet	:0		Nome Andrei 1	0	
	110		R	2	3	4	5	7	8	2'	3'	4!	5'	Nome trivial	Ocorrência	Referências
1	0	I	Нв	8 – H	β–Н	α - H	I	ОН				OH		2,3-Cis-3,4- -Trans-Gui bourtacacidi na	Guibourtia c <u>o</u> leosperma	99:209.825 63:7.252
1	0	I	Ηβ	8 – H (в – Н	в-н	ľ	OH				ОН		2,3-Cis-3,4- Cis-Guibour tacacidina	Guibourtia c <u>o</u> leosperma	99:209.825
1	0	I	Ηβ	3—Н (α-Н	α H	[ОН				ОН		2,3-Trans-3, 4-Cis-Guibour tacacidina	Guibourtia co leosperma	99:209.825
1	0	I	Ηβ	-Н с	а–Н	в-н		ОН				ОН		2,3-Trans-3, 4-Trans-Gui bourtacacidi na	Guibourtia c <u>o</u> leosperma	99:209.825
1	0	I	Н в-	–Н б	3 H	α –H		ОН			ОН	ОН		(-)-2,3-Cis- -3,4-Trans- Leucofisetini	Guibourtia co leosperma	63:7.252
														dina	G. tessmannii G. demeusii	63:7.252 63:7.252

TABELA 1.8. Continuação

ITA	ITB	Tipo			Su	ıbst.	itui	ção	đo	es	quel	eto			Nome trivial	Ocorrência	Referências
IIA	1115	Про	R	-	2	3	4	5	7	8	2'	3'	4'	5'	None criviar		
1	0	I	Н	β-	-H	β – H	в–н		ОН			ОН	ОН		(-)-2-3-Cis- -3,4-Cis-Leu	Guibourtia cole osperma	63:7.252
															$ cofisetinid\overline{\underline{i}} $ na	G. demeusii	63:7.252
																G. tessmanii	63:7.252
1	0	I	H	β-	-H	α – Η	в-н		ОН			ОН	ОН		(+)-Molisaca cidina=Gled <u>i</u>	Umtiza lister <u>a</u> na	100:188.733
															tsina=(+)-2, 3-Trans-3,4- -Trans-Leuco	Peltogyne pube <u>s</u> dens	67:79.644
															fisetinidina	P. porphyroca <u>r</u> dia	67:79.644
																Gleditsia jap <u>o</u> nica	50:10.659 53:16.121 52:4.105
1	0	I	Н	β-	-H	а–Н	α-Н		OH			ОН	ОН		-3,4-Cis-Leu	Umtiza lister <u>a</u> na	100:188.733
															∞ fisetinid $\overline{\underline{ ext{i}}}$ na	Guibourtia c <u>o</u> leosperma	63:7.252
																G. tessmanii	63:7.252
																G. demeusii	63:7.252
																Colophospermum mopane (Copa <u>i</u> fera mopane)	96:199.363 67:79.644 64:3.325

TABELA 1.8. Continuação

ITA	ITB	Tipo			Sul	osti	ltu	Lção	đo	esq	nele	eto		Nome trivial	Ocorrência	Referências
	,. <u>, </u>		R	2	3	4	5	7	8	2'	3'	4'	5'			
															Peltogyne p <u>u</u> bescens	67:79.644
															P. porphyro cardia	67:79.644
1	0	I	Н					OH			ОН	OH		Ieucofisetin <u>i</u> dina	Guibourtia c <u>o</u> leosperma	60:4.095
															G. tessmannii	60:4.095
															G. arnoldiana	60:4.095
															Caesalpinia co riaria	63:7.252
1	0	I	H					ОН			OH	ОН		(+) <i>-</i> Leucofis <u>e</u> tinidina	Cassia margina ta	69:103.772
															Guibourtia c <u>o</u> leosperma	53:16.276
															G. tessmanníi	53:16.276
															G. demeusii	53:16.276 60:4.095
2	0	I	H					OH	OH	I		ОН		Fistucacidina	Cassia fistula	60:14.825 77:123.802 76:83.513

TABELA 1.8. Continuação

	TOP	m:			Sul	bsti	tuiç	ão do	o esc	quele	to			Nome trivial	Ocerrônai a	Poforôncias
ITA	ITB	Tipo	R	2	3	4	5	7	8	21	3'	4'	5'	None criviar	CONTENCIA	Referencias
1	0	I	Н				OH					OH		3,4,5,4'-Te traidroxif <u>la</u> vana	Cassia fist <u>i</u> la	2 70:47.233
1	1	I	Н				OH			ОН		ОН		(-)-Auricul <u>a</u> cacidina	Cassia aur <u>í</u> culata	78:82.082 69:35.870

TABELA 1.9. Estrutura e ocorrência de 3-Hidroxiflavanas e derivados em Caesalpinioideae

			Subs	stit	uição	do	esque]	leto		27	Ocorrência	Referências
ITA	ITB	2	3	5	7	3'	4'	5'	R	Nome trivial	Ocorrencia	Referencias
0	0	β-Н	β – H	ОН	ОН		ОН		Н	(-)-Epiafzel <u>e</u> quina	Afzelia sp.	50:4.929 92:55.143
											Cassia javanica	89:126.129
											Cassia sieberiana (C. kotschyana)	92:55.143
											Cassia fistula	97:159.534
0	0	β − Н	α-Н	OH	ОН	ОН	OH		Ħ	(+)-Catequina	Cassía fistula	97:159.534
											C. marginata	69:103.772
											Gleditsia triaca <u>n</u> thos	60:14.829
											Guibourtia arno <u>l</u> diana	60:4.095
											Ceratonia siliqua	69:95.240 59:13.112

TABELA 1.9. Continuação

ATI	ITB		s	ubsti	tuiçã	o do e	sque le	to		Nome trivial	Ocorrência	Referências
		2	3	5	7	3'	4'	5'	R			
0	0			ОН	ОН	ОН	ОН		Н	Catequina	Schotia brachype tala	81:49.360
											Ceratonia siliqua	76:83.513
0	0	в-н	в-н	ОН	ОН	ОН	ОН		Н	(-)-Epicate	Bauhinia glauca	77:2.810
										quina	Ceratonia siliqua	77:2.810 59:13.112 69:95.240
											Peltophorum ferr <u>u</u> ginum	89:211.965
											Cassia sieberiana	69:25.083 68:112.140
0	0			OH	OH	OH	OH		H	Epicatequina	Schotia brachyp <u>e</u> tala	81:49.360
											Cassia fistula	76:83.513
											Ceratonia siliqua	76:83.513
											Cassia sieberiana	67:97.608
0	1	в-н	в-Н	ОН	OH	OH		ОН	Н	(2R,3R)-3,5,7, 3',5'-Pentai droxiflavana	Humboldtia laur <u>i</u> folia	99:172.807

TABELA 1.9. Continuação

ITA	ITB		Subs	stit	uição	o do c	esque:	leto		Nome trivial	Ocorrência	Referências
		2	3	5	7	3'	41	5'	R			
0	0	β-Н	α-Н	ОН	ОН	OH	ОН	ОН	Н	(+)—Galocate quina	Bauhinia glauca Ceratonia siliqua	77:2.810 77:2.810 59:13.112 76:83.513
0	0	α-Н	в-н	ОН	ОН	ОН	ОН	ОН	Н	(—)—Galocat <u>e</u> quina	Ceratonia siliqua	69:95.240
0	0			OH	ОН	ОН	ОН	OH	Н	Galocatequina	Ceratonia siliqua Cassia sieberiana	96:48.956 67:97.608
1	0	β₌н	α-Н		OH	ОН	ОН		Н	(—) —Fisetin <u>i</u> dol	Colophospermum mo pane (Copaifera — mopane)	64:3.325 96:199.363
1	0	α - H	в-н		ОН	OH	OH		H	(+)—Fisetin <u>i</u> dol	Afzelia xylocarpa	62:9.098
1	0	α–Н	α–Η		ОН	ОН	ОН		Н	(+)-Epifiset <u>i</u> nidol	Colophospernum mop <u>o</u> ne	64:3.325 96:199.363
0	0	в–Н	в-н	ОН	ОН	ОН	ОН		Н	3-0-Gli∞sil- -(-)-Epicat <u>e</u> quina	Gleditsia triaca <u>n</u> thos	60:14.829 42:559

TABELA 1.9. Continuação

ITA	ITB		Subs	stit	uição	o do	esque	eleto	•	Nome trivial	Ocorrência	Referências
	,	2	3	5	7	3'	4'	5'	R			Nerel Gleras
0	0			ОН	ОН	ОН	ОН		Galo	3-0-Galoilcate quina	Ceratonia siliqua	96:48.956
0	0	β−Н	в-Н	OH	ОН	ОН	ОН		Galo	(—)—3—0—Galo <u>i</u> lepicatequina	Ceratonia siliqua	77:2.810 59:13.112 69:95.240
0	0			ОН	ОН	ОН	ОН		Galo	3-0-Galoilep <u>i</u>	Ceratonia siliqua	76:83.513
										catequina	Cassia sieberiana	67:97.608
0	0				ОН	ОН	ОН	ОН	Galo	3-0-Galoilg <u>a</u> locatequina	Ceratonia siliqua	96:48.956
0	0	в–н	в–Н	OH	ОН	ОН	ОН	ОН	Galo	(-)-3-0-Galo <u>i</u> lepigalocat <u>e</u> quina	Ceratonia siliqua	77:2.810
0	0	в–Н	α-Н	ОН	ОН	ОН	ОН		Н	(+)-Catequina	Colophospermum mopane	96:199.363
											Caesalpinia coriaria	56:15.790

TABELA 1.10. Estrutura e ocorrência de Antocianidinas e derivados em Caesalpinioideae

TITIN	TITID	mt		Sul	bstit	uiçã	io do	esque	eleto)			
ITA	ITB	Tipo	R	5	7	8	3'	4'	5'	Ind.	Nome trivial	Ocorrência	Referências
0	0	I	Gli	ОН	ОН			ОН			3-0-Glicosi <u>l</u> pelargonidina	Bauhinia pu <u>r</u> purea	90:183.171
0	0	I	(Gli) ₃	OH	ОН			OH			3-0-Triglico silpelargoni dina	Bauhinia pu <u>r</u> purea	90:183.171
0	0	I	Н	ОН	OH		ОН	ОН			Cianidina	Ceratonia s <u>i</u> liqua	69:95,240
0	0	I	Gli	ОН	OH		ОН	OH			Crisantemina	Tamarindus i <u>n</u> dica	59:5.493 51:5.922

TABELA 1.10. Continuação

ITA	ITB	Tipo	·	S	ubsti	ituiç	ão do	esq	uele	to	Nome trivial	0corrência	Referências
			R	5	7	8	3'	4'	5'	Ind.			
0	0	Ι	Gli	OH	OH		ОН	ОН			3-0-Gli∞si <u>l</u> cianidina	Brownea gra <u>n</u> diceps	66:83.131
												Delonix regia	85:74.901
												Cassia nodosa	85:74.901
												Bauhinia v <u>a</u> riegata	85:74.901
0	0	I	(Gli)	2 ^{OH}	OH		ОН	ОН			3—0—Gentiobi <u>o</u> silcianidina	Delonix regia	85:74.901
0	0	I	R	OR	OR		OR	OR		4R=4H R=(G1c)		Delonix regia	65:20.506
0	1		Gli	ОН	OH		OMe	ОН			3-0-Glicosi <u>l</u> peonidina	Bauhinia vari <u>e</u> gata	85:74.901
0	1	I	(Gli)	2 ^{OH}	ОН		OMe	OH			3-0-Diglico silpeonidina	Bauhinia vari <u>e</u> gata	85:74.901
0	1	I	Rha	OH	OH		OMe	OH			3-0-Rhammosi <u>l</u> peonidina	Cassia javan <u>i</u> ca	92:55.068
0	0	I	Н	ОН	ОН		ОН	ОН	ОН		Delfinidina	Ceratonia sil <u>i</u> qua	60:16.396 69:95.240

TABELA 1.10. Continuação

ITA	ITB	Tipo	`		Su	ıbsti	tui	ão do	esqu	ıeletc)	Nome trivial	Ocorrência	Referências
1111	110		F	2	5	7	8	3'	4'	5'	Ind.			
0,5	0	I	Gl	i	OGli	OH		OH	ОН	ОН		Delfinina	Ceratonia s <u>i</u> liqua	96:48.956
0	2	Ι	Gl	i	ОН	ОН		OMe	ОН	OMe		3-0-Gli∞si <u>l</u> malvidina	Bauhinia v <u>a</u> riegata	85:74.901
0	2	I	(G1	i) ₂	2 OH	ОН		0Me	ОН	OMe		3-0-Digli∞ silmalvidina	Bauhinia v <u>a</u> riegata	85:74.901
1	2	I	F	ľ	OH	OMe		OMe	OH	OMe		Hirsutidina	Peltophorum pterocarpum	98:122.802
2	0	I	F	I		OH	OH	OH	OH			3,3',4',7,8- Pentaidroxian tocianidina	Peltophorum pterocarpum	98:122.802
1	0	11	(G1	i)	2 OH	OH			ОН				Cassia margin <u>a</u> ta	64:17.525 85:74.901

TABELA 1.11. Estrutura e ocorrência de Peltochalconas em Caesalpinioideae

ITA	ITB	Subs	stitui	.ção d	do es	que:	leto	Nome trivial	Ocorrência	Referências
		2'	3'	4'	3	4	5	ivanc criviar	COTTEICIA	referencias
1	4	ОН		ОН	ОН		ОН	Peltochalcona	Goniorrhachis margin <u>a</u> ta	82:54.169
3	4	ОН	OH		OH		OH	Goniorona	Goníorrhachis margin <u>a</u> ta	75:72.457
1	2	OH		OH	ОН	OH			Goníorrhachis margina ta	77:126.463

TABELA 1.12. Estrutura e ocorrência de Peltoginóides em Caesalpinioideae

ITA	ITB			Sul	stit	tuiçã	ão d	o esq	ue1et			Nome trivial	Ocorrência	Referências
		2	3	4	5	7	8	9	10	6a	12a			
2	2		ОH	ОН	=0	=0	ОН	ОМе	ОН		Δ	Distemonanth <u>i</u> na	Distemonanthus benthamianus	49:14.748 65:16.931 92:107.324
2	2		ОН	ОН		=0	OH	OMe	ОН		Δ	Benthamianina	Distemonanthus benthamianus	82:14.040 92:107.324
1	2	ОН	ОН			=0			ОН		Δ	Peltoginina	Colophospermum mopane	67:79.644
1	2		OH	OH		=0			ОН		Δ	Mopanina	Colophospermum mopane	67:79.644
2	3	OMe	OH			ОН		ОН	OH		Δ	3,7,9,10-Te traidroxi-6- -Metoxi-6a, 12a,Desidro peltoginano	Goniorrhachis margita	75:72.457

TABELA 1.12. Continuação

ITA	ITB			Suk	sti	tuiçã	io do	esq	ueleto)		Nome trivial	Ocorrência	Referências
_		2	3	4	7	8	9	10	11	6a	12a			
1	2		OH	ОН	=0	OMe		ОН		α⊷Н	в–н	(6aR,12aR)-3, 4,10-Triidro xi-8-Metoxi- -6,12-Dioxa benz(a)Antra cen-7(5H,6aH, 12aH)-ona	Goniorrhachis marginata	77:126.463
1	2	OH	CH		=0	OMe		OH		α–Н	в-н	(6aR,12aR)-2, 3,10-Triidro xi-8-Metoxi- -6,12-Dioxa benz(a)Antra cen-7(5H,6aH, 12aH)-ona	Goniorrhachis marginata	77:126.463
1	2		ОН	ОН	=0			OH		α-Н	в-н	Mopanona	G. marginata	82:54.169
3	4	ОН		OH	=0			ОН	OMe	α – Η	α-Н	Guarabina	G. marginata	75:72.457
3	4	ОН		ОН	=0		o _{Me}	ОН				Isoguarabina	G. marginata	75:72.457
1	2	OH	OH		OH			OH				Peltoginol	Peltogyne pube <u>s</u> cens P. porphyroca <u>r</u> día	29:5.842 ⁸ 29:5.842 ⁸

TABELA 1.12. Continuação

ITA	ITB			Su	bstit	uiç	ão de	o esqu	uelet	o		Nome trivial	Ocorrência	Referências
IIA	TID	2	3	4	7	8	9	10	11	6a	12a			
1	2	ОН	ОН		β – OI	i		ОН		β–Н	α – Η	(+)-Peltog <u>i</u> mol	Colophosper mum mopane	64:3.325 67:79.644
													Copaisera pu bislora	29:5.842 ⁸ 67:79.644
													Peltogyne po <u>r</u> phyrocardia [–]	29:5.842 ⁸ 53:4.266 64:3.325 67:79.644 82:28.572
													P. pubescens	29:5.842 ⁸ 67:79.644 82:28.572
													P. confert <u>i</u> flora	82:54.168
													P. catingae	82:54.168
													P. venosa	67:79.644 82:28.570
													P. prebesaus	29:5.842 ⁸
													Trachylobium hornemannianum	67:79.644
													Umtiza list <u>e</u> rana	100:188.733

TABELA 1.12. Continuação

ITA	ITB			Su	bsti:	tuiç	ão do	esq	ueleta	o		Nome trivial	Ocorrência	Referèncias
		2	3	4	7	8	9	10	11	6a	12a			
1	2	ОН	ОН		β-Ο	Н				α - H	в–Н	(+)-Peltog <u>i</u> nol-B	Colophospe <u>r</u> mum mopane	67:79.644
													Peltogyne p <u>u</u> bescens	67:79.644 82:28.572
													P. venosa	67:79.644 82:28.572
													P. porphyr <u>o</u> cardia	53:4.266 67:79.644 82:28.572
1	2		OH	ОН	β-Ο	H		ОН		β-Н	α–Н	(+)-Mopanol	Colophosper mum mopane	64:3.325 67:79.644 82:28.572 75:72.457
													Peltogyne p <u>u</u> bescens	67:79.644 82:28.572
													P. venosa	67:79.644 82:28.572

TABELA 1.12. Continuação

ITA	ITB			Sub	stitu	ição	ob do	esque	eleto			Nome trivial	0corrência	Referências
		2	3	4	7	8	9	10	11	6a	12a			
1	2		ОН	OH	β–ОН			OH		в–Н	α-Н	(+)-Mopanol	Peltogyne c <u>a</u> tingae	82:54.168
													P. porphuro cardia	67:79.644 82:28.572
													P. confert <u>i</u> flora	82:54.168
1	2		ОН	OH	в-ОН			ОН		α – Η	в–Н	(+)-Mopanol B	Colophosper mum mopane	67:79.644
													Peltogyne ven <u>o</u> sa	67:79.644 82:28.572
													P. pubescens	67:79.644 82:28.572
													P. porphyroca <u>r</u> dia	67:79.644 82:28.572
1	2	ОН	ОН		α-ОН			ОН		в-Н	αН		. Colophospermum mopane	64:3,325

TABELA 1.12. Continuação

ITA	ITB			Sul	bsti	tuiçã	io do	o esc	quelet	.0		Nome trivial	Ocorrência	Referências
		2	3	4	5	7	8	9	10	6a	12a			
1	2		ОН	OH		α-OI	Ŧ		ОН	в–Н	α-Н		Colophospermum mopane	64:3.325
2	2	ОН	OH			α-OF	ł		OMe	α – Η	в–Н	10-0-Metilpe <u>l</u> toginol	Peltogune panicu lata	<u>u</u> 82:54.168
2	2		o-ci	н ₂ -0		α-ОМ	e		OH	α-Н	в-Н	7-0-Metil-3,4- -0,0-Metilide nomopanol	Peltogyne confe tiflora	<u>r</u> 82:54.168
1	2	ОН	OH						OH	а–Н	в–н	(+)-2,3-Trans- pubesquina	Peltogyne venoso P. pubescens	82:28.572 82:28.572
1	2	OH	ОН		=0				ОН	α—Н	в-Н	(6aR,12aR)-2, 3,10-Triidro xi-6,12-Dioxa benz(a)Antra cen-7-(5H,6aH, 12aH)-ona	Goniorrhachis marginata	77:126.463

TABELA 1.13. Estrutura e ocorrência de Isoflavona em Caesalpinioideae

ITA	ITB	Substitu	nição do e	squeleto	Nome trivial	Ocorrência	Peferências
		5	7	4'			
0	1	ОН	ОН	OMe	Olmelina	Gleditsia tri <u>a</u> canthos	46:9.098 60:14.829 45:1.586

TABELA 1.14. Estrutura e ocorrência do Pterocarpano Leiocarpina em Caesalpinioideae

ITA	ITB	Substituição do esqueleto	Nome trivial	Ocorrência	Referências
3	4		Leiocarpina	Apuleia leiocarpa	75:72.455 75:137.428

TABELA 1.15. Estrutura e ocorrência de Homoisoflavonóides em Caesalpinioideae

ATI	ITB	Tipo	Subs	titui	ção d	lo esqu	æleto	Nome trivial	Ocorrência	Referências
			3	7	8	3'	4'			
1	1	I		ОН			OMe	Bonducelina	Caesalpinia bonduc <u>e</u> lla	97:141.719
1	1	II	OH	OH		ОН	OH	Brazilina	Caesalpinia echina ta	46:1.716 48:9.624 18:4.081
									C. crista	46:1.716 48:9.624 91:209.671
									C. braziliensis	46:1.716 91:209.671 48:9.624
									С. зарран	48:9.624 18:408 1:1.162
									Haematoxylon bras <u>i</u> letto	54:24.982

TABELA 1.15. Continuação

ITA	ITB	Tipo	Subs	titui	ção d	o esqu	eleto	Nome trivial	Ocorrência	Referências	
			3	7	8	3'	4'				
2	1	11	ОН	ОН	OH	OH	ОН	Haematoxilina	Haematoxylon cam pechianum	54:3.959	
									Saraca indica	88:47.531 60:4.462 22:1.045	
1	1	111	OH	OH			OH	Brazileina	Caesalpinia sappai	47:6.660	
2	1	III	OH	OH	ОН		OH	Hemateina	Haematoxylon cam pechianum	59:2.981 54:3.959	

TABELA 2.

DISTRIBUIÇÃO DE FLAVONÓIDES EM MIMOSOIDEAE

тá	xon		alcona lavano:			Aurona	ıs	Dii	drofla	vonõis	F	lavonó	is
		NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}
1)	Mimoseae												
	Cyclicodiscus	2 1	2	0	0	-	_	0	-	-	0		-
	Adenanthera		2	0	0			1	0	0	1	1	U
	Entada	0	_	_	0	-	-	0	-	-	1	0	0
	Plathymenia	2	2 3	0 2	0	_		0	_	-	0	_	
	Prosopis	1	3	Z	0	_	_	0	_	-	64	0,13	0,30
	Piptadenia	0		-	0	_		0	-	-	0	_	_
	Leucaena Dichrostachys	0 0	_	-	0 0	_		0 0	-	-	25 1	0,12	0 0
2)	Acacieae												
	Acacia	173	1,55	0,06	3	1,5	0	97	1,43	0,04	181	1,12	0,09
3)	Ingeae												
	Albizzia	4	1,13	0	0	_	_	4	1,75	0,5	15	0	0,2
	Calliandra	0	-	-	0	-	-	0	-	_	1	0	Ó
	Pithecellobium	О	_	_	0	_	_	0	-	-	7	0	0

TABELA 2. Continuação

Táxon		Flavor	ıas		,4-Dii iflava		x	3-Hid iflava	
	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}
1) Mimoseae	_								
Cyclicodiscus	0	_	-	0	-	_	0	_	
Adenanthera	0	-		0	-	_	0	-	-
Entada	0	-	-	1	0	0	0	_	-
Plathymenia	_0	_		0	-	_	0	_	_
Prosopis	71	0,79	0,24	2	0	0	0	_	_
Piptadenia	4	1	0	1	0	0	0		_
Leucaena	0	-		0		_	0		_
Dichrostachys	0	-	-	0	-	_	0	_	-
2) Acacieae									
Acacia	35	1	1,14	209	1,68	0,02	252	0,19	0
3) Ingeae									
Albizzia	2	1,5	0	10	1,5	0	2	0	0
Calliandra	0	_	-	0		_	0		_
Pitehcellobium	Ō	-	_	2	1	0	0	_	_

TABELA 2. Continuação

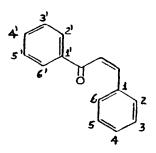

тá	xon		Flavan	as	Ant	ociani	dinas	nóides		+ Peltogi iropelto- es
		NO	AETA	AETB	NO	AETA	AETB	NO	AETA	AE_{TB}
1)	Mimoseae									
	Cyclidiscus	0	_	_	0	_	-	0	_	
	Adenanthera	0	_	_	0	_	-	0		_
	Entada	U	-	-	1	0	0	0		***
	Plathymenia	0	-	_	0		_	0	~~	_
	Prosopis	0	_	-	2	0	0,5	0	_	_
	Piptadenia	0	-	_	0			0	_	-
	Leucaena	0	_	_	0	-	_	0	_	-
	Dichrostachys	0	-	-	1	0	0	0	_	-
2)	Acacieae									
	Acacia	1	1	1,5	4	0,25	0	24	0,79	2
3)	Ingeae									
	Albezzia	0	_	_	0	_	_	0	_	
	Calliandra	0	_		0	-	_	0	_	-
	Pithecellobium	0			Ō	_	_	Ö	_	-

TABELA 2. Continuação

Táxon	Pto	erocar	panos	Neo	flavon	óides	Is	oflavo	nas
	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}	NO	AE _{TA}	AE _{TB}
1) Mimoseae									
Cyclicodiscus	0	-	_	0	_	_	0	-	-
Adenanthera	0	-	- ,	0	_	_	0	_	-
Entada .	0	-	_	0	_	_	0	_	-
Plathymenia	0			0		_	0	-	_
Prosopis	0	-	-	4	4,25	1	0	-	-
Piptadenia	0	-	-	3	4,33	1	0	-	_
Leucaena	0	-		0	_	-	0	-	-
Dichrostachys	0	-		0	-		0	-	_
2) Acacieae									
Acacia	0		-	0	-		0	-	-
3) Ingeae									
Albizzia	1	1	2	0	-	_	4	0,5	0,5
Calliandra	0	_	-	0	_	_	0	-	_
Pithecellobium	0	_		0	_	_	0	_	_

NO = Número de ocorrências; AE_{TA} = Avanço evolutivo referente às transformações do Anel A; AE_{TB} = Avanço evolutivo referente às transformações do Anel B.

TABELA 2.1. Estrutura e ocorrência de Cis-Chalconas em Mimosoideae

TUDA	ITB		Suk	stit	tuiç	ão do	esque	eleto		Name Anderd - 1	Ocorrência	Referências
ITA	118	3	4	5	7	2'	3'	4'	5'	Nome trivial	Ocorrencia	Referencias
2	0	ОН	ОН			ОН	OH	OH		Isoocanina	Acacia leucophloea	101:3.914
											Cyclicodiscus gabunensis	45:9.004
											Acacía nigrescens	77:45.495

TABELA 2.2. Estrutura e ocorrência de Trans-Chalconas em Mimosoideae

Tms	THE			Sub	stitı	uição d	o esqu	eleto					
ITA	ITB	3	4	5	7	2 '	3'	4'	5'	6'	Nome trival	Ocorrência	Referências
0,5	1	OMe	OH			OGli		OH		OH	4,4',6'-Trii droxi-3-Meto xi-2'-0-β-D- Glicosilchal cona	Acacia dealbata	96:82.721
0,5	0		ОН			OXi1		ОН		OH	2'-O-Xilosil chalcononarin genina	Acacia dealbata	96:82.721 94:121.862
0,5	0		ОН			OGli		OH		OH	Isosalipurp <u>o</u> sideo	Acacia dealbata Acacia cyanophylla	96:82.721 94:121.862 89:180.290
2	1					OMe		ОН			4'-Hidroxi- -2'-Metoxi chalcona	Acacía neovernícosa	97:141.662

TABELA 2.2. Continuação

TOTA	TITIO			Sub	stit	uiç	ão do	esque	eleto				- ·		
ITA	ITB	2	3	4	5	7	2'	3'	4'	5 '	6'	Nome trivial	Ocorrência	Referências	
1	0			ОН			ОН		OH			Isoliquirit <u>i</u> genina	Acacia neoverni cosa	97:141.662	
													A. galpínii	83:175.486	
0,5	0			OH			0-Xil Rha		ОН		ОН	2'-[0-Rhamno sil-(1→4)-Xi losideo] da Chalcononarin genina	Acacia dealbata	97:36.074	
1	3	OMe		OMe			OMe		ОН		ОН	Cerasina	Acacía decurrens var. molissima	57:2.595	
0	0,5			OGli			OH		ОН		OН	2',4',6'-Triidroxi-4-Glicosilchalcona	Acacía cyanoph <u>y</u> lla	89:180.290	
3	0		OH	OH	OH		ОН			OH		Robteina	Acacía mearnsií = A. molissima	60:851	
3	1						ОН	OMe	ОН			Larreina	Acacía neovern <u>í</u> cosa	97:141.662	
2	0		OH	OH			ОН		ОН	ОН		Neoplatimen <u>i</u> na	Plathymenia reti culata	48:5.833	
2	0		OH	OH			OH	OH	OH			Ocanina	Acacia glauce <u>s</u> cens	71:8.844	

TABELA 2.2. Continuação

ITA	ITB			Sul	bsti	tuiçâ	ão do	esque	eleto			Nome trival	Ocorrência	Referências
		2	3	4	5	7	2'	3'	4'	5 '	6'			
													A. homalophylla	71:8.844
													A. implexa	71:8.844
													A. pendula	71:8.844
													Albizzia lebbeck	87:98.789 65:7.226
													Acacia harpoph <u>y</u> lla	65:7.526 55:3.573
													Cyclicodiscus gabunensis	65:7.526 45:9.004
													Albizzia adia <u>n</u> thifolia	90:135.06
													Adenanthera <u>pa</u> vonina	77:16.539
													Acacia salicina	62:5.573
													A. acuminata	71:8.844
													A. cunninghamii	71:8.844
													A. doratoxylon	71:8.844
													A. excelsa	71:8.844

TABELA 2.2. Continuação

				Sub	sti	tuiçã	ão do	esqu	eleto				-	
ITA	ITB	2	3	4	5	7	2'	3'	4'	5'	6'	Nome trivial	Ocorrência	Referências
3	2		O-CI	H ₂ -0			OH		OH	OMe		Prosogerina B	Prosopis spic <u>i</u> gera	91:120.308 94:1.990
1	1						ОН		OH			2',4'-Diidro xichalcona	Acacia neove <u>r</u> nicosa	97:141.662
3			OH	OH				OH	ОН			3,4,3',4'-Te traidroxicha <u>l</u> cona	Acacia ligulata A. cambagei A. coriacea A. sowdenii A. stenophylla A. translucens A. cyperophylla A. doratoxylon A. kempeana A. linophylla A. rhodoxylon	77:85.575 77:85.575 77:85.575 77:85.575 77:85.575

TABELA 2.2. Continuação

ITA	TITID			Sub	osti	tuiçã	ão do	esqu	eleto			Nama kudud 1	0	566
11A	ITB	2	3	4	5	7	2'	3'	4'	5 '	6'	Nome trivial	Ocorrência	Referências
3	0		-	OH				OH	ОН			4,3',4'-Tri <u>i</u> droxichalcona	Acacia cambagei A. sowdenii A. stenophylla A. kempeana A. linophylla	77:85.575 77:85.575 77:85.575 77:85.575 77:85.575
2	0			ОН					ОН			4,4'—Diidrox <u>i</u> chalcona	A. rhodoxylon Acacia ligulata A. rhodoxylon	77:85.575 77:85.575 77:85.575
2	0		OH	ОН					OH			3,4,4'-Trii droxichalco na	Acacia ligulata A. tetragonoph <u>y</u> lla	77:85.575 77:85.575
													A. rhodoxylon	77:85.575
1	0		OH	ОН			OH		ОН			Buteina	Acacia filicif <u>o</u> lia	71:8.844
													A. irrorata ssp. irrorata	71:8.844
													A. irrorata ssp. velutinella	71:8.844
													A. ketllewelliae	71:8.844

TABELA 2.2. Continuação

TA	ITB			Sul	bsti	tuiç	ão do	esqu	el e to			Nome trivial	Ocorrência	Referências
		2	3	4	5	7	2'	3'	4'	5'	6'			
													A. leucoclada ssp. argenti <u>fo</u> lia	71:8.844
													Acacia mabellae	71:8.844
													A. mearnsii	71:8.844
													A. o'shanesii	71:8.844
													A. parramatte <u>n</u>	71:8.844
													sis	
													A. pycnantha	71:8.844
													A. rubida	71:8.844
													A. silvestris	71:8.844
													A. trachyphloia	71:8.844
													A. deanei ssp.	71:8.844
													deanei	
													A. deanei ssp.	71:8.844
													pauci juga	
													A. neriifolia	71:8.844
													A. vestita	71:8.844
													A. mearnsii	56:12.012 55:27.544 60:851

TABELA 2.2. Continuação

rma	Ť (TID)			Sul	bsti	tuiçã	ão do	esqu	eleto				· ·	·
ITA	ITB	2	3	4	5	7	2'	3'	4'	5'	6'	Nome trivial	Ocorrência	Referências
													A. molissima	56:11.863
		,											A. pycnantha	55:27.544
													A. baileyana	22
													var. purpurea	
													A. baileyana	71:8.844
													A. binervata	71:8.844
													A. botrycephala	71:8.844
													A. buxifolia	71:8.844
													A. calamifolia	71:8.844
													A. cardiophylla	71:8.844
													A. chrysotricha	71:8.844
													A. clunies-ros	71:8.844
													s i a e	
													A. dealbata	71:8.844
													A. decora	71:8.844
													A. falciformis	71:8.844

TABELA 2.3. Estrutura e ocorrência de Auronas em Mimosoideae

TIDA	TOD		Sub	stitui	ção d	lo esq	ueletc)	Name todayini 1		D. C
ITA	ITB	2	2a	4	6	7	3'	4'	Nome trivial	Ocorrência	Referências
0,5	0	Δ		Œli	ОН		ОН	ОН	Cernuosideo	Acacia dealb <u>a</u> ta	96:82.721
2	0	OH			OH	OH	ОН	OH	Nigrescina	Acacia nigre <u>s</u> cens	77:45.495
										A. fasciculif <u>e</u> ra	95:217.643

TABELA 2.4. Estrutura e ocorrência de Flavanonas em Mimosoideae

TOD	TIPID		Subs	titui	lção d	o esq	ueletc)			
ITA	ITB	2	5	6	7	8	3'	4'	Nome trival	Ocorrência	Referências
1	0				ОН		ОН	ОН	Butina	Acacia baileyana var. purpurea	102:128.802
										A. peuce	91:120.412
						•				A. tetragonophylla	77:85.575
										A. victoriae	77:85.575
										A. rhodoxylon	77:85.575
1	0				ОН		ОН	ОН	([±])—Butina	Acacia fasciculifera	95:217.653
										A. saxatilis	82:54.216
1	1				ОН				7-Hidroxiflav <u>a</u> nona	Acacia neovernicosa	97:141.662

TABELA 2.4. Continuação

ITA	ITB		Subst	ituiç	ão do	esqu	eleto		Nome trival	Ocorrência	Referências
	IID	2	5	6	7	8	31	4'	ware crivar		Neterencia:
2	0				ОН	ОН	OH	ОН	(-)-7,8,3',4'-	Acacia salicina	62:5.573
									tetraidroxif <u>la</u> vanona	A. cambagei	62:5.575 77:85:575
										A. harpophylla	62:5.573 71:8.844 55:3.573
2	0				ОН	OH	OH	ОН	7,8,3',4'-Te traidroxifla vanona	A. ligulata A. coriarea A. sowdenii A. stenophylla A. translucens A. cyperophylla A. doratoxylon A. kempeana A. linophylla A. rhodoxylon A. tarculensis A. rigens A. trineura A. verniciflua A. acuminata A. acuminata A. aneura var. latifolia A. aulacocarpa A. burrowii A. cheelii	77:85.575 77:85.575 77:85.575 77:85.575 77:85.575 77:85.575 77:85.575 71:8.844 77:85.575 77:85.575 77:85.575 77:85.575 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844

TABELA 2.4. Continuação

TITIN	TITID	;	Subst:	ituiç	ão do	esqu	eleto		Nome trivial	Ocorrência	Referências
ITA	ITB	2	5	6	7	8	3'	4'	Nome criviar	ocorrencia	Referencias
										A. cunninghamii A. excelsa A. floribunda A. glaucescens A. holosericea A. homalophylla A. implexa A. longifolia A. melanoxylon A. obtusifolia A. pendula A. pubifolia A. pubifolia A. pycnostachya A. nigrescens	71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844
0	1	β _Н	ОН		ОН				Pinocembrina	Acacia constricta	100:188.785
										A. neovernicosa	97:141.662
1	0				OH			ОН	7,4'-Diidrox <u>i</u> flavanona	A. rhodoxylon	77:85.575
2	0				OH	OH		ОН	7,8,4'-Triidro xiflavanona	Acacía auriculiformis A. cambagei A. soudenii A. stenophylla A. kempeana	64:5.441 77:85.575 77:85.575 77:85.575 77:85.575

TABELA 2.4. Continuação

ITA	ITB		Subst	ituiç	ão do	esqu	eleto		Nome trivial	Ocorrência	Referências
		2	5	6	7	8	3'	4'			
										A. rhodoxylon A. galpinii A. orites	77:85.575 83:175.486 71:8.844
2	0			ОН	ОН		ОН	OH	Platimenina	Plathymenia retic <u>u</u> lata	48:5.833
0	0		OH		OH			ОН	Naringenina	Albizzia adianthif <u>o</u> lia	61:12.326
										Acacia longifolia	52:7.340 49:14.922 46:8.653
										A. dealbata	50:9.398 94:121.862
0,5	0	C	(Gli)	2	OH			ОН	5-0-Diglicosiln <u>a</u> ringenina	Acacia dealbata	52:12.092 96:82.721
0,5	0		ОН		ORha Gli			ОН	Naringina	Albizzia adianthif <u>o</u> lia	61:12.326
0,5	0		ОН	Gli	OH			ОН	6-C-Glicosiln <u>a</u> ringenina	Acacia retinoides	97:212.658

TABELA 2.4. Continuação

TON	TITTO		Subst	ituiç	ão do	esqu	eleto		Nome trivial	Ocorrência	Referências
ITA	ITB	2	5	6	7	8	3'	4'	wome criviar		Referencias
1	0				OH		OH	ОН	(—)—Butina	Acacia baileyana A. binervata A. botrycephala A. buxifolia A. calamifolia A. cardiophylla A. chrysotricha A. clunies-rossiae A. dealbata A. decora A. falciformis A. filicifolia A. irrorata ssp. irrorata A. irrorata ssp. velutinella A. kettlewelliae A. lanigera A. leucoclada ssp.	71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844 71:8.844
										leucoclada A. mearnsii A. millifolia A. o'shanesii A. parramattensis A. pycnantha	56:12.012 55:27.544 71:8.844 60:851 71:8.844 71:8.844 71:8.844 55:27.544 71:8.844

TABELA 2.4. Continuação

ΙΤΛ	ITB		Subs	titui	ção d	lo esq	ueleto)	Nome trivial	Ocorrência	Referências
		2	5	6	7	8	3'	4'			
										A. rubida	71:8.844
										A. silvestris	71:8.844
										A. trachyphloia	71:8.844
										A. deanei ssp.	71:8.844
										deanei -	
										A. constablei	71:8.844
										A. leucoclada ssp.	71:8.844
										argentifolia	
										A. deanei ssp. paucijuga	71:8.844
										A. neriifolia	71:8.844
										A. vestita	71:8.844
										A. molissima	56:11.863
1	0		OH		ОН	Gli		OH	Isohemifloina	Acacia retinoides	102:75.666

TABELA 2.5. Estrutura e ocorrência de Flavonas em Mimosoideae

TITIA	TITO		Subs	titui	ção d	o esqu	eleto			0	D. S
ITA	ITB	5	6	7	8	3 '	4'	5 '	Nome trivial	Ocorrência	Referências
0	0	OН		OH			ОН		Apigenina	Prosopis laevi <u>ga</u> ta	89:176312
										P. glandulosa var. glandulosa	89:176312
										P. laevigata var. torreyana	89:176312
										P. velutina	89:176312
										P. articulata	89:176312
										P. juliflora	89:176312
										Acacia ixiophylla	68:105492
										A. aroma	97:107039
1	1	ОН		OMe			OMe		7,4'-Dimetil- Apigenina	Acacia ixiophylla	68:105492

TABELA 2.5. Continuação

ITA	ITA	5	Subst	itu	ição	do es	quelet	٥	Nome trivial	Ocorrência	Referências
LIM	118	5	6	7	8	3'	41	5'	None Clivial	Contracta	Reference
2	0	OH	Glc	OH	Glc		ОН		6,8-Di-C-Gli cosil-Apigeni	Prosopis laevigata	89:176.312
									na na	P. glandulosa var. glandulosa	89:176.312
										P. laevigata var. torreyana	89:176.312
										P. velutina	89:176.312
										P. articulata	89:176.312
										P. juliflora	89:176.313
										Acacia farnesiana	82:28.475
										A. cyanophylla	82:28.475
										A. longifolia	82:28.47 5
										A. mellifera	82:28.475
										A. nilotica	82:28.475
										A. polyacantha ssp. campylacantha	82:28.475
										A. senegal	82:38.475
										A. seyal var. fistula	82:28.475
										A. tortilis	82:28.475
										A. arten	84:86.731

TABELA 2.5. Continuação

TODA	TOD		Subs	stitui	ção d	lo esqu	eleto		Nome trivial	Ocorrência	Dofou?usiss
ITA	ITB	5	6	7	8	3'	4'	5'	Nome triviar	Ocorrencia	Referências
										Prosopis humilis	102:163.699
										P. reptans	102:163.699
0	1	OH		OH					Crisina	Acacia constricta	100:188.785
										A. neovernicosa	97:141.662
0,5	1	ОН		OGli		OMe	ОН			Prosopis laevigata	89:176.312
									soeriol	P. glandulosa var. glandulosa	89:176.312
										P. laevigata var. torreyana	89:176.312
										P. velutina	89:176.312
										P. articulata	89:176.312
										P. juliflora	89:176.312
1	0	ОН	Gli	OH			OH			Prosopis reptans	83:160.795
									geni.na	Acacia arten	84:86.731
2	0			ОН	OH		ОН		7,8,4'-Triidro xiflavona	Acacia auriculiformis	64:5.441
1	1			ОН					7_Hidroxiflavo na	Acacia aroma	97:107.039

TABELA 2.5. Continuação

Tm3	TOD	;	Subs	titui	Lção	do es	quelet	Ω	Nome builting	Ocorrência	Referências
ITA	ITB	5	6	7	8	3'	4'	5'	Nome trivial		Referencias
1	0	ОН		OMe			ОН		Genkwanina	Acacia constricta	100:188.785
0	0	OH		OH		OH	OH		Luteolina	Prosopis laevigata	89:176.312
										P. glandulosa var. glandulosa	89:176.312
										P. laevigata var. torreyana	89:176.312
										P. velutina	89:176.312
										P. articulata	89:176.312
										P. juliflora	89:176.312
										P. nigra	83:128.688
										P. ruscifolia	83:128.688
										P. algarobilla	83:128.688
										P. strícantha	83:128.688
										P. alba	83:128.688
										Acacia aroma	97:107.039
										A. furcatispina	97:107.039
										A. caven	97:107.039
										A. praecox	97:107.039
										Prosopis spicigera	96:100.899

TABELA 2.5. Continuação

ITA	ITB		Subs	titui	ção d	lo esqu	eleto		Nama Luisiaia1	0	
114	116	5	6	7	8	3'	4'	5'	Nome trivial	Ocorrência	Referências
										Prosopis vinalillo	94:188.656
										P. strombulifera	94:188.656
										P. flexuosa	94:188.656
										P. chilensis	94:188.656
										P. reptans	83:160.795 102:163.699
0,5	0	OH	OG	li		ОН	ОH		7-0-Gli∞sillu	Prosopis laevigata	89:176.312
									teolina	P. glandulosa var. glandulosa	89:176.312
										P. laevigata <mark>var.</mark> torreyana	89:176:312
										P. velutina	89:176.312
										P. articulata	89:176.312
										P. juliflora	89:176.312
										P. nigra	83:128.688
										P. ruscifolia	83:128.688
										Acacia aroma	97:107.039
										A. praecox	97:107.039
										Prosopis flexuosa	94:188.656

TABELA 2.5. Continuação

ITA	ITB		Subs	titui	ção d	o esqu	eleto		Name Andrei - 4	O	D. C. C.
111/4	110	5	6	7	8	3'	4'	5'	Nome trivial	Ocorrência	Referências
										Prosopis strombul <u>i</u>	94:188.656
										fera	
										P. reptans	83:160.795 102:163.695
										Acacia arten	84:86.731
3	2		OMe	OH		0Сн	₂ -0		Prosogerina A	Prosopis spicigera	94:1.990 91:120.308
2	3		OH	OH		OMe	OMe	OMe	Prosogerina E	Prosopis spicigera	96:100.899
1	0	OH		OH	Gli	ОН	OH		Orientina	Piptadenia peregrina	68:10.179
4	3		OMe	OMe		OMe	OMe	OMe	Prosogerina C	Prosopis spicigera	91:56.768 93:235.096
3	3		OMe	ОН		OMe	0Me	OMe	Prosogerina D	Prosopis spicigera	93:235.096 91:56.768
1	0	OH		ОН	Gli		OH		Vitexina	Prosopis nigra	83:128.688
										P. ruscifolia	83:128.688 75:48.826
										P. alba	83:128.688
										Piptadenia peregrina	68:10.179
										Acacia praecox	97:107.039
										A. furcatispina	97:107.039

TABELA 2.5. Continuação

ITA	ITB			Subst	ituiçâ	io do	esque 1	.eto		Name Andreig 1	0	
	110	5	6	7	8	3'	4'	5'	Ind.	Nome trivial	0∞rrência	Referências
											Acacia arten	84:86.731
											Prosopis kuntzei	94:188.656
											P. vinalillo	94:188.656
											P. strombulifera	94:188.656
											P. chilensis	94:188.656
											P. reptans	102:163.699 83:160.795
1	0	OH		OH	Gli		OH		O-Gli	0-Rhamnogli∞	Prosopis torquata	94:188.656
									 Rha	silvitexina —	Acacia furcatispina	97:107.039
2	0	OH	Gli	ОН	${ t Gli}$		ОН			Vicenina II	Albizzia lebbek	88:148.947
											Acacia farnesiana	82:28.475
1	0	OH	Gli	ОН			ОН			Isovitexina	Acacia caven	97:107.039
											A. furcatispina	97:107.039
											Prosopis kuntzei	94:188.656
											P. vinalillo	94:188.656
											P. strombulifera	94:188.656
											P. chinensis	94:188.656
											P. nigra	83:128.688
											P. ruscifolia	83:128.688

TABELA 2.5. Continuação

ITA	ITB		Subs	titui	ição d	o esqu	eleto		Name Andrei - 1	•	
1114	110	5	6	7	8	3'	4'	5'	Nome trivial	Ocorrência	Referências
										Prosopis alba	83:128.688
										Piptadenia peregrino	a 68:10.179
										Prosopis reptans	102:163.699
1	0	OH	Gli	OH		ОН	ОН		Homoorientina	Piptadenia peregrina	68:10:179
1	0			OH		OH	OH		7,3',4'-Tri <u>i</u> droxiflavona	Albizzia julibrissi	97:36.145 96:196.564
										Acacia fasciculifera	95:217.653
2	0	OH	Ara	ОН	Gli		ОН		6-C-Arabinosil- 8-C-Glicosil <u>a</u> pigenina	Prosopis humilis	102:163.699

TABELA 2.6. Estrutura e ocorrência de Diidroflavonóis em Mimosoideae

ITA	ITB		St	ubsti	tuiçã	io do (esquel	eto		Nome trivial	Ocorrência	Referências
		2	3	5	7	8	3'	4'	5'			
0	0		OH	OH	ОН		ОН	OH	ОН	Ampelopsina	Adenanthera p <u>a</u> vonina	77:16.539
1	0	в-н	вОМе	!	ОН		ОН	ОН		(+)-3-0-Meti <u>1</u> fustina	Acacia carnei	94:170.996 81:47.425
											A. peuce	91:120.412 81:47.425
3	0	β−Н	β-ОН		OH	OMe	ОН	ОН		(+)-7,3',4'- Triidroxi-8-Me toxi-2,3-Trans- -Diidroflavonol		82:54.216
1	0	β-Н	β OH	ОН	OMe		ОН	ОН		Diidroramnet <u>i</u> na	Acacıa ixioph <u>y</u> lla	68:105.492

TABELA 2.6. Continuação

ITA	ITB		S	ubsti	ituiçã	o do	esque]	eto		Name kadada 1	2 • •	
	ПВ	2	3	5	7	8	3'	4'	5 '	Nome trivial	Ocorrência	Referências
2	0		OH		ОН	OH		ОН		7,8,4'-Triidro xidiidroflavo	Acacia awriful <u>i</u> formis	71:8.844
										nol	A. maidenii A. orites	71:8.844 71:8.844
0	0		OH	OH	OH			OH		Diidrokaempf <u>e</u> rol	Acacía catechu	95:111.778
1	0		OH		OH		OH	OH	OH	Diidrorobinet <u>i</u> na	Adenanthera pav <u>o</u> nina	77:16.539
										1 KG	Acacia mearnsii = A. molissima	60:851
2	0	β -H	в-ОН	OMe	OMe		OMe	OMe		(+)-Taxifolina	Acacia carnei	81:47.425
											A. catechu	95:111.778
									-	•	Albizzia falcata	89:91.282
0	0	в–н	в-ОН	OH	OH		OH	OH		(+)-Diidroque <u>r</u> cetina	Acacia carnei	94:170.996
0	0		OH	OH	OH		OH	OH		Diidroquercet <u>i</u> na	Acacia ixiophylla	68:105.492
2	0		ОН		OH	ОН	OH	OH		Diidromelanox <u>e</u> tina	Acacia melanoxylov	71:8.844
											A. excelsa	55:3.573 90:135.066
											Albizzia adianth <u>i</u> folia	90:135.066

TABELA 2.6. Continuação

ITA	ITB		S	Substi	tuiçã	o do	esque 1	eto		Nome trival	Ocorrência	Referência
		2	3	5	7	8	3'	4'	5'			
											Albizzia odor <u>a</u> tissima	90:135.06 59:13.930
											Acacia salicina	62:5.573
											A. cambagei	62:5.573
												77:85.575
											A. linophylla	77:85.575
											A. acuminata	71:8.844
											A. anewra var. anewra	71:8.844
											A. rhodoxylon	77:85.575
											A. anewra var. latifolia	71:8.844
											A. aulacocarpa	71:8.844
											A. burrowii	71:8.844
											A. cheelii	71:8.844
											A. cunnenghamei	71:8.844
											A. doratoxylon	71:8.844
											A. floribunda	71:8.844
											A. glaucescens	71:8.844
											A. harpophylla	71:8.844
											A. implexa	71:8.844

TABELA 2.6. Continuação

ITA	ITB		Subs	stitı	uição	ob c	esqu	eleto		Nome trivial	Ocorrência	Referências
		2	3	5	7	8	3'	4'	5'			
					-						Acacia longifolia	71:8.844
											A. tarculensis	77:85.575
											A. obtusifolia	71:8.844
											A. oswaldii	71:8.844
											A. pendula	71:8.844
											A. pubifolia	71:8.844
											A. pycnostachya	71:8.844
											A. rigens	71:8.844
											A. trinewra	71:8.844
											A. verniciflua	71:8.844
											A. negrescens	77:45.495
											A. lıgulata	77:85.575
											A. coriacea	77:85.575
											A. sowdenii	77:85.575
											A. stenophylla	77:85.575
											A. translucens	77:85.575
											A. cyperophylla	77:85.575
											A. kempeana	77:85.575

TABELA 2.6. Continuação

ITA	ITB		S	ubsti	tuiçã	io do (esquel	eto		Nome trivial	Ocorrência	Referências
		2	3	5	7	8	3'	4'	5'			No. 2010.10140
3	0		ОН		OH	OMe	ОН	ОН		3,7,3',4'-Te traidroxi-8- -Metoxiflava nona	Acacia kempeana	77:85.575
1	0		ОН		ОН		ОН	OH		3,7,3',4'-Te tradroxiflava	Acacia tetragon <u>o</u> phylla	77:85.575
										nona	A. victoriae	77:85.575
											A. rhodoxylon	77:85.575
1	0	в-н	β-ОН		OH		OH	ОН		(+)-Fustina	Acacia mearnsii (= Acacia moliss <u>i</u> ma)	68:41.225 56:12.012 71:8.844 60:851 55:7.554 55:9.390 55:1.805 56:11.863
											A. carnei	94:170.996 81:47.425
											A. fasciculifera	95:217:643
											A. baileyana var. purpurea	102:128.802
											Albizzia falcata	89:91.282

TABELA 2.6. Continuação

ITA	ITB		Subs	stit	uiçã	o do	esqu	eleto		Nome trivial	Ocorrência	Referências
		2	3	5	7	8	3'	4'	5'			i ci ci ci ci ci
											Acacia saxatilis	82:54.216
											A. adunca	71:8.844
											A. balleyana	71:8.844
											A. binervata	71:8.844
											A. botricephala	71:8.844
											A. buxifolia	71:8.844
											A. calamifolia	71:8.844
											A. cardiophylla	71:8.844
										•	A. chrysotricha	71:8.844
											A. clunies-rossiae	71:8.844
											A. constablei	71:8.844
											A. dealbata	71:8.844 55:27.544
											A. decora	71:8.844
											A. elata	71:8.844
											A. falciformis	71:8.844
											A. filicifolia	71:8.844
											A. fimbriata	71:8.844
											A. irrorata spp. irrorata	71:8.844

TABELA 2.6. Continuação

ITA	ITB		Subs	stitu	uição	o do	esque	eleto		Nome trivial	Ocorrência	Referência
		2	3	5	7	8	3'	4'	5'			
		-									Acacia irrorata ssp. velutinella	71:8.844
											A. kettlewelliae	71:8.844
											A. lanigera	71:8.844
											A. leucoclada ssp. argentifolia	71:8.844
											A. leucoclada ssp. leucoclada	71:8.844
											A. mabellae	71:8.844
											A. mollifolia	71:8.844
											A. o'shanesii	71:8.844
											A. parramattensis	71:8.844
											A. pycnantha	71:8.844
												55:27.544
											A. rubida	71:8.844
											A. silvestris	71:8.844
											A. trachyphloia	71:8.844
											A. cultriformis	71:8.844
											A. deanei ssp. deanei	71:8.844
											A. deanei ssp. paucijuga	71:8.844

TABELA 2.6. Continuação

ITA	TITID		Subs	stitu	uição	o do	esque	eleto		Nama kadada 1	0	D-5- * .
ITA	ITB	2	3	5	7	8	3'	4'	5'	Nome trivial	Ocorrência	Referências
		-									Acacia neriifolia	71:8.844
											A. vestita	71:8.844
											A. peuce	91:120.412
											A. decurrens	55:27.544
2	0		ОН		ОН	ОН		ОН		(+)-7,8,4'-Trii droxi-2,3-Trans- diidroflavonol		83:175.486

TABELA 2.7. Estrutura e Ocorrência de Flavonóis em Mimosoideae

ATI	ITB		Subs	titui	ição d	o esqu	eleto		Nome trivial	Ocorrência	Referências
		R	5	6	7	3'	4'	5'			
0	0	Rha	OH		ОН		ОН		Afzelina	Pithecellobium du <u>l</u>	88:148.947 93:91.853
1	0	Me			ОН	OH	OH		3-Metoxifise	Acacia mearnsii	70:3.576
									tina	= A. molissima	77:85.575
										Acacia ligulata	77:85.575
										Acacía tetragon <u>o</u> phylla	77:85.575
1	0	Н			ОН	ОН	ОН		Fisetina	Acacia dealbata	55:27.544 94:121.862 96:82.721 71:8.844
										A. catechu	95:111.778 52:5.496

TABELA 2.7. Continuação

TOB	TOD		Subs	titui	.ção d	o esqu	eleto		Nome trivial	Ocorrência	Referências
ITA	ITB	R	5	6	7	3'	4'	5'	None criviar	COTTACT	reference
										A. carneí	94:170.996 81:47.425
										Albizzia falcata	89:91.282
										Acacía mearnsií = A. molissima	56:12.012 60:851 71:8.844 55:7.554 55:9.390 56:11.863 55:1.805
										Acacia sp.	55:3.976
										A. mabellae	71:8.844
										A. fasciculifera	95:217.65
										A. baileyana var. purpurea	22
										A. adunca	71:8.844
										A. baileyana	71:8.844
										A. buxifolia	71:8.844
										A. calamifolia	71:8.844
										A. cardiophylla	71:8.844
										A. chrysotricha	71:8.844
										A. clunies-rossiae	71:8.844

TABELA 2.7. Continuação

ITA	ITB		Sub	stitu	ução	do esq	ueleto)	Nome trivial	Ocorrência	Referências
		R	5	6	7	3'	4'	5'			
										Acacia constablei	71:8.844
										A. decora	71:8.844
										A. elata	71:8.844
										A. falciformis	71:8.844
										A. filicifolia	71:8.844
										A. irrorata ssp. irrorata	71:8.844
										A. irrorata ssp. velutinella	71:8.844
										A. kettlewelliae	71:8.844
										A. lanigera	71:8.844
										A. leucoclada ssp. argentifolia	71:8.844
										A. leucoclada ssp. leucoclada	71:8.844
										A. mollifolia	71:8.844
										A. o'shanesii	71:8.844
										A. parramattensis	71:8.844
										A. pycnantha	71:8.844 55:27.544
										A. rubida	71:8.844
										A. silvestris	71:8.844
										A. trachyphloia	71:8.844

TABELA 2.7. Continuação

TA	ITB		Subs	stit	uição	o đo	esque	eleto		Nome trivial	Ocorrência	Referências
	· · · · · · · · · · · · · · · · · · ·	R	5	6	7	8	3'	4'	5'		Coortanell	referencias
											A. deanei ssp. deanei	71:8.844
											A. deanei ssp. paucijuga	71:8.844
											A. peuce	91:120.412 81:47.425
											A. crombei	81:47.425
											A. decurrens	55:27.544
											A. ligulata	77:85.575
											A. tetragonophylla	77:85.575
2	0	H			OH	OH		ОН		7,8,4'-Triidro	Acacia orites	71:8.844
										xiflavonol	Acacıa rhodoxylon	68:29.540 55:27.544
											A. sparsiflora	68:29.540 62:5.573 64:5.441
											A. auriculiformis	64:5.441 71:8.844
											A. linophylla	77:85.576
											A. galpinii	83:175.486
											A. shirleyi	68:29.540

TABELA 2.7. Continuação

ITA	ITB		Sul	bsti	tuiç	ão do	esq	[uelet	o	Nome trivial	Ocorrência	Referências
		R	5	6	7	8	3 '	4'	5'			Merereneras
											Acacia maidenii	68:29.540 71:8.844
											A. obtusifolia = A. intertexta	68:29:540
3	0	Н			OH	OMe	ОН	ОН		7,3',4'-Tri <u>i</u>	Acacia saxatilis	82:54.216
										droxi-8-Meto siflavonol	A. melanoxylon	55:9.390
										SILIGVOIDI	A. kempeana	77:85.575
1	0	Н	OH		OH	OH	ОН	OH		Cossipetina	A. constricta	100:188.785 70:65.193
											A. catechu	70:65.193
0	1	H	OН		OH					Galangina	A. neovernícosa	97:141.662
0	1	Н	OH		OH		ОН	OMe	OH	Mearnsitrina	A. mearnsii	71:88.450 70:84.957 68:12.810
											A. irrorata	70:84.957
											A. dealbata	70:84.957
											A. sylvestris	70:84.957
0	0	Н	OH		OH			OH		Kaempferol	A. longifolía	46:8.653 18:685 ³

TABELA 2.7. Continuação

ITA	ITB		Subs	stit	uição	o do	esque	eleto		Nome trival	Ocorrência	Referências
		R	5	6	7	8	3'	4'	5 '			
											Acacia linifolia	46:8.653 18:685 ³
											A. decurrens var. mollis	46:8.653 18:685 ³
											A. discolor	46:8.653 18:685 ³
											Pithecellobium du <u>l</u> ce	69:74.489 90:100.048 76:56.626 72:51.819 93:91.853
											A. saligna	68:907
											Pithecellobium s <u>a</u> man = Samanea sa m an = Inga saman	89:39.400 76:56.626
											A. catechu	95:111.778
											A. senegal	95:111.774
											Albizzia lebbek	76:83.513
											A. julibrissin	76:83.513
0	0	Ме	ОН		OH			OH		3-0-Metilkaemp ferol	Prosopis juliflora	89:176.312

TABELA 2.7. Continuação

ITA	ITB		5	Substi	tuiçã	o đo	esque1	.eto		Nome trivial	O c orr ê ncia	Referências
		R	5	6	7	8	3'	4 '	5'	None of a view	occircie	Referencias
											P. glandulosa var. glandulosa	89:176.312
											P. laevigata var. torreyana	89:176.312
											P. laevigata	89:176.312
0	0	Gli	OH		OH			ОН		Astragalina	Acacia saligna	68:907
0	0	Rha	ОН		ОH			ОН		3-0-Rhamnosi <u>l</u> kaempferol	Pithecellobium dulce	76:56.626 72:51.819 90:100.048
0	0	Ara	OH		OH			ОН		3-0-Arabinosi <u>l</u> kaempferol	Leucaena glauca	88:148.947
0	0	Xil	OH		OH			OH		3-0-Xilosi <u>l</u> kaempferol	Leucaena glauca	88:148.947
2	0	H	ОН	OMe	OH		OH	OH		Patuletina	Leucaena glauca	58:12.857
											Prosopis spicigen	ıa 96:100.899
0	0	Н	OH		OH		ОН	OH		Quercetina	Pithecellobium dulce	90:100.048 69:74.489 72:51.819
											Leucaena leuc <u>o</u> cephala	100:82.766

TABELA 2.7. Continuação

ITA	ITB		Sul	osti	tuiçâ	ão do	esq	uelet	0	Nome trivial	0corrência	Referências
		R	5	6	7	8	3'	4'	5'			
											Acacia cavens	97:107.039
											A. praecox	97:107.039
											A. cetechu	95:111.778 52:5.496
											A. senegal	95:111.774
											Albizzia falcata	89:91.282
											Prosopis nigra	83:128.688
											P. ruscifolia	83:128.688
											P. algarrobilla	83:128.688
											Albizzia julibrissin	76:83.513
											Prosopis reptans	83:160.795
											P. sericantha	83:160.795
											P. alba	83:160.795
											Entada scandens	81:74.859
											Acacia myrtifolia	78:136.603
											A. ixiophylla	68:105.492
											A. saligna	68:907
											Albizzia lebbeck	84:180.430 65:7.526 56:1.744 76:83.513

TABELA 2.7. Continuação

ITA	ITB		Sub	stit	uição	do esq	ueleto		Nome trivial	Ocorrência	Referências
		R	5	6	7	8 3'	4'	5'			
										Acacia dealbata	64:13.084 52:12.092
										A. arabica	61:10.648 58:7.053 58:10.221
										Dichrostachys cin <u>e</u> rea	58:8.235
										Leucaena glauca	58:12.857
										Prosopis humilis	102:163.699
										Prosopis ruizleali	102:163.699
1	0	Н	OH	OH	OH	OH	OH		Quercetaget <u>i</u> na	Leucaena glauca	70:65.193 58:12.857
										Acacía catechu	70:65.193 95:111.778 52:5.496
2,5	0	Н	OH	0Me	OG1i	OH	OH		Patulitrina	Prosopis spicigera	60:16.211 96:100.899
0	0,5	Gli	OH		OH	OGli	OH		3,3'-Di-O-Gli cosilquercetina	Acacia ixiophylla	68:105.495
0	0	Gli	ОН		OH	OH	ОН		Isoquercitrina	Acacia mearnsii	71:38.450
										Pithecellobium dul- ce	69:74.489 58:12.857
										Leucaena glauca	58:12.857

TABELA 2.7. Continuação

ITA	ITB		Subs	stit	uição	o do	esque	eleto		Nome trivial	0∞rrência	Referências
		R	5	6	7	8	3'	4'	5'			
											Acacía caven	97:107.039
			•								A. furcatispina	97:107.039
											Prosopis reptans	83:160.795
0	0	Me	OH		OH		ОН	OH		3-0-Metilquerce	Prosopis velutin	a 89:176.312
										tina	P. glandulosa var. glandulosa	89:176.312
											P. laevigata var. torreyana	89:176.312
											P. articulata	89:176.312
											P. juliflora	89:176.312
											P. laevigata	89:176.312
											P. alba	83:128.688
											P. ruizleali	102:163.699
0	0	Ara	OH		OH.		OH	ОН		Avicularina	Leucaena glauca	88:148.947
											L. leucocephala	100:206.545
											Prosopis torquat	a 94:188.656
0	0	Glic	OH		OH		ОН	OH		Querciturona	Leucaena leucoc <u>e</u> phala	100:206.545

TABELA 2.7. Continuação

TA.	ITB		Subs	titui	ção	do	esque	eleto		Nome trivial	Ocorrência	Referências
		R	5	6	7	8	3'	4'	5 '			
0	0	Ga1	ОН	C	H		ОН	ОН		Hiperosideo	Leucaena glauca	88:148.947
											Prosopis algarr <u>o</u> billa	83:128.688
											Acacia melanox <u>y</u> lon	62.1.968
											A. praecox	97:107.039
											Albizzia julibri <u>s</u> sin	93:91.880
1	0	H	OH	œ	le		OH	ОН		Rhamnetina	Acacia ixiophylla	68:105.492
0	1	Н	OH	C	Н		OMe	OH		Isorhamnetina	Prosopis humilis	102:163.699
											P. reptans	102:163.699
											P. ruizleiali	102:163.699
											Acacia aroma	97:107.039
											A. caven	97:107.039
											A. praecox	97:107.039
											A. catechu	95:111.778
											Prosopis torquata	94:188.656
											P. chilensis	94:188.656
											P. sericantha	83:128.688

TABELA 2.7. Continuação

ITA	ITB		Sul	osti	tuiçâ	ão d	o esqu	eleta)	Nome trivial	Ocorrência	Referências
		R	5	6	7	8	3'	4'	5'			
0	1	Gli	ОН		OH		0Me	ОН		3-0-Glicosil <u>i</u>	Prosopis velutina	89:176.312
										sorhamentina	P. glandulosa var. glandulosa	89:176.312
											P. articulata	89:176.312
											P. laevigata var. torreyana	89:176.312
											P. juliflora	89:176.312
											P. laevigata	89:176.312
											Acacia aroma	97:107.039
											A. furcatispins	97:107.039
0	1	Rut	ОН		OH		OMe	ОН		3–0–Rutinosil <u>i</u>	Prosopis velutina	89:176.312
										sorhamnetina —	P. glandulosa var. glandulosa	89:176.312
											P. laevigata var. torreyana	89:176.312
											P. articulata	89:176.312
											P. juliflora	89:176.312
											P. laevigata	89:176312
											P. flexuosa	94:188.656
											Acacia arten	84:86.731
											Prosopis ruizleali	102:163.699

TABELA 2.7. Continuação

ITA	ITB		Sul	bsti	tuiçã	ão do	esqu	eleto		Nome trivial	Ocorrência	Referências
		R	5	6	7	2'	3'	4'	5'			
0	1	Н	ОН		ОН	ОН		ОН		Morina	Acacia dealbata	52:12.092 50:9.398
0	0	Rut	OH		OH		OH	OH		Rutina	Leucaena leucoceph <u>a</u> la	100:206.545
											L. pulverulenta	100:206.545
										•	L. glabrata	100:206.545
											Albizzia falcataria	100:206.545
											Prosopis velutina	89:176.312
											P. glandulosa var. glandulosa	89:176.312
											P. laevigata var. torreyana	89:176.312
											P. articulata	89:176.312
											P. juliflora	89:176.312
											P. laevigata	89:176.312
											Acacia concinna	74:28.841
											A. caven	64:13.084
											A. dealbata	64:13.084 96:82.721 52:12.092 52:19.017 94:121.862

TABELA 2.7. Continuação

ITA	ITB		Subs	stit	uiçã	o do	esqu	eleto		Nome trivial	Ocorrência	Referências
		R	5	6	7	8	3'	4'	5 '			
											Prosopis chilensis	64:13.084 94:188.656
											P. spicigera	96:100.899
											P. kuntzei	94:188.656
											P. strombulifera	94:188.656
											Acacia farnesiana	82:28.475
											Prosopis stephani <u>a</u> na	90:100.148
											Acacia arten	84:86.731
											Prosopis ruizleali	102:163.699
2	1	Н			ОН	OН	OMe	OH		3'-0-Metilmela	Albizzia lebbek	87:98.789
										noxetina —	A. amara	87:98.789
0	0	Rha	OH		OH		ОН	OH		Quercitrina	Leucaena glacua	88:148.947 58:12.857 43:8.617
											Pithecellobium du <u>l</u> de	88:148.947 93:91.853
											Acacia myrtifolia A. mearnsii	78:136.603 60:851 63:18.645 81:88.450 68:12.810

TABELA 2.7. Continuação

ITA	ITB		Subs	stitı	uição	do	esque	eleto		Nome trivial	0corrência	Referências
		R	5	6	7	8	3'	4'	5'	16.110	0001101011	Telefalciae
											Acacia ixiophilla	68:105.492
											A. saligna	68:907
											Prosopia strombulif <u>e</u> ra	94:188.656
											Albizzia julibrissin	93:91.880
											Leucaena leucocephala	100:206.545
											L. pulverulenta	100:206.545
											L. glabrata	100:206.545
											Calliandra calothy <u>r</u> sus	100:206.545
0	1	Gal	ОН		OH		OMe	OH		3-0-Galactosi	Prosopis torquata	94:188.656
										lisorhamnetina	P. nigra	83:128.688
0	0	Rut	OH		OH		ОН	OH	ОН	3-0-Rutinosi <u>l</u> miricetina	Acacia dealbata	94:121.862
1	0	Rha	ОН		OMe		ОН	ОН		Rhamnitrina	Acacia ixiophylla	68:105.492
0	0	Rha	OH		ОН		OH	ОН	OH	Miricitrina	Acacia mearnsii	63:18.645 60:851 71:88.450 68:12.810
											A. saligna	68:907
											A. aroma	97:107.089

TABELA 2.7. Continuação

ITA	ITB		Suk	osti	tuiçâ	ão do	esqu	ueleto)	Nome trivial	Ocorrência	Referências
		R	5	6	7	8	3'	4'	5'			
											Leucaena leucoc <u>e</u> phala	100:206.545
											L. pulverulenta	100:206.545
											L. glabrata	100:206.545
											Prosopis reptans	83:160.795
0	0	H	OH		OH		OH	ОН	OH	Miricetina	Acacia saligna	68:907
											A. dealbata	52:12.092
											A. leucophloea	47:3.524
											A. aroma	97:107.039
											Lcucaena leucoc <u>e</u> phala	100:206.545
											L. pulverulenta	100:206.545
											L. glabrata	100:206.545
											Prosopis reptans	83:160.795
0	0	Gli	OH		OH		OH	OH	OH	3-0-Glicosi <u>l</u> miricetina	A. mearnsii	71:88.450 63:18.645
											A. dealbata	95:74.823 83:54.216 52:12.092 96:82.721
											A. aroma	97:107.039

TABELA 2.7. Continuação

ITA	ITB		Sul	œti	tuiçã	io da	esq	ueleto)	Nome trivial	Ocorrência	Referências
	· · · · · · · · · · · · · · · · · · ·	R	5	6	7	8	3'	4'	5'			
											Prosopis reptans	83:160.795
0	0	Ara	ОН		OH		OH	OH	ОН	3-0-Arabinosi <u>l</u> miricetina	Leucaena leucoc <u>e</u> phala	100:206.545
1	0	H			OH		OH	ОН	OH	Robinetina	Adenanthera pavonina	77:16.539
											Acacia molissima	55:9.390
											Acacia dealbata	52:12.092
											Acacía sp.	27:3.476 ¹ 27:4.403 ⁴
										,	A. mearnsii	60:851
0	1	Rut	OH		OH		OH	OMe		3-0-Rutinosil- -4'-0-Metilque <u>r</u> cetina	Albizzia amara	69:19.475
0	1	Me	ОН		OH		OMe	ОН		3,3'-Di-0-Meti <u>1</u> quercetina	Acacia neovernicosa	97:141.662
0,5	0	Н	OH		OGli		ОН	ОН		7-0-Glicosilque <u>r</u> cetina	Prosopis alba	83:128.688
3	0	Me			ОН	OMe	ОН	ОН		3,8-Dimetoxi-7, 3',4'-Triidroxi flavona	Acacia saxatilis A. kempeana	82:54.216 77:85.575

TABELA 2.7. Continuação

ITA	ITB		Sub	stit	uiçã	o do	esque	eleto		Nome trivial	Ocorrência	Referências
		R	5	6	7	8	3'	4'	5'			- CICICICIA
2	0	Me			OH	ОН		ОН		7,8,4'-Triidro xi-3-Metoxifla vona	Acacia linophylla A. rhodoxylon A. galpinii	77:85.575 77:85.575 83:175.486
2	0	H			OH	OH	OH	OH		Melanoxetina	Acacia ligulata A. cambagei A. coriacea A. sowdenii A. stenophylla A. translucens A. cyperophylla A. doratoxylon A. kempeana A. linophylla A. rhodoxylon A. tarculensis A. flavescens A. havilandii	77:85.575 77:85.575 77:85.575 77:85.575 77:85.575 77:85.575 77:85.575 77:85.575 77:85.575 77:85.575 77:85.575 77:85.575
											A. oswaldii A. pendula	68:29.540 71:8.844 68:29.540 71:8.844

TABELA 2.7. Continuação

ITA	ITB		Sub	stitı	uição	o do	esqu	eleto		Nome trivial	0∞rrencia	Referências
	O	R	5	6	7	8	3'	4'	5'		owiidioid	referencias
											A. shirleyi	68:29.540
											A. implexa	71:8.844
											A. acuminata	71:8.844
											A. anewra var. ane <u>u</u> ra	71:8.844
											A. anewra var. lat <u>i</u> folia	71:8.844
											A. aulacocarpa	71:8.844
											A. burrowii	71:8.844
											A. cheelii	71:8.844
											A. cunninghamii	71:8.844
											A. doratoxylon	71:8.844
											A. excelsa	71:8.844
											A. floribunda	71:8.844
											A. glaucescens	71:8.844
											A. harpophylla	71:8.844 65:7.526 55:3.573
											A. nigrescens	77:45.495
											A. longifolia	71:8.844
											A. melanoxylon	71:8.844 65:7.526

TABELA 2.7. Continuação

ATI	ITB		Subs	stit	ui.ção	o do	esqu	eleto		Nome trivial	Ocorrência	Referências
		R	5	6	7	8	3'	4'	5 '			
							······································				A. obtusifolia	71:8.844
											Acacia sp.	55:3.976
											A. pubifolia	71:8.844
											A. pycnostachya	71:8.844
											A. rigens	71:8.844
											A. trineura	71:8.844
											A. verniciflua	71:8.844
											Albizzía lebbek	87:98.789 76:83.513 65:7.526
		•									A. amara	87:98.789
											A. adianthifolia	90:135.066
4	0	Н			OMe	OMe		ОН		3,4'-Diidroxi- 7,8-Dimetoxifla vona	Acacia galpinii	83:174.586
4	1	Н			OMe	oMe		OMe		3-Hidroxi-7,8,4'- -Trimetoxiflavona		83:174.586
2	0	Me			ОН	ОН	ОН	ОН		7,8,3',4'-Tetrai	Acacia ligulata	77:85.575
										droxi-3-Metoxif <u>la</u> A. camba vona	A. cambagei	77:85.575
											A. coriacea	77:85.575
											A. sowdenii	77:85.575

TABELA 2.7. Continuação

ITA	T (TIT)		Subs	stit	uição	o do	esqu	eleto		Nome trivial	Ocorrência	5.5.3.1
11A	ITB	R	5	6	7	8	3'	4'	5 '	Nome Crivial	Ocorrencia	Referências
											Acacía stenophylla	77:85.575
											A. translucens	77:85.575
											A. cyperophylla	77:85.575
											A. doratoxylon	77:85.575
											A. kempeana	77:85.575
										,	A. linophylla	77:85.575
											A. rhodoxylon	77:85.575
											A. tarculensis	77:85.575
0	1	Rha	OH		OH		OH	OMe	OH	5,7,3',5'-Te traidroxi-4'- -Metoxi-3-0- -Rhamnosilfla vona	Acacia arten	84:86.731

TABELA 2.8. Estrutura e ocorrência de Flavanas em Mimosoideae

ITA	TITED	Substituiçã	io do esqu	eleto	Nome trivial	0∞rrência		
11A	ITB	5 6 7	3' 4'	5'	Nome trivial	Ocorrencia	Referências	
1	1,5	ОН	OGli OMe	ОН	Auriculosideo	Acacia auriculiformis	94:4.213	

TABELA 2.9. Estrutura e ocorrência de 3-Hidroxíflavanas em Mimosoideae

TMA	TMD		Subst	titui	ção d	o esqu	eleto		Nome trivial	Ocorrência	Referências
1TA	ITB	2	3	5	7	3'	4'	5'	Moule CITVIAI	OCOLLEGICIA	veletelc192
0	D	В-Н	в-Он	OH	CH		OH		(+)-Afzelequ <u>i</u> na	Acacia catechu	95:111.778
0	0	β-Н	в-Он	OH	OH	OН	OH		(_) <i>-</i> Catequina	Acacía catechu	95:111.778 68:29.540 62:4.211 52:5.496 70:39.055 94:90.435 94:138.027
0	0	в-Н	β-Он	OH	OH	OH	OH		(-)-Epicatequi na	Acacia dealbata	78:2.810 55:27.544
										A. pinifolia	78:2.810

TABELA 2.9. Continuação

[TA	ІТВ		Subs	titui	ção d	o es qu	eleto		Nome trivial	0	Referências
LIA	110	2	3	5	7	3'	4'	5 '	TWIRE CITYINI	Ocorrência	Referencias
										A. melanoxylon	78:2.180
											71:8.844
										A. luederitzii	73:31.669
										A. ixiophylla	68:105.492
										A. arabica	61:10.648
											58:7.053
										A. catechu	105:396
											55:1.805
											95:111.778
											52:5.496
											101:167.273
											56:11.863
											68:29.540
										A. pycnantha	55:27.544
										A. adunca	71:8.844
										A. baileyana	71:8.844
										A. calamifolia	71:8.844
										A. clunies-rossiae	71:8.844
										A. falciformis	71:8.844
										A. fimbriata	71:8.844

TABELA 2.9. Continuação

ma	TOO		Subs	titui	gão d	lo esqu	eleto		Nome trivial	Ocorrência	Referência
TA	ITB	2	3	5	7	3'	4'	5'	ivanc criviar		
										A. lanigera	71:8.844
										A. mabellae	71:8.844
										A. mollifolia	71:8.844
										A. deanei ssp. pa <u>u</u> cijuga	71:8.844
										A. aneura var. ane <u>u</u> ra	71:8.844
										A. anewra var. lat <u>i</u> folia	71:8.844
										A. aulacocarpa	71:8.844
										A. burrowii	71:8.844
										A. cheelii	71:8.844
										A. cunninghamii	71:8.844
										A. doratoxylon	71:8.844
										A. floribunda	71:8.844
										A. glaucescens	71:8.844
										A. implexa	71:8.844
										A. obtusifolia	71:8.844
										A. oswaldii	71:8.844
										A. pendula	71:8.844

TABELA 2.9. Continuação

ITA	ITB		Subs	stitu	ição (do esq	ueletc	•	Name Andriel	0	n- f 2 1
ΙΙΆ	118	2	3	5	7	3'	4'	5'	Nome trivial	Ocorrência	Referências
· · · · · · · · · · · · · · · · · · ·		, , , , , , , , , , , , , , , , , , ,								A. pubifolia	71:8.844
										A. pycnostachya	71:8.844
										A. rigens	71:8.844
										A. trineura	71:8.844
										A. verniciflua	71:8.844
0	0	в-Н	β−ОН	OH	OH	OH	OH		(+)-Catequina	Acacia luederitzii	73:31.669
							•			A. catechu	56:118.632
										A. ixiophylla	68:105.492
										A. planifrons	63:924
										Albizzia lebbeck	62:10.823
											87:98.789
										Acacia arabica	61:10.648
											58:7.053
										A. giraffae	83:175.486
										A. pycnantha	55:27.544
											71:8.844
										A. decurrens	55:27.544
											71:8.844
										A. dealbata	55:27.544
											71:8.844

TABELA 2.9. Continuação

ተጠ ነ	TUTO		Subs	titui	ção d	o esqu	eleto		Nome trivial	Ocorrência	Referência
ITA	ITB	2	3	5	7	3'	4'	5 '	wore crivial	COLLECTA	Neterencia.
										A. adunca	71:8.844
										A. baileyana	71:8.844
										A. binervata	71:8.844
										A. botrycephala	71:8.844
										A. calamifolia	71:8.844
										A. cardiophyla	71:8.844
										A. chrysotricha	71:8.844
										A. clunies-rossiae	71:8.844
										A. constablei	71:8.844
										A. elata	71:8.844
										A. falciformis	71:8.844
										A. fimbriata	71:8.844
										A. irrorata ssp.	71:8.844
										irrorata	
										A. irrorata ssp.	71:8.844
										velutinella	
										A. kettlewelliae	71:8.844
										A. lanigera	71:8.844
										A. leucoclada	71:8.844
										argentifolia	

TABELA 2.9. Continuação

ITA	ITB		Subs	titui	.ção d	o esqu	eleto		No 1 / 1 1	2	
	TID	2	3	5	7	3'	4'	5'	Nome trivial	Ocorrência	Referências
										A. cunninghamii	71:8.844
										A. doratoxylon	71:8.844
										A. floribunda	71:8.844
										A. holosericea	71:8.844
										A. homalophylla	71:8.844
										A. implexa	71:8.844
										A. longifolia	71:8.844
										A. melanoxylon	71:8.844
										A. obtusifolia	71:8.844
										A. oswaldii	71:8.844
										A. pendula	71:8.844
										A. pubifolia	71:8.844
										A. rigens	71:8.844
										A. trineura	71:8.844
										A. verniciflua	71:8.844
										A. mearnsii	55:27.544 53:18.948 56:11.863 71:88.450 83:175.486 63:18.645 71:8.844

TABELA 2.9. Continuação

ITA	ITB		Subs	titui	ção d	o esqu	eleto		Nome trivial	Ocorrência	Referências
		2	3	5	7	3'	4 '	5 '	rone ciiviai	correlcia	referencias
										A. mobellae	71:8.844
										A. mollifolia	71:8.844
										A. o'shanesii	71:8.844
										A. parramattensis	71:8.844
										A. silvestris	71:8.844
										A. trachyphloia	71:8.844
										A. cultriformis	71:8.844
										A. deanei ssp.	71:8.844
										deanei	
										A. deanei ssp.	71:8.844
										pauci juga	
										A. neriifolia	71:8.844
										A. vestita	71:8.844
										A. anewra var.	71:8.844
										aneura	
										A. anewra var.	71:8.844
										latifolia	
										A. aulacocarpa	71:8.844
										A. burrowii	71:8.844
										A. cheelii	71:8.844

TABELA 2.9. Continuação

ITA	ITB		Subs	titui	ção d	o esqu	eleto		No. 2 1 - 1 - 1 - 1	0 -	Dafaulu alaa
	110	2	3	5	7	3'	4'	5'	Nome trivial	Ocorrência	Referências
0	0		ОН	ОН	ОН	OH	ОН		Catequina	Acacia catechuoides	70:39.055
										A. sundra	70:39.055
										A. arabica	57:10.221
										A. baileyana	102:128.802
										A. mearnsi = A. mo	59:11.892
										llissima	
										Albizzia lebbek	76:83.513
0	0		0-Gal	о ОН	OH	OH	ОН		3-Galoilep <u>i</u> catequina	Acacia arabica	58:7.053
1	0	β - H	β _ H		OH	ОН	OH	OH	(-)-Roninet <u>i</u>	Acacia pycnantha	55:27.544
									nidol	A. molissima	55:9.390 53:18.948 56:11.863 60:851
										A. decurrens	55:27.544 71:8.844
										A. dealbata	55:27.544 71:8.844
										A. baileyana	71:8.844

TABELA 2.9. Continuação

Tmx	TITTO	٠	Subst	titui	ção do	o esqu	eleto		Nome trivial	Ocorrência	Referências
ITA	ITB	2	3	5	7	3'	4'	5'	Name criviar	COTTEICIA	veretelicias
										A. botrycephala	71:8.844
										A. cardiophylla	71:8.844
										A. chrysotricha	71:8.844
										A. elata	71:8.844
										A. falciformis	71:8.844
										A. fimbriata	71:8.844
										A. irrorata ssp.	71:8.844
										velutinella	
										A. leucoclada ssp.	71:8.844
										argentifolia	
										A. mearnsii	71:8.844
										A. o'shanesii	71:8.844
										A. parramattensis	71:8.844
										A. silvestris	71:8.844
										A. trachyphloia	71:8.844
										A. cultriformis	71:8.844
0	0	в –н	в –ОН	ОН	OH	OH	OH	OH	(+)-Galocate quina	Acacia dealbata	77:2.810 55:27.544 71:8.844

TABELA 2.9. Continuação

ITA	ITB		Subs	titui	ção d	o esqu	eleto				
	110	2	3	5	7	3'	4'	5'	Nome trivial	O∞rrência	Referência
										A. pinifolia	77:2.810 55:27.544
										A. melanoxylon	77:2.810 71:8.844
										A. mearnsii	56:11.863 71:8.844 63:18.645 71:88.450 55:27.544 53:18.948
										A. pycnantha	55:27.544 71:8.844
										A. decurrens	55:27.544 71:8.844
										A. constablei	71:8.844
										A. elata	71:8.844
										A. falciformis	71:8.844
										A. filicifolia	71:8.844
										A. fimbriata	71:8.844
										A. irrorata ssp.	71:8.844
										irrorata	
										A. irrorata ssp.	71:8.844
										velutinella	

TABELA 2.9. Continuação

[TA	ITB		Subs	titui	ção d	o esqu	eleto		Name to to 1 a		
		2	3	5	7	3'	4'	5'	Nome trivial	Ocorrência	Referências
										A. kettlewelliae	71:8.844
										A. lanigera	71:8.844
										A. leucoclada ssp.	71:8.844
										argentifolia	
										A. mabellae	71:8.844
										A. mollifolia	71:8.844
										A. o'shanesii	71:8.844
										A. parramattensis	71:8.844
										A. silvestris	71:8.844
										A. trachyphloia	71:8.844
										A. cultriformis	71:8.844
										A. deanei ssp.	71:8.844
										deanei	
										A. neriifolia	71:8.844
										A. vestita	71:8.844
										A. anewra var.	71:8.844
										anewra	
										A. anewra var.	71:8.844
										latifolia	

TABELA 2.9. Continuação

rm x	TITO		Subs	titui	ção d	o esqu	eleto		Nome trivial	Ocorrência	Referência
TA	ITB	2	3	5	7	3'	4'	5'	Notice Crivial	ownakia	Referencia:
	<u> </u>		-							A. aulacocarpa	71:8.844
										A. burrowii	71:8.844
										A. cheelii	71:8.844
										A. cunninghamii	71:8.844
										A. doratoxylon	71:8.844
										A. floribunda	71:8.844
										A. holosericea	71:8.844
										A. implexa	71:8.844
										A. longifolia	71:8.844
										A. obtusifolia	71:8.844
										A. obtusifolia	71:8.844
										A. oswaldii	71:8.844
										A. pubifolia	71:8.844
										A. pycnostachya	71:8.844
										A. rigens	71:8.844
										A. trineura	71:8.844
										A. verniciflua	71:8.844
										A. adunca	71:8.844
										A. baileyana	71:8.844
										A. binervata	71:8.844
										A. botrycephala	71:8.844

TABELA 2.9. Continuação

ITA	ITB		Subst	titui	ção d	o esqu	eleto				_
LIA	118	2	3	5	7	3'	41	5'	Nome trivial	0corrência	Referências
										A. calamifolia	71:8.844
										A. cardiophylla	71:8.844
										A. chrysotricha	71:8.844
										A. clunies-rossiae	71:8.844
0	0	в-н	α–ОН	OH	ОН	ОН	ОН	ОН	(-)-Epigaloca	Acacia adunca	71:8.844
									tequina —	A. baileyana	71:8.844
										A. calamifolia	71:8.844
										A. clunies-rossiae	71:8.844
										A. dealbata	71:8.844 55:27.544
										A. falciformis	71:8.844
										A. lanigera	71:8.844
										A. mabellae	71:8.844
										A. mollifolia	71:8.844
										A. pycnantha	55:27.544 71:8.844
										A. anewra var.	71:8.844
										aneura	
										A. anewra var.	71:8.844
										latifolia	

TABELA 2.9. Continuação

ITA	ITB		Subs	stitui	.ção d	o esqu	eleto				
LIM	110	2	3	5	7	3!	4'	5'	Nome trivial	O∞rrência	Referências
										A. aulacocarpa	71:8.844
										A. bwrrowii	71:8.844
										A. cheelii	71:8.844
										A. cunninghamii	71:8.844
										A. doratoxylon	71:8.844
										A. floribunda	71:8.844
										A. glaucescens	71:8.844
										A. implexa	71:8.844
										A. melanoxylon	71:8.844 77:2.810
										A. obtusifolia	71:8.844
										A. oswaldii	71:8.844
										A. pubifolia	71:8.844
										A. picnostachya	71:8.844
										A. rigens	71:8.844
										A. trineura	71:8.844
										A. verniciflua	71:8.844
										A. pinifolia	77:2.010
										A. arabica	60:9.599

TABELA 2.9. Continuação

ITA	ITB		Subst	titui	ição d	o esqu	eleto		Nome trivial	Ocorrência	Referências
		2	3	5	7	3 '	4'	5 '	name criviar	CCOTTCTCTA	referencias
1	0	в-н	β-ОН		OH	OH	OH		(-)-Fisetin <u>i</u>	Acacia baileyana	71:8.844
									dol –	A. binervata	71:8.844
										A. botrycephala	71:8.844
										A. buxifolia	71:8.844
										A. calamifolia	71:8.844
										A. chrysotricha	71:8.844
										A. clunies-rossiae	71:8.844
										A. constablei	71:8.844
										A. dealbata	71:8.844 55:27.544
										A. decora	71:8.844
										A. falciformis	71:8.844
										A. filicifolia	71:8.844
										A. fimbriata	71:8.844
										A. irrorata ssp.	71:8.844
										irrorata	
										A. lanigera	71:8.844
										A. leucoclada ssp.	71:8.844
										argentifolia	
										A. mabellae	71:8.844

TABELA 2.9. Continuação

ITA	ITB		Subs	titui	ção đ	o esqu	eleto				
	110	2	3	5	7	3'	4'	5'	Nome trivial	O∞rrência	Referências
										A. mearnsii	68:41.225 56:12.012 55:27.544 71:8.844 60:851 56:11.863 55:9.390
										A. mollifolia	71:8.844
										A. o'shanesii	71:8.844
										A. parramattensis	71:8.844
										A. pycnantha	71:8.844 55:27.544
										A. rubida	71:8.844
										A. silvestris	71:8.844
										A. trachyphloia	71:8.844
										A. cultiformis	71:8.844
										A. deanei ssp.	71:8.844
										deanei	
										A. deanei ssp.	71:8.844
										pauci juga	
										A. neriifolia	71:8.844
										A. decurrens	55:27.544

TABELA 2.9. Continuação

ITA	ITB		Subst	ituiç	ção d	o esqu	eleto		Name Andrei - 1	0	D. C
LIA	118	2	3	5	7	3'	4 '	5 '	Nome trivial	0∞rrência	Referências
0	0	в –н	α-0-Ga	lo OH	ОН	ОН	OH		(-)-3-0-Galoi	Acacía adunca	71:8.844
									lepicatequina	A. calamifolia	71:8.844
										A. clunies-rossiae	71:8.844
										A. pycnantha	71:8.844 55:27.544
										A. aulacocarpa	71:8.844
										A. doratoxylon	71:8.844
										A. glaucescens	71:8.844
										A. homalophylla	71:8.844
										A. oswaldii	71:8.844
										A. pubifolia	71:8.844
										A. trineura	71:8.844
)	0	в-н	α-0-Ga	lo OH	ОН	OH	OH	OH	(-)-3-0-Galo <u>i</u>	Acacía adunca	71:8.844
									lepigalocat <u>e</u> quina	A. clunies-rossiae	71:8.844
									quina	A. pycnantha	71:8.844 55:27.544
			•							A. aulacocarpa	71:8.844
										A. doratoxylon	71:8.844

TABELA 2.9. Continuação

TON	TIMO		Subs	titui	ção d	o esqu	eleto		Nome trivial	Ocorrência	Referências
ITA	ITB	2	3	5	7	3'	4'	5'	None criviar	CONTENCIA	Referencias
										A. glaucescens	71:8.844
										A. trinewra	71:8.844

TABELA 2.10. Estrutura e ocorrência de 3,4-Diidroxiflavanas em Mimosoideae

ITA	ITB			Subst	itui	ção d	lo esq	æleto			Nome trivial	Ocorrência	Referências
		2	3	4	5	7	8	3'	4'	5'			
3	0	в–н	в-ОМе	в-ОН		OH	OMe	ОН	OH		(+)-2,3-Trans- -3,4-Cus-3,8- -Dimetoxi-4,7, 3',4'-Tetrai droxiflavana	Acacia saxatilis	82:54.216
3	0	β-Н	в-ОН	в-ОН		ОН	OMe	ОН	OН		(+)-2,3-Trans- -3,4-Cis-8-Me toxi-3,4,7,3', 4'-Pentaidroxi flavana	Acacia saxatilis A. cultriformis	82:54.216 77:85.575 81:47.425 73:87.145
1	0	β-Н	в-ОН	в-ОН		ОН		OH	ОН		(+)-2,3-Trans- -3,4-Cis-Molis sacacidina	Acacia saxatilis A. fasciculifera A. cultriformis	

TABELA 2.10. Continuação

ITA	ITB		Sul	ostit	tui çâ	ão do	o esq	uele	to		Nome trivial	Ocorrência	Referências
		2	3	4	5	7	8	3'	4'	5 '			
0	0		ОН	ОН	ОН	ОН		ОН	ОН		3,4,5,7,3',4'-	Acacia ixiophylla	68:105.492
											-Hexaidroxifl <u>a</u> vana	Albizzia lebbek	62:10.823
1	0		ОН	ОН		ОН		ОН	ОН	OH	Robdandiol	Acacia mearnsii	62:5.573 83:175.486
												A. arabica	59:8.691
3	0	в Н	β - ΟΙ	Hα - (ЭН	OH	OMe	ОН	ОН		(+)-2,3,Trans-	Acacia saxatilis	82:54.216
											_3,4_Trans_8_ _Metoxi_3,4,7,	A. kempeana	77:85.575
											3',4'-Pentaidro xiflavana	A. rhodoxylon	77:85.575
1	0		OH	ОН		ОН		ОН	ОН		(+)-3,4,7,3',4'- -Pentaidroxifla vana	Acacia molissima (= Acacia mearn sii)	60:851 52:17.422 56:11.863 55:1.805 55:9.390 56:12.012
												A. ligulata	77:85.575
												A. tetragonophylla	77:85.575
												A. victoriae	77:85.575

TABELA 2.10. Continuação

ITA	ITB		Sı	ubst	itui	ção d	do e	sque l	eto		Nome trivial	Ocorrência	Referências
		2	3	4	5	7	8	3'	4'	5'			NOICE CHOIGE
												A. rhodoxylon	77:85.575
												Pithecellobium dulce	64:681
0	0		Rha Gli	OH	OH	OH		OH	OH	OH	3-0-β-D-Glico piranosil-(1-) 4)-0-α-L-Rham nopiranosideo da Leucodelfi nidina	Prosopis jul <u>i</u> flora	100:135.812
0	0	O:	Rha	OH	OH	OH		ОН	ОН	ОН	3-0-α-L-Rham nopiranosideo da Leucodelf <u>i</u> nidina	Acacia leuc <u>o</u> phloea	101:3.914
0 .	0	(OH	ОН	OH	OH		OH	OH	OH	Leucodelfinid <u>i</u> na	Acacia spp.	83:175:486
0	0	(OH	OH	OH	ОH		ОН	OH		Leucocianidina	Albizzia lebbek	75:83.513 87:98.789 62:10.823
												Acacia spp.	83:175.486
												Entada pursaetha	83:175.486

TABELA 2.10. Continuação

ITA	ITB		Sı	ıbst:	itui	ção d	do es	squel	eto		Nome trivial	Ocorrência	Referências
		2	3	4	5	7	8	3'	4'	5'			
0	0	(Œli	ОН	OH	ОН		ОН	OH		3-0-6-D-Glico sideo da Leu cocianidina	Prosopis jul <u>i</u> flora	100:135.812
0	0	C	Œalc	OH	ОH	OH		OН	OH		(+)-3-0-Galo <u>i</u> 11eucocianid <u>i</u> na	Acacia arabica	61:10.648
0	0		ОН	ОН	ОН	ОН			ОН		Leucopelargon <u>i</u> dina	Al bizzia lebbek	87:98.789 65:7.526
												Acacia spp.	83:175.486
												Piptadenia per <u>e</u> grina	68:10.179
3	0		OH	OH			OH	ОН	OH		Lebbecacidina	Albizzia lebbek	64:2.045 87:98.789 76:83.513
2	0	в –Н	α–ОН	α-OF	H	OH	ОН	OH	OH		(-)-Melacac <u>i</u> cina	Acacia melanox <u>y</u> lon	105:168.921
												A. acuminata	71:8.844
												A. anewra var. anewra	71:8.844

TABELA 2.10. Continuação

ITA	ITB		Sı	ubsti	tui	ção	do es	sque l	eto		Nome trivial	Ocorrência	Referências
,		2	3	4	5	7	8	3'	4'	5'			
												A. verniciflua	71:8.844
												A. galpinii	83:175.486
												A. nigrescens	82:54.216 77:45:495
												A. excelsa	53:3.573 71:8.844 55:14.447
												A. auriculifo <u>r</u> mis	64:5.441
												A. intertexta	64:5.441
2	0	в н	α- O H	в-ОН	I	OH	OH	OH	OH		(-)-Isomelaca cidina	Acacia melanox <u>y</u> lon	95:74.823 105:168.921
												A. nigrens	82:54.216 77:45.495
												A. anewra var. anewra	71:8.844
												A. acuminata	71;8.844
												A. anewra var. latifolia	71:8.844
												A. aulacocarpa	71:8.844
												A. burrowii	71:8.844
												A. cheelii	71:8.844

TABELA 2.10. Continuação

ITA	ITB		St	ıbst:	itui	ção d	do es	sque l	eto		Name Luded 3	^ .	
	TID	2	3	4	5	7	8	3'	4'	5'	Nome trivial	0∞rrência	Referências
												A. anewra var. latifolia	71:8.844
												A. aulacocarpa	71:8.844
												A. burrowii	71:8.844
												A. cheelii	71:8.844
												A. cunninghamii	71:8.844
												A. doratoxylon	71:8.844
												A. floribunda	71:8.844
												A. glaucescens	71:8.844
												A. holosericea	71:8.844
												A. homalophylla	71:8.844
												A. implexa	71:8.844
												A. longifolia	71:8.844
												A. oswaldii	71:8.844
												A. pendula	71:8.844
												A. pycnostachya	71:8.844
												A. rigens	71:8.844
												A. trineura	71:8.844

TABELA 2.10. Continuação

ТА	ITB		Sı	ıbsti	itui	ção d	do es	quel	eto		Nome trivial	Ocorrência	Referência
		2	3	4	5	7	8	3'	4'	5'			
												A. cunninghamii	71:8.844
												A. doratoxylon	71:8.844
												A. excelsa	71:8.844 55:3.573
												A. floribunda	71:8.844
												A. glaycescens	71:8.844
												A. harpophylla	71:8.844 55:3.573
												A. holosericea	71:8.844
												A. homalophylla	71:8.844
												A. implexa	71:8.844
												A. longifolia	71:8.844
												A. melanoxylon	71:8.844 55:3.573 95:74.82
												A. obtusifolia	71:8.844
												A. oswaldii	71:8.844
												A. pendula	71:8.844
												A. pubifolia	71:8.844
												A. pycnostachya	71:8.844
												A. rigens	71:8.844

TABELA 2.10. Continuação

ITA	ITB		Su	bsti	tui	ção	do es	sque l	eto		Nome trivial	Ocorrência	Referências
		2	3	4	5	7	8	3'	4'	5'			Nereleicias
												A. trineura	71:8.844
												A. verniciflua	71:8.844
												A. kempeana	77:85.575
												A. rhodoxylon	77:85.575
												A. sparsiflora	62:5.573
												A. cambagei	62:5.573
												A. intertexta	64:5.441
2	0	β - H	α-ОН	в-он	ł	ОН	OH		ОН		Isoteracacid <u>i</u> na	Acacia sparsif <u>lo</u> ria	62:5.573
												A. intertexta = A. obtusifolia	55:14.447 55:3.573 68:29.540
												A. galpinii	83:175.486
												A. maidenii	68:29.540 71:8.844
												A. orites	68:29.540 71:8.844
												A. auriculifo <u>r</u> mis	64:5.441 94:4.213 71:8.844
												A. kempeana	77:85.575
												A. rhodoxylon	77:85.575

TABELA 2.10. Continuação

ITA	ITB		St	ubstit	uiç	ão do	esq	quele	to		Nome trivial	Ocorrência	Referências
, <u></u>		2	3	4	5	7	8	3'	4'	5'			
1	0	в–н	в-он	αОН		ОН		ОН	ОН	ОН	Ieucorobinet <u>i</u> nidina	Acacia molissima = Acacia mearnsii	60:851 56:11.863 55:9.390
2	0	в-н	α-ОН	α-ОН		ОН	OH		OH		(-)-Teracac <u>i</u> dina	Acacia auricul <u>i</u> formis	77:45.495 71:8.844 94:4.213 64:5.441
												A. sparsiflora	62:5.573
												A. galpinii	83:175.486
												A. obtusifolia	68:29.540
												A. maidenii	68:29.540 71.8.844
												A. orites	68:29.540 71:8.844
												Albizzia lebbek	87:98.789
												A. amara	87:98.789
												Acacia intertexta	55:14.447 62:5.573 55:3.575
												A. kaempeana	77:85:575
												A. auriculiformis	71: 7.891
												A. rhodoxylon	77:85.575

TABELA 2.10. Continuação

T				Substi	tuiçã	o do	esque	eleto			Nome trivial	Occarional a	Referências
ITA	ITB	2	3	4	5	7	8	3'	4'	5'	Nome trivial	O∞rrência	Referencias
2	0	в-Н	α-OMe	αОН		OH	OH	OH	ОН		(-)-2,3-Cis- -3,4-Cis-3,0- Metilmelacaci dina	Albizzia lebbek A. amara	87:98.789 87:98.789
2	0	β − Н	β-ОМе	в-ОН		OH	OH	OH	OH		(+)-2,3-Trans- -3,4-Cis-3-0- Metilmelacaci dina		87:98.789
1	0		ОН	ОН		OH			OH		3,4,7,4'-Te traidroxifla vana	Acacia vict <u>o</u> riae	77:85.575
2	0	β−H	в-ОН	α-ЮН		OH	OH		OH		(+)-2,3-Trans- -3,4-Trans-Te racacidina	Acacia cambagei A. sowdenii A. stenophylla A. kempeana A. linophylla A. rhodoxylon A. galpinii	77:85.575
3	0	в–Н	α-ОН	αОН		OH	OMe	ОН	ОН		2,3-Cis-3,4- -Cis-8-Metoxi- -3,4,7,3',4'- Pentaidroxi flavana	Acacia kempe <u>a</u> na	77:85.575

TABELA 2.10. Continuação

ITA	ITB			Substi	tuiç	ão do	esque	eleto			Nome trivial	Ocorrência	Referências
		2	3	4	5	7	8	3'	4'	5'			
3	0	β-Н	α-ОН	в-ОН		ОН	OMe	ОН	OH		2,3-Cis-3,4- _Trans-8-Me toxi-3,4,7, 3',4'-Pentai droxiflavana	Acacia kempeana	77:85.575
2	0	в_н	в-он	в-он		OH	OH		ОН		(+)-2,3-Trans-	Acacia kempeana	77:85.575
											-3,4-Cis-3,4 7,8,4'-Pentai	A. rhodoxylon	77:85.575
											droxiflavana	A. awrifulifo <u>r</u> mis	94:4.213 64:5.441 71:8.844
												A. galpinii A. maidenii A. orites	83:175.486 71:8.844 71:8.844
3	0	β–Н	α-ОН	α - ΟΗ		OH	OMe		ОН		2,3-Cis-3,4- -Cis-8-0-Me tilteracaci cina	Acacia kempeano	77:85.575
1	0	в–н	в-ОН	в-он		ОН			ОН		2,3_Trans_3, 4_Cis_3,4,7, 4'-Tetraidro xiflavana	Acacia rhodox <u>y</u> lon A. cultriformis	

TABELA 2.10. Continuação

ITA	ITB		S	ubst:	itui	.ção	do es	quel	eto		Nome trivial	Ocorrência	Referências
		2	3	4	5	7	8	3'	4'	5'			
2	0		ОН	OH		OH	OMe	ОН	ОН		8-0-Metil-Me lacacidina	Acacia tetra gonophylla	77:85.575
												A. kempeana	77:85.575
2	0		OH	OH		ОН	OH	OH	OH		Melacacidina	Acacia ligulata	77:85.575
												A. cambagei	77:85.575 62:5.573
												A. coriacea	77:85.575
												A. sowdenii	77:85.575
												A. stenophylla	77:85.575
												A. translucens	77:85.575
												A. cyperophylla	77:85.575
												A. tarculensis	77:85.575
												A. kempeana	77:85.575
												A. Linophylla	77:85.575
												A. rhodoxylon	77:85.575
												A. melanoxylon	95:74.823 59:13.930 55:3.573 71:8.844 52:14.447 49:1.714 71:27.891

TABELA 2.10. Continuação

ITA	ITB		;	Subst	ituiç	ão do	esqu	eleto			Nome trivial	Ocorrência	Referências
		2	3	4	5	7	8	3 '	4'	5'			
												A. sparsiflora	62:5.573
												A. harpophylla	55:14.447 55:3.573 71:8.844
												A. molissima	52:17.422
												A. obtusifolia	68:29.540 71:8.844
												Albizzia l <u>e</u> bbek	55:9.390 55:14.447 49:6.949 53:16.121 52:19.021 51:11.475 49:9.635 76:83.513 87:98.789 64:2.045
												Albizzia amara	87:98.789
1	0	в Н	β-ЮН	[α-OF	I	OH		OH	OH		(+)-Molissac <u>a</u> cidina = Gl <u>e</u> ditisina	Acacía adunca A. baileyana A. binervata	71:8.844 71:8.844 71:8.844

TABELA 2.10. Continuação

	Term		Sul	ostit	tuiçã	ão do	esc	quele	to		Nome trivial	Ocorrência	Referências
ITA	ITB	2	3	4	5	7	8	3'	4'	5'	NOIE CITYIAI	COTTENCIA	verereicia
				·····		<u></u>						A. botrycephala	71:8.844
												A. buxifolia	71:8.844
												A. calamifolia	71:8.844
												A. cardiophylla	71:8.844
												A. crysotricha	71:8.844
												A. clunies-ro <u>s</u> siae	71:8.844
												A. constablei	71:8.844
												A. dealbata	71:8.844 96:82.721 94:121.86
												A. decora	71:8.844
												A. decurrens	71:8.844
												A. elata	71:8.844
												A. falciformis	71:8.844
												A. filicifolia	71:8.844
												A. fimbriata	71:8.844
												A. irrorata ssp. irrorata	71:8.844
												A. irrorata ssp. velutinella	71:8.844

TABELA 2.10. Continuação

ITA	ITB		S	ubst	itui	ção	do es	squel	eto		Nome trivial	Ocorrência	Referências
		2	3	4	5	7	8	3'	4'	5'			
												A. kettlewelliae	71:8.844
												A. lanigera	71:8.844
												A. leucoclada ssp. argentif <u>o</u> lia	71:8.844
					•							A. leucoclada ssp. leucoclada	71:8.844
												A. mabellae	71:8.844
												A. silvestris	71:8.844
												A. millifolia	71:8.844
												A. o'shanesii	71:8.844
												A. parramatte <u>n</u> sis	71:8.844
												A. pycnantha	71:8.844
												A. rubida	71:8.844
												A. mearnissi = A. molissima	56:12.012 71:27.891 55:7.554 55:9.390 51:15.509 55:1.805 53:16.121 71:8.844

TABELA 2.10. Continuação

TA	ITB		S	ubst	itui	ção d	do es	squele	eto		Nome trivial	0corrência	Referências
		2	3	4	5	7	8	3'	4'	5'		0002240024	
													62:5.573 68:41.225 83:175.486 55:14.447 52:17.422 22 23
												A. trachyphloia	71:8.844
												A. cultriformis	71:8.844 73:87.145 81:47.425
											·	A. deanei ssp. deanei	71:8.844
												A. deanei ssp. paucijuga	71:8.844
												A. neriifolia	71:8.844
												A. vestita	71:8.844
												A. fasciculifera	95:217.65
												A. angustissima	62:13.514
												A. baileyana var. purpurea	102:128.80
												Pithecellobium dulce	60:3,210 56:8,891

TABELA 2.10. Continuação

Trn s	TIDE		Su	ıbsti	itui	ção	do es	quel	eto		Nome trivial	Ocorrência	Referências	
ITA	ITB	2	3	4	5	7	8	3.	4'	5'	Nome Crivial	COFFERCIA	reset and an	
		· · · · · ·					·					Acacia saxatilis	82:54.216	
												A. tetragonoph <u>y</u> lla	81:47.425	
												A. giraffae	83:175.486	
3	0	в - Н (3 - OH	α-ΟΙ	ł	OH	OMe		ОН		2,3-Trans-3,4- _Trans_8_Meto-	Acacia cultrifo <u>r</u> mis	73:87.145 77:85.575	
											xi-3,4,7,4'-Te traidroxiflava na	Acacía kempeana	77:85.575	
1	0	β_Н с	x-OH	β-OF	1	OH			ОН		2,3-Cis-3,4-	Acacia deanei	76:32.248	
											_Trans_3,4,7, 4'-Tetraidroxi flavana	A. luederitzii var. detinens	73:87.145	
											Havana	A. reficiens ssp. reficiens	73:87.145	
1	0	в-н	В -ОН	α-Ol	1	OH			ОН		(+)-2,3-Trans- 3,4-Trans-Gui bourtacacidina	Acacia cultrifo <u>r</u> mis	73:31.669 71:8.844 81:47.425 73:87.145	
												A. deanei ssp. deanei	71:8.844	
												A. deanei ssp. paucijuga	71:8.844	

TABELA 2.10. Continuação

ITA	ITB		Sul	bstit	tuiç	ão d	o es	quele	to		Nome trivial	Ocorrência	Referências
		2	3	4	5	7	8	3'	4'	5'			
			· · · · · · · · · · · · · · · · · · ·			,						A. neriifolia	71:8.844
												A. vestita	71:8.844
												A. luederitzii	73:31.669
												A. tetragonophylla	81:47.425
												A. rhodoxylon	77:85.575
2	0	в-н	в-ОН	в-ОН	ł	OH	OH	OH	ОH		(+)-2-3-Trans-	Acacia cheelii	71:8.844
	ŭ									-3,4-Cis-3,4, 7,8,3',4'-He	A. cunninghamii	71:8.844	
											xaidroxifla	A. doratoxylon	71:8.844
											vana	A. excelsa	71:8.844
												A. floribunda	71:8.844
												A. glaucescens	71:8.844
												A. holosericea	71:8.844
												A. homalophylla	71:8.844
												A. longifolia	71:8.844
												A. obtusifolia	71:8.844
												A. pubifolia	71:8.844
												A. pycnostachya	71:8.844
												A. rigens	71:8.844

TABELA 2.10. Continuação

ITA I	ITB		5	Subst	titu	ição	đo e	esque	1eto		Nome trivial	Ocorrência	Referências
		2	3	4	5	7	8	3'	4'	5'			
												A. nigrescens	77:45.495
												A. kempeana	77:85:575

TABELA 2.11. Estrutura e ocorrência de Antocianidinas em Mimosoideae

ITA	ITB		Sub	stitu	ıiçã	o do	esque	eleto		Nome trivial		
114	110	R	4	5	6	7	3'	4'	5'	Nome trivial	Ocorrência	Referências
0	0	Gli		ОН		OH	ОН	OH		Cianina	Acacia leucophloea	101:3.914
0	0	H		OH		OH	ОН	OH		Cianidina	Acacia angustissima	62:13.514
											A. molissima	58.8.235
											Dickrostachys cinerea	53:11.523
											Entada scandens	81:74.859
1	0	H				ОН	OH	ОН		Fisetinidina	Acacia angustissima	62:13.514
0	0	Н		OH		OH	ОН	ОН	OH	Delfinidina	Prosopis reptans	102:163.699
0	1	H		OH		OH	OMe	ОН	OH	Petunidina	Prosopis reptans	102:163.699

TABELA 2.12. Ocorrência de Peltochalconas em Mimosoideae

ITA	ITB	ITB Substituição do esqueleto Nome					leto	Nome trivial	Ocorrência	Referências
		2'	4'	3	3 4 α β		β			
1	2	ОН	ОН	ОН	ОН			Peltodiidrochalcona	Acacia carnei	81:47.425
1	2	ОН	OH	OH	ОН		۸	Carneina	Acacia carnei	94:170.996

TABELA 2.13. Estrutura e ocorrência de Peltoginóides em Mimosoideae

TITIN	TOD		S	Substit	tuiçã	o đo	esque 1	.eto	_			
ITA	ITB	2	3	4	5	7	. 3'	4'	5'	Nome trivial	Ocorrência	Referências
0	2	в-н	α - Η	= O	ОН	OH	ОН	ОН		(+)-2,3-Trans- Crombeona	Acacia crombei	77:48.186 95:115.253
											A. carnei	81:47.425 94:170.996
1	2		Δ	=0		OH	OH	ОН		Fasciculifer <u>i</u> na	Acacia fascicul <u>i</u> fera	95:217.653 92:215.306
1	2	в-н	а-Н	α H β OH		ОН	ОН	ОН		(+)-2,3-Trans- 3,4-Cis-Pelto ginol	Acacia carnei	94:170.996 81:47.425
										5	A. fasciculifera	95:217.643
											A. crombei	81:47.425
											A. peuce	81:47.425

TABELA 2.13. Continuação

ITA	ITB		Su	bstitu	ıição	o đo e	squele	eto				
	110	2	3	4	5	7	3'	4 '	5 '	Nome trivial	Ocorrência	Referências
1	2	β_Н	α-Н	β – Η α – ΗΟ		ОН	ОН	ОН		(+)-2,3-Trans- 3,4-Trans-pel	Acacia carnei	94:170.996 81:47.425
				A. faciculifera	92:215.306 95:217.643							
											A. crombei	81:47.425
											A. peuce	81:47.425
1	2	в-Н	α - H	=0		ОН	OH	ОН		(+)-2,3-Trans- -Peltoginona	Acacia carnei	94:170.996 81:47.425
											A. fasciculifera	95:217.643
0	2	Δ	2,3	=O	OH	ОН	ОН	ОН		β-Fotometilquer cetina	Acacia carnei	94:170.996
1	2	Δ	2,3	=O		ОН	ОН	ОН		Peltoginina	Acacia carnei	94:170.996
											A. fasciculifera	92:215.306 95:217.643
											A. peuce	91:120.412

TABELA 2.13. Continuação

ITA	ITB		Su	bstitu	цçãо	do e	squele	eto		Nome trivial		Referências
114	110	2	3	4	5	7	3'	4'	5'	Nome trivial	Ocorrência	Referências
1	2	Δ2	2,3	=O		OH		ОН	ОН	Mopanina	Acacia fuscic <u>u</u> lifera	95:217.643
1	2	β_Н	βН	β – Η α – ΟΗ		OH	ОН	OH		(-)-2,3-Cis- -3,4-Cis-Pe <u>l</u> toginol	Acacia peuce	81:47.425 91:120.412
1	2	α-Н	α-Н	β – Η α – ΟΗ		ОН	OH	OH		(-)-2,3-Cis- -3,4-Trans- Peltoginol	Acacia peuce	91:120.412

TABELA 2.14. Estrutura e ocorrência de Espiropeltoginóides em Mimosoideae

ITA	ITB	Sul	bstitu	ição do	esque	leto	Nome trivial	Ocorrência	Referências
114	110	2	5	7	3'	4'		OCOFFERCIA	
0	2	ОН	ОН	ОН	ОН	OH	Crombenina	Acacia crombei	77:48.186 81:47.425 94:170.996 95:115.253
								A. peuce	91:120.412 81:47.425 94:170.996

TABELA 2.15. Estrutura e ocorrência de Isoflavonas em Mimosoideae

ITA	ITB	Sul	bstitui	lção đo	esquele	eto	Nome trivial	0∞rrência	Referências
		5	7	3'	4'	5'			
0	1	OH	OH		OMe		Biochanina A	Albizzia procera	87:98.789
1	0		OH		OH		Daidzeina	Albizzia procera	87:98.789
0	0	CH	ОН		ОН		Genisteina	Albizzia procera	87:98.789
1	1		ОН		OMe		Formononetina	Albizzia procera	87:98.789

TABELA 2.16. Estrutura e ocorrência de Pterocarpanos em Mimosoideae

ITA	ITB	Substituição do e	squeleto	Nome trivial	Ocorrência	Referências	
		3	9			· · · · · · · · · · · · · · · · · · ·	
1	2	OH	OН	3,9-Diidroxip terocarpano	Albizzia proc <u>e</u> ra	87:98.789	

TABELA 2.17. Estrutura e ocorrência de Neoflavonóides em Mimosoideae

Tma	ITA ITB Ti	Tipo	Substi	tuição	do esqu	eleto	Nome trivial	Ocorrência	Referências
11A	TIB		2	3	4	5	None CIIVIAI	College	
3	1	I	OH	OMe			Dalbergina	Piptadenia macr <u>o</u> carpa	84:147.704
								Prosopis kuntzei	84:147.705
4	1	I	OMe	OMe			O-Metildalbe <u>r</u> gina		84:147.705
5	1	111		OMe	OMe		3,4-Dimetoxi dalbergiona	Piptadenia macrocarpa Prosopis kuntzei	84:147.704 84:147.705
5	1	1	OH	OMe	OMe		Kuhlmannina	Piptadenia macrocarpa	84:147.704
5	1	II	OH	OMe	OMe	ОН	Quinol	Prosopis kuntzei	84:147.705

4. DISCUSSÃO DOS RESULTADOS

4.1. Flavonóides

A vasta ocorrência de flavonóides no Reino Vegetal (desde Bryophyta até Angiospermae), aliada a uma forte variabilidade estrutural, torna essas substâncias marcadores quimiossitemáticos de grande valor. As justificativas usadas anteriormente para a consideração de flavonóides como marcadores quimiossistemáticos, de musgos até vegetais superiores, são igualmente válidas para a família Leguminosae.

Os flavonóides são metabólitos secundários de biossíntese mista e, assim, o tratamento dado a eles envolve a quantificação das características estruturais dos anéis A e B em separado. Os métodos de quantificação desenvolvidos nesta tese possuem duas componentes principais. Uma que diz respeito à relação do padrão de oxidação dos 2 anéis com o avanço evolutivo. A segunda componente envolve a consideração dos

conceitos de proteção das hidroxilas fenólicas dos anéis A e B dos flavonóides e sua relação, também, com diferenciação e-volutiva.

A correlação dos parâmetros de avanço evolutivo referentes às transformações dos anéis A (AE $_{TA}$) e B (AE $_{TB}$) para os principais grupos de Caesalpinioideae (Figura 1), reconhecidos por Polhill 5 , mostra uma clara correspondência entre essas duas características. A subtribo Ceratoniinae (2a) é o precursor das demais subtribos (2b e 2d) de Cassieae (2), por apresentar os mais baixos valores de AE $_{TA}$ e AE $_{TB}$. Com relação à química de flavonóides, 2a originou 2d (subtribo Cassiinae) e esse, 2b (subtribo Dialiinae). Para a tribo Cercideae (3) o mesmo padrão de desenvolvimento pôde ser verificado, ou seja, a evolução procedeu por aumento concomitante dos dois parâmetros. A subtribo Bauhiniinae (3b) é caracterizada por valores de AE $_{TA}$ e AE $_{TB}$ maiores que os de Cercidinae (3a).

A tribo Detarieae (4) pertence à mesma linhagem de desenvolvimento das tribos Cassieae (2) e Cercideae (3). Por outro lado, a tribo Amherstieae (5) apresenta o mesmo padrão de desenvolvimento que Caesalpinieae (1). Dessa forma, podemos perceber de forma bastante nítida 2 linhagens bem definidas. Uma, que caracteriza a diferenciação dos grupos que transformam tanto o anel A quanto o anel B (tribos 2, 3 e 4) e outra, envolvendo pequena variação de AETB e alguma variação de AETA (tribos 1 e 5). Esses resultados estão de acordo com as linhas gerais propostas com base em morfologia por Polhill

(Figura 4), com exceção de que a subtribo Dialiinae (2b) e a tribo Detarieae (4) são quimicamente grupos clímax.

A figura 2 mostra que na subfamília Mimosoideae apenas os grupos mais evoluídos (gêneros Acacia, Albizzia e Prosopis) são caracterizados por forte transformação do anel B. Os grupos primitivos possuem a capacidade de efetuar transformações apenas do anel A. Para a tribo Mimoseae, grupo básico de Mimosoideae, apenas o gênero Prosopis ocupa uma posição atípica. Podemos também observar a forte polarização Mimoseae - Ingeae e Acacieae. Dentro da tribo Ingeae, o gênero Albizzia é o mais evoluído segundo ambos os critérios, enquanto Calliandra e Pitecellobium são grupos menos avançados.

A correlação dos valores ${\rm AE_{TA}/AE_{TB}}$ (Figura 3), a nível de tribo, confirma o comportamento observado na figura 2. Os cálculos desses parâmetros foram feitos sem considerar o grupo aberrante, *Prosopis*.

4.2. Ácidos aminados não proteicos

ácidos aminados não proteicos das subfamílias Caesalpinioideae e Mimosoideae foram considerados pertencer grupos biossiteticamente significativos do ponto ta sistemático: um derivado da serina e outro, derivado do ácido aspártico. Um outro grupo, derivado da leucina, tem tão poucos representantes distribuídos nos táxons a ponto de ser evolutivo considerado irrelevante para o estudo das subfamílias. O mesmo acontece, mesmo que pela razão oposta, com outros ácidos aminados de ocorrência ubíqua no Reino Vegetal e, portanto, não considerados nesse trabalho. Tais substâncias, entre as quais se encontram o ácido X-aminobutírico e a cistationina, figuram como intermediários na biossintese dos ácidos aminados proteicos.

Ouatro tabelas (Tabelas 3, 4, 4a e 5) foram construídas com o obietivo de fornecer a ocorrência, por espécie, ácidos aminados não proteicos (codificados de 1 a 29) nos diversos táxons das subfamílias Caesalpinioideae e Mimosoideae. Uma versão condensada das tabelas 3 e 5 (Tabela 6) consideácidos aminados não proteicos estruturalmente agrupos de fins. Assim, foram englobados os ácidos aminados 1 a 3, 4 a 11, 12 a 19, 20 a 21 e 22 a 29; dando origem aos grupos A, B, C, D e E, respectivamente. Procedeu-se também na mesma tabela 6 uma condensação de gêneros afins em grupos de acordo com o arranjo evolutivo idealizado por Polhill⁵ (Figura 4). las 6 e 7 serviram para simplificar a explicação dos resultaa interpretação das tabelas detalhadas (Tabelas 3 dos, embora a 5) tenha levado às mesmas conclusões. Nesse sentido, podese perceber à primeira vista uma clara distinção entre a disnatureza dos ácidos aminados não proteicos para tribuição e a subfamílias Caesalpinioideae e Mimosoideae. As as Mimosoideae são caracterizadas pela capacidade de biossintetizar tanto derivados da serina quanto do ácido aspártico. A subfamília Caesalpinioideae, por outro lado, elabora apenas derivados do á-

cido aspártico. Assim, há uma diferença nítida entre as duag subfamílias. Os ácidos aminados do grupo D são acumulados poradicamente pelas Mimosoideae, porém constituem uma característica marcante das Caesalpinioideae. Em Caesalpinioideae chama atenção ainda a grande ocorrência de derivados do ácido pipecólico (22 a 25). Além disso, é importante notar que as tribos Cassieae e Detarieae mostram-se extremamente pobres na produção dessa classe de ácidos aminados. As tribos Caesalpinieae Amherstieae, por outro lado, são exuberantes na produção tanto de derivados do grupo D quanto do grupo E. Em Mimosoideae, a tribo Mimoseae esporadicamente acumula ácidos aminados do grupo A, enquanto Ingeae e Acacieae são bem caracterizadas por essas substâncias. Além dessas diferencas duas subfamílias, há ainda uma outra distinção entre elas: quanto a diversidade de ácidos aminados não proteicos em mosoideae aumenta com a evolução, em Caesalpinioideae o oposacontece que acumulam essas substâncias, havennos grupos do até alguns grupos que não os possuem de vez. Esses resultados exigem que se proponha duas ligeiras modificações no dendrogroma de Polhill (figura 4). Uma dessas modificações refeaos componentes do par Detarieae-Amherstieae enquanto a re-se ao posicionamento de Dialiinae e Cassiinae. outra diz respeito propostas de modificação confirmam os resultados dos a partir da química flavonoídica discutida no ítem 4.1. desdobramentos permitem colocar em um mesmo nível evolu-Tais tivo grupos portadores de peltoginóides (Cassiinae, Acaos

cieae e Amherstieae).

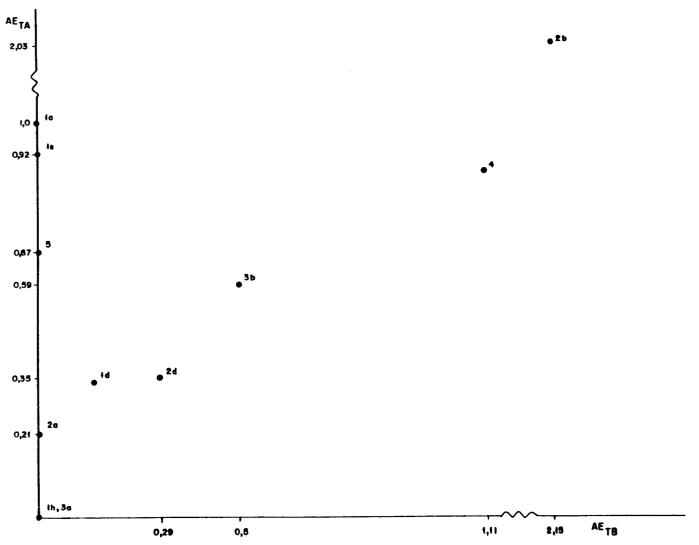


Fig. 1 - Correlação dos valores AE_{TA}/AE_{TB} para os grupos de Caesalpinioideae
1 - Tribo Caesalpinieae (1a - grupo de <u>Gleditsia</u>, 1d - grupo de <u>Peltophorum</u>, 1e - grupo de <u>Caesalpinia</u>, 1h - grupo de <u>Dimorphandra</u>);
2 - Tribo Cassieae (2a - Cassiinae , 2b - Diallinae , 2d - Cassiinae); 3 - Tribo Cercideae (3a - Cercidinae , 3b - Bauhinlinae);
4 - Tribo Detarieae ; 5 - Tribo Amhersticae.

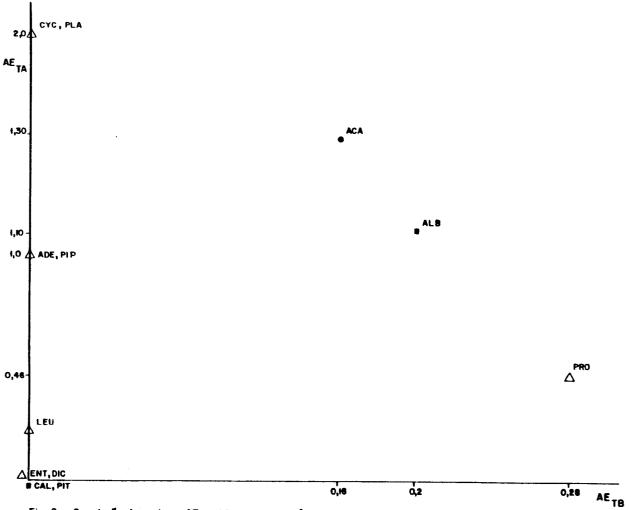
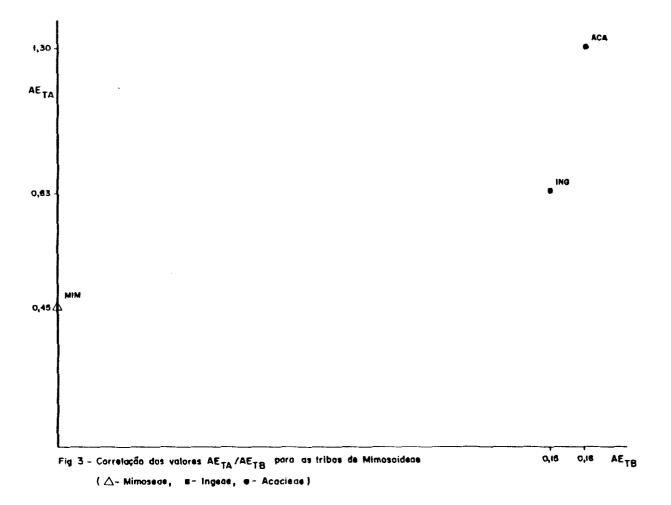



Fig. 2 - Correlação dos valores AE_{TA}/AE_{TB} para os gêneros de Mimosoldeae

\$\times\$ Tribo Mimoseae (ENT-\frac{Entada}{Entada}, DIC-\frac{Dichrostachys}{Dichrostachys}, LEU-\frac{Leucaena}{Leucaena}, ADE-\frac{Adenanthera}{Adenanthera}, PIP-\frac{Piptadenia}{Piptadenia}, CYC-\frac{Cyclicodiscus}{Cyclicodiscus}, PLA-\frac{Plathymenia}{PlT-\frac{Pithecelloblum}{Pithecelloblum}}, ALB-\frac{Albizzia}{Albizzia})

Tribo Acacieae (ACA-\frac{Acacia}{Acacia})

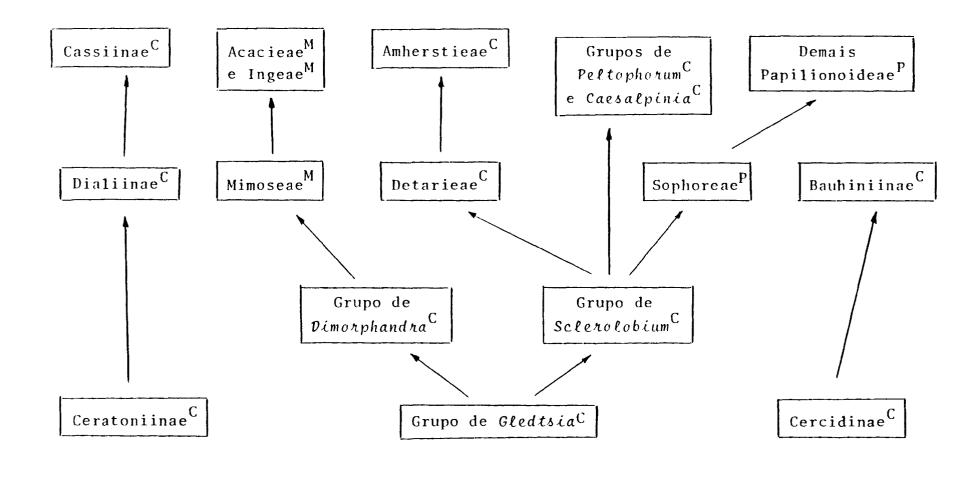


Fig. 4. Linhas de derivação para os principais grupos da família Leguminosae (sensu Polhill). C = Caesalpinioideae; M = Mimosoideae; P = Papilionoideae.

TABELA 3. Distribuição de ácidos aminados não proteicos (codificados de 1 a 29) na subfamília Mimosoideae

Tribos Gêneros	Ácidos aminados não proteicos derivados da serina														đa	ados Lna	Derivados do ácido aspártico						
	1 2	3 4 5	6 7 8	9 10	11	12	13	14	15	16	17	18	19	20	 21	21a		23	24	25	26	27	28 29
Parkieae	1 2	J 4 J	0 7 0	J 10		12	<u> </u>	13	12	1.0	1,				<u></u>	210							
Pentaclethra		1															1		1				
Parkia	1	1 4 3	2									2						1					
Mimozygantheae																							
Mimozyganthus		11	1															1					
Mimoseae	1 6	24 33	3 31		4		4	9	5	1		5	4	8	3	1	22	14	15				1
Aubrevillea																	1						
Fillaeopsis		1																	1				
Cyclicodiscus		1 1															1		1				
Newtonia	1	3															3		2				
Adenanthera														2	2								
Tetrapleura														1	1								
Amblygonocarpus														1			1						
Pseudoprosopis														2			2	1					
Entada																							
Plathymenia																	1						
Prosopis		1 4	4		1		1					2					2 1	5	1				
Prosopidastrum	1	1 1	1														1	1					
Stryphnodendron		2	2						2														
Goldmania		1	1																				
Piptadenia	1		2				1										1	1	2				
Newtonia*																							
Parapiptadenia	1	1	1				1										1	1	1				
Anadenanthera																1		1					
Mimosa		2	3				1	5	2			1	2				1						
Schranckia		5	5					4									1						

TABELA 3. Continuação

Tribos Gêneros		Ā	cid	os	ami	.nad	dos	não proteicos derivados da serina												da euci	ados ina	Derivados do ácido aspártico							
	1	2	3	4	5	6	7	8 9	10	11	12	13	14	15	16	17	18	19	20	21	21a	22	23	24	25	26	27	28 29	
Mimoseae																													
Xylia																			2										
Leucaena				5	1	1				1				1	1		2	2				4		5					
Dichrostachys				3	-	_				_				_	_							_	1						
Desmanthus	1	2		6	5	5				1													2						
Neptunia	-	4.0		7	2	6				1												2		2					
Acacieae				•	-	Ü																_		_					
Acacia	68	77	59)	78	24	46	1 9	37	1	78	79	17	15		19	2					71	99	42	12		3]	.4	
Delarportea**		• •			1	1		_		_						_													
Ingeae	15	18	•		15	-						2		1	1		7					23	43	22	14	1			
Inga	13	1			1.0							5					-					1	8						
Albizzia		ī			1							3		1	1		1						3						
Lysiloma	3				3							3											4						
Enterolobium		ī			_							2					1					2							
Calliandra	7	9			3												2					9	16	21	14	1			
Pithecellobium	1	1			5							4					1					5	6						
Cerianthes	1	1			1							1										1	1						
Wallaceodendron																	1												
Archidendron																						1							
Zygia																						1	1						
Cedrelinga		1										1										1	1						
Cathormion**	3																												
Pseudosamanea**					1							1										1							
Samanea**					ī							1					1					1							

Grupos da tribo Mimoseae.

^{*} Newtonia americana. ** Gêneros não citados por Polhill.

TABELA 4. Distribuição de ácidos aminados não proteicos (codificados de 1 a 29) no gênero Acacía (Bipinnatae)

Bipinnatae Seção		Acidos aminados não proteicos derivados da serina														Ácidos aminados não pro- teicos derivados do áci- do aspártico						
Espécie	1	2	3	5	6	7	8	9	10	11	12	13	14	15	17	18	22	23	24	25	27	28
Botryocephalae	6	7	5	4	0	3	0	0	2	0	7	7	0	4	0	0	6	7	6	0	0	0
A. baileyana	+	+	+	+		+					+	+					+	+	+			
A. dealbata	+	+	+	+		+					+	+		+			+	+	+			
A. decurrens	+	+	+	+		+			+		+	+					+	+	+			
A. elata	+	+		+							+	+		+				+				
A. mearnsii		+	+						+		+	+					+	+	+			
A. parramattensis	+	+	+								+	+		+			+	+	+			
A. polybotrya	+	+									+	+		+			+	+	+			
Pulchellae	1	2	2	1	0	2	0	0	0	0	2	2	0	0	0	0	2	2	0	0	0	0
A. lasiocarpa	+	+	+			+					+	+					+	+				
A. megacephala		+	+	+		+					+	+					+	+				
Gumiferae	0	0	0	1	2	0	0	2	2	0	0	0	0	0	0	1	2	2	0	0	0	0
A. farnesiana				+	+			+	+							+	+	+				
A. suberosa					+			+	+								+	+				

TABELA 4a. Distribuição de ácidos aminados não proteicos no gênero Acacia (Phyllodineae)

Phyllodineae Seção			Ā	cido	s a	amir	ađc		_		ei <i>c</i> os	der	ivad	los đ	a		tei	.cos	amin deri	vado		
Subseção	serina													do aspártico								
Espécie	1	2	3	5	6	7	8	9	10	11	12	13	14	15	17	18	22	23	24	25	27	28
Calamiformes	1	1	1	2	0	2	0	0	2	0	2	2	0	1	0	0	2	0	2	0	0	0
Plurinerves																						
A. rigens				+		+			+		+	+					+		+			
Uninerves																						
A. calamifolia	+		+	+		+			+		+	+		+			+	+	+			
Uninerves	14	16	13	13	1	12	1		11		16	15	0	2	0	0	12	15	14	0	0	0
Armatae																						
A. armata	+	+	+	+	+	+			+		+	+					+	+	+			
Brevifoliae																						
A. lineata	+	+	+	+		+			+		+	+						+	+			
A. meissneri		+	+								+	+						+				
Angustifoliae																						
A. montana	+	+	+	+		+			+		+	+					+	+	+			
A. pruinocarpa		+		+		+			+		+							+				
A. verniciflua	+	+	+								+	+		+			+	+	+			
A. victoriae	+	+		+							+	+						+	+			
Racemosae																						
A. brachybotrya	+	+	+	+		+			+		+	+					+	+	+			
A. caesiella	+	+									+	+		+			+	+	+			
A. cultriformis	+	+	+	+		+			+		+	+					+	+	+			
A. gladiiformis	+	+	+	+		+			+		+	+					+		+			
A. hakevides	+	+	+	+		+			+		+	+					+	+	+			
A. pycnantha	+	+	+	+		+			+		+	+					+	+	+			
A. retinoides	+	+	+	+		+			+		+	+					+	+	+			
A. wattsiana	+	+	+	+		+			+		+	+					+	+	+			
A. salicina	+	+	+	+		+	+		•		1	+					·		+			

TABELA 4a. Continuação

Phyllodineae Seção Subseção	Ácidos aminados não proteicos derivados da teicos derivados do aspártico												não s do	pro-								
Espécie	1	2	3	5	6	7	8	9	10	11	12	13	14	15	17	18	22	23	24	25	27	28
Plurinerves Brevifoliae	6	4	5	7	1	5	0	0	5	1	7	6	0	2	0	0	7	9	7	0	0	0
A. monticola Microneurae	+	+	+	+							+	+		+				+				
A. georginae A. osswaldii	+		+	+	+	++			++	+	+	+					+	+	++			
A. stenophylla Nervosae	+		+	+		+			+		+	+					+	+	+			
A. melanoxylon	+	+	+	+		+			+		+	+					+	+	+			
A. cyclops	+	+	+	+		+			+		+	+					+	+	+			
A. excelsa A. ixiophylla Dimidiatae																	+	+	+			
A. binervata	+	+		+							+	+		+				+	+			
Juliflorae Tetramerae	4	7	5	5	0	2	0	0	2	0	7	5	0	0	0	0	4	7	3	0	0	0
A. longifolia Stenophyllae	+	+	+	+		+			+		+	+					+	+	+			
A. aneura	+	+	+	+		+			+		+						+	+	+			
A. clivicola	+	+		+							+	+					+	+				
A. tenuissima Falcatae		+	+	+							+	+						+				
A. Auriculiformis A. maidenii		+	+								+	+						+				
A. tumida Dimidiatae		+		+							+						•	+				
A. holosericea Continuae A. peuce	+ 1 +	+ 1 +	+ 0	0	0	0	0	0	0	0	+	+ 1 +	0	1	0	0	0	+ 1 +	+ 0	0	0	0

TABELA 5. Distribuição de ácidos aminados não proteicos (codificados de 1 a 29) na subfamília Caesalpinioideae

Táxons	Ā	Ácidos aminados não proteicos derivados da da serina Leucina											1	Derivados do ácido aspártico														
	1 2	3 4	5	6 7	7 8	9	10	1	1 1	2	13	14	15	1	6 1	7 18	3 19	20	21	21a	22	23	24	1 2	5 2 6	5 27	28	3 29
(la)																		16		1	8	1	. 15	5				
(1h)																		2			3	1	. 2	2				
(14)																		a	2	1	2	11		5				
(1u)																		,		1	2	TA	•	,				
(le)																		32		21	26	5	,	7				
(2a)																												
(2b)											4																	
(2d)																					1							
(3a)																		_			_							
																		1	_		2				_			
(5)																		20	7	4	13	4	12	2	7]
	(1h) (1d) (1e) (2a) (2b) (2d) (3a) (4)	(1a) (1h) (1d) (1e) (2a) (2b) (2d) (3a) (4)	1 2 3 4 (1a) (1h) (1d) (1e) (2a) (2b) (2d) (3a) (4)	1 2 3 4 5 (1a) (1h) (1d) (1e) (2a) (2b) (2d) (3a) (4)	1 2 3 4 5 6 7 (1a) (1h) (1d) (1e) (2a) (2b) (2d) (3a) (4)	1 2 3 4 5 6 7 8 (1a) (1h) (1d) (1e) (2a) (2b) (2d) (3a) (4)	1 2 3 4 5 6 7 8 9 (la) (lh) (ld) (le) (2a) (2b) (2d) (3a) (4)	1 2 3 4 5 6 7 8 9 10 (1a) (1h) (1d) (1e) (2a) (2b) (2d) (3a) (4)	1 2 3 4 5 6 7 8 9 10 1 (1a) (1h) (1d) (1e) (2a) (2b) (2d) (3a) (4)	(la) (la) (lb) (le) (2a) (2b) (2d) (3a) (4)	(la) (la) (le) (2a) (2b) (2d) (3a) (4)	serina 1 2 3 4 5 6 7 8 9 10 11 12 13 (1a) (1h) (1d) (1e) (2a) (2b) (2d) (3a) (4)	serina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 (1a) (1h) (1d) (1e) (2a) (2b) (2d) (3a) (4)	serina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (1a) (1h) (1d) (1e) (2a) (2b) (2d) (3a) (4)	serina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 (1a) (1h) (1d) (1e) (2a) (2b) (2d) (3a) (4)	serina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 13 (1a) (1h) (1d) (1e) (2a) (2b) (2d) (3a) (4)	serina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (la) (lh) (ld) (le) (2a) (2b) (2d) (3a) (4)	serina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 (la) (lh) (ld) (le) (2a) (2b) (2d) (3a) (4)	Acidos aminados nao proteicos derivados da serina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (1a)	Acidos aminados nao proteicos derivados da serina da ser	Acidos aminados nao proteicos derivados da Leucina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21a (la)	Acidos aminados nao proteicos derivados da da Leucina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21a 22 (la)	Acidos aminados nao proteicos derivados da da Leucina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21a 22 23 (la)	Acidos aminados nao proteicos derivados da da Leucina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21a 22 23 24 (la) (lh) (lt) (le) (2a) (2b) (2d) (3a) (4)	Acidos aminados nao proteicos derivados da leucina leu	Acidos aminados nao proteicos derivados da leucina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21a 22 23 24 25 26 (1a)	Acidos aminados nao proteicos derivados da reucina leucina leucina aspártico aspártico (1a) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21a 22 23 24 25 26 27 (1a) 16	Acidos aminados nao proteicos derivados da Leucina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21a 22 23 24 25 26 27 28 (1a) 1 6 1 8 1 15 (1h) 2 3 1 2 14 6 (1e) (2a) (2b) (2d) (3a) (4)

TABELA 6. Distribuição de ácidos aminados não proteicos (codificados de l a 29) nas tribos de Caesalpinioideae e Mimosoideae

Tribos	De	erivado: serin		Derivados da Leucina	Derivados do áci- do aspártico
	A	В	С	D	Е
	1-3	4-11	12-19	20-21a	22–29
Caesalpinieae				84	90
Cassieae			4		1
Detarieae				1	4
Amherstieae				31	36
Mimoseae	7	92	28	12	51
Ingeae	33	15	30		103
Acacieae	204	198	210		241

TABELA 7. Distribuição de ácidos aminados não proteicos (codificados de 1 a 24) no gênero Acacia

Táxons	Deriv	ados da	serina	Derivados do ácido asparti						
	1-3	5–11	12-18	22-24						
Bipinnatae	30	12	20	27						
Botrycephalae	18	9	15	19						
Pulchellae	5	3	4	4						
Gummiferae	7	0	1	4						
Phyllodineae	79	72	68	83						
Continuae	2	0	3	1						
Calamiformes	3	6	5	4						
Uninerves	43	38	33	41						
Pluninerves	15	19	15	23						
Juliflorae	16	9	12	14						

ESTRUTURAS DOS ÁCIDOS AMINADOS CODIFICADOS DE 1 A 29

S-(β-Carboxisopropil) Cisteina

2) S-(B-Carboxietil)Cisteina

3) Sulfoxido da S-(β-Carboxietil)Cisteína

4) Ācido dicrostachinico

5) Ācido djencolico

6) Ācido N-acetildjencolico

7) Sulfóxido do ácido djencólico

8) Dissulfóxido do ácido djencólico

9) Sulfoxido do acido N-acetildjencolico

10) Ācido Y-glutamildjencolico

11) Sulfóxido do ácido Y-glutamildjencólico

12) Ācido α-amino-β-acetilaminopropiônico Η

13) Albizziina

14) Ācido α,β-diaminopropiônico

15) Willardiina

16) Isowillardiina

17) Ācido α-amino-β-oxalilaminopropiônico

18) Mimosina

19) O-glicosilmimosina

20) Ācido **\(-metilenoglutāmico**

21) **Y-**metilenoglutamina

21a) Ācido **%**-etilidenoglut**â**mico

22) Ācido pipecolico

23) Ācido 4-hidroxipipecolico

24) Ācido 5-hidroxipipecolico

25) Ãcido 4,5-diidroxipipecólico

26) Ācido 4-acetilaminopipecolico

27) Ācido 2,4-diaminobutīrico

28) Ācido α-amino-γ-oxalilaminobutírico

29) β-alanina

$$H_{\lambda}N$$
 OH

5. CONCLUSÕES

Os flavonóides e os ácidos aminados não proteicos caracterizam a diferenciação evolutiva das subfamílias Caesalpinioideae e Mimosoideae.

A aplicação de métodos quimiotaxonômicos de quantifievolutiva mostram que os grupos mais diferenciados das subfamílias Caesalpinioideae e Mimosoideae são caracterizados adicionalmente pela capacidade de transformar o anel B anh flavonóides. Os grupos menos evoluidos, por outro lado, são capazes de transformar apenas o anel A. Dessa forma, duas nhagens distintas são observadas através da correlação de AE_{TA} AE_{TB} para os grupos de Mimosoideae e Caesalpinioideae. Mimosoideae, a tribo Mimoseae constitui o grupo básico, enquanto Inquae e Acacieae são grupos derivados. Para Caesalpinioideae, a subtribo Ceratoniinae, o grupo de Gleditsia subtribo Cercidinae constituem a linha basal. As tribos Cassieae, Detarieae e Cercideae apresentam o mesmo tipo de gradiente evolutivo e constituem uma linhagem distinta de Caesalpinieae e Amherstieae.

A análise da distribuição dos ácidos aminados não proteicos em Caesalpinioideae e Mimosoideae confirmam os resultados discutidos anteriormente para a Química de flavonóides.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- 1 Gottlieb, O.R. (1982) Micromolecular Evolution Systematics and Ecology an Essay into a Novel Botanical Discipline, Springer Verlag, Berlin.
- ² Barreiros, E.L. (1990) Tese de Doutorado, USP.
- 3 Dahlgren, R.M.T. (1980) Botanical Journal of the Linnean Society 80: 91.
- 4 Kaplan, M.A.C.; Gottlieb, O.R. (1982) Biochemical Systematics and Ecology 10; 339.
- ⁵ Polhill, R.M.; Raven, P.H. (Ed.) (1981) Advances in Legume Systematics (Part 1), Royal Botanic Gardens, Kew.
- ⁶ Silva, V.M. (1989) *Tese de Mestrado*, UFRRJ.

- ⁷ Lima, C.E.P.G.V. (1989) Tese de Mestrado, UFRRJ.
- Hutchinson, J. (1964) The Genera of Flowering Plants (Vol. 1), Clarendon Press, Oxford.
- 9 Bate-Smith, E.C. (1972) Nature (London) <u>236</u>: 353.
- Harborne, J.B. (1977) Introduction to Ecological Biochemis try, Academic Press, London.
- 11 Calvin, M. (1969) Chemical Evolution, Clarendon Press, Oxford.
- Harborne, J.B.; Mabry, T.J. (Ed.) (1982) The Flavonoids Advances in Research, Chapman and Hall, London.
- Harborne, J.B.; Boulter, D.; Turner, B.L. (Ed.) (1971) Chemotaxonomy of the Leguminosae, Academic Press, London.
- 14 Tindale, M.D.; Roux, D.G. (1974) Phytochemistry 13:829.
- 15 Stumpf, P.K.; Conn, E.E. (1980) The Biochemistry of Plants (Vol. 1), Academic Press, London.
- Geissman, T.A.; Crout, D.H.G. (1969) Organic Chemistry of Secondary Plant Metabolism, Freeman Cooper and Company, San Francisco.

- Harborne, J.B.; Mabry, T.J.; Mabry, H. (Ed.) (1975) The Flavonoids, Chapman and Hall, London.
- Barrett, G.C. (Ed.) (1985) Chemistry and Biochemistry of the Amino Acids, Chapman and Hall, London.
- 19 Evans, C.S.; Bell, E.A. (1978) Phytochemistry <u>17</u>:1127.
- 20 Watson, R.; Fowden, L. (1973) Phytochemistry <u>12</u>:617.
- ²¹ King, F.E.; King, T.S.; Warwick, A.S. (1950) J. Chem. Soc. 3590.
- Dale, T.; Court, W.E. (1981) Quart. J. Crude Drug Res. 19
 (1); 25.