UFRRJ

INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA ORGÂNICA

DISSERTAÇÃO

Metabólitos Especiais Isolados dos Galhos e Folhas de *Piptadenia gonoacantha* (Mart.) J.F. Macbr. (Leguminosae) e das Flores de *Laseguea erecta* Mull. Arg. (Apocynaceae)

Maritza Adelina Rojas Cardozo

2006

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM QUIMICA ORGÂNICA

METABOLITOS ESPECIAIS ISOLADOS DOS GALHOS E FOLHAS DE *Piptadenia gonoacantha* (Mart.) J.F. Macbr. (Leguminosae) E DAS FLORES DE *Laseguea erecta* Mull. Arg. (Apocynaceae)

MARITZA ADELINA ROJAS CARDOZO

Sob a Orientação do Professor Dr. Mário Geraldo de Carvalho

> Dissertação submetida como requisito parcial para obtenção do grau de **Mestre em Ciências,** no Programa de Pós-Graduação em Química Orgânica, Área de Concentração em Química de Produtos Naturais.

Seropédica, RJ Dezembro de 2006

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA ORGÂNICA

MARITZA ADELINA ROJAS CARDOZO

Dissertação submetida como requisito parcial para obtenção do grau de **Mestre em Ciências** no Programa de Pós-Graduação em Química Orgânica, área de Concentração em Química de Produtos Naturais.

DISSERTAÇÃO APROVADA EM 07/12/2006

Dr. Mário Geraldo de Carvalho (DEQUIM-UFRRJ) (Orientador)

Dra. Maria Auxiliadora Coelho Kaplan (NPPN-UFRJ)

Dra. Rosane Nora Castro (DEQUIM-UFRRJ)

Dr. Ricardo Machado Kuster (NPPN-UFRJ) (Suplente)

Dr. Victor Marcos Rumjanek. (DEQUIM-UFRRJ) (Suplente)

A mis padres y hermanos

AGRADECIMENTOS

-A Deus;

-Aos meus pais, Ermencia e Victor pelo incentivo, compreensão, fé transmitida e apoio.

-Aos meus irmãos Emilce e Uriel pelo incentivo e apoio durante todos os momentos;

-A minha família;

-Ao Professor Dr. Mário Geraldo de Carvalho, pelos ensinamentos, compreensão, paciência, amizade e orientação neste trabalho, meu sincero respeito e agradecimento;

-À Professora Dra. Rosane Nora Castro pela colaboração, apoio e estimulo desde o começo deste trabalho;

-A Virginia pelo acolhimento, conselhos, incentivo e por todos os momentos que construíram uma grande amizade;

-Ao Luciano pela sua amizade e colaboração;

-Aos colegas de laboratório: Virginia, Luciano, Luiz, Mário Sérgio, Marli, Eduardo e Renata pelo incentivo e colaboração;

-Aos alunos de iniciação científica que me acompanharam durante a realização deste trabalho José Geraldo e Luciane;

-Aos alunos da iniciação Ana Paula, Lorena, Aline, Alessandra pela amizade e colaboração;

-A todos os colegas da pós-graduação, sem exceção, pelo acolhimento e bom relacionamento durante este período. Especial à Ana Paula, Janaína, Alessandra, Janaína, Luciano, Ari, Regina, Kênia, Luiz, Mário Sergio, Cláudio, Andréa Rose, Bauer;

-Ao Professor Dr. Javier Rincón V. pelo incentivo e colaboração;

-Ao Professor Dr. Acácio Geraldo do Instituto de Florestas-UFRRJ pela coleta do material vegetal de *Piptadenia gonoacantha*;

-À professora Dra. Alceni Augusta Werle da Universidade Federal de Ouro Preto pela coleta e identificação de *Laseguea erecta*;

-À professora Dra. Aurea Echevarria junto com a doutoranda Kênia, pelas avaliações feitas nos ensaios de atividade antioxidante;

-A todos os professores pertencentes ao Programa de Pós-graduação em Química Orgânica (ICE-UFRRJ);

-A todos os técnicos: Eli, Carlos, Fábio, Frances, Maurício, Aldir; e administrativos: Osmar, Renato, Conceição, Rui do ICE-UFRRJ pelo auxilio prestado;

-Ao Dr. Daniel Esdra de Andrade Uchoa e Prof. Dr. Edilberto Rocha Silveira – CENAUREMN, Programa de Pós-graduação em Química Orgânica - Departamento de Química Orgânica e Inorgânica - Universidade Federal do Ceará, pela obtenção dos espectros de RMN a 500 MHz;

-À UFRuralRJ, pela oportunidade e acolhimento;

-Aos amigos do Alojamento da Pós-graduação sem exceção, em especial a, Virginia, Veridiana, Renata, Marli, Fabiana, Daniele, Fernanda, Michelle, Adailde, Kênia, Nathali, Fabiana V, Sandra, Josi, Nídia, Ana Paula e Sabrina pelo acolhimento e bons momentos;

-A Lorena, Juan, Mauricio, Andrea, Claudia, Johanna e Alejandra pela amizade e apoio incondicional;

-A todos que, de algum modo, me ajudaram na realização deste trabalho;

-Desde já, à banca examinadora, pelas sugestões e correções sugeridas a este trabalho;

- Ao Convenio PEC-PG Brasil-Colômbia, CAPES, CNPq e FAPERJ pelos auxílios e bolsas concedidas.

RESUMO

CARDOZO, Maritza Adelina Rojas. Metabólitos especiais isolados dos galhos e folhas de *Piptadenia gonoacantha* (Mart.) J.F. Macbr. (Leguminosae) e das flores de *Laseguea erecta* Mull. Arg (Apocynaceae) 2006. 109f. Dissertação (Mestrado em Química Orgânica). Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2006

Este é o primeiro trabalho sobre o isolamento e identificação de metabólitos especiais de galhos e de folhas da espécie *Piptadenia gonoacantha* (Mart.) J.F. Macbr. (Leguminosae-Mimosoideae), popularmente conhecida como "Pau Jacaré". Outra parte desse trabalho à identificação de metabólitos especiais das flores de *Laseguea erecta* Mull. Arg. (Apocynaceae).

Os extratos das partes das plantas foram obtidos através de extração a frio com metanol e foram fracionados usando partição com solventes e técnicas cromatográficas. Esses procedimentos e as análises das frações através de cromatografia em camada fina e técnicas espectrométricas permitiu o isolamento e identificação dos constituintes. O estudo com os galhos de *P. gonoacantha* conduziu ao isolamento e identificação do β -sitosterol, estigmasterol, do éster N-benzoilfenilalaninato de 2-benzoilamida 3-fenilpropila, do 3-O- β -D-glicopiranosil sitosterol e dos flavonóides, apigenina (5,7,4'-triidroxiflavona), 5-metilapigenina e 7,4'-diidroxi-5,3'-dimetoxiflavona. De folhas dessa planta identificaram-se o galato de metila, e os flavonóides, 8-C-glicopiranosil-5,7,4'-triidroxiflavona e 6-C-glicopiranosil-5,7,4'-triidroxiflavona, conhecidos respectivamente, como vitexina e isovitexina. O éster e os flavonóides estão sendo registrados pela primeira vez no gênero *Piptadenia*.

Das flores de *L. erecta* isolaram-se o lupeol, ácido ursólico e os flavonóides quercetina (3,5,7,3',4'-pentaidroxiflavona) e 3-O- α -arabinopiranosil quercetina. Esta é a primeira informação sobre identificação de metabólitos especiais em flores desse gênero. As estruturas foram determinadas através da análise dos dados espectrais de IV, RMN de ¹H (1D e 2D) e ¹³C (BBD e DEPT), comparação com valores registrados na literatura e, em alguns casos, foram usados espectrometria de massas e preparação de derivados.

Palavras-chave: Piptadenia gonoacantha, Laseguea erecta, flavonóides.

ABSTRACT

CARDOZO, Maritza Adelina Rojas. Special metabolites isolated from the branches and leaves of *Piptadenia gonoacantha* (Mart.) J.F. Macbr. (Leguminosae) and from the flowers of *Laseguea erecta* Mull. Arg.(Apocynaceae). 2006. 1091. Dissertation (Magister Scientiae in Organic Chemistry) Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2006.

This is the first work concerning to the isolation and identification of special metabolites from the branches and leaves of *Piptadenia gonoacantha* (Mart.) J.F. Macbr. (Leguminosae-Mimosoideae), commonly known as "Pau Jacaré". Another part of this work describes the phytochemical study of the flowers of *Laseguea erecta* Mull. Arg. (Apocynaceae).

The different parts of the plants were extracted by cold methanol and fractionated through solvents partition and chromatographic techniques. This procedure, besides the analysis of the fractions by TLC and spectrometric methods afforded the chemical constituents. From the branches of Piptadenia gonoacantha were obtained β-sitosterol, stigmasterol, the ester N-benzoylphenylalaninyl-2-benzoylamide-3-phenylpropil ester, the sitosterol-3-O-β-D-glucopiranoside, besides the flavonoids apigenin (5,7,4)trihydroxyflavone), apigenin-5-methyl ether and 7,4'-dihydroxy-3',5-dimethoxyflavone. The leaves of this plant afforded the methyl gallate and the flavonoids, 8-C-glucopyranosyl-5,7,4'-trihydroxyflavone and 6-C-glucopyranosyl-5,7,4'-trihydroxyflavone, know respectively, as vitexin and isovitexin. The ester and the flavonoids are being registered by first time in the genus *Piptadenia*.

From the flowers of *Laseguea erecta* were isolated the lupeol, ursolic acid, quercetin (3,5,7,3',4'-pentahydroxyflavone) and 3-O- α -arabinopyranosyl-quercetin. This is the first information about identification of special constituents in flowers of this specie.

The structures were established by the IR, NMR ¹H (1D, 2D), NMR ¹³C (BBD and DEPT) analysis and by comparison with literature data. In some cases, it was used mass spectral data analysis and derivatives preparation.

Key words: Piptadenia gonoacantha, Laseguea erecta, flavonoids

SUMÁRIO

1	INTRODUÇÃO	1
	OBJETIVOS	2
2	REVISÃO DE LITERATURA	3
	 2.1 Generalidades Sobre a Família Leguminosae e o Gênero Piptadenia	3 7 8 9
3	2.2 Gererandades de Apocynaceae e Laseguea erecta	10
5	2.1 Diretalaria consecutiva	12
	3.1 Piptadenia gonoacantna	12
4	PARTE EXPERIMENTAL	14
•	11 Equipamentos e Reagentes	11
	4.2 Isolamento e Purificação dos Constituintes	14
	4.2.1 Piptadenia gonoacantha	14
	4.2.1.1 Galhos de P. gonoacantha	14
	4.2.1.2 Folhas de <i>P. gonoacantha</i>	16
	4.2.2 Laseguea erecta	18
	4.3 Reações de Derivação	20
	4.3.1 Acefiliação	20
	4.5.2 Methação com diazonietano	20
	4.4.1 Equipamentos e Reagentes	20
	4.4.2 Preparação das amostras	20
	4.4.3 Ensaio fotométrico DPPH	21
	4.4.4 Análise estatística	21
5	RESULTADOS E DISCUSSÃO	22
	5.1. Identificação dos Constituintes Isolados de Pintadenia gonoacantha	22
	5.1.1 Identificação das substâncias 1 e 2 (sitosterol e estigmasterol)	22
	5.1.2 Identificação da substância 3 (N-benzoilfenilalanilato de 2-benzoilamida-3-fer	nil-
	propila).	28
	5.1.3 Identificação da substância 4 (3-O-β-D-glicopiranosil sitosterol)	39
	5.1.4 Identificação da substância 5 (5,7,4'-trihidroxi flavona ou apigenina)	43
	5.1.5 Identificação da substância 6 (7,4'-diidroxi-5,3'-dimetoxi-flavona)	45
	5.1.6 Identificação da substância 7 (5-metil apigenina)	50
	5.1.7 Identificação da substancia 8 (galato de metila) e 8a	55
	5.1.8 Identificação das substâncias 9 (vitexina) e 9a	37
	5.2. Identificação dos constituintes Isolados das flores de Lasequea erecta	03 68
	5.2 1 Identificação da substância 11 (luneol)	60
	5 2 2 Identificação da substância 12 (ácido ursólico)	
	5.2.3 Identificação da substância 13 (quercetina)	75
	5.2.4 Identificação da substância 14 (3-O-α-arabinopiranosil quercetina)	77
	Ensaio de DPPH	81

6 SUB	PROPOSTAS BIOSSINTÉTICAS CONSIDERADAS NA IDENTIFICAÇÃO DAS STÂNCIAS ISOLADAS	.83
6.	1 Proposta Biossintética Para os Constituintes Isolados de Piptadenia gonoacantha	.83
	6.1.1 Esteróides	.83
	6.1.2 Flavonóides	.85
	Compostos fenólicos	.86
	6.1.4 Estér	.87
6.2	2 Proposta Biogenética Para os Constituintes Isolados de Laseguea erecta	.88
	6.2.1 Terpenos	.88
	6.2.2 Flavonóis	. 88
7	CONCLUSÃO	.90
8	REFERÊNCIAS	.91

LISTA DE FIGURAS

Figura 1. Acácio	Aspecto geral da espécie vegetal <i>Piptadenia gonoacantha</i> . (Fotos: 1,3 e 4: Geraldo de Carvalho, IF-UFRuralRJ)	Dr. 9
Figura 2. Doutor	Aspecto geral de um espécime jovem de <i>Laseguea erecta</i> (C.C.F.Alves, Terado, PPGQP-UFRuralRJ, 2004)	ese de 10
Figura 3.	Espectro de IV das substâncias 1+2.	24
Figura 4.	Espectro de RMN ¹ H (200 MHz, CDCl ₃) de 1+2.	24
Figura 5.	Espectro de RMN ¹³ C (50 MHz, CDCl ₃) de 1+2 .	25
Figura 6.	Espectro de massas da substância 1 obtido com impacto de elétrons	25
Figura 7.	Espectro de massas de 2 obtido com impacto de elétrons	26
Figura 8.	Espectro de ¹ H (200 MHz, CDCl ₃) de 1a+2a	27
Figura 9.	Espectro de ¹³ C (50 MHz, CDCl ₃) de $1a+2a$.	27
Figura 10.	Espectro de IV da substância 3	31
Figura 11.	Espectro de RMN ¹ H (500MHz, CDCl ₃ / D ₃ COD) de 3	31
Figura 12.	Expansão (7.0-7.7 ppm) do espectro de RMN ¹ H de 3	32
Figura 13. de 3 .	Expansão (2.8-4.6 ppm) do espectro de RMN 1 H, (500MHz, CDCl ₃ / D ₃ C 32	COD)
Figura 14.	Espectro de ¹ H- ¹ H-COSY - (500MHz, CDCl ₃ / D_3 COD) de 3	33
Figura 15.	Espectro de 13 C (125 MHz, CDCl ₃ / D ₃ COD) de 3	33
Figura 16.	Expansão (126-138 ppm) do espectro de 13 C (125 MHz, CDCl ₃ / D ₃ COD 34) de 3 .
Figura 17.	Expansão (126-138 ppm) do espectro de 13 C (125 MHz, CDCl ₃ / D ₃ COD 34) de 3 .
Figura 18.	Espectro de 1 H- 13 C-COSY- 1 J _{CH} , HMQC (CDCl ₃ /D ₃ COD) de 3	35
Figura 19. expans	Espectro de ¹ H- ¹³ C-COSY- ⁿ J _{CH} , n=2,3, HMBC (CDCl ₃ /D ₃ COD) de 3 , ão das regiões a e b	36
Figura 20. OD) de	Expansão do espectro de ${}^{1}H-{}^{13}C-COSY-{}^{n}J_{CH}$, n=2 e 3, HMBC (CDCl ₃ /D e 3, regiões c, d, e, f	0 ₃ C 37
Figura 21.	Espectro de massas de 3 obtido com impacto de elétrons	38
Figura 22.	Espectro de IV de 4	41
Figura 23.	Espectro de RMN de 1 H (200MHz, C ₅ D ₅ N) de 4.	41
Figura 24.	Espectro de RMN 13 C (50MHz, C ₅ D ₅ N) de 4.	42
Figura 25.	Ampliação do espectro de RMN 13 C (50MHz, C ₅ D ₅ N) de 4	42
Figura 26.	Espectro de IV da substância 5	44
Figura 27.	Espectro de RMN 1 H (200MHz, C ₂ D ₆ CO) de 5.	44
Figura 28.	Espectro de IV de 6.	46

Figura 29.	Espectro de RMN de ¹ H (200MHz, DMSO-d ₆) de 6 .	47
Figura 30.	Espectro de $^{1}H^{-1}H$ –COSY (200 MHz, DMSO-d ₆) de 6	47
Figura 31.	Espectro NOEDIFF de 6 obtido por irradiação nas freqüências 3,85;3,75 p 48	pm.
Figura 32.	Espectro de massas de 6.	48
Figura 33.	Espectro de IV da substância 7	51
Figura 34.	Espectro de RMN 1 H (200 MHz, DMSO-d ₆) de 7	52
Figura 35.	Espectro de ^{1}H - ^{1}H COSY (200MHz, DMSO-d ₆) de 7.	52
Figura 36.	Espectro de RMN 13 C (200 MHz, DMSO-d ₆) de 7	53
Figura 37. freqüên	Espectro de NOE de 7 (200 MHz, DMSO-d ₆) resultado da irradiação nas cias de 3,77 e 6,50 ppm.	54
Figura 38.	Espectro de IV da substância 8	55
Figura 39.	Espectro de RMN 1 H (200MHz, DMSO-d ₆) de 8	56
Figura 40.	Espectro de RMN 13 C (50 MHz, DMSO-d ₆) de 8	56
Figura 41.	Espectro de RMN 1 H (200MHz, DMSO-d ₆) de 8a.	57
Figura 42.	Espectro de IV da substância 9	59
Figura 43.	Espectro de RMN 1 H (200MHz, DMSO-d ₆) de 9	59
Figura 44.	Espectro de RMN 2D de ¹ H- ¹ H COSY (200 MHz, DMSO-d ₆) da substânci 60	a 9
Figura 45.	Espectro de NOEDIFF (200 MHz, DMSO-d ₆) da substância 9	61
Figura 46.	Espectro de RMN ¹³ C (50 MHz, DMSO-d ₆) da substância 9	62
Figura 47.	Espectro de RMN ¹³ C (BBD) e DEPT θ =135° de 9	62
Figura 48.	Espectro de RMN ¹ H (200 MHz, DMSO- d_6) de 9a	63
Figura 49. 3,83 pp	Espectro NOEDIFF de 9a resultado da irradiação nas freqüências 3,93;3,8 m 64	8
Figura 50.	Espectro de IV de 10.	66
Figura 51.	Espectro de RMN ¹ H (200 MHz, DMSO-D ₆) de 10	67
Figura 52.	Espectro de RMN 13 C (50 MHz, DMSO-d ₆) de 10	67
Figura 53.	Expansão (155-165 ppm) do espectro de 13 C (50 MHz, DMSO-d ₆) de 10	68
Figura 54.	Espectro de IV de 11.	70
Figura 55.	Espectro de RMN ¹ H (200 MHz, CDCl ₃) de 11	70
Figura 56.	Espectro de RMN ¹³ C (50 MHz, CDCl ₃) de 11	71
Figura 57.	Espectro de IV de 12.	73
Figura 58.	Espectro de RMN ¹ H (200 MHz, $CDCl_3/DMSO-d_6$) de 12 .	73
Figura 59.	Espectro de RMN ¹³ C (50 MHz, CDCl ₃ /DMSO-d ₆) de 12	74
Figura 60.	Espectro DEPT θ = 135° (50 MHz, CDCl ₃ /DMSO-d ₆) de 12	74

Figura 61.	Espectro DEPT θ =90° (50 MHz, CDCl ₃ /DMSO-d ₆) de 12	.75
Figura 62.	Espectro de IV de 13.	.76
Figura 63.	Espectro de RMN ¹ H (200 MHz, DMSO-d ₆) de 13	.77
Figura 64.	Espectro de IV de 14	. 79
Figura 65.	Espectro de RMN ¹ H (200 MHz, DMSO-d ₆) de 14	. 79
Figura 66.	Espectro de RMN ¹³ C (50 MHz, DMSO-d ₆) de 14.	. 80
Figura 67. concentra	Gráficos de atividade de antioxidante de PGGM e galato de metila [%AA vs ação (μg/mL/ μM)]	. 82

LISTA DE TABELAS

Tabela 1.Classif	icação taxonômica da espécie. www.arvores.brasil.nom.br
Tabela 2.Compasitosterol e esti	ração dos dados de RMN ¹³ C de 1 + 2 com os dados da literatura para igmasterol. (KOJIMA <i>et al.</i> , 1990)23
Tabela 3.Dadosde 3 e compara2-N-benzoilam	de RMN ¹ H (500 Mz, CDCl ₃ / CD ₃ OD) e ¹³ C (125 Mz, CDCl ₃ /CD ₃ OD), ação com os dados registrados na literatura para N-benzoilfenilalaninato de iida-3-fenil propila (CATALAN <i>et al.</i> , 2003)
Tabela 4. Dados O-β-D-glicopin	de RMN ¹³ C da substância 4 comparados com dados da literatura para 3- ranosil sitosterol (KOJIMA <i>et al.</i> , 1990)
Tabela 5.Dadosregistrados na2003).	de RMN ¹ H (200MHz, C ₂ D ₆ CO) de 5 e comparação com os dados literatura para apigenina em DMSO- d_6 (MIYAZAWA & HISAMA,
Tabela 6.Dadosliteratura para	de RMN ¹ H (DMSO-d ₆) de 6 comparados com os dados encontrados na 5,3' dimetil luteolina (DIAS <i>et al</i> , 1998)46
Tabela 7.Dadosna literatura pa	de RMN ¹ H e ¹³ C (DMSO-d ₆), de 7 comparados com os dados registrados ara 5-metil apigenina (WAGNER <i>et al.</i> , 1976)
Tabela 8. Dados Vitexina (^a ZH	de RMN ¹ H e ¹³ C de 9 comparados com os encontrados na literatura para OU, <i>et al.</i> , 2005; ^b AGRAWAL, 1979)58
Tabela 9.Compaencontrados na	ração dos dados de RMN de ¹ H e ¹³ C da substância 10 com dados a literatura para isovitexina (PEDRAS <i>et al.</i> , 2003)
Tabela 10.DadoLupeol (SOBR)	os de RMN ¹³ C de 11 comparados com os registrados na literatura para INHO <i>et al.</i> , 1991)
Tabela 11.Dadoácido ursólico	os de ¹³ C RMN de 12 comparados com os encontrados na literatura para (KRIWACKI & PINTER, 1989)72
Tabela 12. Dado (MIYAZAWA	os de RMN ¹ H de 13 comparados com dados de literatura para quercetina & HISAMA, 2003)
Tabela 13.Dadocomparados co	bs de RMN ¹³ C (MABRY, 1982) e ¹ H (CHEN <i>et al.</i> , 2004) de 14 om dados da literatura para a 3-O- α arabinopiranosil quercertina
Tabela 14. Valo	res de CE ₅₀ das amostras testadas frente ao radical DPPH81

LISTA DE ESQUEMAS

Esquema 1.	Isolamento das substâncias 1-7 a partir dos galhos de P. gonoacantha16
Esquema 2.	Isolamento das substâncias 8-10 a partir das folhas de P. gonoacantha17
Esquema 3.	Isolamento das substâncias 11-14 a partir das flores de L. erecta19
Esquema 4. massas d	Proposta de fragmentação para justificar os principais picos do espectro de a substância 3.
Esquema 5. elétrons.	Proposta de fragmentação de 6 no espectrômetro de massas pos impacto de
Esquema 6. de MAN	Proposta biogenética para os esteróides isolados de <i>P. gonoacantha</i> (Adaptado N, 1994)
Esquema 7. 2002)	Proposta biogenética para as flavonas isoladas de <i>P. gonoacantha</i> (DEWICK,
Esquema 8. (Adaptad	Proposta biogenética para o galato de metila isolado de <i>P. gonoacantha</i> lo de SIMÕES <i>et al.</i> , 2004; DEWICK, 2002)
Esquema 9.	Proposta biogenética para o éster 10
Esquema 10.	Proposta biogenética para os terpenos lupeol e ác. ursólico
Esquema 11. arabinopi	Proposta biogenética para os flavonóides quercetina e 3-O- iranosideo quecetina

LISTA DE ABREVIATURAS E SÍMBOLOS

1D	unidimensional
2D	bidimensional
δ	deslocamento químico (ppm)
ν	estiramento
Ac ₂ O	anidrido acético
AcOEt	acetato de etila
BBD	Hydrogen Band Broad Decoupled
CC	cromatografia em coluna
CCDA	cromatografia em camada delgada analítica
ССР	cromatografia em camada preparativa
CG-EM	cromatografia em fase gasosa acoplada a espectrometria de massas
cm	centímetro
COSY	COrrelation SpectroscopY
d	dubleto
dd	duplo dubleto
DDPH	2,2-difenil-1-picril-hidrazil.
DEPT	Distortionless Enhancement by Polarization Transfer
DMSO-d ₆	dimetilsulfóxido deuterado
EI	impacto de elétrons
EM	espectrometria de massas
EtOH	etanol
F	fração
g	gramas
HETCOR	HETeronuclear chemical shift CORrelation
HMBC	Heteronuclear Multiple-Bond Correlation
HSQC	Heteronuclear Single Quantum Coherence
Hz	Hertz
IV	infravermelho
J	constante de acoplamento em hertz
kg	kilograma
m	multipleto
$M^{+.}$	pico do íon molecular
MeOH	metanol
mg	miligrama
mL	mililitro
MHz	Mega Hertz
mm	milímetro
m/z	relação massa/carga
nm	nanómetro
NOE	nuclear overhauser effect
P.F.	ponto de fusão
Piridina-d ₅	piridina deuterada
ppm	parte por milhão
q	quarteto
RMN ¹ H	Ressonância Magnética Nuclear de Hidrogênio
RMN ¹³ C	Ressonância Magnética Nuclear de Carbono-13
S	singleto

sl	singleto largo
t	tripleto
tr	tempo de retenção
TMS	tetrametilsilano
UFCE	Universidade Federal do Ceará
UFRJ	Universidade Federal do Rio de Janeiro
UFRRJ	Universidade Federal Rural do Rio de Janeiro
UFOP	Universidade Federal de Ouro Preto

OBS: As abreviaturas e símbolos utilizados neste trabalho e que não constam nesta relação, encontram-se descritas no texto ou são convenções adotadas universalmente.

1 INTRODUÇÃO

Através dos anos os seres humanos confiaram na natureza para suprir suas necessidades básicas, como produção de alimento, abrigos, roupa, meios de transporte, fertilizantes, sabores, fragrâncias e medicamentos (NEWMAN *et al.*, 2000). Especificamente as plantas têm servido como matéria prima para a construção de utensílios, assim como têm desempenhado um papel importante como fonte de entidades químicas com aplicações variadas, e atualmente fornecendo uma ampla gama de produtos de importância econômica.

Sabendo que o maior número de espécies vegetais encontra-se nas regiões equatoriais da América do Sul, da África e da Ásia. Enquanto no Brasil estima-se a existência de 55,000 espécies catalogadas (DIAS, 1996) de um total estimado entre 350,000 e 550,000 (GUERRA & NODARI, 2004). E, considerando que o Reino Vegetal tem contribuído de forma significativa para a descoberta de substâncias orgânicas com variedade e complexidade estrutural, faz-se relevante o aporte químico ao conhecimento das espécies vegetais.

O estudo químico de espécies vegetais além de fornecer informação sobre as classes de substâncias das diferentes famílias, gêneros ou espécies, amplia o conhecimento da relação das diferentes classes de metábolitos especiais com a taxonomia e com o meio ambiente, além disso, pode conduzir a descoberta de novas estruturas químicas e contribuir para outras áreas de conhecimento como, agricultura, enzimología, genética, farmacologia, etc.

Dentre das diferentes aplicações destaca-se o uso das espécies vegetais como fonte de substâncias com atividade biológica, as plantas têm sido base de sistemas de medicina tradicional que são usados por milhares de anos em paises como China e Índia. Já em tempos remotos encontram-se registros do uso de plantas para fines medicinais, como exemplo pode-se citar o Papiro de Eberes em 1500 A.C, que inclui algumas formulações; Matéria Medica da cultura Chinesa em 1100 A.C; a contribuição de Theophrastus (300 A.C) que, além do uso, relata a qualidade das plantas e a influência das características de cultivo e a contribuição de Dioscorides cujo registro é considerado por alguns como o mais importante representante da ciência de plantas medicinais do tempo antigo (NEWMAN *et al.*, 2000).

Esse conhecimento, acumulado através dos anos, ligado ao desenvolvimento da química orgânica levou ao registro dos primeiros estudos sobre plantas com base científica a partir do século XIX, resultando no isolamento de princípios ativos de plantas (MONTANARI & BOLZANI, 2001). Alguns desses constituintes são usados até hoje como medicamentos, como a morfina e a quinina. Posteriormente com o desenvolvimento de técnicas analíticas e de elucidação estrutural, o isolamento e identificação de constituintes de plantas tem sido mais eficiente, conhecendo-se hoje cerca de 50.000 metabólitos especiais isolados de angiospermas (MONTANARI & BOLZANI, 2001). Com os métodos atuais de analise orgânica têm se conseguido novas informações sobre espécies já estudadas e despertado o interesse sobre a utilização de espécies cuja química ainda é desconhecida.

Independente do enfoque, os produtos naturais são uma fonte ativa de substâncias químicas com uma enorme diversidade estrutural e complexidade molecular que conferem uma variedade de propriedades físico-químicas e biológicas. Isso de uma ou outra forma tem influenciado no desenvolvimento do ser humano seja pelo impacto direto em seu bem-estar ou por permitir o entendimento das relações entre seres vivos e o meio ambiente. Nesse sentido qualquer nova informação sobre uma espécie, é considerada um aporte importante ao conhecimento científico.

OBJETIVOS

- Isolar constituintes químicos de galhos e de folhas de *Piptadenia gonoacantha* e de flores de *Laseguea erecta*.
- Identificar as substâncias isoladas utilizando métodos espectroscópicos como IV, RMN ¹H (1D e 2D), ¹³C. (1D e 2D) e espectrometria de massas.
- Preparar derivados a partir dos constituintes isolados.
- Avaliar a atividade antioxidante dos extratos e de algumas substâncias isoladas de *Piptadenia gonoacantha*.

2 REVISÃO DE LITERATURA

2.1 Generalidades Sobre a Família Leguminosae e o Gênero Piptadenia

A família Leguminosae é de ampla distribuição geográfica, entre as maiores famílias de plantas com flores e compreende cerca de 642 gêneros e 18.000 espécies. Compreende três subfamílias, muitas vezes tratadas individualmente como famílias botânicas distintas, dependendo do arranjo sistemático adotado. De acordo com o arranjo de Kubitzki a partir do sistema de Cronquist (MABBERLEY, 1997), tem-se a divisão nas seguintes subfamílias:

- Caesalpinioideae (Leguminosae I) ou família Caesalpiniaceae;
- Mimosoideae (Leguminosae II) ou família Mimosaceae; e
- Papilionoideae (Leguminosae III) ou família Fabaceae. (DI STASI et al., 2002).

Espécies pertencentes á família Leguminoseae ocorrem em todas partes do planeta, com exceção das regiões Ártica e Antártica, estão difundidas pelas regiões tropicais e subtropicais do planeta e em zonas áridas ou semi-áridas; somente poucas espécies estendem-se distintivamente em zonas temperadas (CRONQUIST, 1981). São plantas de hábitos variados, existindo desde grandes arvores de matas tropicais, arbustos, até ervas anuais ou perenes e trepadeiras. Nesta família encontram-se plantas que possuem diferentes aplicações tais como: alimentos, tintas, colas, resinas, óleos, essências, inseticidas e drogas entre outros (ALLEN & ALLEN, 1981).

A subfamília Mimosoideae à qual pertence a espécie *Piptadenia gonoacantha* compreende cerca de 64 gêneros, que abrangem aproximadamente 2.950 espécies, (DI STASI *et al.*, 2002) distribuídas nas regiões tropicais, subtropicais e cálido-temperadas do globo. No Brasil destacam-se as espécies dos gêneros *Mimosa, Acacia, Calliandra, Inga, Pithecellobium, Prakia, Piptadenia e Stryphnodendron* muitos deles de valor medicinal, (BARROSO, 1991; GOMES, 2002).

A química da família Leguminosae é composta por várias classes de substâncias, destacando-se as classes dos flavonóides e alcalóides que são tidos como marcadores taxonômicos. Entre os flavonóides são encontrados flavonóis, flavonóis glicosilados, flavonas, isoflavonas, chalconas, entre outros. Já na classe dos alcalóides encontram-se alcalóides derivados de fenilalanina, da tirosina e do triptofano entre outros (HARBONE, 1971).

O gênero *Piptadenia* compreende cerca de 80 espécies tropicais a maioria americanas. No Brasil ocorrem nos estados de Amazonas, Bahia, Ceará, Goiás, Mato Grosso, Minas Gerais, Paraíba, Paraná, Piauí, Pernambuco, Rio Grande do Sul, Rio de Janeiro e São Paulo. (RIZZINI, 1998; LORENZI, 1992). As *Piptadenias* são conhecidas no Brasil como angico, angico branco, angico do campo, angico roxo, angico vermelho, angico bravo, angico preto angico rajado, angico de cerrado e na Argentina e Paraguai são conhecidas como cebil, cebil colorado e cebil ita (CORRÊA, 1984; RIZZINI, 1998). As espécies do gênero *Piptadenia* são utilizadas na indústria dos curtumes por possuírem a casca rica em taninos e a madeira dura e pesada é utilizada na construção naval e civil e como lenha e carvão. Hoje, com a escassez de espécies utilizadas como fonte de madeiras, o angico voltou a figurar como opção para a construção civil e telhados, além de ser usado para a recuperação ambiental, pois cresce muito bem em solos pobres e degradados (RIZZINI, 1998; CORREA, 1984).

Este gênero despertou o interesse dos pesquisadores desde a chegada de Cristóvão Colombo no novo mundo quando Ramón Pane descreveu a inalação de um rapé narcótico pelos nativos das Ilhas do Caribe ao parecer preparado com espécies de Piptadenias. As tribos indígenas da América do Sul utilizavam o mesmo rapé, que era produzido a partir das sementes de *Piptadenia peregrina*, chamada pôr eles de cohoba, paricá ou yopo. O rapé era utilizado em cerimônias, onde inalado permitia supostas visões, possibilitando a comunicação com espíritos. (GRANIER, 1965; STROMBERG, 1954).

A química deste gênero é composta por diferentes classes de substâncias e, devido à aplicação industrial, os primeiros estudos descritos que envolvem espécies de *Piptadenia* foram dirigidos na determinação do conteúdo de taninos. Foram encontramos os trabalhos de Zelada que em 1915 descreveu o conteúdo de taninos da espécie *Piptadenia cebil* e a identificação de catecol na mesma espécie (ZELADA & CONI, 1915), em 1929 Deforge relatou o conteúdo de taninos de *Piptadenia chrysostachys* (DEFORGE *et al.*, 1929) e Primo informou o conteúdo de taninos de *Piptadenia rígida* com finalidades de aplicação industrial (PRIMO, 1945).

Em 1937 Schneider estudou as propriedades adesivas de gomas exsudadas de espécies de *Piptadenia* (SCHNEIDER, 1937) e em 1943 registraram-se as propriedades antitussígenas dessas gomas (RANGEL, 1943) confirmando, assim, o uso popular.

Como foi mencionado anteriormente, o gênero *Piptadenia* despertou o interesse dos cientistas por seu uso na preparação do rapé. Desta forma, em 1950 foi descrito o uso da espécie *Piptadenia peregrina* para a preparação do Yopo, um tipo de rapé que produz euforia em humanos e, até então, não havia evidência de alcalóides no rapé (HENKER & HUSTON, 1950). Só em 1954 que Sttromberg relatou o isolamento do alcalóide indólico, 5-hidroxi-N,N-dimetiltriptamina (Bufotenina, I) das sementes de *Piptadenia peregrina* (STROMBERG, 1954).

Fish e col., estudando varias espécies de *Piptadenia* registraram 4 bases indólicas presentes nas sementes e vagens de *P. peregrina* e *P.macrocarpa*, as sementes contem bufotenina (I), óxido de bufotenina (II) e óxido de N,N dimetiltriptamina (III) as vagens contém N,N dimetiltriptamina (IV) (FISH *et al.*, 1955). Já em 1956 são estudadas as propriedades estimulantes do extrato aquoso de *Piptadenia peregina* (RAYMOND-HAMET, 1956) e um novo estudo do yopo permitiu a detecção de alcalóides nesse preparado (D'ALCONTRES & CUZZODREA, 1957).

Pachter e col., pesquisando as sementes de uma planta utilizada pelos índios do Brasil, identificada como *P. colubrina* Benth, isolou a bufotenina (I) e a classificou como sendo o alcalóide principal da mesma (PACHTER *et al.*, 1959). Em 1960 Delaveau registrou as propriedades psicotrópicas e alucinantes de *P. peregrina* (DELAVEAU, 1960), e Giesbrecht registrou a ocorrência de bufotenina (I) nas sementes de *Piptadenia falcata*. (GIESBRECHT, 1960).

Em 1963 é relatado o isolamento da N-metiltriptamina (V), 5-metoxi-Nmetiltriptamina (VI) e 5-metoxi-N,N-dimetiltriptamina (VII) das cascas de *P. peregrina* coletada no Brasil (LEGLER & TSCHESCHE, 1963), e num estudo de espécies de *Piptadenia* na Argentina foi registrado o isolamento de bufotenina (I) e a N,Ndimetiltriptamina (III) das sementes e vagens de *P. macrocarpa*, óxido de bufotenina (II) das sementes e 5-metoxi-N-metiltriptamina (VI) das cascas da mesma espécie. De *P. excelsa* foram identificados bufotenina (I) e óxido de bufotenina (II) nas sementes e vagens, e a N,N dimetiltriptamina (III) das vágens. Trabalhos de prospecção química com *P. paraguayensis* (casca, sementes e vagens), *P. rígida* (sementes) e *P. viridiflora* (sementes e vagens misturadas) revelaram teste negativo para alcalóides (IACOBUCCI & RUVEDA, 1964). PARIS e col. (1967) num novo estudo, registraram a presença de bufotenina (I), óxido de bufotenina (II) e N,N dimetiltriptamina (III) nas sementes de *P. peregrina*, taninos polifenólicos, catéquicos nas vagens e cascas. Neste mesmo estudo as sementes de *P. africana* não evidenciaram presença de alcalóides.

No ano de 1972 foram registrados o isolamento de teobromina (VII) das sementes de *P. leprostachya* e a presença de bufotenina (I) em *P. contorta* e *P. moniliformsis.* (YAMASATO *et al.*, 1972). O estudo da madeira de *P. macrocarpa* resultou no isolamento de dimetoxidalbergiona, dalbergina (VIII), kuhlmannina, lupeona (IX), lupeol (X), sitosterol (XII) β -glicosil sitosterol (XIII), e 3,3'4'8-pentaidroxiflavanona (XIV) (MIYAUCHI *et al.*, 1976).

Num estudo de plantas nativas do nordeste brasileiro, BULHÕES *et al.*, (1976) constataram a presença de esteróides, heterosídeos e taninos na casca do caule de *P. columbrina* e em 1985 foi relatado o isolamento de bufotenina das sementes de *P. macrocarpa* com um redimento de 0,5% (RENDON & WILLY, 1985).

DELGOBO e col., isolaram monossacarídeos e heteropolisacarideos da goma que exsuda da casca de *P. columbrina*, utilizada para o tratamento de problemas respiratórios. (DELGOBO *et al.*,1997; *et al.*, 1999) e em 1999 investigando a casca de *P. macrocarpa* foi isolado como composto principal, o flavonóide fisetinidol-3-*O*- β -D-xilopiranosídeo (anadantosídeo, **XIII**) (PIACENTE *et al.*, 1999). O último registro de estudo químico encontrado da espécie é citado no ano 2003 onde ALVES *et al.*, relata o isolamento de 7,8,3',4' tetraidroxiflavanona (**XIV**) isolada de *P. rígida* (ALVES *et al.*, 2003).

Essa pesquisa bibliográfica permitiu constatar que os alcalóides, quando presentes na espécie, são encontrados nas sementes. Os trabalhos mais recentes, certamente usando técnicas mais eficientes de análise, não tem detectado alcalóides nas outras partes de espécies desse gênero. Mas, entretanto, tem registrado a ocorrência de constituintes de outras classes de metabólitos especiais. Sabe-se que classes de metabólitos especiais são frequêntes a determinadas espécies, mas o teor e variação estrutural estão relacionados ao habitat da planta.

Bufotenina (I)

P. peregrina P. macrocarpa P. columbrina P. excelsa P. contorta P. moniliformis

P. peregrina P. macrocarpa P. excelsa

N,N diemtiltriptamina (III)

P. peregrina e macrocarpaP. excelsaP. contortaP. moniliformis

P. peregrina P. macrocarca

N-metiltriptamina (V)

P. peregrina

R= H 5-metoxi N-metiltriptamina (VI) *P. peregrina P. macrocarpa*

R=CH₃ 5-metoxi N,N dimetiltriptamina(VII)

P. peregrina

Teobromina (VII)

P. contorta P. leprostachya

2.1.2 Generalidades da espécie Piptadenia gonoacantha.

No Brasil *Piptadenia gonoacantha* (Figura 1, p. 9) é conhecida como: icarapé, caniveteiro, casco-de-jacaré, e mais popularmente, pau jacaré. Apesar de pouco apreciada, devido a seus espinhos em forma de lâmina, é importante para o reflorestamento, sendo uma das primeiras a aparecer após a área desmatada. É comum em áreas com algum sombreamento e ocorre principalmente nas florestas estacionais semideciduais, com alguma perturbação, nas regiões sudeste e sul do Brasil, incluindo Mato Grosso do Sul é encontrada também, em formações florestais alteradas do complexo atlântico. A madeira é moderadamente pesada, dura ao corte e de média resistência ao ataque de pragas. Usada para acabamentos internos, armação de móveis, miolos de portas e painéis, confecção de brinquedos, embalagens e para lenha e carvão, sendo considerada uma das melhores para produção de calor. Na época de floração, janeiro a fevereiro, é muito procurada por abelhas, além de ser utilizada na recuperação de áreas degradadas (LUNZ, 2004).

2.1.2.1 Aspectos Botânicos

Piptadenia gonoacantha é uma árvore que pode atingir de 8 a 20 m de altura (Figura 1, p. 9). Tronco muito característico, suberoso, com placas quadrangulares; ramos novos com cristas bem demarcadas, com acúleos. Folhas alternas, compostas bipinadas, com 30 a 50 pares de folíolos, pilosos na marcagem. Flores numerosas, em inflorescência espiciformes terminais, estames numerosos e aparentes, de branco a creme; nectário extrafloral na base do pecíolo. O fruto é legume, membranáceo e achatado (LUNZ, 2004).

Tabela 1. Classificação taxonômica da espécie(www.arvores.brasil.nom.br)

Divisão: Angiospermae
Classe: Dicotyledoneae
Ordem: Rosales
Família: Leguminosae
Sub-família: Mimosoideae
Gênero: Piptadenia
Espécie: Piptadenia gonoacantha
(Mart.) J. F. Macbr.

Figura 1. Aspecto geral da espécie vegetal *Piptadenia gonoacantha*. (Fotos: 1,3 e 4: Dr. Acácio Geraldo de Carvalho, IF-UFRuralRJ)

2.1.2.2. Trabalhos científicos com P. gonoacantha

Embora ela seja usada na indústria e pertença a um gênero com uso na medicina popular, os únicos trabalhos científicos com *P. gonoacantha* estão relacionados com o teor de taninos (GONÇALVES & LELIS, 2001). Além dessas considerações, essa planta é freqüente, popular e facilmente identificável na Mata Atlântica (Figura 1, p. 9).

Além de ela fazer parte do projeto sobre "avaliação da resistência ao ataque de organismos xilófagos ("Avaliação da resistência ao ataque de *Scolytidae* em essências florestais da Mata Atlântica" (LUNZ, 2004), não são registrados trabalhos sobre estudo químico dessa espécie. Por isso o grupo do LQPN-UFRuralRJ resolveu desenvolver trabalhos com essa espécie descobrindo os metabólitos especiais presentes nas diferentes partes da mesma e, inclusive, utilizar esses conhecimentos no projeto citado acima.

2.2 Gereralidades de Apocynaceae e Laseguea erecta

A família Apocynaceae esta composta por 2 subfamílias, Plumieroideae e Apocynoideae, que em conjunto estão constituídos por 250 gêneros e ao redor de 2000 espécies, com ocorrência nos trópicos e sub-trópicos. Como gêneros importantes desta família se destacam o gênero *Plumeria*, *Vinca*, *Rauwolfia e Strophantus* (EVANS, 2002).

A família Apocynaceae se caracteriza como representante das espécies bioproductoras de alcalóides, glicósidos cardiotónicos, terpenóides, e iridóides ocorrendo com menor freqüência os flavonóides (CARVALHAES *et al.*, 2002; VANDERLEI *et al.*, 1991; BARRETO *et al.*, 1998) e flavonóides glicosideos (CARVALHO *et al.*, 2001).

Alguns representantes desta família são bioprodutores de alcalóides indólicos como os dos gêneros *Alstonia, Aspidosdermum, Cataranthus, Hunteria, Pleiocarpa, Tabernaemontana, Rauwolfia, e Voacanga.* Alcalóides esteroidais ocorrem em *Holarrhena,* de alcalóides do tipo harmano encontram-se os gêneros: *Amsonia, e Aspidosderma.*

Glicosídeos cardiotónicos ocorrem em Acokanthera, Carissa, Melodinus, Apocyanum, nerium e Strophanthus. Outros constituintes encontrados em espécies dessa família são os glicosídeos cianogenéticos, leucoantocianidinas, saponinas, taninos, cumarinas, ácidos fenólicos e triterpenóides (EVANS, 2002).

Essas considerações são alguns dos motivos que o grupo do LQPN-UFRuralRJ tem procurado desenvolver estudos sobre avaliação dos constituintes químicos de espécies de alguns gêneros dessa família. Entre eles os gêneros *Himatanthus* (BARRETO *et al.*, 1998), *Dipladenia* (CARVALHO *et al.*, 2001), *Plumeria* (CORNELIUS, 2006), *Parahancornia* (CARVALHO *et al.*, 2001, SOBRINHO *et al.*, 1991). Esses dois últimos gêneros, até então, tinham sua química ainda desconhecida. Até o momento não se verificou semelhança, em termo de metabólitos especiais, entre *Parahancornia* e os demais referidos gêneros.

O gênero Laseguea.

Figura 2. Aspecto geral de um espécime jovem de *Laseguea erecta* (C.C.F.Alves, Tese de Doutorado, PPGQP-UFRuralRJ, 2004)

O único trabalho sobre estudo químico de *Laseguea* foi o desenvolvido pelo grupo de pesquisa de produtos naturais da Universidade Federal Rural do Rio de Janeiro, LQPN-UFRuralRJ. Nesse estudo identificaram-se no caule de *Laseguea erecta* o lupeol (**X**), a cumarina escopoletina (**XV**), o lignóide pinoresinol (**XVI**) e o glicosil-cardenolídeo ou α -L-tevetosil-digitoxigenina (**XVII**) (CARVALHO *et.al*, 2006). A química dessa espécie tem se revelado bem diferente das demais estudadas, apesar de estudos adicionais estão em andamento.

Escopoletina (XV)

Pinoresinol (XVI)

α-L-tevetosil-digitoxigenina (XVII)

3 CONSTIUTUINTES QUÍMICOS ISOLADOS NESTE TRABALHO

3.1 Piptadenia gonoacantha

O fracionamento do extrato metanólico do galho de *Piptadenia gonoacantha* permitiu o isolamento e identificação dos esteróides sitosterol (1) estigmasterol (2), o peptídeo N-benzoilfenilalaninato de N-benzoilfenilalaninila (3), o $3-\beta$ -O-D-glucopiranosil sitosterol (4) e os flavonóides apigenina (4',5,7-triidroxiflavona, 5), 5,3'-dimetil- luteolina (6) e 5-metil-apigenina (7).

O fracionamento do extrato metanólico das folhas de *Piptadenia gonoacantha* permitiu o isolamento e identificação de galato de metila (8) e os flavonóides vitexina (9) e isovitexina (10). Estes constituintes estão sendo reportados pela primeira vez nesta espécie. Foram preparados os derivados 1a, 2a, 8a e 9a.

3.2 Laseguea erecta

O fracionamento do extrato metanólico das flores de *Laseguea erecta* permitiu o isolamento e identificação do triterpeno lupeol (11) do ácido ursólico (12) e dos flavonóides quercetina (13) e 3-O- α -arabinopiranosil quercetina (14). As substâncias 12, 13 e 14 não foram detectadas no caule dessa planta com o trabalho realizado anteriormente (CARVALHO *et al.*, 2006).

4 PARTE EXPERIMENTAL

4.1 Equipamentos e Reagentes

Os pontos de fusão foram determinados sem correção de valores em aparelho MEL-TEMP II, Laboratory Devices USA utilizando capilar. Os espectros obtidos na região do infravermelho foram registrados em espectrofotômetro Perkin-Elmer 1600/1605 FT-IR em discos de KBr. Os espectros de Ressonância Magnética Nuclear ¹H e ¹³C (incluído experimentos 2D) foram obtidos em espectrômetros Bruker ACE-200 [200MHz (¹H) e 50 MHz (¹³C)] e Bruker DRX 500 [500MHz (¹H) e 125 MHz (¹³C)]. Como padrão interno para referência de deslocamento químico foi usado tetrametilsilano. Os deslocamentos químicos (δ) foram obtidos em parte por milhão (ppm) e as constantes de acoplamento (*J*) foram medidos em Hertz (Hz).

Os espectros de massas foram registrados em um cromatógrafo a gás, coluna CP-SIL8 (30m x 0,25 x 0,25mm), temperatura 180/1-10°C/min.-280°C(20min), injetor 270C, acoplado a um espectrômetro de massas de marca VARIAN, modelo SATURN 2000 com Ionização de IE (70eV).

Foi usada cromatografia em coluna de gel de sílica (230-400 e 70-230 mesh) da marca Vetec como fase estacionaria. A cromatografia em camada delgada preparativa (CCP) foi feita em placas de gel de sílica 60 PF ₂₅₄ Merck e Vetec sobre suporte de vidro e espessura de 1 mm. As substâncias foram detectadas por irradiação ultravioleta de 254 ou 365 nm.

Foi usado Sephadex LH-20 da marca Sigma-Aldrich

As placas para análise cromatográfica em camada delgada analítica (CCDA) foram de gel de sílica 60 PF_{254} Merck e como reveladores foram usados, além da detecção por irradiação ultravioleta, reagentes de Liebermann-Burchard (esteróides e terpenos), soluções de AlCl₃ em MeOH (1%) para compostos fenólicos e vapores de iodo e Godin (vanilina 1% etanólica em H₃PO₄ e H₂SO₄) como reveladores universais.

Os solventes utilizados foram grau p.a da marca Vetec e Merck sendo que solventes como metanol e diclorometano foram destilados antes de serem utilizados.

4.2 Isolamento e Purificação dos Constituintes

4.2.1 Piptadenia gonoacantha

O material vegetal da espécie *Piptadenia gonoacantha* foi coletado no Jardim Florestal do Instituto de Florestas (IF) da Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, pelo Prof. Dr. Acácio Geraldo de Carvalho. Uma exsicata desta espécie (RBR 6939) está depositada no herbário RBR, IB-UFRRJ.

4.2.1.1 Galhos de P. gonoacantha

Os galhos secos e moídos (1448,0 g) de *Piptadenia gonoacantha* foram submetidos a extração a frio com metanol e após retirada do solvente através de destilação sob vácuo,

obtive-se 51,4 g de extrato metanólico (**PGGM**). O extrato **PGGM** (46,4 g) foi submetido a partição com solventes de polaridade crescente utilizando clorofórmio, acetato de etila, butanol. Obteveram-se, respectivamente, as frações **PGGMC** (4,0 g), **PGGMA** (4,5 g), **PGGMB** (19,8 g), **PGGMM** (14,3 g). Em todos os casos o solvente foi retirado usando destilação sob vácuo.

A fração **PGGMC** (4,0 g) foi fracionada através de cromatografia em coluna de gel de sílica a qual foi eluída com clorofórmio (CC) em polaridade crescente com metanol, obtendose 41 frações de 100 mL. A comparação das frações foi acompanhada através de cromatografia em camada delgada analítica (CCDA) revelada sob UV a 254 e 362 nm e com Lieberman, as frações com substâncias análogas foram reunidas gerando um total de 35 frações.

As frações 6 e 7 apresentaram um precipitado o qual foi purificado por cristalização em metanol, após filtração em funil de Hirsch foram obtidos 190,0 mg de cristais incolores que apresentaram pf 128-130 °C. Esse sólido foi identificado como a mistura de sitosterol (1) e estigmasterol (2). PF: 128-130 °C(metanol), $v_{máx}^{KBr}$ (cm⁻¹): 3425 cm⁻¹(v_{O-H}), 1057(v_{C-O}) 1649 (v_{C=C}); RMN ¹H (200 MHz, CDCl₃) δ_{H} : 0,6-2,2(m, 1+2), 0,67 e 1,0(H₃C-18 e 19, 1+2), 3,50 (m, H-3, 1+2), 5,34 (sl, H-6, 1+2), 5,13 (m, H-22,23, 2); RMN ¹³C (50,3 MHz, CDCl₃, Tabela 2; CG-EMIE: tr(min), *m/z* (M⁺⁻, %):1 [15,3, 414 (M⁺,100%), Figura 6, p.23] e 2 [14,19, 412 (M⁺, 60%), Figura 7, p. 24].

A fração 10 apresentou um precipitado que foi purificado usando cromatografia em coluna de gel de sílica e eluída com clorofórmio 100%. Obteve-se 11,0 mg de sólido amorfo com PF 184-186 °C, que após analise foi identificado como o éster (**3**). $v_{máx}^{KBr}$ (cm⁻¹): 3310 (v_{N-H}), 3030 ($v_{=C-H}$), 1750 ($v_{C=O}$, 1640 ($v_{C=O}$ de amida); RMN ¹H (500 MHz, CDCl₃) Tabela 3; RMN ¹³C (125 MHz, CDCl₃, Tabela 3; EMIE *m/z* (%): 506(ausente), 355(10), 328(50), 238(70), 146(100), 118(60), 91(70).

A fração 16 apresentou um precipitado que foi purificado por recristalização em metanol, obtendo desta forma 37,2 mg de sólido branco (PF 308-310 °C) identificado como 4. PF: 308-310 °C (metanol), $v_{máx}^{KBr}$ (cm⁻¹): 3408 (v_{O-H}), 2959, 2934,2870 (v_{C-H}) 1460,1380 (v_{C-C}), 1164,1023 (v_{C-O}), 1633 ($v_{C=C}$); RMN ¹H (200 MHz, CDCl₃/MeOH) δ_{H} : 5,34 (d, H-6), 5,04 (d, H-1'), 4,54 -3,60 (H-2'-H6'); RMN ¹³C (50,3 MHz, CDCl₃/MeOH), Tabela 2.

A fração **PGGA** foi eluída com mistura de $CHCl_3$ e MeOH em polaridade crescente em coluna cromatográfica de gel de sílica, obtiveram-se 51 frações de 100 mL cada uma, que foram analisadas com CCDA e reunidas para obter um total de 33 frações.

A fração 7 mostrou em CCDA a presença maioritaria de um composto que revelou com AlCl₃ e que foi purificado com cromatografia em coluna de gel de sílica usando inicialmente cloroformio 100%, seguido de CHCl₃: MeOH (9:1) como eluente, e recolheramse 10 sub-frações, das quais a fração 4 foi filtrada em Sephadex LH-20 para obter 6,0 mg de um sólido amarelo (PF 338-340), que foi identificada como **5**. PF: 338-340 °C, $v_{máx}$ ^{KBr} (cm⁻¹): 3328 (v_{O-H}), 2924, 2853 (v_{C-H}), 1651($v_{C=O}$), RMN ¹H (200 MHz, C₂D₆CO) δ_{H} : 13,01(s, 1H, 5-OH) par de dubletos em δ_{H} 7,93 (d, J=8,0 Hz; H-2',6') 7,02 (d, J=8,0 Hz; H-3',5'), 6,63 (H-3), 6,54 (sl, 1H, H-6), 6,25 (sl,1H, H-8).

A analise da fração 12 em CCDA mostrou manchas que revelaram a presença de compostos fenólicos. Esta foi submetida a CCP, eluida com CHCl₃:AcOEt:MeOH (7:2,5:0,5) fornecendo 5,0 mg de um sólido amarelo de PF 238-240 °C que foi identificado como **6**, PF: 238 -240 °C, $v_{máx}^{KBr}$ (cm⁻¹): 3378 (v_{O-H}), 2922, 2851 (v_{C-H}), 1636 ($v_{C=O}$), 1500 ($v_{C=C}$); RMN ¹H (200 MHz, DMSO-d₆) δ_{H} : 7,44 (m, 2H, H-6',2'), 6,9 (d, J=8,0 Hz, H-5') 6,57 (s,1H, H-3), 6,47 (d, J=2Hz, H-8) e 6,31 (d, J=2Hz, H-6), 3,85 (s, OCH₃), 3,73 (s, OCH₃); EMIE *m/z* (%):124 (30), 147(10), 163 (55), 180(100), 193(5).

A fração 21 foi submetida a cromatografia em coluna de gel de sílica eluida com CHCl₃/MeOH em polaridade crescente obtendo-se 8 novas frações, a fração 6 foi cromatografada em CCP eluída com CHCl₃:MeOH (9:1) para obter 6,5 mg (material pastoso) da substancia identificada como 7. $v_{máx}^{KBr}$ (cm⁻¹): 3383,3259 (v_{O-H}), 2938,2852 (v_{C-H}), 1649 ($v_{C=O}$), 1496 ($v_{C=C}$); RMN ¹H (200 MHz, DMSO-d₆) δ_{H} : 7,82 (d, J=8 Hz, H-2',6') e 6,89 (d, J=10 Hz, H-3'5'), 6,51 (sl, 1H, H-8) , 6,50 (s, 1H, H-3) e 6,37 (sl, 1H, H-6), 3,77 (s, 3H, OCH₃).

Esses procedimentos experimentais estão representados no Esquema 1 (p. 16).

Parte das frações PGGMB e PGGMM foram acetiladas e estão sendo trabalhadas atualmente.

Esquema 1. Isolamento das substâncias 1-7 a partir dos galhos de *P. gonoacantha*.

4.2.1.2 Folhas de P. gonoacantha

As folhas secas e moídas (560,0 g) de *Piptadenia gonoacantha* foram submetidas a extração a frio com diclorometano seguida extração com metanol. Após retirada do solvente através de destilação sob vácuo, obteve-se 19,7 g de extrato metanólico (**PGFM**). O extrato **PGFM** foi submetido à partição com solventes de polaridade crescente utilizando clorofórmio e metanol. Obteveram-se, depois de retirada do solvente, as frações **PGFMC** (5,9 g), **PGFMM** (12,4 g) respectivamente.

A fração **PGFMM** foi submetida a cromatografia em coluna de gel de sílica eluída com cloroformio-metanol (8:2) ate metanol 100%, foram obtidas 20 frações de 100 mL, a

comparação das frações foi acompanhada através de cromatografia em camada delgada analítica (CCDA) revelada em UV 254 e 362 nm e outros reveladores, as frações com substancias análogas foram reunidas gerando um total de 11 frações.

A fração 2 foi submetida a cromatografia em coluna de gel de sílica que foi eluída com CHCl₃: MeOH (9:1) obtendo-se 5 novas frações. A frações 2 e 3 apresentaram um precipitado marrom de PF 175-177 °C (112,0 mg) que foi identificado como galato de metila (**8**). PF 175-177 °C , $v_{máx}^{KBr}$ (cm⁻¹): 3363 (v_{O-H}), 2960, 2855 (v_{C-H}), 1693 (v_{C=O}), em 1209 (v_{C-O}), RMN ¹H (200 MHz, DMSO-d₆) δ_{H} : 6,96 (s, 2H, H-2,6), 3,72 (s, 3H, OCH₃). RMN ¹³C (50,3 MHz, DMSO-d₆) δ_{C} : 166,7 (C=O), 145,9 (C-3 e C-5); 138,8 (C-4), 119,7 (C-1), 106,9 (C-2 e C-6), 51,95 (OCH₃).

A fração 4 foi submetida a cromatografía em coluna eluída com CHCl₃: MeOH 8:2 obtendo-se 6 novas frações. A fração 4 apresentou um precipitado que foi separado através de filtração fornecendo 24,0 mg de um sólido de cor amarelo (PF 278-280 °C). Este material foi identificado como 9 (vitexina), PF 278-280 °C, $v_{máx}^{KBr}$ (cm⁻¹): 3380 e 3254 (v_{O-H}), 2918 (v_{C-H}), 1654 (v_{C=O}), 1569, 1641-1501 (v_{C=C}), 1095 (v_{C-O}). RMN ¹H (200 MHz, DMSO-d₆) δ_{H} : 13,17 (-OH), 8,02 (d, J=8,0 MHz, H-2',6'), 6,88 (d, J=8,0 MHz, H-3',5'), 6,78 (s, 1H, H-8), 6,26 (s, 1H, H-6), 4,68 (d, H-1''). RMN ¹³C (50,3 MHz, DMSO-d₆), Tabela 8.

A fração 5 foi filtrada em Sephadex LH-20 usando como solvente CHCl₃/MeOH 7:3, acompanhado por CCDA e a fração mais pura forneceu 25,0 mg de um sólido amarelo (PF:245-247 °C) que foi identificado como o flavonóide **10** (isovitexina). Um resumo dos processos experimentais estão representados no Esquema 2.

Esquema 2. Isolamento das substâncias 8-10 a partir das folhas de *P. gonoacantha*.

4.2.2 Laseguea erecta

O material vegetal da espécie *Laseguea erecta* foi coletado no Morro de São Sebastião, Ouro Preto, Minas Gerais, Brasil e autenticado pelo técnico Jorge L. Silva. Foi identificada pela curadora do herbário Professora Maria Cristina Trivelato Messias, através de comparação com a exsicata desta espécie (nº 6732) que está depositada no Herbário OUPR-UFOP, Instituto de Ciências Exatas e Biológicas da Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil.

As flores de *Laseguea erecta* (32,4 g) foram moídas e submetidas à extração com metanol através de maceração. O extrato metanólico resultante, após retirada do solvente através de destilação sob vácuo, **LEFM** (13,9 g) foi submetido à partição com solventes em polaridades crescentes obtendo com CHCl₃ a fração **LEFMC** (3,6 g), com AcOEt a fração denominada **LEFMA** (1,8 g) e com metanol a fração **LEFMM** (7,5 g).

O resíduo clorofórmico **LEFMC** foi submetido à CC sob gel de sílica eluída com misturas de CHCl₃ e MeOH até metanol 100%. Foram coletadas 28 frações de 25 mL. As frações foram analisadas por CCDA e reunidas para um total de 11 frações. Da fração 2 foi obtido por recristalização em metanol a substância **11** (lupeol, 47,0 mg) que se apresentou como um sólido branco de PF 180-182 °C. As frações 3-6 foram reunidas e filtradas através de gel de sílica eluída inicialmente com CHCl₃ e finalizando com CHCl₃:MeOH (8:2) para obter 3 novas frações, as frações 2 e 3 apresentaram um precipitado branco de PF 250-252 °C, que foi identificado como **12** (ácido ursólico; 195,0 mg) Esquema 3.

O resíduo acetato de etila, **LEFMA**, foi eluído com misturas de CHCl₃/MeOH em polaridade crescente em coluna de gel de sílica e foram coletadas 31 frações de 25 mL. Estas frações foram reunidas com base em CCDA em 15 novas frações. As frações 2-4 foram filtradas em Sephadex LH-20 usando como solvente uma mistura de CHCl₃/MeOH 8:2 fornecendo a substância **13** (3,5 mg) que se apresentou como um sólido de cor amarelo (PF. 312-314 °C). As frações 7-8 foram igualmente filtradas em Sephadex LH-20 usando CHCl₃/MeOH 7:3 conduzindo a purificação da substância **14** (5,2 mg, pastoso). O resíduo obtido com metanol, **LEFMM**, foi submetido à CC sob gel de sílica, eluída inicialmente com clorofórmio-metanol 8:2 até metanol 100% e obtiveram-se 23 frações. As frações 6-14 apresentaram teste positivo para flavonóides com cloreto de alumínio/etanol em CCDA. Estas frações estão sendo analisadas com técnicas espectrométricas. Esses procedimentos experimentais estão representados no Esquema 3.

Esquema 3. Isolamento das substâncias 11-14 a partir das flores de *L. erecta*.

4.3 Reações de Derivação

4.3.1 Acetilação

Dissolveram-se 30 mg de 1+2 em piridina (2,0 mL) e adicionou-se anidrido acético (2,0 mL). Essa solução ficou em agitação magnética a temperatura ambiente por 24 horas. Adicionou-se água gelada (25,0 mL) e em seguida extraida com CH_2Cl_2 (3x5,0 ml). A solução orgânica foi lavada três vezes e com HCl 10% (3x10,0 mL) para remover a piridina. Essa fase foi seca com sulfato de sódio anidro e o solvente retirado através de destilação em evaporador rotativo sob vácuo e o resíduo foi seco em pistola de secagem. O produto (1a + 2a, 31,0 mg) foi analisado através de RMN ¹H e ¹³ C.

4.3.2 Metilação com diazometano (VOGEL, 1985)

Preparação do diazometano

Em um balão de 500,0 mL misturou-se em banho de gelo/sal: 100,0 mL de metilamina 40% e HCl conc. até pH ácido aprox. 100,0 mL (**A**). Em um becker de 100,0 mL dissolveu-se 75,0 g de uréia em 50,0 mL de água destilada (**B**). Foi adicionado **B** em **A** e manteve-se sob aquecimento em banho de óleo, com refluxo, durante 2,5 horas. Deixou-se esfriar a mistura em banho de gelo/sal e em seguida foi transferida para um beaker de 500,0 mL onde foram adicionados lentamente 27,5 g de NaNO₂ com agitação manual até formar a solução (**C**). Em um outro beacker de 1000,0 mL misturou-se em banho de gelo/sal: 75,0 g de gelo picado e 15,0 mL de H₂SO₄ conc. (**D**).

A mistura **C** foi adicionada lentamente em **D** com auxílio de um funil, cuja haste sempre ficou imersa na solução ácida. O precipitado resultante foi filtrado em funil de vidro sinterizado, com sucção, e em seguida lavou-se com bastante água destilada e deixou-se secar bem para, desta forma, obter a N-nitrosometiluréia.

Em um becker de 500,0 mL em banho de gelo/sal (temperatura de 0 °C) foram misturados 100,0 mL de éter etílico e 100,0 mL de solução de KOH (50%) e aos poucos foi adicionada a N-nitrosometiluréia obtida na etapa anterior. Essa mistura foi submetida a destilação com o aparelho de um "kit de preparação de diazometano" usando banho de óleo. O produto da destilação (diazometano) foi recolhido em um balão imerso em banho de gelo/sal contendo éter etílico. Parte do diazometano foi guardado no congelador para ser usado em até 3 dias.

As substâncias **8** e **9** foram dissolvidas, separadamente, em metanol e adicionou-se diazometano em excesso, a reação foi acompanhada por CCDA. Após a evaporação do solvente, o produto foi analisado com CCDA e, em seguida, filtrado em gel de sílica. A análise com espectros de RMN ¹H e ¹³C confirmou a formação dos produtos **8a** (45,0 mg) e **9a** (8,0 mg).

4.4 Ensaio da Atividade Antioxidante

4.4.1 Equipamentos e Reagentes

O radical DDPH (2,2-difenil-1-picril-hidrazil) utilizado foi da marca Sigma, USA. As leituras foram realizadas em espectrofotômetro ELISA (Bio-Rad Laboratories, Model 680, Microplate Reader). O metanol utilizado para solubilização foi marca Vetec. Os padrões
rutina e quercetina foram doados gentilmente pela doutoranda Regina L. P. Lianda (PPGQO-UFRRJ).

4.4.2 Preparação das amostras

Uma alíquota do extrato metanólico das folhas de *P. gonoacantha* **PGFM** foi solubilizada em metanol para obter uma solução estoque de concentração final 100,0 μ g/mL e as substâncias isoladas (5, 6, 7, 8, 9, 10) foram preparadas dissolvendo-as em metanol, obtendo as concentrações finais de 100,0 μ M. Os flavonóides, rutina e quercetina foram usadas como substâncias padrão usando a mesma concentração.

A solução estoque de **PGFM** (100 μ g/mL) foi diluída com metanol para 50,0 μ g/mL 25,0 μ g/mL, 10,0 μ g/mL; 1,0 μ g/mL; 0,1 μ g/mL, sendo usado total de 6 soluções. As soluções das substâncias isoladas foram, também, diluídas em metanol obtendo-se as soluções 50,0 μ M, 25,0 μ M, 10,0 μ M, 1,0 μ M e 0,1 μ M para serem usadas da mesma forma que as anteriores.

4.4.3 Ensaio fotométrico DPPH

Foram adicionados em microplaca de 96 poços, 71 μ L de cada uma das soluções em triplicata, partindo da solução estoque até a solução de 0,1 μ g/mL, (extrato PGFM) e 0,1 μ M (substâncias isoladas), em seguida foram adicionados aos poços 29 μ L de DDPH 0,3 μ M. Igualmente foram adicionados 71 μ L de cada uma das soluções em triplicata, partindo da solução estoque até a solução de 0,1 μ g/mL, (extrato PGFM) e 0,1 μ M (substâncias isoladas) esta vez sendo adicionados 29 μ L de metanol, essas soluções serviram como soluções branco.

Em cada uma das placas preparadas o DPPH foi o último a ser colocado e em seguida a microplaca foi fechada e coberta com papel alumínio. A reação foi mantida no escuro a temperatura ambiente. Depois de 30 minutos os valores de absorbância foram medidos a 570 nm e convertidos em porcentagem de atividade antioxidante (AA) usando a formula seguinte:

AA%= 100-{[(Abs amostra + Abs branco)*100]/Abs controle}

71 μ L de metanol e 29 μ L de DPPH foi usado como controle negativo. Rutina e quercetina foram usadas como controles positivos (Adaptadado de MENSOR *et al.*, 2001).

4.4.4 Análise estatística

Os valores de EC_{50} (concentração que reduz em 50% a atividade do DPPH) foram calculados a partir da equação de regressão linear dos dados experimentais, onde o eixo da abscissa representa as concentrações da amostra e o eixo da ordenada mede a porcentagem de atividade antioxidante. As linhas de regressão linear de cada experimento mostraram um bom coeficiente de determinação ($r^{2} \ge 0,80$). Os dados de no mínimo três experimentos independentes foram tratados estatisticamente; sendo o EC_{50} correspondente ao valor médio obtido dessas experiências, e expressado como $EC_{50} \pm$ desvio padrão (DP). Nos experimentos foi assumida margem de erro $\le 10\%$.

5 **RESULTADOS E DISCUSSÃO**

5.1 Identificação dos Constituintes Isolados de Piptadenia gonoacantha

5.1.1 Identificação das substâncias 1 e 2 (sitosterol e estigmasterol)

As substancias 1 e 2 foram obtidas em mistura como um sólido cristalino (PF: 128-130 °C) e identificadas através de análise dos espectros de IV, RMN ¹H e ¹³C e comparação com os dados encontrados na literatura (KOJIMA *et al.*, 1990).

O espectro de infravermelho (Figura 3, p. 22) apresentou bandas absorção em 3425 cm⁻¹ (v_{O-H}) cuja função foi confirmado pela banda em 1057 cm⁻¹ (v_{C-O}) para álcool secundário e a banda em 1649 cm⁻¹ de deformação axial C=C. As demais bandas de absorção estão de acordo com o esqueleto do estreóide.

O espectro de RMN ¹H (Figura 4, p.22) possui sinais entre δ_H 0,6-2,2 que são compatíveis a feição de sinais de hidrogênios metílicos e metilênicos de esteróides, entre estes sinais podem-se destacar os singletos em δ_H 0,67 e 1,0 das metilas 18 e 19. O sinal em δ_H 3,50 (m) foi atribuído ao hidrogênio carbinólico H-3 e o sinal em δ_H 5,34 (sl) representante do hidrogênio olefínico (H-6). O sinal δ_H 5,13 (m) permitiu sugerir a presença da substância **2** identificada como estigmasterol. A integração desse espectro permitiu determinar quantitativamente a proporção das duas substâncias como 81% sitosterol e 19% estigamsterol.

O espectro de ¹³ C (Figura 5, p. 23) permitiu confirmar a presença das duas substâncias na amostra pelos sinais em δ_{CH_2} 33,9 e 26,0 correspondentes os carbonos 22 e 23 para sitosterol (1) e os deslocamentos químicos dos carbonos olefínicos δ_{CH} 138,3 e 129,2 (C-22 e 23) para o estigmasterol (2). Os sinais em δ_C 140,7 e δ_{CH} 121,7 dos carbonos C-5 e C-6 são comuns a ambas. Para garantir a proposta dessas estruturas injetou-se essa amostra no cromatógrafo de gás acoplado a espectrômetro de massas fornecendo os espectros de massas de duas substâncias, conforme previsto, 1 [tr 15,3 min, *m/z* 414 (M⁺,100%), Figura 6, p.23] e 2 [tr: 14,19 min, *m/z* 412 (M⁺, 60%), Figura 7, p. 24].

C	1/2	Sitosterol	Estigmasterol
U	δ _C	δ _C	δ _C
1	37,2	37,2	37,2
2	31,6	31,6	31,6
3	71,8	71,8	71,8
4	42,3	42,3	42,3
5	140,7	140,7	140,7
6	121,7	121,7	121,7
7	31,9	31,9	31,9
8	31,8	31,9	31,9
9	50,1	50,1	50,1
10	36,5	36,5	36,5
11	21,0	21,1	21,1
12	39,7/39,6	39,8	39,7
13	42,2	42,3	42,2
14	56,7	56,3	56,8
15	24,3	24,3	24,4
16	28,2/28,9	28,2	28,9
17	56,0/55,9	56,0	55,9
18	11,8/11,9	11,9	12,0
19	19,4	19,4	19,4
20	36,1/40,5	36,1	40,5
21	18,7/21,2	18,8	21,2
22	33,9 /138,3	33,9	138,3
23	26,0/129,2	26,0	129,2
24	45,8/51,2	45,8	51,2
25	29,1/31,8	29,1	31,9
26	19,8/21,0	19,8	21,1
27	19,0	19,0	19,0
28	23,0/25,4	23,0	25,4
29	12,0/12,2	12,0	12,3

Tabela 2.Comparação dos dados de RMN 13 Cde 1 + 2 com os dados da literatura parasitosterol e estigmasterol. (KOJIMA *et al.*, 1990).

Figura 3. Espectro de IV das substâncias 1+2.

Figura 4. Espectro de RMN 1 H (200 MHz, CDCl₃) de 1+2.

Figura 5. Espectro de RMN 13 C (50 MHz, CDCl₃) de 1+2.

Figura 6. Espectro de massas da substância 1 obtido com impacto de elétrons.

Figura 7. Espectro de massas de 2 obtido com impacto de elétrons.

Com o objetivo de obter derivados para posteriormente fazer avaliação de atividades biológicas e praticar a execução de reações fez-se a reação de acetilação dessa mistura de esteróides. Conforme descrito no experimental (4.3.1) obteve-se 31,0 mg do produto acetilado. A formação desse acetato foi confirmada pela análise do espectro de RMN ¹H (Figura 8, p. 25) que mostra o sinal em $\delta_{\rm H}$ 2,01 (s, 3H), correspondente aos hidrogênios metílicos do grupo acetato, e o sinal do H-3 que passa para campo baixo em 4,6 ppm.

Esse grupo funcional foi também identificado pelos sinais no espectro de RMN ¹³C (Figura 9, p. 25) em δ_C 170,5 do carbono carbonílico de éster e o sinal δ_{CH3} 21,41.

Figura 8. Espectro de 1 H (200 MHz, CDCl₃) de 1a+2a.

Figura 9. Espectro de 13 C (50 MHz, CDCl₃) de 1a+2a.

5.1.2 Identificação da substância 3 (N-benzoilfenilalanilato de 2-benzoilamida-3-fenilpropila).

A substância **3** apresentou-se como um sólido branco (pf: 184 -186 $^{\circ}$ C), e foi caracterizado através da análise dos espectros de IV, RMN 1 H (1D e 2D), 13 C, e EM.

O espectro de IV (Figura 10, p.29) dessa substância apresentou bandas de absorção em 3310 cm⁻¹ de deformação axial de N-H, 3030 cm⁻¹ de deformação axial C-H de sistema aromático, 1750 cm⁻¹ deformação axial de C=O de éster e em 1640 cm⁻¹ de deformação de carbonila C=O de amida.

O espectro de RMN ¹H (Figuras 11, 12 e 13, p. 29-30) apresentou sinais na região de deslocamento químico de hidrogênios em anel aromáticos δ_H 7,66-7,15 (20H) compatíveis com a presença de vários sistemas aromáticos mono-substituidos; os sinais na região de δ_H 4,85 a 2,8 correspondem a hidrogênios metilênicos e metínicos. Os pares de sinais em δ_H 2,85 (dd, 1H) e δ_H 2,93 (dd, 1H) e δ_H 3,96 (dd, 1H) e δ_H 4,47 (dd, 1H) podem ser considerados como representantes de dois grupos metilênicos com hidrogênios enantiotópicos.

O espectro de correlação homonuclear hidrgênio-hidrogênio (¹H-¹H-COSY, Figura 14, p. 31) permitiu verificar as correlações entre esses sinais em δ_H 2,85 (dd, 1H, H-3a) e δ_H 2,93 (dd, 1H, H-3b) e, inclusive, verificar o acoplamento desses com o hidrogênio representado pelo multipleto em δ_H 4,53 (m, 1H, H-2) que acopla com os hidrogênios do outro par de dubletos do metileno [δ_H 3,96 (H-1a) e 4,47 (H-1b)]. Considerando os valores de deslocamento químico dos carbonos que sustentam esses hidrogênios (HSQC, Figura 18, p. 33) 37,03 (CH₂-3), 50,2 (CH-2) e 65,4 (CH₂-1) foi possível montar a unidade **3a**. O espectro de HMBC (¹H-¹³C-COSY-ⁿJ_{CH}, n=2 e 3, HMBC, Figura 19 e 20, p. 34-35) mostrou sinais de acoplamento do H-2 com C=O (168,0, C-10), e H-5/9 e H-1a/1b com CH₂-3 (37,03) esses dados justificam os grupos fenil e benzoil em **3a**.

Outro sistema presente na molécula é o **3b**. O grupo metileno com δ_{CH2} 37,2, contendo dois hidrogênios [δ_H 3,17 (dd, 1H) e 3,22 (dd, 1H,)] acoplando entre si e com o hidrogênio H-2' [δ_H 4,85 (t)], ligado ao carbono metínico δ_{CH} 54,5, cujo valor é compatível com o carbono metínico ligado a nitrogênio. O espectro bidimensional heteronuclear de hidrogênio-carbono de **3** (HMBC, Figura 19 e 20, p. 34-35) mostrou sinais de acoplamento a longa distância do H-2' (δ_H 4,84), H-3' δ_H 3,17 e δ_H 3,22 com o C-1' (δ_C 172,0) de éster. A presença de dois sinais de $\delta_{C=0}$ de amida (C-10 e 10') e um deles acoplamento com H-2', semelhante à interação da amida com H-2, justifica a unidade benzamida nesse sistema. O grupo fenila pode ser incluido em **3b** pelos sinais de acoplamento de CH-5'/9'(129,2) com os H-3' (3,17 e 3,22) (Figura 20, p.35).

O sinal de acoplamento entre C-1' e os hidrogênios H-1a/1b permitiu unir as duas unidade 3a e 3b para montar o éster 3. A Tabela 3 mostra as atribuições dos deslocamentos químicos de **3** e as interações de acoplamento a uma ligação (¹J_{CH}, HSQC, Figura 18, p. 33), e a longa distância (^{2,3}J_{CH}, HMBC, Figura 19 e 20, p.34-35) entre os carbonos e seus respectivos hidrogênios. Esta tabela mostra, inclusive, a comparação dos dados da literatura divulgado por Catalan e col. (2003) para o N-benzoilfenilalanilato de 2-benzoilamida-3-fenil-propila, citado como N-benzoilfenilalanilato de N-benzoilfenilalanila, isolado de Croton hieronymi. O espectro de massas (Figura 21, p. 36) não apresentou o pico de íon molecular (M⁺ 506), mas os picos em m/z 238, 146, 118 e 91 (Esquema 4, p. 36) correspondem a íons que justificam a proposta. Este éster foi isolado também das plantas Zeyhera digitalis (Bignoniaceae) (FACCIONE et al., 2004), Piper aurantiacatum (Piperaceae) (BANEJERI et al., 1981) e Medicago polymorpha (Leguminosae) (POI & ADITYACHOUDHURY, 1986)]. Quando essa substância é isolada dos fungos como, por exemplo, Aspergillus flavipes (CLARK et al., 1977), Anaphalis subumbellata (TALAPATRA et al., 1983) Penicillium canadense (McCORKINDALE et al., 1978), P. brevicompactum (BIRD et al., 1982) e P. magasporum (NOZAWA et al., 1989), tem sido citada como asperfenamato.

3

С	(CATALAN et al., 2003)		HSQC		НМВС		COSY
	δ _C	δ _H	δ _C	$\delta_{\rm H}$	² J _{CH}	³ J _{CH}	
1	65,42	4,02	65,41	3,96 dd;		H-3	H1b,H-2
		4,52		4,47 dd			
2	50,28	4,60	50,21	4,53 m	H-1b,1a;		
					Н-3		
3	37,26	2,98	37,03	2,85 dd		H-1b	H-2
		2,87		2,93 dd		H5/9; H-1a	
4	137,74	-	137,2	-		H-3 ^a -3b;H-2	
5,9	129,16	7.20	129,0	7,17(d;7,5;2H)		H-3	H-6/8
6,8	128,71	-	128,3	7,25 (t;7,5;2H)			H-7
7	127,17	7,27	127,2	7,21(t,7,5;1H)			
10	167,21	-	168	_		H-2	
11	134,20	-	133	_			
12,16	127,11	7,64	127,06	7,62 (d;7,8;2H)			H13/15
13,15	128,61	7,37	128,50	7,33 (t;7,8;2H)			H-14
14	132,02	7,48	131,9	7,44 (t;7,8;1H)			
1'	171,9	-	172	_	H-2'	H3'a,3'b;	
						H1a-1b	
2'	54,47	4,90	54,5	4,84 (t)	Н3'		H-3'
3'	37,56	3,19	37,2	3,17 dd	H-2	Н-5'-9'	H-2'
		3,27		3,22 dd			
4'	135,14	-	136,03	-		H-2',H-3'	
5',9'	129,3	7,20	129,2	7,16(d;7,5;2H)		H-3'	H - 6',8'
6',8'	128,72	- 7,27	128,3	7,28 (t;7,5;2H)			H-7
7'	126,77		126,6	7,2 (t:7,5;1H)			
10'	167,42	-	168,1	_		H-2'	
11'	133,32	-	134	-			
12',16'	127,04	7,68	127	7,63 (d,7,8,2H)			H13',15'
13',15'	128,69	7,30	128,56	7,25 (t;7,8;2H)			H14'
14'	131,39	7,41	131,4	7,39 (t;7,8;1H)			

Tabela 3.Dados de RMN 1 H (500 Mz, CDCl₃/ CD₃OD) e 13 C (125 Mz, CDCl₃/CD₃OD),de 3 e comparação com os dados registrados na literatura para N-benzoilfenilalaninato de 2-N-benzoilamida-3-fenil propila (CATALAN *et al.*, 2003).

Figura 10. Espectro de IV da substância 3.

Figura 11. Espectro de RMN 1 H (500MHz, CDCl₃/ D₃COD) de **3**.

Figura 12. Expansão (7.0-7.7 ppm) do espectro de RMN 1 H de **3**.

Figura 13. Expansão (2.8-4.6 ppm) do espectro de RMN ¹H, (500MHz, CDCl₃/ D_3 COD) de **3.**

Figura 14. Espectro de 'H-'H-COSY - $(500MHz, CDCl_3/D_3COD)$ de 3.

Figura 15. Espectro de 13 C (125 MHz, CDCl₃/ D₃COD) de **3**.

Figura 16. Expansão (126-138 ppm) do espectro de 13 C (125 MHz, CDCl₃/ D₃COD) de 3.

Figura 17. Expansão (126-138 ppm) do espectro de 13 C (125 MHz, CDCl₃/ D₃COD) de 3.

Figura 18. Espectro de ${}^{1}\text{H}{-}^{13}\text{C}{-}\text{COSY}{-}^{1}\text{J}_{CH}$, HMQC (CDCl₃/D₃COD) de **3**.

Figura 19. Espectro de ${}^{1}\text{H}-{}^{13}\text{C}-\text{COSY}-{}^{n}\text{J}_{CH}$, n=2,3, HMBC (CDCl₃/D₃COD) de **3**, expansão das regiões a e b.

Figura 20. Expansão do espectro de ${}^{1}H-{}^{13}C-COSY-{}^{n}J_{CH}$, n=2 e 3, HMBC (CDCl₃/D₃C OD) de 3, regiões c, d, e, f.

Figura 21. Espectro de massas de 3 obtido com impacto de elétrons.

Esquema 4. Proposta de fragmentação dos principais picos do espectro de massas da substância **3.**

5.1.3 Identificação da substância 4 (3-O-β-D-glicopiranosil sitosterol)

A substância 4 se apresentou como um sólido branco de (PF 308-310 °C), caracterizada através dos espectros de IV, RMN ¹H e ¹³C e identificada como o 3-O- β -D-glicopiranosil sitosterol conforme o descrito abaixo.

O espectro de IV da substância 4 (Figura 22, p.39) revelou bandas de absorção em 3408 cm⁻¹ de estiramento axial de O-H, bandas em 2959 e 2934 e 2870 cm⁻¹ de v_{C-H} (CH₂ e CH₃), 1633 ($v_{C=C}$); 1460,1380 (v_{C-C}) e 1164-1023 (v_{C-O}).

O espectro de RMN ¹H (Figura 23, p. 39) mostrou um sinal em δ_H 5,34 (d, 1H) atribuído ao hidrogênio olefinico H-6; 5,04 (d, 1H) atribuído ao hidrogênio anomérico (H-1') e uma série de sinais entre 4,54 -3,60 compatíveis com a unidade de carboidrato. A feição da série de sinais entre 2,7 e 0,65 são compatíveis com o esqueleto de esteróide.

O espectro de RMN ¹³C (Figuras 24 e 25, p.40) mostrou sinais em $\delta_{\rm C}$ 140,92 e $\delta_{\rm C}$ 121,94 correspondentes aos carbonos olefinicos C-5 e C-6 de esteróide, um sinal em $\delta_{\rm CH}$ 78,09 que foi atribuído ao carbono carbinólico C-3 e o sinal em $\delta_{\rm CH}$ 102,59 representante do carbono C-1' da unidade de açúcar ligada ao esteróide. Esta unidade foi identificada como glicose devido aos deslocamentos químicos dos carbonos metínicos em $\delta_{\rm CH}$ 78,60, 78,51, 75,35, 71,66 e o sinal em 61,84 do carbono metilênico C-6'. A identificação desses sinais e a comparação dos dados de ¹³C dessa substância com os registrados na literatura (KOJIMA *et al.*, 1990) permitem identificar 4 como o 3-O-β-D-glicopiranosil sitosterol (Tabela 4).

Tabela 4. Dados de RMN ¹³C da substância 4 comparados com dados da literatura para $3-O-\beta$ -D-glicopiranosil sitosterol (KOJIMA *et al.*, 1990)

С	4 δ _C	3-O-β-D-glicopiranosil sitosterol δ _C
1	37,48	37,6
2	30,27	30,3
3	78,09	78,3
4	39,33	39,4
5	140,92	141,0
6	121,94	122,0

С	4	3-O-β-D-glicopiranosil
C	δ _C	sitosterol δ_{C}
7	32,18	32,2
8	32,06	32,1
9	50,34	50,4
10	36,94	37,0
11	21,29	21,4
12	39,97	40,0
13	42,49	42,6
14	56,83	57,0
15	24,53	24,6
16	28,57	28,7
17	56,25	56,3
18	11,98	12,0
19	19,23	19,3
20	36,42	36,5
21	19,02	19,1
22	34,21	34,3
23	26,35	26,4
24	46,04	46,1
25	29,45	29,5
26	19,44	19,5
27	20,02	20,1
28	23,38	23,4
29	12,16	12,2
1'	102,59	102,6
2'	75,36	75,4
3'	78,60	78,7
4'	71,66	71,7
5'	78,51	78,5
6'	62,84	62,9

Figura 22. Espectro de IV de 4

Figura 23. Espectro de RMN de 1 H (200MHz, C₅D₅N) de **4.**

Figura 24. Espectro de RMN 13 C (50MHz, C₅D₅N) de 4.

Figura 25. Ampliação do espectro de RMN 13 C (50MHz, C₅D₅N) de 4.

5.1.4 Identificação da substância 5 (5,7,4'-trihidroxi flavona ou apigenina)

A substância 5 apresentou-se como um sólido amarelo (338-340 °C), cuja analise em CCDA usando AlCl₃/EtOH permitiu identificá-la como um flavonóide. O espectro de absorção no infravermelho de 5 (Figura 26, p. 42) apresenta bandas de absorção que estão de acordo com o esqueleto de flavonóide.

O espectro de RMN ¹H (Figura 27, p.42), apresentou 5 sinais na região de deslocamento químco de hidrogênios em anel aromático. O sinal em $\delta_{\rm H}$ 13,01(s, 1 H) representa um hidrogênio quelado; o par de dubletos em $\delta_{\rm H}$ 7,93 (J=8,0 Hz; 2H) e $\delta_{\rm H}$ 7,02 (J=8,0 Hz; 2H) representam os hidrogênios de um sistema AA'BB' do anel B. Além do singleto em $\delta_{\rm H}$ 6,63 atribuido ao H-3, os sinais $\delta_{\rm H}$ 6,54 (sl, 1H) e $\delta_{\rm H}$ 6,25 (sl,1H) foram atribuídos aos hidrogênios H-6 e H-8 do anel A. Esses dados estão de acordo com a estrutura da 4',5,7 trihidroxi flavona (Tabela 5). Esta substância esta registrada na literatura e é conhecida como apigenina (MIYAZAWA & HISAMA, 2003). Este é o primeiro registro dessa substância no gênero *Piptadenia*.

Tabela 5. Dados de RMN ¹H (200MHz, C_2D_6CO) de **5** e comparação com os dados registrados na literatura para apigenina em DMSO- d_6 (MIYAZAWA & HISAMA, 2003).

Н	Apigenina	5	
	δ_{H}	δ_{H}	
3	6,68	6,63	
6	6,20	6,25	
8	6,44	6,54	
2',6'	7,92	7,93	
3',5'	6,90	7,02	
-OH	12,90	13,01	

Figura 26. Espectro de IV da substância 5.

Figura 27. Espectro de RMN 1 H (200MHz, C₂D₆CO) de **5.**

5.1.5 Identificação da substância 6 (7,4'-diidroxi-5,3'-dimetoxi-flavona)

A substância 6 foi isolada como um sólido amarelo (Pf: 238 -240 °C) e foi identificado como flavonóide da mesma forma que a substância anterior. O espectro de IV (Figura 28, p. 44) da substância 6 apresentou bandas cujo assinalamento no espectro revela ser compatível com o flavonóide.

O espectro de RMN de ¹H da substância **6** (Figura 29, p.45) apresentou 5 sinais na região de deslocamento químico de hidrogênios em anel aromático. Sendo o sinal em δ_H 7,44 (m, 2H) atribuído aos hidrogênios 6' e 2' e em 6,9 (d, J=8,0 Hz, 1H) representante do H-5'do anel B trisustituido de uma flavona; o sinal em δ_H 6,57 (s,1H) foi atribuído ao H-3. E os sinais em δ_H 6,47 (d, J=2Hz, 1H) e 6,31 (d, J=2Hz, 1H) foram atribuídos aos H-8 e H-6 respectivamente, do anel A. Os sinais em δ_H 3,85-3,73 permitiram sugerir a presença de grupos metoxilas na molécula.

O espectro de RMN bidimensional de correlação homonuclear de hidrogêniohidrogênio (¹H -¹H-COSY, Figura 30, p. 45) permitiu confirmar as atribuições dos deslocamentos químicos dos hidrogênios H-6 e H-8 ($\delta_{\rm H}$ 6,31 e 6,47) assim como verificar o acoplamento dos sinais $\delta_{\rm H}$ 7,44 (m, 2H) e $\delta_{\rm H}$ 6,9 (d, J=8,0 Hz, 1H).

Os espectros resultantes de NOE com irradiação nos grupos OCH₃ (Figura 31, p. 46) mostra os experimentos: <u>a</u> com irradiação em δ_H 3,85 (s, 3H) que gerou NOE no H-2' (δ_H 7,44) permitindo concluir que este grupo se encontra na posição 3'; <u>b</u> com irradiação em δ_H 3,76 (s, 3H) gerou NOE em δ_H 6,31 (d, J=2Hz, 1H, H-6) e permitindo localizar esse grupo na posição 5 do anel A da flavona; o experimento <u>c</u> no qual foi irradiada na freqüência do sinal em 3,73 não sendo observado nenhum sinal de NOE. Esse experimento e a intensidade desse sinal permitiu concluir que corresponde a uma impureza da amostra. A ausência de NOE nos hidrogênios 8 e 5' permitiu incluir dois OH em 4' e 7.

A amostra foi injetada no cromatógrafo a gás acoplado ao espectrômetro de massas e obteve-se o espectro observado na Figura 32 (p. 46). Este espectro apresenta picos cujos fragmentos (Esquema 5, p. 47) em m/z 124, 147, 163 e 193 justificam a localização de grupos metoxilados e esta de acordo com a estrutura proposta.

Os dados de RMN ¹H desta flavona foram semelhantes as do 5'3' dimetil luteolina (Tabela 6) isolada de *Hipericum perfuratum* (DIAS *et al.*, 1998) e esta sendo registrada pela primeira vez no gênero *Piptadenia*.

Tabela 6. Dados de RMN ¹H (DMSO-d₆) de **6** comparados com os dados encontrados na literatura para 5,3' dimetil luteolina (DIAS *et al*, 1998)

С	5, 3' dimetil luteolina δ _H	6 δ _H	¹ H- ¹ H COSY	NOE
3	6,57	6,57		
6	6,42	6,31	H-8	
8	6,57	6,47	H-6	
2',6'	7,47	7,44	H-3',5'	
3',5'	6,92	6,88	H-2',6'	
OCH ₃ -5	3,92	3,85		H-6
OCH ₃ -3'	3,92	3,75		H-2'6'

Figura 28. Espectro de IV de 6.

Figura 29. Espectro de RMN de 1 H (200MHz, DMSO-d₆) de 6.

Figura 30. Espectro de ${}^{1}H{}^{-1}H{}$ –COSY (200 MHz, DMSO-d₆) de 6.

Figura 31. Espectro NOEDIFF de 6 obtido por irradiação nas freqüências 3,85;3,75 ppm.

Figura 32. Espectro de massas de 6.

Esquema 5. Proposta de fragmentação de 6 no espectrômetro de massas pos impacto de elétrons.

5.1.6 Identificação da substância 7 (5-metil apigenina)

A substância 7 apresentou-se como um sólido pastoso amarelo obscuro, o qual foi identificado como flavonóide devido a coloração revelada com AlCl₃/EtOH em CCDA. O espectro de IV (Figura 33, p.49) dessa substância mostrou bandas de absorção cujo assinalamento no espectro que estão conforme com uma flavona.

O espectro de RMN ¹H de 7 (Figura 34, p.50) apresentou sinais de hidrogênios em anel aromático em δ_H 7,82 (d, J=8 Hz, 2H) e 6,89 (d, J=10 Hz, 2H) que foram atribuídos aos hidrogênios H-2',6' e H-3',5' de um sistema AA'BB' e os sinais em δ_H 6,51 (sl, 1H) , 6,50 (s, 1H) e 6,37 (sl, 1H) que foram atribuídos respectivamente, aos hidrogênios 8, 3 e 6; o sinal em 3,77 representa um grupo metoxila na molécula.

O espectro de RMN de correlação homonuclear ¹H-¹H COSY (Figura 35, p. 50) permitiu verificar o acoplamento entre os sinais em δ_H 7,82 e 6,89 como correspondentes a um sistema AA'BB' e entre H-6 e H-8 do anel A. O experimento de NOEDIFF com irradiação na freqüência do grupo metoxila forneceu um espectro com sinal em 6,37. Mostrando que esse grupo esta localizado em 5, se estivesse em 7 ou 4' apareceria sinal do NOE em outras freqüências. A irradiação na freqüência do H-3 (6,51) gerou NOE em δ_H 7,82 (d) dos hidrogênios H-2',6' (Figura 37 b, p.52).

O espectro de RMN ¹³C (Figura 36, p. 51) mostrou um sinal em δ_C 175,7 de carbono carbonílico, um sinal de C-H em 105,96 atribuído a C-3, e dois sinais de C-H em 96,69 e 95,35 que foram atribuídos aos carbonos C-6 e C-8, respectivamente. Esse espectro apresenta também 5 sinais de carbonos quaternários oxigenados na região de 163,0-159,10, além de dois sinais de carbonos quaternários não oxigenados em 106,02 (C-10) e 121,5 (C-1'). Todas as atribuições são apresentadas na Tabela 7 e confirmam a estrutura proposta. Esta flavona corresponde a 5-metil apigenina (WAGNER *et al.*, 1976), não encontrada anteriormente em espécies de *Piptadenia*.

С	5-metil	7	7	¹ H- ¹ H COSY	NOE
	apigenina	δ_{H}	δ _C		
2	160,40		163,05		
3	107,1	6,51	106,00		H- 2',6'
4	175,7		175,75		
5	159,0		159,89		
6	96,4	6,38	96,66	H-8	
7	162,4		160,59		
8	95,2	6,52	95,33	H-6	
9	159,9		160,59		
10	106,0		105,79		
1'	121,5		121,44		
2',6'	127,7	7,83	127,53	Н-3'-5'	
3',5'	115,8	6,90	115,98	H-2',6'	
4'	160,6		160,59		
OCH ₃	55,80	3,78	55,85		H-6

Tabela 7. Dados de RMN ¹H e ¹³C (DMSO-d₆), de 7 comparados com os dados registrados na literatura para 5-metil apigenina (WAGNER *et al.*, 1976).

Figura 33. Espectro de IV da substância 7.

Figura 34. Espectro de RMN 1 H (200 MHz, DMSO-d₆) de 7

Figura 35. Espectro de ${}^{1}\text{H}{}^{-1}\text{H}$ COSY (200MHz, DMSO-d₆) de 7.

Figura 36. Espectro de RMN 13 C (200 MHz, DMSO-d₆) de 7

Figura 37. Espectro de NOE de 7 (200 MHz, DMSO-d₆) resultado da irradiação nas freqüências de 3,77 e 6,50 ppm.

5.1.7 Identificação da substância 8 (galato de metila) e 8a

A substancia **8** foi isolado como um sólido marrom (PF 175 -177 °C) o qual foi identificado através da análise de IV, RMN de ¹H e ¹³C e EM. O espectro de IV (Figura 38, p.53) dessa substância apresentou bandas de absorção em 3363 cm⁻¹ devido a deformação axial de OH, em 2960 cm⁻¹ e 2855 cm⁻¹ de estiramento C-H, em 1693 cm⁻¹ de deformação axial C=O de éster conjugado (v _{C=O}), em 1370 cm⁻¹ de dobramento OH no plano e em 1209 cm⁻¹ de estiramento C-O.

O espectro de RMN ¹H da substância **8** (Figura 39, p. 54) mostrou um sinal em δ_H 6,96 (s, 2H), região de hidrogênios em anel aromático, e um sinal em δ_H 3,72 (s, 3H) de hidrogênios metílicos ligados a oxigênio.

O espectro de RMN ¹³C de **8** (Figura 40, p. 54) apresentou um sinal em δ_C 166,7 de carbono carbonílico, três sinais para carbonos quaternários, um sinal de carbono metínico e um sinal de carbono metílico ligado a oxigênio, estes dados permitiram sugerir a estrutura de **8** como galato de metila, sendo que o sinal em δ_C 145,9 (2C) foi atribuído aos carbonos C-3 e C-5; o sinal em δ_C 138,8 foi atribuído ao carbono C-4 e δ_C 119,7 foi atribuído ao carbono C-1, o sinal em 106,9 (2C) foi atribuído aos carbonos C-2 e C-6 e o δ_{CH3} 51,95 é compatível com o deslocamento químico de metoxila de éster.

Esta substância foi tratada com diazometano e obteve-se o produto **8a** cujo espectro de RMN ¹H (Figura 41, p. 55) apresentou três sinais adicionais de metoxila ligadas a anel aromático.

Figura 38. Espectro de IV da substância 8.

Figura 39. Espectro de RMN 1 H (200MHz, DMSO-d₆) de 8.

Figura 40. Espectro de RMN 13 C (50 MHz, DMSO-d₆) de **8**

Figura 41. Espectro de RMN 1 H (200MHz, DMSO-d₆) de **8a.**

5.1.8 Identificação das substâncias 9 (vitexina) e 9a

A substância 9 foi isolada como um sólido amarelo (PF 278-280 °C) e apresentou teste positivo para flavonóides em CCDA. O espectro de IV (Figura 42, p. 57) dessa substância apresentou bandas de absorções em 3380 e 3254 cm⁻¹ devido a deformação axial de OH, em 2918 cm⁻¹ de estiramento C-H, em 1654 cm⁻¹ de deformação axial C=O, em 1569, 1641-1501cm⁻¹ de deformação axial de C=C de anel aromático além de bandas de v_{C-O} em 1095.

O espectro de RMN ¹H (Figura 43, p. 57) apresentou um sinal em δ_H 13,17 de hidroxila quelada, 4 sinais de hidrogênios em anéis aromáticos δ_H 8,02 (d, J=8,0 MHz, 2H) e δ_H 6,88 (d, J=8,0 MHz, 2H), atribuídos aos carbonos de um sistema AA'BB', e dois singletos em δ_H 6,78 (s, 1H) e δ_H 6,26 (s, 1H) de uma flavona. O sinal em δ_H 4,68 pode ser atribuído ao hidrogênio do C-1 de um C-glicosideo.

O espectro de RMN bidimensional de correlação homonuclear de hidrogêniohidrogênio (¹H -¹H-COSY) (Figura 44, p.58) permitiu confirmar o sistema AA'BB' e observar o acoplamento entre o dobleto δ_H 4,6 e os demais sinais que podem ser representantes de uma unidade de açúcar.

O espectro NOEDIFF de **9** (Figura 45, p.59) resultado da irradiação no sinal em $\delta_{\rm H}13,17$ atribuído ao OH no H-5 apresentou NOE em $\delta_{\rm H}$ 6,26 confirmando esse sinal como o correspondente ao H-6, a irradiação do sinal em $\delta_{\rm H}$ 6,78 mostrou NOE nos hidrogênios H-2',6'confirmando esse sinal como H-3. O valor do deslocamento químico do H-1 do carboidrato (4,6;d) e a ausência de $\delta_{\rm CH}$ (± 94 ppm) no espectro de RMN ¹³C (Figura 46, p.60) permitiu propor uma unidade C-glicosidica em 8 na flavona.

Os espectros de RMN ¹³C (BBD, Figura 46, p. 60) e DEPT θ =135° (Figura 47, p. 60) mostraram um sinal em δ_{C} 182,19 de carbono carbonílico, 8 sinais de carbono quaternário, 9 sinais para carbonos metínicos e uma sinal para carbono metilénico. Os sinais em δ_{CH} 81,29 (C-5''), 79,01 (C-1''), 73,93 (C-2''), 71,03 (C-3''), 70,20 (C-4'') e δ_{CH2} 61,36 (C-6''') confirmaram a presença de um substituinte glicosil na molécula. Esses dados foram comparados com os valores divulgados para vitexina (8-C- β -glucopiranosil apigenina) isolada de *Trollius ledebouri* (ZHOU *et al.*, 2005). As atribuições dos dados de RMN e comparação com dados registrados na literatura são apresentados na Tabela 8.

Tabela 8. Dados de RMN ¹H e ¹³C de 9 comparados com os encontrados na literatura para Vitexina (^aZHOU, *et al.*, 2005; ^b AGRAWAL, 1979)

	9		Vitexina			
С	δ _H ^a (ZHOU) (Ad	δ _C ^b GRAWAL)	¹ H- ¹ H COSY	δ _H 1	δ _C 2	
2		164,028			164,0	
3	6,77 (s, 1H)	102,58		6,94	102,6	
4		182,19			181,9	
5		156,052			155,8	
6	6,26 (s, 1H)	98,186		6,44	98,9	
7		162,634			162,5	
8		104,66			104,2	
9		160,45			160,6	
10		104,09			104,2	
1'		121,669			121,8	
2',6'	8,0 (d, 8Hz, 2H)	128,76	3',5'	8,26	128,5	
3',5'	6,88 (d, 8Hz, 2H)	115,906	2',6'	7,05	116,0	
4'		161,208			160,9	
1"	4,68 (d, 10Hz, 1H)	73,433	2''	4,94 (1H,9,8Hz)	78,8	
2"	3,82	70,886			73,9	
3"		78,692			71,4	
4"		70,577			70,8	
5''		81,894			81,9	
6"		61,333			61,5	
OH	13,17 (s, 1H)			13,17		

58

Figura 42. Espectro de IV da substância 9

Figura 43. Espectro de RMN 1 H (200MHz, DMSO-d₆) de 9.

Figura 44. Espectro de RMN 2D de¹H-¹H COSY (200 MHz, DMSO-d₆) da substância 9

Figura 45. Espectro de NOEDIFF (200 MHz, DMSO-d₆) da substância 9

Figura 46. Espectro de RMN ¹³C (50 MHz, DMSO-d₆) da substância 9

Figura 47. Espectro de RMN ¹³C (BBD) e DEPT θ =135° de **9**

O tratamento de **9** com diazometano seguindo a metodologia apresentada na pagina 18 formou o derivado metilado **9a** que foi caracterizado pela análise de espectros de RMN ¹H. O espectro de RMN ¹H desse produto (Figura 48, p. 61) apresentou sinais em δ_H 3,93 (s, 3H), δ_H 3,88 (s, 3H), δ_H 3,83 (s, 3H) de metoxilas. Isso permite concluir que foram incorporados 3 unidades de H₂CN₂ em **9**.

Para confirmar este produto, foram realizados 4 experimentos de NOEDIFF (Figura 49**a-d,** p. 62). <u>**a**</u>) Irradiação em δ_H 3,83 gerou NOE em δ_H 7,02 atribuído aos H-3',5' do sistema AA',BB", o que permite concluir que este sinal corresponde à metoxila no C-4'. <u>**b**</u>) Irradiação em δ_H 6,60 (s, 2H) gerou NOE em δ_H 8,08 (d, J=8 Hz, 2H) atribuídos aos H-2',6' do anel B confirmando que um dos hidrogênios desse sinal é o H-3, e os sinais de NOE em δ_H 3,93 e δ_H 3,88 de metoxilas confirma que ou segundo hidrogênio é o H-6. **c e d**) O NOE gerado devido a irradiação em δ_H 3,93 (experimento <u>**c**</u>) e em δ_H 3,88 (experimento d) na freqüência do H-6 confirmou a incorporação de diazometano em 5 e 7. Desta forma o derivado **9a** foi identificado como 5,7,4'-trimetoxi-8-C-glicopiranosil-flavona. A dissolução de **9** em metanol para adição da solução do diazometano deve ter contribuído para a incorporação desse reagente na hidroxila em 5. Pois, a ligação de hidrogênio gerada pelo metanol e a carbonila, certamente, libera esse núcleo permitindo ser captado pela base fraca conduzindo a reação. Portanto, na reação com diazometano que não se queira incorporar esse reagente no fenol quelado, não deve ser feita dissolvendo o reagente em metanol.

Figura 48. Espectro de RMN 1 H (200 MHz, DMSO-d₆) de **9a**

Figura 49. Espectro NOEDIFF de **9a** resultado da irradiação nas freqüências 3,93;3,88 3,83 ppm

5.1.9 Identificação da substância 10 (isovitexina).

A substância **10** foi isolada como um sólido amarelo (PF 245 -247 °C), com teste positivo para flavonóides. O espectro de IV (Figura 50, p. 64) dessa substância apresentou bandas de absorção em 3379 e 3242 cm⁻¹ devido a deformação axial de OH; 2921 cm⁻¹ e 2853 cm⁻¹ de estiramento C-H (v_{C-H}), em 1651 cm⁻¹ de deformação axial de carbonila conjugada e em 1572cm⁻¹ de deformação axial de C=C de anel aromático, além de bandas de estiramento e C-O.

O espectro de RMN ¹H (Figura 51, p. 65) apresentou um sinal de hidrogênio em campo baixo a δ_H 13,55, indicando a presença de uma hidroxila quelada; 4 sinais de hidrogênios de anel aromático sendo os sinais em δ_H 7,9 (d, J=8,0 MHz, 2H) e 6,92 (d, J=8,0 MHz, 2H) atribuídos aos hidrogênios de um sistema AA'BB', o sinal em δ_H 6,75 (s, 1H) foi atribuído ao H-3 de uma flavona e o sinal em δ_H 6,53 (s, 1H) correspondente a um hidrogênio do anel A. A comparação desse espectro com o da substância **9** permitiu verificar a semelhança entre elas, diferenciando apenas na posição da C-glicose.

O espectro de ¹³C (Figuras 52 e 53, p.65-66) permitiu identificar um sinal em 182,06 de C=O, 8 sinais de carbono quaternário, 9 sinais para carbonos metínicos e uma sinal para carbono metilênico. Os dados desse espectro foram similares aos dados encontrados para a substância 9, sendo diferentes os sinais em δ_{CH} 93,72 (semelhante a δ_{CH} de C-8 da apigenina) e não aparecendo δ_{CH} em ± 98 ppm. O sinal em δ_C 108,95 foi atribuído ao carbono quaternário C-6. A Tabela 9 mostra os deslocamentos químicos dos carbonos de 10 comparados com os da apigenina e todos os dados de RMN são comparados com os de isovitexina (6-C-β-glucopiranosil apigenina) registrados na literatura (PEDRAS *et al.*, 2003).

C	Substância 10		Apigenina	Isovi	texina
C	δ_{H}	δ _C	δ _C	δ _H 1	δ _C 2
2		163,6	163,8	_	164,7
3	6,75 (s, 1H)	102,79	102,8	6,74	102,6
4	-	182,06	181,8	_	181,7
5	-	156,31	161,1	_	156,4
6	-	108,95	98,8	6,46	109,0
7	-	163,5	164,1	_	163,3
8	6,53 (s, 1H)	93,72	94,0	_	93,9
9	-	161,32	157,3	_	161,4
10	-	103,43	103,7	_	102,8
1'	-	121,17	121,3	-	121,0
2',6'	7,90 (d, 10Hz, 2H)	128,38	128,4	7,90	128,4
3',5'	6,92(d, 10Hz, 2H)	116,10	116,0	6,91	116,0
4'		160,7	161,5	-	160,7
1"	4,58 (d, 10Hz, 1H)	79,01	-	4,59	79,0
2"	4,05	73,10	-	4,08	73,1
3''		70,67	-	_	70,6
4''		70,22	-	_	70,1
5''		81,65	-	_	81,5
6''		61,55	-	-	61,4
OH	13,55 (s, 1H)	-	-	13,72	_

Tabela 9. Comparação dos dados de RMN de ¹H e ¹³C da substância **10** com dados encontrados na literatura para isovitexina (PEDRAS *et al.*, 2003).

Figura 50. Espectro de IV de 10.

Figura 51. Espectro de RMN 1 H (200 MHz, DMSO-D₆) de 10

Figura 52. Espectro de RMN 13 C (50 MHz, DMSO-d₆) de 10

Figura 53. Expansão (155-165 ppm) do espectro de 13 C (50 MHz, DMSO-d₆) de 10

5.2 Identificação dos constituintes Isolados das flores de Laseguea erecta.

5.2.1 Identificação da substância 11 (lupeol)

A substância **11** apresentou-se como um sólido cristalino (PF 180-182 °C) dando teste positivo para terpenos em CCDA com Lieberman. Após a análise do espectro de RMN ¹H este foi comparado por CCDA com o lupeol. Mesmo já identificado **11** como lupeol foram obtidos os espectros de IV e RMN ¹³C dessa substância. O espectro de IV de **11** (Figura 54, p. 68) revelou bandas de absorção em 3332 cm⁻¹ devido a deformação axial de OH, em 3069 de v_{C-H} de CH₃ em 3069, em 2943 e 2871 de v_{C-H}, em 1649 de deformação axial C=C. As demais bandas estão de acordo com o esqueleto do terpeno.

O espectro de RMN de ¹H dessa substância (Figura 55, p. 68) apresentou sinais entre 1,23 e 0,7 correspondentes a sinais de metilas além de um sinal em δ_H 1,67 (s) que corresponde á freqüência de hidrogênios de metila ligada a C-sp². Os sinais em δ_H 4,67(sl) e δ_H 4,55(sl) são referentes a hidrogênios vinílicos e o sinal em δ_H 3,15 representa o hidrogênio do carbono carbinólico metínico.

O espectro de RMN ¹³C (Figura 56, p. 69) mostrou sinais em δ_C 150,9 e δ_{CH2} 109,3 correspondentes aos carbonos olefinicos C-20 e C-29, respectivamente. Também apresenta um sinal em δ_C 78,9 do carbono carbinólico C-3. Os demais sinais estão de acordo com os deslocamentos químicos de carbonos metílicos, metilênicos e metínicos do triperpeno proposto. A comparação dos dados de **11** com os dados registrados na literatura para lupeol são mostrados na Tabela 10 (SOBRINHO *et al.*, 1991).

Tabela 10. Dados de RMN ¹³C de **11** comparados com os registrados na literatura para Lupeol (SOBRINHO *et al.*, 1991)

C	11	Lupeol
C	δ _C	δ _C
1	38,64	38,7
2	27,33	27,4
3	78,91	78,9
4	38,79	38,8
5	55,23	55,3
6	18,26	18,3
7	34,21	34,2
8	40,73	40,8
9	50,34	50,4
10	37,09	37,1
11	20,87	20,9
12	25,05	25,1
13	37,97	38,0
14	42,91	42,8
15	27,33	27,4
16	35,51	35,5
17	42,91	43,0
18	48,22	48,2
19	47,92	47,9
20	150,9	150,9
21	29,75	29,8
22	39,94	40,0
23	27,93	28,0
24	15,32	15,4
25	16,08	16,1
26	15,89	15,9
27	14,47	14,5
28	18,2	18,0
29	109,30	109,3
30	19,26	19.3

Figura 54. Espectro de IV de 11.

Figura 55. Espectro de RMN 1 H (200 MHz, CDCl₃) de 11.

Figura 56. Espectro de RMN 13 C (50 MHz, CDCl₃) de 11.

5.2.2 Identificação da substância 12 (ácido ursólico)

A substância denominada **12** foi isolada como um sólido branco de ponto de fusão 250-252 °C que foi identificado após da análise dos espectros de IV, ¹H e ¹³C e comparação do PF como os dados do ácido ursólico (ácido-3- β -hidroxi-urs-12-en-28-óico).

O espectro IV de **12** (Figura 57, p. 71) apresentou banda larga com máximo em 3421 cm⁻¹ de estiramento axial de O-H de ácido, em 2926 cm⁻¹ e 2870 cm⁻¹ de estiramento axial simétrico e assimétrico de C-H além de uma banda em 1693 cm⁻¹ de estiramento C=O de ácido carboxílico.

O espectro de RMN ¹H (Figura 58, p. 71), mostrou sinal em δ_H 5,10 de um hidrogênio olefínico, atribuído ao H-12 do terpeno; o sinal em δ_H 3,01que foi atribuído ao H-3 e o dubleto em δ_H 2,06 (d, 12 Hz, 1H) foi atribuído ao hidrogênio metínico H-18, característico de triterpenos da série urseno.

O espectro de RMN ¹³ C (BBD, Figura 59, p. 72) e DEPT 135° e DEPT 90° (Figuras 60 e 61, p. 72-73) apresentaram sinais cujos valores confirmaram as funções identificadas no IV. Além do sinal em 179,83 de um carbono de ácido carboxílico, 5 sinais de carbonos quaternários, 9 sinais de CH₂, 6 sinais de C-H e 6 sinais de CH₃. A atribuição dos dados de ¹³C e comparação com valores relatados na literatura (KRIWACKI & PINTER, 1989; Tabela 11) permitiram confirmar a estrutura proposta para **12** como o ácido ursólico que tem sido isolado com freqüência de espécies de Apocynaceae (BARRETO *et al*, 1998).

Tabela 11.Dados de ¹³C RMN de **12** comparados com os encontrados na literatura paraácido ursólico (KRIWACKI & PINTER, 1989)

C	12	Ac. Ursólico
C	δ _C	δ _C
1	39,46	38,99
2	27,84	27,98
3	78,24	78,04
4	39,21	38,90
5	55,80	55,73
6	18,90	18,71
7	33,60	33,47
8	39,55	39,92
9	47,92	47,96
10	37,49	37,35
11	23,78	23,56
12	125,67	125,57
13	138,99	139,17
14	42,58	42,40
15	28,51	28,73
16	24,75	24,83
17	47,92	47,96
18	53,29	53,45
19	39,46	39,87
20	39,24	39,30
21	31,24	30,98
22	37,30	37,35
23	29,03	28,74
24	16,71	16,49
25	16,11	15,58
26	17,77	17,43
27	24,17	23,83
28	179,83	179,86
29	17,77	17,50
30	21,96	21,40

Figura 57. Espectro de IV de 12.

Figura 58. Espectro de RMN 1 H (200 MHz, CDCl₃/DMSO-d₆) de 12.

Figura 59. Espectro de RMN 13 C (50 MHz, CDCl₃/DMSO-d₆) de 12.

Figura 60. Espectro DEPT θ = 135° (50 MHz, CDCl₃/DMSO-d₆) de **12**.

Figura 61. Espectro DEPT θ =90° (50 MHz, CDCl₃/DMSO-d₆) de 12.

5.2.3 Identificação da substância 13 (quercetina).

A substância **13** foi isolada como um sólido amarelo (PF 312 -314 °C) e foi identificada como um flavonóide por CCDA. O espectro de IV (Figura 62, p.74) mostrou uma intensa absorção em 3410 cm⁻¹ e 3333 cm⁻¹ de estiramento axial de O-H, em 2922 cm⁻¹ banda de estiramento de C-H, em 1666 cm⁻¹ ($v_{C=0}$) e em de 1451 cm⁻¹ de estiramento de C=C.

O espectro de RMN de ¹H (Figura 63, p.75) permitiu observar um sinal em de OH quelada, e 5 sinais na região de deslocamento de hidrogênios em anéis aromáticos. Os valores dos deslocamentos químicos confirmaram o flavonóide com oxigenação em 3, 5, 7, 3', 4'. Os sinais em δ_H 7,67 (s, 1H), 7,54 (d, 9Hz, 1H) e 7,88 (d, 9Hz, 1H) permitem propor um anel B trissubstituído e foram atribuídos aos hidrogênios H-2', H-5' e H-6', respectivamente. Os sinais em δ_H 6,40 (sl, 1H) e δ_H 6,18 (sl, 1H) foram assinalados como representantes do H-6 e H-8 do anel A. A ausência do sinal de H-3 conduziu a proposta do flavononol conhecido como quercetina. Esta proposta foi confirmada pela comparação com dados de RMN ¹H e PF da literatura (MIYAZAWA & HISAMA, 2003; Tabela 12). Esta substância tem sido encontrada com freqüência em espécies vegetais, mas é o primeiro registro em *Laseguea*.

Tabela 12. Dados de RMN ¹H de **13** comparados com dados de literatura para quercetina (MIYAZAWA & HISAMA, 2003).

Н	$\delta_{\rm H}$	13 δ _H
6	6,18	6,16
8	6,39	6,40
2'	7,66	7,67
5'	6,88	6,90
6'	7,52	7,52
5-OH	12,40	12,50

Figura 62. Espectro de IV de 13.

Figura 63. Espectro de RMN 1 H (200 MHz, DMSO-d₆) de **13**.

5.2.4 Identificação da substância 14 (3-O-α-arabinopiranosil quercetina)

A substância **14** apresentou-se como um sólido pastoso de cor amarelo escuro, com teste positivo para flavonóide e com espectros de RMN na região de absorção de núcleos de sistemas aromáticos semelhante ao da substância **13**. O espectro de IV (Figura 64, p. 77) mostrou bandas de absorção em 3408 cm⁻¹ de estiramento axial de O-H, em 2924 cm⁻¹e 2853 cm⁻¹ de estiramento C-H, em 1652 cm⁻¹,1605, 1500 e 1450 cm⁻¹ de vibrações de esqueleto ($v_{C=C}$) e em 1201 cm⁻¹ que pode ser atribuída a estiramento C-O.

O espectro de RMN ¹H (Figura 65, p. 77) apresentou um sinal em $\delta_{\rm H}$ 12,6 de hidrogênio de hidroxila quelada e 5 sinais de hidrogênios na região de absorção desse núcleo em sistema aromáticos. Os valores de deslocamento e multiplicidade permitiram sugerir a estrutura de um flavonóide semelhante ao anterior sustentando um carboidrato em 3. Esse carboidrado está representado pelo dubleto em 5.28 (3,0 Hz, H-1") e o multipleto em 3,19-3,75.

O espectro de ¹³C (Figura 66, p. 78) mostrou além do sinal em δ_C 177,46, sinais de carbono quaternário e CH compatíveis com o 5,7,3',4' tetraidroxiflavona. Os sinais em 133,70 (C-3) e 101,4 (CH-1") justificam a proposta do carboidrato em 3. Os sinais em δ_{CH}

71,69, 70,75, 66,1 e 64,3 (CH₂) permitiram propor a arabinose como unidade de carboidrato. O valor da constante de acoplamento do H-1" (J = 4,75 Hz) e a comparação dos deslocamentos químicos dos carbonos do carboidrato com valores da literatura permitiu propor a α -D-arabnopiranosil para o grupo ligado no carbono 3 dessa flavona. Esses dados foram comparados com os da literatura (MABRY, 1982) para a 3-O- α -D-arabinopiranosil quercertina (Tabela 13). Esse glicosídeo é conhecido como guaijaverina, isolada de *Hypericum brasiliense* (ROCHA *et al.*, 1995) e de produto de síntese (CHEN *et al.*, 2004)

Tabela 13. Dados de RMN ¹³C (MABRY, 1982) e ¹H (CHEN *et al.*, 2004) de **14** comparados com dados da literatura para a 3-O- α - arabinopiranosil quercertina.

С	14 δ _C	14 δ _H	3-O-α-arabinopiranosil quercetina		
			δ _C	δ _Η	
2	156,36	-	156,3	-	
3	133,70	-	134,0	-	
4	177,46	-	177,6	-	
5	161,23	-	161,2	-	
6	98,64	6,17 (sl)	98,7	6,19 (1H, d, <i>J</i> = 2,0 Hz)	
7	164,7	-	164,1	-	
8	93,62	6,37 (sl)	93,5	6,40 (1H, d, J= 2,0 Hz)	
9	156,36	-	156,3	-	
10	103,75	-	104,1	-	
1'	120,68	-	121,2	-	
2'	115,42	7,50 (sl)	116,1	7,50 (1H, d, J= 2,2 Hz)	
3'	145,05	-	144,9	-	
4'	148,72	-	148,4	-	
5'	115,4	6,82(1,H,d, J=8,3 Hz)	115,4	6,84 (1H, d, J= 8,4 Hz)	
6'	122,00	7,64 (1H, d, J=8,5 Hz)	121,7	7,66 (1H, dd, J= 8,4 Hz)	
1"	101,44	5,26 (1H, d, J=4,7 Hz)	101,8	5,27 (1H, d, J=5,2 Hz)	
2"	71,69		71,7		
3''	70,75	3.19-3.75	70,8	3.20-3.77	
4''	66,12		65,9	-,,-,,,,,	
5''	64,33		64,1		
-OH		12,6		12,65	

Figura 64. Espectro de IV de 14

Figura 65. Espectro de RMN ¹H (200 MHz, DMSO-d₆) de 14

Figura 66. Espectro de RMN 13 C (50 MHz, DMSO-d₆) de 14.

Ensaio de DPPH

O método de avaliação de atividade antioxidante foi baseado no ensaio de MENSOR *et al.*, (2001), onde a atividade é medida avaliando a descoloração da solução metanólica de cor violeta do radical DPPH (2,2-difenil-1-picril-hidrazil).

Os resultados da avaliação da atividade frente ao radical livre DPPH das substâncias e o extrato das folhas de *P. gonoacantha* são apresentados na Tabela 15. O valor de CE_{50} 8,61 µg/mL para o extrato das folhas de *P. gonoacantha* (Figura 68, p.80) foi significativo quando comparado com o valor de CE_{50} dos controles positivos rutina e quercetina (8,52 ± 0,38 e 3,18 ± 0,16 µM, respectivamente). O valor de CE_{50} da substância isolada galato de metila (Figura 68) foi similar ao CE_{50} apresentado pelo extrato. Isso permitiu sugerir que o extrato deve seu valor de EC_{50} à presença dessa substância. A substância **8** que por possuir 3 hidroxilas fenólicas conseguiu reduzir o DPPH de forma eficiente.

Os flavonóides vitexina e isovitexina, isolados desse extrato, não apresentaram atividade significativa na concentração máxima de 71 μ M quando comparados com os valores dos flavonóides rutina e quercetina na mesma concentração. Entretanto, por extrapolação foi observado que os valores de CE₅₀ para essas substâncias é maior a 200 μ M.

Foram avaliados também os flavonóides isolados dos galhos de *P.gonoacantha* e observou-se que nenhuma das flavonas testadas apresentou atividade relevante na concentração máxima de 71 μ M. Estes resultados assim como os encontrados para as flavonas glicosideas permitem sugerir a baixa atividade desses fenóis frente a estabilização do DPPH. Também foi observado que a presença de unidades de açúcar na posição C-8 (no caso da vitexina) e em C-6 (isovitexina) evidenciaram uma menor atividade quando comparadas com a aglicona apigenina.

Substância / Extrato	CE ₅₀ (µg*mL ⁻¹ / µМ)
Rutina	$8,52 \pm 0,38$
Quercetina	$3,16 \pm 0,16$
PGFM (Extrato das Folhas de P. gonoacantha)	8,61 ± 0,43
8 (galato de metila)	$8,84 \pm 0,59$
9 (Vitexina)	>> 200*
10 (Isovitexina)	>> 200*
5 (Apigenina)	93,60* ± 7,1322
6 (5,3' dimetil luteolina)	$142,1*\pm 3,4582$
7 (5 metil apigenina)	$109,83* \pm 2,7405$

 Tabela 14.
 Valores de CE₅₀ das amostras testadas frente ao radical DPPH

* Estes dados foram calculados por extrapolação já que não se encontram na faixa de concentração testada e foram registrados para fines informativos.

Figura 67. Gráficos de atividade de antioxidante de PGGM e galato de metila [%AA vs concentração (μ g/mL/ μ M)].

6 PROPOSTAS BIOSSINTÉTICAS CONSIDERADAS NA IDENTIFICAÇÃO DAS SUBSTÂNCIAS ISOLADAS.

No estudo químico e determinação estrutural de produtos naturais deve-se levar em consideração o conhecimento dos precursores das substâncias isoladas. Por isso são apresentadas as propostas de biossíntese dessas substâncias isoladas das espécies *Piptadenia gonoacantha* e *Laseguea erecta*.

6.1 Proposta Biossintética Para os Constituintes Isolados de Piptadenia gonoacantha

As substâncias isoladas de *Piptadenia gonoacantha* pertencem a classe dos esteróides, β -sitosterol, estigmasterol, e 3-O- β -D-glucopiranosil sitosterol; flavonóides, a apigenina, 5metilapigenina; 7,4'-diidroxi-5,3'-dimetoxiflavona, vitexina e isovitexina; ácidos fenólicos (galato de metila) e o éster (N-benzoilfenilalaninato de N-benzoilfenilalaninila).

6.1.1 Esteróides

As substâncias sitosterol, estigmasterol e 3-O- β -glicosilpiranosil sitosterol se caracterizam por ter um esqueleto básico de 27 carbonos dispostos num sistema tetracíclico. Biogeneticamente formam-se via pirofosfato de isopentenila originando o esqualeno, estrutura que contém duas unidades de farnesil pirofosfato ligadas cauda-cauda. O esqualeno epoxi (óxido de esqualeno), em sua forma cadeira-bote-cadeira-bote, cicliza após vários rearranjos do tipo 1,2 formando o cicloartenol, estrutura que contém 24 carbonos. O cicloartenol após clivagem oxidativa de três metilas forma os esteróides (Esquema 6).

Esquema 6. Proposta biogenética para os esteróides isolados de *P. gonoacantha* (Adaptado de MANN, 1994).

6.1.2 Flavonóides

Os flavonóides derivam seu esqueleto de 15 carbonos, de dois precursores básicos: malonil-CoA e *p*-coumaroil-CoA. Na reação biossintética ocorre condensação de três moléculas de malonil-CoA com a molécula de *p*-coumaroil-CoA formando uma chalcona intermediaria (1,3 difenilpropano-1-ona). Da chalcona são formadas estruturas de três anéis, as flavanonas, a partir das flavanonas formam-se todas as outras classes de flavonóides como isoflavonas, flavanois, antocianidinas, flavononois e flavonas (HARBONE & BAXTER, 1999).

Da espécie *P. gonoacantha* os flavonóides isolados fazem parte da classe das flavonas. As flavonas podem ser encontradas em todas as partes da planta, tanto em partes aéreas como subterrâneas como galhos, brotos espinhos, raízes, rizomas, flores, sementes, frutos, folhas e também em exsudados ou resinas. O Esquema 7 apresenta a proposta biogenética para as flavonas isoladas de *P. gonoacantha*.

Esquema 7. Proposta biogenética para as flavonas isoladas de *P. gonoacantha* (DEWICK, 2002)

Compostos fenólicos

O isolamento da substância galato de metila na espécie *P. gonoacantha* é justificada pelo alto conteúdo de taninos na espécie como relatado por GONÇALVES, 2001.

O ácido gálico estimula a produção de ácidos cinâmicos, precursores potenciais de flavonóides, estilbenóides, benzofenonas etc. (SIMÕES *et al.*, 2004). Mas também agem como poderosos seqüestradores de radicais (HATANO *et al.*, 1989), como antioxidante. Por tanto o ácido gálico inibe a biossíntese de muitos metabólitos secundários (SIMÕES *et al.*, 2004).

Foram propostas várias rotas biogenéticas para o ácido gálico, mas como resultado de experimentos com o fungo *Phycomyces* e várias plantas (ex. dos gêneros *Garanium*, *Rhus*) foi postulada a aromatização de ácido 3-desidrochiquímico (SIMÕES *et al.*, 2002) como mostrado no Esquema 8.

Esquema 8. Proposta biogenética para o galato de metila isolado de *P. gonoacantha* (Adaptado de SIMÕES *et al.*, 2004; DEWICK, 2002).

6.1.4 Estér

O éster isolado de *P. gonoacantha* ao parecer tem como precursor o aminoácido fenilalanina, pelo que a proposta biossintética esta baseada nele (Esquema 9).

Esquema 9. Proposta biogenética para o éster 10

6.2 Proposta Biogenética Para os Constituintes Isolados de Laseguea erecta

As flores da espécie *Laseguea erecta* forneceram duas substâncias classificadas como terpenóides, o ácido ursólico e o lupeol, e dois flavonóides, quercetina e 3-O-arabinopiranosil quercetina. Abaixo são apresentadas as propostas biogenéticas para essas substâncias.

6.2.1 Terpenos

Os terpenos são uma classe de substâncias provenientes da via pirofosfato de isopentenila, que da mesma forma que os esteróides, da lugar ao esqualeno pela fusão caudacauda de duas moléculas de farnesil pirofosfato. No caso dos terpenos o óxido de esqualeno em sua forma cadeia-cadeira-cadeira-bote é ciclizado para gerar o cátion dammarenil e, conseqüentemente, o cátion lupenil que pode ser estabilizado pela formação de um novo anel de cinco membros gerando compostos do tipo lupeol. O cátion lupenil também pode ser estabilizado pela formação do anel de 6 membros, gerando o cátion oleanil. Esse é estabilizado com migração de uma metila e rearrango do tipo Wagner-Meerwein gerando o núcleo básico α -amirina.

Esquema 10. Proposta biogenética para os terpenos lupeol e ác. ursólico. (Adaptado de MANN, 1994; DEWICK, 2002). **6.2.2 Flavonóis**

Os flavonóides isolados de *Laseguea erecta* fazem parte dos denominados flavononóis que da mesma forma que as flavonas têm como precursores uma molécula de 4-hidroxi cinamoil e 3 moléculas de 3-malonil-CoA para formar uma chalcona intermediária que por ciclização da lugar às flavanonas. Após os processos de oxidação gera os flavonóis (Esquema 11).

Esquema 11. Proposta biogenética para os flavonóides quercetina e 3-O-arabinopiranosil quecetina (DEWICK, 2002).

7 CONCLUSÃO

Esse é o primeiro trabalho com *Piptadenia gonoacantha* e conduziu ao registro de 10 substâncias.

Nos galhos foram encontrados esteróides, flavonóides e um éster derivado da fenilalanina. Das folhas identificaram-se apenas o galato de metila e flavonóides C-glicosideos.Esses flavonóides e o éster derivado de aminoácido estão sendo registrados pela primeira vez no gênero *Piptadenia*.

Das flores de *L. erecta* isolaram-se 4 substâncias, sendo dois triterpenos e dois flavonóis. O 3-O-arabnopiranosil quercetina, a quercetina e o ácido ursólico estão sendo relatados pela primeira vez nesse gênero.

Foram relatados os valores de CE₅₀ da atividade antioxidante pelo ensaio de DPPH para o extrato metanólico das folhas de *P. gonoacantha* (8,61 ± 0,43) e para o galato de metila (8,84 ± 0,59).

8 REFERÊNCIAS

AGRAWAL, P. K. Methods in signal assignement. In: Carbon-13 NMR of flavonoids, studies in organic chemistry. Amsterdam: Ed. Elsevier, **1989**, 201 p.

ALLEN, O. N.; ALLEN, E.K. *The Leguminoseae – A Source Book of characteristics, uses and nodulation.* The University of Wisconsin. **1981**.

ALVES, N.I.; GOMES, M.S.; CARVALHO, M.G.; CARVALHO, A.G. Deslocamentos químicos de ¹H e ¹³ C de 5-H flavanone e 5-H-flavonol isolados de Leguminoseae. *Revista Universidade Rural, Serie Ciências Exatas e da Terra*, **2003**, v. 22, n.1-2, p. 81-87.

BANERJI, A.; RAY, R. Auranamide, a nem phenylalanine derivative isolated from *Piper* aurantiacum Wall. Indian Journal Chemical B, **1981**, v. 20B, p. 597.

BARRETO, A.S.; CARVALHO, M.G.; NERY, I.A.; GONZAGA, L.; KAPLAN, M.A.C.. Chemical constituents from *Himatanthus articulata*. *Journal Brazilian Chemical Society*, **1998**, v. 9, p. 430-434.

BARROSO, G. M. Sistemática de Angiospermas do Brasil. Viçosa: Universitária, 1991, v.2

BIRD, B.A.; CAMPBELL, I.M. Disposition of mycophenolic, breviaanamide A, asperphenamate, and ergosterol in solid cultures of *Penicillium brevicompactum*. *Applied and Environmental Microbiology*, 1982, v.43, p. 345.

BRUNDRETT, M.C. Coevolution of roots and mycorrhizas of landplants. *New Phytologist*, **2002**, v. 154, p. 275–304.

BULHÕES, G.D.C.; DA MOTA E SILVA A.; MARQUES DE SA, M.A.; Phytochemical screening of plants native to northeastern Brazil, II., *Anais da Faculdade de Farmacia, Universidade Federal de Pernambuco*, **1976**, v.15, p. 39-44.

CARVALHAES, S.F.; COSTA, D.L.; MAZZEI, J.L.; TADDEI, L.E.M.; D'AVIDA, L.A. Alternative extraction of alkaloid anticarcinogens from Brazilian "vinca rósea" using long exchange chromatography. *Revista Brasileira de Farmacognosia*, **2002**, *12* supl.: p.83-34.

CARVALHO, M.G.; VELLOSO, C.R.X.; BRAZ-FILHO, R.;COSTA, W.F. Acyl-lupeol esters from *Parahancornia amapa* (Apocynaceae). *Journal Brazilian Chemical Society*, **2001**, v. 12, p. 556-559.

CARVALHO, M.G. ; ALVES C.C.F.; WERLE A.A; BRAZ-FILHO, R. Metabólitos especiais isolados de *Laseguea erecta* (Apocynaceae), *Revista Brasileira de Farmacognosia*, **2006**, v.16, n. 4.

CATALAN, C.A.N.; HELUANI. C.S.; KOTOWICZ, C.; GEDRIS, T.E.; HERZ. W. A linear sesterterpene, two squalene derivatives and two peptide derivates from *Croton hieronymi*. *Phytochemistry*, **2003**, v. 64, p. 625-629.

CHEN, Z.; HU, Y.; WU, H.; JIANG, H. Synthesis and biological evaluation of flavonóides as vasorelaxant agents. *Bioorganic & Medicinal Chemistry Letters*, **2004**, v. 14, p. 3949-3952.

CLARK, A.M.; HUFFORD, C.D.; ROBERTSON, L.W. Two metabolites from *Aspergillus flavipes*. Journal Natural Products (Lloydia), **1977**, v. 40, p.146.

CORNELIUS, M.T. Estruturas e atividades das substâncias isoladas de *Plumeria lancifolia* (Apocynaceae) e *Solanum trinitrum* (Solanaceae), Tese. ICE-Química Orgânica, UFRRJ. **2006**.

CORREA, M.P. *Dicionário de plantas úteis do Brasil; e das exóticas cultivadas*. RJ, I. Brasileiro de Desenvolvimento Florestal, **1984**.

CRONQUIST, A. An Integrated system of classification of flowering plants. New York: Columbia University, **1981**. 1291 p.

D'ALCONTRES,G.S. ;CUZZODREA,G.Active principies of *Piptadenia peregrina*. *Atti.Soc.Peloritana sci.fis.mat. e nat.* **1957**, v. 1956-1957, n. 3, p. 166-167.

DEFORGE, A.; MAHEU. J.; DE BALSAC, F.H. Tenniferous Barks of Madagascar. VII. "Fany" bark (*Piptadenia chrysostachys* Benth). *Halle aux Cuirs*, **1929**, p. 309-314.

DELAVEAU, P. New possibilities in medicinal plants . *Products pharmaceutical*. **1960**, v.15, p. 479-488.

DELGOBO, C.L.; GORIN, A.J.; JONES, C.; IACOMINI, M. Gum heteropolysaccharide and free reduncing mono and oligosaccharides of *Anadenanthera columbrina*. *Phytochemistry*. **1997**, v. 47, n. 7, p. 1207-1214.

DELGOBO, C.L.; GORIN A.J.; TISCHER, C.A.; IACOMINI, M. The free reducing oligosaccharides of angico branco (*Anadenanthera columbrina*) gun exude: na aid for structural assignments in the heteropolysaccharide. *Carbohydrate Research*. **1999**, v. 320, p. 167-175.

DEWICK, P.M. *Medicinal Natural Products: a biosynthetic approach*, 2nd edition, Jonh Wiley & Sons., **2002**, 507 p.

DI STASI, L.C.; GUIMARÃES, E.M.; SANTOS, C.M.; HIRUMA-LIMA,C.A.; SOUZA-BRITO, A.R.M. *Fabales medicinais*. In DI STASI, L.C. *Plantas medicinais na Amazônia e na Mata Atlântica*. 2ª edi. rev. e ampl. São Paulo:Editora UNESP. **2002**, 604 p.

DIAS, A.C.P; TOMÁS-BARMERÁN, F.A; FERNANDES, M.; FERRERES, F. Unusual flavonoids produced by callus of *Hypericum perforatum*, *Phytochemistry*, **1998**, v. 48, n. 7, p. 1165-1168.

DIAS, B.F.S. A implementação da convenção sobre diversidade biológica no Brasil: desafios e oportunidades. Campinas : André Tosello, **1996**. 10p.
EVANS, W.C. *Trease and Evans: Pharmacognosy.* 15 ed. Edinburgh: Editora W. B. Saunders, **2002**.

FISH, M.S.; JOHNSON, N.M.;HORNING, E.C. *Piptadenia* alkaloids. Indole bases of *Piptadenia peregrina* and related species. *Journal of the American Chemical Society*, **1955**, v. 77, p. 5892-5895.

GIESBRECHT, A.M. Bufotenine occurrence in *Piptadenia falcate* seeds. *Anais da Associação Brasileira de Química*, **1960**, v. 19, p. 117-119.

GOMES, M.S. Constituintes Químicos Isolados da Raiz de *Piptadenia rígida* (Leguminosae-Mimosoideae). Dissertação QO-ICE-UFRuralRJ. Seropédica, R.J. Brasil, **2002**

GONÇALVES, C.A.; LELIS, R.C.C. Teores de taninos de casca e da madeira de cinco Leguminosas arbóreas. *Floresta e ambiente*, **2001**, v. 8, n. 1, p. 167-173.

GUERRA, P.M.; NODARI, R.O. Biodiversidade: Aspectos biológicos, Geográficos, Legais e Éticos In. SIMÕES, C.M.O.; Farmacognosia: da Planta ao medicamento. 5ed.rev.ampl., primeira reimpressão - Porto Alegre, Florianópolis, Editora da UFRGS/Editora da UFSC, 2004. p. 14

GRANIER – DOYEUX, M. Native hallucinogic grups piptadenias. 1965

HARBORNE, J.B. *Chemotaxonomy of the Leguminosae*. Ed. Academic press Inc. (London) LTD. **1971**.

HARBORNE, J.B.; BAXTER, H. Handbook of Natural Flavonoids, Wiley, Chichester. 1999, 2 vols.

HATANO, T.; EDAMATASU, R.; HIRZMATSU. M.; MORI, A.; FUJITA. Y.; YASUHARA, T.; YOSHIDA, T.; OKUDA, T.; Effects of the interaction of tannins with coexisting substances. VI. *Chemical Pharmaceutical Bulletin*, **1989**, v. 37, p. 2016-2021.

HELLER, W.; FORKMANN, G. *Biosynthesis of flavonoids*. In: Harborne, J.B. (Ed.), The *Flavonoids: Advances in Research since1986*. Chapman & Hall, London, **1993**, p. 499–535.

HENKER, G.A.; HUSTON, M.J. Yopo, a south American Snuff, *Canadian Pharmaceutical Journal*, **1950**, v. 83, n. 18, p. 8-9.

IACOBUCCI, G.A.; RUVEDA, E.A.; Bases derived from tryptamine in Argentine *Piptadenia* species. *Phytochemistry*, **1964**, v. 3, n. 3, p. 465-467.

KISTNER, C.; PARNISKE, M.;. Evolution of signal transduction in intracellular symbiosis. TRENDS in *Plant Science*, **2002**, v. 7, p. 511–518.

KOJIMA, H.; SATO, N.; HATANO, A.; OGURA, H. Constituents of the Labiatae Plants. 5. Sterol Glucosides from *Prunella vulgaris*. *Phytochemistry*, **1990**, v. 29, n. 7, p. 2351-2355.

KRIWACKI, R.;PITNER,T.P. Current aspects of practical two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy: applications to structure elucidation. *Pharmaceutical Research*, **1989**, v. 6, n. 7, p. 531-554.

LEGLER, G.;TSCHESCHE,R. The isolation of N-methyltriptamine, 5-methoxy-N-methyltriptamine and 5-methoxy-N,N-dimethyltryptamine from the bark of *Piptadenia peregrine*. *Naturwissenschaften*, **1963**, v. 50, p. 94-95.

LORENZI, H. Arvores Brasileiras. Vol-01. Instituto Plantarum, Nova Odessa. 1992. 384 p.

LUNZ, A.M. Prospecção fitoquímica e susceptibilidade da madeira de 4 essências arbóreas a Scolytidae coleóptera em duas formações florestais. Tesis, Instituto de Agronomia, curso de pós-graduação em fitotécnia-fitosanidade. UFRuralRJ, **2004.**

MABBERLEY, D. J. *The plant book.* A portable dictionary of the vascular plants. 2.ed. Cambridge: Cambridge University Press, **1997**. 858p. MABRY, T.J. *The flavonóides: advances in research.* Chapman and Hall Ltd. **1982**

MANN, J. Chemical aspects of biosynthesis, 1ST ed. Oxford University press Inc., New York. 1994

MARTENS, S., MITHÖFER, A. Flavones and flavone synthases, *Phytochemistry*, **2005**, v. 66, p. 2399-2407.

McCORKINDALE, N.J.; BAXTER, R.L.; ROY,T.P.; SHIELDS, H.S.; STEWART, R.M.; HUTCHINSON, S.A. Synthesis and chemistry of N- benzoyl-O-[N'-benzoyl-L-phenylalanyl]-L-phenylalaninol, the major mycelial metabolite of *Penicillium canadense*. *Tetrahedron*, **1978**, v. 34, p. 2791.

MENSOR, L.L.; MENEZES, F.S, LEITÂO, G.G.; REIS, A.S.; DOS SANTOS, T.C.; COUBE, C.S.; LEITÃO, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. *Phytotherapy Research*, **2001**, v. 15, p. 127-130.

MIYAUCHI, Y.; YOSHIMOTO,T.;MINAMI, K. Extractives of hardwood, IX, Extractives from hertwoos of *Piptadenia sp. Mokuzai gakkaishi*, **1976**, v. 22, n. 1, p. 47-50.

MIYAZAWA, M.; HISAMA, M. Antimutagenic activity of flavonoids from *Chysantemum* morifolium. Bioscience, Biotecnological, Biochemistry, **2003**, v. 67, n. 10, p. 2091-2099.

MONTANARI, C.A., BOLZANI, V. DA S. Planejamento Racional de Fármacos Baseado em Produtos Naturais. *Química Nova*, **2001**, v. 24, n. 1, p. 105-111.

NEWMAN, D.J.; CRAGG, G.M.; SNADER, K.M. The influence of natural products upon drug discovery. *Natural Products Report*, **2000**, v. 17, p. 215-234.

NOZAWA, K.; UDAGAWA, S.; NAKAJIMA, S.; KAMAI,K. S. Studies on fungal products. Part 25. A dioxopiperazine derivate from *Penicillium megasporum*. *Phytochemistry*, **1989**, v. 28, p. 929. PARIS,R.R.; SAINT-FIRMIN,A.;ETCHEPARE,S. Alkaloids and flavonoids of *Piptadenia peregrina* from Haiti.Absence of alkaloids in *Piptadenia africana*. *Annales Pharmaceutiques francaises*, **1967**, v. 25, p. 7-8.

PATCHER, I.J.; ZACHARIUS, D.E.; RIBEIRO, O.; Índole alkaloids of Acer saccharinum (silver maple), *Dictyoloma incanescens, Piptadenia colubrine*, and *Mimosa hostilitis. Journal of Organic Chemistry*, **1959**, v. 24, p. 1285-1287.

PEDRAS, M.S.C.; CHUMALA, P.B.; SUCHY, M. Phytoalexins from *Thlaspi arvense* a wild cruciferr resistant virulent *Leptosphaeria maculans:* structures, syntheses and antifungal activity, *Phytochemistry*, **2003**, v. 64, p. 949-956.

PIACENTE, S.; BALDERRAMA, L.; DE TOMASSI, N.; MORALES, L.; VARGAS, L.; PIZZA,C. Anadanthoside: a flavanol-3-O-β-D-xylopyranoside from *Anadenanthera macrocarpa*. *Phytochemistry*, **1999**, v. 51, p. 709-711.

POI, R.; ADITYACHOUDHURY, N. Ocurrence of two rare amides en *Medicago* polymorpha. Indian Journal Chemistry B, **1986**, v. 25B, p. 1245.

PRIMO, B.L. Tannin content of certain Brazilian vegetable products. Anais Associação Química Brasileira.1945, v. 4, p. 117-120.

RANGEL. J.L. Angico gum. *Revista de Química Industrial Rio de Janeiro*, **1943**, v. 12, p. 16-18.

RAYMOND-HAMET. Sur quelques proprietes physiologiques d'un excitant Sud-American : le *Piptaenia peregrina* Bentham, *Comptes rendus hebdomadaires des seances de l'Academie des sciences*,**1956**, v. 243, n. 5, p. 512-514.

RENDON, P.; WILLY, J. Isolation of bufotenine from seeds of the *Piptadenia macrocarpa* Benth, *Revista Boliviana de Química*, **1985**, v. 5, n. 1, p. 39-43.

RIZZINI, C.T. Manual de Dendrologia Brasileira –Árvores e madeiras Úteis do Brasil. Ed. Nacional. SP. **1998**.

ROCHA, L.; MARSTON, A.; POTTERAT, O.; KAPLAN, M.A.C.; STOECKLI-EVANS, H.; HOSTETTMANN, K. Antibacterial phloroglucinols and flavonóides from *Hypericum brasiliense*, *Phytochemistry*, **1995**, v. 40, n. 5, p. 1447-1452.

SCHNEIDER, H.S. Angico gum. *Revista de Química industrial Rio de Janeiro*, **1937**, v. 6, p. 286-290.

SIMÕES, C.M.O.; SCHENKEL, E.P.; GOSMANN, G.; DE MELLO, J.C.P.; MENTZ, L.A.; PETROVICK, P.R. *Farmacognosia: da planta ao medicamento*, 5 ed. UFRGS, **2004**.

SOBRINHO, D. C.; HAUPTLI, M. B.; APPOLINÁRIO, E. V.; KOLLENZ, C. L. M.; CARVALHO, M. G. DE; BRAZ-FILHO, R. *Journal Brazilian Chemical Society*, **1991**, v. 2, p. 15-20.

STROMBERG, V.L. The isolation of bufotenine from *Piptadenia peregrina*. *Journal of the American Chemical Society*, **1954**, v. 76, p. 1707.

TALAPATRA, S.K.; PAL, M.K.; MALLIK, A.K.; TALAPATRA, B. Structure and synthesis of (-)-anabellamide. A new phenylalanine derivate ester amide from *Anaphalis subumbellata*: occurrence of 4'hydroxydehydrokawain. *Journal.Natural.Products*. **1983**, v. 46, p. 140.

TORSSELL, K.B.G. Natural Product Chemistry. Jonh Wiley & Sons Ltd, 1983.

VANDERLEI, M.F.; SILVA, M.S.; GOTTLIEB, H.E.; BRAZ-FILHO R.. Iridoids and triterpenes from *Himatanhthus phagadaenica*, The complete assignment of the ¹H and ¹³C NMR spectra of two Iridoids glycosides. *Journal Brazilian Chemical Society*, **1991**, v. 2, p. 51-55.

VOGEL, A. *Química Orgânica*, Tradução COELHO, C.A., Ao livro Técnico S. A. 3^a edição, **1985**.

WAGNER H; W; CHARI, V..M.; SONNENBICHLER, J. Carbon 13 NMR spectra of naturally occurring flavonoids. *Tetrahedron Letter*, **1976**, v. 21, p. 1799-1802.

WILLIAMS, C.A.; GRAYER, R. J.; Anthocyanins and other flavonoids. *Natural Products Reports*, **2004**. v. 21, p. 539–573.

YAMASATO, S.; KAWANISHI, K.; KATO, A.; HASHIMOTO, Y. Organic bases from Brazilian *Piptadenia* species. *Phytochemistry*, **1972**, v. 11, n. 2, p. 737-739.

ZELADA, F.; CONI, H. Contribution to the study of *Piptadenia cebil*. Tese, **1915** Univesidad Nacional de La Plata, Buenos Aires.72 p

ZHOU, X.; JINYONG, P.; FAN. G.; WU. Y. Isolation and purification of flavonoid glycosides from *Trollius ledebouri* using high-speed counter-current chromatographic by stepwise increasing the flow-rate of the mobile phase, *Journal of Chromatography A*, **2005**, v. 1092, p. 216-221.