UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS CURSO DE PÓS-GRADUAÇÃO EM QUÍMICA ORGÂNICA

ESTUDO QUÍMICO DE GUATTERIA DUCKEANA

PEDRO BOM DESPACHO DE ALMEIDA

Sob a orientação do Professor RAIMUNDO BRAZ FILHO

> Tese submetida como requisito parcial para a obtenção do grau de Mestre em Química. Área de concentração em Química Orgânica.

Itaguaí, Rio de Janeiro

agosto/86

PEDRO BOM DESPACHO DE ALMEIDA

Aprovado em: 08/agosto/1986

RAIMUNDO BRAZ FILHO

(assinatura)

JOSÉ CARLOS NETTO FERREIRA

lon Calh Jello Gonta (assinatura) (assinatura)

ANSELMO ALPANDE MORAIS

A meus Pais, Esposa e Filhos,

com toda gratidão.

AGRADECIMENTOS

O autor deseja agradecer

Ao Prof. Dr. Raimundo Braz Filho, pelos ensinamentos, orientação, apoio, confiança e valiosa colaboração na realização deste trabalho.

Aos Profs. Sonildes Lamêgo Vieira Pinho e Anselmo Alpande Morais, pelo incentivo desde o início dos trabalhos.

Aos colegas do Departamento de Química da UFMT, pelo apoio e confiança dispensados.

Ao Prof. Ersio Antonio Ferreira Gomes, pelo estímulo prestado no início da minha carreira de pesquisador.

Aos colegas e funcionários do Departamento de Química da UFRRJ, pelos serviços prestados.

À Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES-PICD), pela bolsa de Pós-Graduação concedida.

Ao Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus-Amazonas, pelo fornecimento dos extrados de *Guatteria duckeana*.

À Central Analítica do Núcleo de Pesquisas de Produtos Naturais (UFRJ), pelo registro e obtenção de espectros de r.m.n. ¹H (100 MHz) e massa. Ao Departamento de Química, Instituto de Ciências Exatas (UFRRJ), pelo material colocado à disposição.

Aos professores e colegas do Curso de Pós-Graduação em Química Orgânica da UFRRJ, pelos ensinamentos, incentivo e amizade. Biografia do Autor

Pedro Bom Despacho de Almeida, filho de Pedro Vieira de Almeida e Julia Monteiro de Almeida, nasceu a 30 de julho de 1950 na cidade de Santo Antonio de Leveger - MT. Realizou sua educação do 1º grau no Colégio São Gonçalo, e secundária no colégio Universitário em Cuiabá.

Em 1972 ingressou no curso de Licenciatura Plena com Habilitação em Química. Tendo se graduado em 29 de julho de 1977. Durante o curso foi monitor da área de Química Orgânica.

Exerceu o cargo de professor de Química no Liceu Salesiano São Gonçalo no período de 1973 a 1975 e na Escola Técnica Federal de Mato Grosso de 1975 a 1977.

Em agosto de 1977 foi contratado como professor horista pelo departamento de Química da UFMT, passando a professor Auxiliar de Ensino no período de 1978 a 1982, onde atualmente exerce o cargo de professor Assistente.

SUMÁRIO

Índice de Tabelas	ix
Índice de Figuras	xiii
Índice de Esquemas	xv
Cap. 1 - INTRODUÇÃO	1
1.1 - Importâncias econômica e química de	
Annonaceae	1
1.2 - Distribuição e origem de Annonaceae	2
1.3 - Morfologia e habitat de Annonaceae	2
1.4 - Classificação de Annonaceae	3
1.5 - Gêneros da família Annonaceae	3
1.6 - Constituintes químicos de Annonaceae	5
1.7 - Relações quimiotaxonômicas e atividades	
dos constituintes químicos de Annonaceae.	
Cap. 2 - REVISÃO QUÍMICA DA FAMÍLIA ANNONACEAE	. 7
Cap. 3 - A PLANTA E SEUS CONSTITUINTES	38
Cap. 4 - RESULTADOS E DISCUSSÃO	42
4.1 - Determinação estrutural de GD-1P (4)	42
4.2 " " " GD-2P (6)	53

		4.3	-	Determ	inação	o es	trutura	l de	GD-31	P (10)	. 56
		4.4	-		n	n	II	G D - 4 1	P	(11)		. 72
		4.5	-		n	n	II	G D - 51	P	(15)		. 78
		4.6	-	"		"	п	GD	- 6 P	(18)		. 37
		4.7	-	-	II	Π	"	GD-7	Р	(20,	21 22)	, . 96
Cap.	5 -	PAR	RTE	EXPER	IMENT	'AL .						. 101
		5.1	- M	lateria	al e	mét	odos .					. 101
		5.2	-	Isola <i>duck</i>	mento <i>eana</i>	dos	s con	stituin	tes	de <i>G</i>	uateri	a
			5	.2.1	- C (oleta						. 10
			5	.2.2	-	Extra	ação					. 103
			5	.2,3	- ge	Cromat el d	ografia lo elu	em ato h	colun; exânico	a de o do	sílic extrat	a:0
					b	enzên:	ico de	e Guat	teria	duck	eana .	. 10
			5	.2.4	- (Cromat el d ofórm	cografia los el ico da	a em uatos o ext	colun benzê rato	a de nico benzêr	sílic + clo nico d	a - e
					G	uatte.	ria d	luckean	.a			. 107
		5.3	- t	Dados es	fís de	sicos Guatt	e es eria	specurai duckea	.s do na .	s cor	stituin	- . 111
Cap.	6	-	CONSIE	eraçõe	S B	BIOSSIN	NTÉTICAS					. 117
		6.1	_	Alcaló	öides	apor	fínicos	3				. 117
		6.2	-	Fenan	treno	s na	turais					. 122
Cap.	7	-	RE	SUMO								. 131
Cap.	8	-	ABST	RACT		••••						. 132
Cap.	9 –	BIBL	IOGRA	FIA .								133

ÍNDICE DE TABELAS

1.	Lista de gêneros e número aproximado de espécies da	
	família Anonnaceae	4
2.	Estrutura e ocorrência de ácidos graxos saturados e	
	insaturados em Annonaceae	8
3.	Estrutura e ocorrência de compostos poliacetilêni-	
	cos em Annonaceae	9
4.	Estrutura e ocorrência de monoterpenos em Annonaceae.	10
5.	Estrutura e ocorrência de sesquiterpenos em Annona-	
	ceae	11
б.	Estrutura e ocorrência de diterpenos em Annonaceae.	12
7.	Estrutura e ocorrência de triterpenos em Annonaceae	13
8.	Estrutura e ocorrência de chalconas em Annonaceae	14
9.	Estrutura e ocorrência de diidrochalconas em Anno-	
	naceae	15
10.	Estrutura e ocorrência de flavanonas em Annonaceae	16
11.	Estrutura e ocorrência de flavonas em Annonaceae	17
12.	Estrutura e ocorrência de alcalóides benziltetrai-	
	droisoquinolínicos em Annonaceae	18
13.	Estrutura e ocorrência de alcalóides bis - benzilte-	
	traidroiosquinolínicos e bis-benzilisoquinolínicos	
	em Annonaceae	19

14.	Estrutura e ocorrência de alcalóides tetraidropro-
	toberberínicos em Annonaceae
15.	Estrutura e ocorrência de alcalóides protoberberí-
	nicos em Annonaceae
16.	Estrutura e ocorrência de alcalóides proaporfínicos
17.	Estrutura e ocorrência de alcalóides aporfínicos
18.	Estrutura e ocorrência de alcalóides aporfínicos 7-
	-substituído em Annonaceae
19	Estrutura e ocorrência de alcalóides oxoaporfínicos
	em Annonaceae
20	Estrutura e ocorrência de alcalóides fenantrênicos
	em Annonaceae
21	Estrutura e ocorrência de outros alcalóides do tipo
	isoquinolínicos em Annonaceae
22	Estrutura e ocorrência de alcalóides não isoquino-
	línicos em Annonaceae
23	Estrutura e ocorrência de substâncias C ₆ -C ₁ aromá-
	ticas em Annonaceae
24	Estrutura e ocorrência de substâncias C ₆ -C ₂ aromá-
	ticas em Annonaceae
25	Estrutura e ocorrência de substâncias C ₆ -C3 aromá-
	ticas em Annonaceae
26.	Estrutura e ocorrência de outras substâncias deri-
	vadas do ácido chiquímico em Annonaceae
27.	Dados espectrais de i.v., u.v. e de massas de GD-1P
	(4)
28.	Dados de r.m.n. de ¹ H (100 MHz, CDCl ₂ , TMS) de GD-1P
	(4)
29	Deslocamentos químicos (δ) dos prótons de anéis aro-
<u> </u>	máticos, do grupo metilenodroxi e do grupo metil do
	N-acetil em alcalóides aporfínicos 1,2-dioxigenados

Х

30.	Dados espectrais de i.v., u.v. e de massas de GD-2P (6)	55
31.	Dados de r.m.n. de ¹ H (100 MHz, CDCl ₃ , TMS) de GD-2P (6)	56
32.	Dados espectrais de i.v., u.v. e de massas de GD-3P (10)	64
33.	Dados de r.m.n. de ¹ H (60 MHz, CCl ₄ , TMS) de GD-3P (10)	65
34.	Deslocamentos químicos (6) dos prótons dos anéis aromáticos, do grupo metil de metoxila em alcalói-	
	des fenantrênicos	66
35.	Dados espectrais de i.v. e u.v. de GD-4P (11)	74
36.	Dados de r.m.n. de ¹ H (60 MHz, CCl ₄ , TMS) de GD-4P	
	(11)	74
57.	Dados espectrais de i.v., u.v. e de massas de GD-5P (15)	80
38.	Dados de r.m.n. de ¹ H (60 MHz, CCl ₄ , TMS) de GD-5P (15)	81
39.	Dados espectrais de i.v., u.v. e de massas de GD-6P (18)	89
40.	Dados de r.m.n. de ¹ H (100 MHz, $CDCl_3$, TMS) de GD-6P (18)	90
41.	Cromatografia em coluna de sílica gel da fração he- xânica do extrato benzênico de <i>Guatteria duckeana</i>	105
42.	Frações reunidas do eluato hexânico do extrato ben-	
	zênico de <i>Guatteria duckeana</i> e substâncias isoladas	106
43.	Cromatografia em coluna de sílica gel dos eluatos benzênico + clorofórmico do extrato benzênico de	
	Guatteria duckeana	108

xi

44.	Frações	s reunidas		substân	cias	isoladas	eluatos			
	benzênic	o +	clorof	órmico	do	extrato	benzên	ico	de	
	Guatteria	a duck	eana .			•••••••				109
45.	Estrutura	a e	ocorrên	cia de	fena	antrenos	natura	is	não	
	nitrogenados									126

xii

ÍNDICE DE FIGURAS

1.	Folha, flor e fruto de <i>Guatteria duckeana</i> , família	
	Annonaceae	41
2.	Espectro i.v. de GD-1P (4) em KBr	49
3.	Espectro u.v. de GD-1P (4) em EtOH e em presença de	
	EtOH + HCl	50
4.	Espectro de massas de GD-1P (4)	51
5.	Espectro de r.m.n. de ¹ H (100 MHz, CDCl ₃ , TMS) de	
	GD-1P (4)	52
6.	Espectro i.v. de GD-2P (6) em KBr	58
7.	Espectro u.v. de GD-2P (6) em EtOH e em presença de	
	EtOH + HCl	59
8.	Espectro de massas de GD-2P (6)	60
9.	Espectro de r.m.n. de ¹ H (100 NHz, CDCl ₃ , TMS) de	
	GD-2P (6)	61
10.	Espectro i.v. de GD-3P (10) em KBr	68
11.	Espectro u.v. de GD-3P (10) em EtOH e em presença de	
	EtOH + HCl	69
12.	Espectro de massas de GD-3P (10)	70
13.	Espectro de r.m.n. de 1 H (60 MHz, CCl ₄ , TMS) de	
	GD-3P (10)	71

14.	Espectro i.v. de GD-4P (11) em KBr	75
15.	Espectro u.v. de GD-4P (11) em EtOH e em presença	
	de EtOH + NaOH	76
16.	Espectro de r.m.n. de 1 H (60 MHz, CCl ₄ , TMS) de	
	GD-4P (11)	77
17.	Espectro i.v. de GD-5P (15) em KBr	83
18.	Espectro u.v. de GD-5P (15) em EtOH e em presença	
	de EtOH + NaOH	84
19.	Espectro de r.m.n. de ¹ H (60 MHz, CCl ₄ TMS) de	
	GD-5P (15)	85
20.	Espectro de massas de GD-5P (15)	86
21.	Espectro i.v. de GD-6P (18) em KBr	92
22.	Espectro u.v. de GD-6P (18) em EtOH e em EtOH + HCl	93
23.	Espectro de r.m.n. de ¹ H (100 MHz, CDCl ₃ , TMS) de	
	GD-6P (19)	94
24.	Espectro de massas de GD-6P (18)	95
25	Espectro i.v. de GD-7P (20, 21, 22) em KBr	98
26.	Espectro de r.m.n. de ¹ H (100 MHz, CCl ₄ , TMS) de	
	GD-7P (20,21,22)	99
27.	Espectro de massas de GD-7P (20,21,22)	100

ÍNDICE DE ESQUEMAS

1.	Substâncias isoladas de <i>Guatteria duckeana</i> , família	
	Annonaceae	40
2.	Caminhos principais de fragmentação de GD-1P (4) no	
	espectrômetro de massa	48
3.	Caminhos principais de fragmentação de GD-2P (6) no	
	espectrômetro de massa	57
4.	Caminhos principais de fragmentação de GD-3P (10) no	
	espectrômetro de massa	67
5.	Caminhos principais de fragmentação de GD-5P (15) no	
	espectrômetro de massa	82
6.	Caminhos principais de fragmentação de GD-6P (18) no	
	espectrômetro de massa	91
7.	Caminhos principais de fragmentação dos constituin-	
	tes de GD-7P no espectrômetro de massa	97
8.	Fracionamento do extrato benzênico de <i>Guatteria</i>	
	duckeana	104
9.	Biossíntese de alcalóides benzilisoquinolínicos	119
10.	Caminhos biossintéticos de alcalóides oriundos de	
	benzilisoquinolínicos (precursor)	120

11.	Proposta biogenética para os alcalóides isolados de	
	Guatteria duckeana	121
12.	Biogênese de compostos dibenzílicos (diidroestilbe-	
	nos)	123
13.	Biossíntese de fenantrenos não nitrogenados	124
14.	Biogênese dos pirofosfatos de isopentenila e de	
	γ,γ -dimetil-alila, precursores básicos de terpenóides.	127
15.	Hipótese biogenética para fenantrenos diterpênicos.	128
16.	Proposta biogenética para 1-vinil-3,4-dimetoxi-fe-	
	nantreno em Guatteria duckeana	129
17.	Proposta biossintética dos alcalóides (27 e 28) ba-	
	seada na degradação de flavonóides	130

1. INTRODUÇÃO

1.1 - Importâncias econômica e química de Annonaceae

Annonaceae é uma grande família de plantas, compreendendo mais de 120 gêneros constituídos de mais de 2000 espécies |1|. Economicamente, assume apreciável importância como fonte de frutos comestíveis: mamão, fruta-de-conde, ariticum, maçã creme (Annona). Por este motivo as plantas do gênero *Cananga* e *Rollinia* são cultivadas |2|. Os óleos obtidos das sementes de algumas plantas tornam-se comestíveis após processo de refinamento |3| ou podem ser usados na produção de sabão |4|. A madeira de algumas Annonaceae tem sido empregada para a produção de álcool |5|. As flores aromáticas de *Cananga odorata* fornecem matéria prima para perfumaria |6|. Muitas espécies dessa família são usadas na medicina popular para várias finalidades.

Estudos químicos e, em menor extensão, farmacológico em plantas de Annonaceae foram intensificadas na última década. No entanto, Waterman |7| considerou a família pouco conhecida quimicamente. Muitas investigações foram centralizadas no estudo de alcalóides. Esta família também produz uma série variada de substâncias não alcaloidais, notando-se claramente a necessidade de uma completa investigação fitoquímica. Nesses trabalhos não se deve descuidar da possibilidade de importância medicinal. 1.2 - Distribuição e origem de Annonaceae

Esta família é representada por árvores (aromáticas), arbustos ou trepadeiras, ocorrendo em regiões tropicais e subtropicais. No Trópico do Velho Mundo, habitam em baixadas como floresta densa e perene. Na América Tropical aparecem principalmente como arbusto ou árvores, assumindo desenvolvimento herbáceo quando germinam ao ar livre |13|.

O gênero Asimina se extende para a zona temperada, ocorrendo na América do Norte e ao Norte dos Grandes Lagos 13. Segundo Takhtajan, 51 gêneros e cerca de 950 espécies são encontradas na Ásia e na Australasia, 40 gêneros com cerca de 450 espécies na África e Madagascar e 38 gêneros e 740 espécies no continente Americano |8,9|. Assim, a Ásia e a Australasia são consideradas as regiões nativas de Annonaceae 8. No entanmais recentemente, Le Thomas formularam to, Walker e, hipóteses, com base em dados fitogeográficos e palinológicos, propondo origem sul-americana ou africana para a família 6.

1.3 - Morfologia e habitat de Annonaceae

Sob o ponto de vista morfológico e habitat, a famí-Annonaceae é constituída de plantas que conservam certa holia mogeneidade |11|. As folhas são alternadas, inteiras, estipufreqüentemente reconhecíveis ladas, sendo no campo devido ao brilho metálico. As flores aromáticas, glauco ou freqüentedesenvolvidas, terminais, com mente expostas, são pétalas axiraramente unissexuadas, regulares, lares, hermafroditas ou mormente trímeras, os estames são numerosos, hipógeos, arranjados espiralmente, os carpelos são livres e numerosos, raros, unidos num ovário monocelular com placenta pariental. Os carpelos dos são sésseis, na maior parte indeiscentes. 0 fruto é frutos usualmente um agregado do tipo morango, sendo que em alguns gêneros, especialmente Annona, os morangos coalescem em um receptáculo carnudo, tornando-o comestível. As sementes possuem um endosperma ruminado abundante e um pequeno embrião, sendo que algumas desenvolvem um arilo depois da fertilização. Em regiões tropical e sub-tropical as plantas de Annonaceae são reconhecidas pelas folhas alternadas, estipuladas flores trímeras numerosas e estames livres truncados, carpelos livres e sementes com endosperma ruminado |2,10,12|.

1.4 - Classificação

A família Annonaceae é caracterizada por muitos traços e extremamente primitivos. De acordo com Takhtajan, estão incluídas dentro da ordem Magnoliales (Annonales), com a maioria das famílias primitivas de angiospermas: Winteraceae, Magnoliaceae, Degeneriaceae, Himantandraceae, Eupomatiaceae, Canellaceae e Myristicaceae. A Annonaceae está relacionada com Magnoliaceae, notavelmente mais avançada. A ordem Magnoliales em si é associada numa ordem mais avançada: Laurales, Piperales, Aristolochiales, Ranunculales, Papaverales 8, cujas relações filogenéticas estão em muitos casos correlacionadas por conexões quimiotaxonômicas. Recentemente, a importância do caráter pólen para a filogenia da Annonaceae foi discutida |16|. Embora seu limite esteja bem definido, a Annonaceae revela dificuldades para agrupamentos naturais de gêneros |9,11,13,14|. Dois gêneros africanos, Monodora e Isolona, têm ovários sincárpicos e estão separados como a sub-família Monodoroideae. A outra sub--família Annonoideae inclui todos outros gêneros e aparece dividida variadamente em tribus e sub-tribus 9,11,13,14.

1.5 - Gêneros da família Annonaceae

A Tabela 1 fornece uma lista, em ordem alfabética, dos gêneros de Annonaceae conhecidos atualmente |9,15|. Para cada gênero indicou-se o número aproximado de espécies.

	Gênero	N' de espécies		Género	N° de espécies
01	Afroguatteria	0 2	69	Mezzetlia	07
02	Alphonsea	30	70	Neizettiopsis = Onophea	
03	Ambavia	02	71	Hitrusa	4 D
04	Anazagorea	30	7 2	Hischegyne	0 2
05	Annona	125	73	Mitnella	05
06	Anomianthus	01	74	Hitzerhoxa	25
07	Anonidium	05	75	Hkilua	01
08	Aranocanpus	01	76	Lonantholazes	56
09	Antabotrys	100	77	Нопосатриа	01
10	Asimina	60	78	Henocyclanthus	01
11	Asteranthe	02	79	Honodora	20
12	Atopostema	02	80	Nevstenanthera	10
33	Balonga	01	81	keouvanta	02
14	Bocagea	02	82	incodestigme	03
15	Borngeoparé	03	83	Onychopetatum	0.4
16	Boutiquea	01	84	Ophrype talum	01
17	Cananga	02	85	Ureomitra	01
18	Cardiopetalum	01	86	Onophea	60
19	Cleistochlamys	01	87	Oxandic	25
Z 0	LLELSTOPHOLLS	05	88	vzymitra + + zesodielsia Prokumodowskih	~ ·
71	inematospenma fuertamentur	17	89	racnypodaninium Penudithia	04
71	lyaindealyi fuathaitaama	38	90		20
23	Cyainosiemma Cumbonatelun	13	91	Picconthus	10
75	Dalacafema	15	91 Q 1	Profestranc	16
76	Dasumaschafan	1:	9.4	Piniumutan	13 07
77	Deesingothemus	02	95	Polualing	120
28	Pennetlia	01	96	Polyaulai	01
29	Pesmopsis	16	97	Pelyceialocaipus	05
30	Deamos	30	98	Popowia	50
31	Piclinanona	02	99	Porcelia	05
32	Pielsiothamnus	01	100	Peeudannona = Xylopia	
33	Disepalum	06	101	Pseudartabotrus	01
34	Prepananthus . Cyathocalyr		102	Pseudoxandaa	06
35	Puckeanthus	01	103	Pseuduvaria	17
36	Duguetia	74	104	Raimondia	04
37	Ellipeis	03	105	Rauwenhoffia	05
38	Ellipeiopsis	02	306	Reconcicinara	01
39	Enantia	09	107	Richella	22
40	Enicosanthum	16	108	Rollinca	65
41	Enneastemon 15 = Monanthotazis		109	Rollincopore	05
42	Ephedranthus	04	110	Ruizodendaon	01
43	Exellia	01	111	Saccopetatum - Miliusa	
44	Fenerivia = Polyalinia		112	Sagendea	19
43	rissis	70	115	Sapraninaa Coballatoon toa	14
40	FLIDIALE Epideodialuia		114	Scala Scala	01
	Francischendran	07	116	Scheerocarune - Helodorum	••
49	Fusara	03	117	Stafaaboaanus	
50	Gilbertietta	03	118	Stelechbeanpas	05
51	Goniethalamus	115	119	Tetromesonthus	02
52	Guamie	01	120	Tethonesalum	V2 07
53	Guatteria	250	121	Thompson - Uvariantis	VI
54	Guatteniella	01	122	Toussaintia	
\$5	Guatteriopsia	04	123	Tridineria	U1 01
56	Haplostichantus	01	124	Trigunaea	05
57	Heteropetalum	02	125	Inivalvania	03 At
58	Hexalobus	05	126	Unona · Deamos	د ن
59	Nornschuchia	03	127	Unonazzis	11
60	Isolona	20	128	luarla	150
61	Kingstonia	01	129	LUGALQS EAUM	07
62	Letestudoxa	02	130	Cuarlella = Uvaria	
63	lettowianthus	J1	131	uvariodendron	12
64	Halmea	14	132	UVALOPSIS	12
65	Harsypopetalum	01	133	woodiella	01
00	Necocarpideum	0.2	134	Xytopia	170
67	Neiogyne	10	135	Xylopiastrum • Xylopia	

68 Nelodorum

Tab.	1	- Lista	de	gêneros	e	númerc	aproximado	de	especies	da	família	Алполасеае.
------	---	---------	----	---------	---	--------	------------	----	----------	----	---------	-------------

1.6 - Constituintes químicos de Annonaceae

Os constituintes químicos de Annonaceae podem ser como não alcaloidais e alcaloidais. Entre agrupados os constituintes não alcaloidais descritos até o momento encontrou-se: carboidratos, lipídeos, aminoácidos e proteínas, polifenóis, terpenóides, substâncias aromáticas e substâncias mistas. IJm grande número de estudos envolvem os açúcares, lipídeos e proteínas contidos nos frutos e sementes de espécies de Annona, devido principalmente a importância econômica e nutricional 17,18,19. Os constituintes alcaloidais pertencem aos: isoquinolínicos simples, benziltetraidroisoquinolínicos bis-benzilisoquinolínicos е *bis*-benziltetraidroprotoberberinas protoberberinas e tetraidroprotoberberinas, aporfinóides, oxoaporfinas, fenantrenos (aporfinas abertas), alcalóides mistos do tipo isoquinolínicos.

1.7 - Relações quimiotaxonômicas e atividades dos constituintes químicos de Annonaceae.

Os estudos realizados com plantas da família Annonaceae, envolvendo cerca de 150 espécies (7%) e 41 gêneros (33%), demonstrou um vasto campo para investigações mais profundas químicos, taxonômicos e farmacólogos. Alquns para OS destes estudos revelaram-se incompletos, o que é difícil uma avaliapara estabelecer relação quimiotaxonômica eficaz. Todavia ção os constituintes químicos mostraram relação entre algumas espécies do mesmo gênero ou de gêneros diferentes e entre espé-Annonaceae e espécies pertencentes à famílias cies filogeneticamente relacionadas.

Entre as substâncias não alcaloidais destacam-se: os flavonóides, elaborados pelo gênero Uvaria |40-54|, os diterpenos da série caurano, ocorrendo nos gêneros Annona |73-77| e Xylopia |71,72|, um sesquiterpeno (ishwarona), presente em cymbopetalum |67| e Aristolochia |68| e uma estiril-diidropiro na (Goniothalamina) encontrada em *Goniothalamus* |98| e em Cryptocarya |97|.

Entre as substancias alcaloidais, os isoquinolínicos revelaram-se importantes sob o ponto de vista quimiotaxonômico. Muitas espécies elaboram aporfinas com suas correspondentes oxoaporfinas, em acordo com a tese que oxoaporfina são forplantas de precursor anorfina. Com base nestas obsermadas em vações pode-se propor relações sistemática e evolutiva entre espécies de Annonaceae. O isolamento de um mesmo alcalóide as de diferentes espécies de um mesmo gênero ou a ocorrência de alcalódes com padrão de substituição similar em diferentes qêneros da família (ex: aporfinas 7eta-substituídas em Enantia Guateria, Isolona, Pachypodanthium e Polyalthia) podem induzir a deduções análogas.

Alguns dos constituintes de Annonaceae são farmacologicamente importantes, na forma original (ex: flavanoras C-benziladas com propriedades citotóxicas, e antimicrobiana 40-54 |: diterpenos responsáveis por atividades antitumor |74|, olipropriedades anti-mal de verolina com Parkinson |204| liriocom atividades antitumor, antibacteriana denina е antifungal |184,205|) ou como matéria prima para obtenção de compostos medicinais (ex: alcalóides isoquinolínicos). Estudos químicos e etnofarmacológicos envolvendo plantas de Annonaceae não alcancaram ainda conhecimento suficiente para permitir verificar se os vários usos da medicina popular são sustentados pelas atividades farmacológicas dos constituintes químicos.

A importância das Annonáceas despertou o interesse para o estudo químico de *Guatteria duckeana*. Neste trabalho descreve-se o isolamento e a elucidação estrutural das substâncias orgânicas de um espécime coletado na Região Amazônica. Utilizou-se métodos cromatográficos e espectrométricos neste estudo.

2 - REVISÃO QUÍMICA DA FAMÍLIA ANNONACEAE

O levantamento bibliográfico envolvendo os constituintes químicos da família Annonaceae permitiu obter uma visão geral sobre a capacidade biogenética para a produção de substâncias orgânicas derivadas do metabolismo secundário. Os trabalhos consultados demonstram que esta família produz policetídeos (Tabs. 2 e 3), terpenóides (Tabs. 4-7), flavonóides (Tabs. 8-11), alcalóides (Tabs. 12-22), produtos C_6-C_{χ} (χ = 1, 2,3) derivados biogenéticos do ácido chiquímico (Tabs. 23-26). Uma avaliação destas substâncias permite notar a maior incidência dos constituintes químicos derivados do ácido chiquímico, destacando-se os tipos alcaloídicos.

Substância	Estrutura	Cênero	Ref.
ácido palmítico	$CH_{3}(CH_{2})_{14}COOH$,	Anaxagorea	24
ácido esteárico	СH ₃ (CH ₂) ₁₆ СООН ,	Annona	25-29
ácido palmitoleico	$CH_3(CH_2)_5CH=CH(CH_2)_7COOH$	L Asimina	39,31
ácido oleico	$CH_3(CH_2)_7 CH = CH(CH_2)_7 COOH$,	Cananga	24
ácido linoleico	$CH_3(CH_2)_4CH=CHCH_2CH=CH(CH_2)_7COOH$	Monodora	23
ácido linolênico	$CH_3(CH_2CH=CH)_3(CH_2)_7COOH$	Xylopia	23

Tab. 2 - Estrutura e ocorrência de ácidos graxos saturados e insaturados em Annonaceae.

Grupos	Substâncias	Gênero	Ref.
	$A_1 - R_1$	Alphonsea	101
$A_1 = -CH_2 - U_2$	$A_1 - R_2$		
	* A ₁ - R ₃		
$A_2 = -CH_2COCH_2CHOHCH_2OCOCH_3$	* A ₁ - R ₄		
	$A_2 - R_1$		
$A_3 = -CH_2COCH_2CHOHCH_2OH$	$A_2 - R_2$		
	$A_2 - R_3$		
$A_4 = -CH_2CHOHCH_2CHOHCH_2OH$	$A_2 - R_4$		
	$A_3 - R_1$		
$R_1 = -(CH_2)_6(C=C)_2CH=CH(CH_2)_2CH=CH_2$	$A_3 - R_2$		
	$A_3 - R_3$		
$R_2 = -(CH_2)_6(C=C)_2(CH_2)_4CH=CH_2$	$A_3 - R_4$		
	$A_4 - R_1$		
$R_3 = -(CH_2)_6 (C=C)_2 CH = CH(CH_2)_3 CH_3$	$A_4 - R_2$		
	$A_4 - R_3$		
$R_4 = -(CH_2)_6 (C=C)_2 (CH_2)_5 CH_3$	$* A_4 - R_4$		

Tab. 3 - Estrutura e ocorrência de compostos policêtídios em Annonaceae.

*Substâncias confirmadas por síntese (102).

Substância	Estrutura	Gênero	Ref.
a-pineno		Annona	17,59,60
limoneno	¢	Annona	59
trans-ocimeno	Ś	Annona	59
cineol	$\hat{\mathbf{A}}$	Xylopia	18,61
cânfora	↓ ¢	Annona	62
chamanena R =	R, L	Uvaría	53,63
éter timoquinol-	(Come		
dimetílico R = OMe			

Tab. 4 - Estrutura e ocorrência de monoterpenos em Annonaceae.

•

Substância	Estrutura	Gênero	Ref.
ß-cariofileno	ý m	Annona	17,60,64
yingzhaosu A	K CH	Artabotrys	65,66
yingzhaosu B	C CH	Artabo trys	65,66
ishwarana		Cymbopetalum	67
ß-farnesina		Annona	59

Tab. 5 - Estrutura e ocorrência de sesquiterpenos em Annonaceae.

Substância	Estiutura	Cênero	Ref.
Acido 158-acetoxi-(-)kaur-16-en-19-ĉico	01	Xylopia	58, 69-71
Acido (-)kaur-16-en-15-hidroxi-19-õico	9.2	Xylopia	72
Acido 15-oxo-(-)kaur-16-en-19-õico	03	Xylopia	72
(-)kauran-16a-01	04	Annona	73,74
		Xylopia	7 2
(-)kauran-16a,19-diol	05	XyLopia	72
(-)kaur-16-en-19-01	06	Annona	64
Acetato de (-)kaur-16-en-19-ila	07	Annona	64
(-)kaur-16-en-19-al	08	Annona	64
Ácido (-)kaur-16-en-19-õico	09	Annona	73-77
		Lylopia	72
(-)kauran-17-01-19-01	10	Annona	64
(-)kauran-17-acetoxi-19-al	11	Annona	64
Acido 19-nor-(-)kauran-4a-o1-17-óico	12	Annona	73
19-nor-(-)kauran-4α-ol-7-oato de metila	13	Annona	74
Acido (-)kauran-19-al-17-óico	14	Annona	73
(-)kauran-19-al-17-oato de metila	15	Annona	74
Ácido (-)kauran-17,19-dióico	16	Annona	73
Ácido stachanóico	17	Annona	74
Ácido polyalthico	18	Polyalthia	78
Annonalida	19	Annona	79

Tab. 6 - Estrutura e ocorrência de diterpenos en Ausocia-ese.

	<u>01</u>	R = β-0A	c d	1 - E	Н
	<u>02</u>	$R = \beta - OH$		2 ~ F	H
T-toon	03	R = 0			
\sim	<u>06</u>	$R = CH_2O$	H		
ALT	07	$R = CH_{2}O$	Ac		
\mathcal{W}^{\sim}	08	R ≖ CHO			
	09	R = COOH			
	12	$R_1 = OH$	R_2	=	Н
\sim	<u>13</u>	R ₁ = OH	R_2	=	Me
	14	R ₁ = CHO	R ₂	2	Н
▼ "RL	<u>15</u>	$R_1 = CHO$	R ₂	-	Ме
	<u>16</u>	R ₁ = 000H	R_2	=	Н

18

 $\frac{10}{11} R = CH_2OH$ $\frac{11}{11} R = CH_2OAC$ \leq_{R}^{H} . A CHO

Substância	Estrutura	Género	Rei.
		Акнена	21,20,17,62
		Asimina	30
	Y .	Dennettia	22
Sitosterol		Puquetia	82
		Polyalthia	35
	H0	Fusaca	83
		Onychopetatum	84
	<i>.</i>	2 .	
Stigmasterol	HOLLE	Annona	27,28,85
Colesterol	MOCHER A	Анпопа	27,28,85,86
Çampesterol	*CLCLCH	Annona	27,28,85
Friedelina	and the second s	Анпопа	80
		Polyalthia	87,88,9C
	J	Meiocarpidium	87,88
Polycarpol		1so Lona	89
, orycarpor	where the last	Fusaca	32
		Unonopsis	32
		Xylopia	32

Tab. 7 - Estrutura e ocorrencia de triterpenos e esteróides em Annonaceae.

Tab. 8 - Estrutura e ocorrência de chalconas em Annonaceae.

Substância		stitu	ição	Gênero	Ref.			
		3'	4 '	5 '	6'	4		
2-hidroxi-3',4',6'-trimetoxi-chalcona	OH	OMe	OMe	-	OMe	-	Monantho tax is	39
2',3',4',6'-tetrametoxi-chalcona	OMe	OMe	OMe	-	OMe	-	Monantho taxis	39
2'-hidroxi-3',4',5',6'-tetrametoxi-chalcona	OH	OMe	OMe	OMe	OMe	-	Monanthotaxis	39
2',4 -dihidroxi-3',4',6'-trimetoxi-chalcona	OH	OMe	OMe	-	OMe	ЮН	Monanthotaxis	39

Tab. 9 - Estrutura e ocorrência de diidrochalconas em Annonaceae.

Substância	Substituição do esqueleto					Gênero	Ref.
Substancia	2 '	3 '	4 '	5'	6'		
Uvangoletin	OH	-	ОН		OMe	Uvaria	43
Angoletin	OH	Ме	OH	Ме	OMe	Uvaria	43
Uvaretin	ОН	CH2-CH2-	ОН	-	OMe	llvaría	40-42, 48-51
Isouvaretin	ОН	-	ОН	OH	OMe	livaria	40-43
Diuvaretin	ОН	OH CH2-CH2-	ОН	OH CH2-	OMe	llvasra	49
Chamuvaritin			HO HO O HO HO HO	Ê		llvaría	40,41,52,53

Tab. 10 - Estrutura e ocorrência de flavanonas em Annonaceae.

Substância	Subs	stituiçã	o do esqu	Gênero	Ref.	
	5	6	7	8		
5,7,8-Trimetoxi-flavanona OMe		-	OMe	OMe	Monanthotaxis	38,39
Kanakugin	OMe	OMe	OHe	ONe	Honanthotaxis	38,39
Pinocembrin	OH	-	OH	-	Uvaria	40-42
Pinostrobin	OH	-	(11/le	-	Uvaria	42
Chamanetin	OH	-	OH		Uvaria	40,42,44,45
Chamanetin-5-metil éter	OMe	-	Oti	CCH2-	livaria	46,47
Isochamanetin	QН	CTCH,	Он	-	Uvaria	40,42,44,45
Dichamanetin	αų	() CH	OH	CTON CHL	Uvaria	46,47
Dichamanetin-5-metil êter	OMe	CC ^{OH}	OH	CION Chi-	livaria	40,42
lavinal	ОН	CH 0	OH	Me	Desmos	55
Desmethoximatteucinol	ан	Me	Он	He	Desmos	55
Desmethoximatteucinol-7-metil éter	CH!	Me	ONe	Me	Desmos	55
Uvarinol		HO HO HO OH			Uvaria	40,41,52,5
Vafzelin		et e	Ş		Uvaria	54
Uvafzelin			ĵÛ		Uvaría	54

Tab. 11 - Estrutura e ocorrência de flavonas em Annonaceae.

Substância		Subst	tituiçã	io do e	squele	eto			Gênero	
Subscancia	3	5	6	7	8	3'	4 '	5 '		
Quercetin	011	OH	-	011	-	-	011	ОН	Annona Asímina	18,20 18
Quercitrin	Rhamno- side	он	-	011	-	-	014	OH	Annona	20
Rutin	Rhamno- glucoside	011	-	ОН	-	-	011	011	Cananga Annona	33,34 20
Nicotiflorin	Rhamno- glucoside	011	_	OH	-	-	он	-	Cananga	33,34
Pachypodo1	OMe	OH	-	OMe	-	0Me	OH	-	Pachypodanthium	37
5,6,7-Trimetoxi-flavona	-	OMe	OMe	ОМе	-	-	-	-	Monanthotaxis	7,39
5-Hidroxi-6,7-dimetoxi-flavona	-	ОН	OMe	OMe	-	-	-	-	Monanthotaxis	7,39
Unonal	-	OH	Me	011	сно	-	-	-	Unona(Desmos)	55-57
Unonal-7-metil éter	-	ŌН	Me	OMe	сно	-	-	-	Unona (Desmos)	55-57
Isounonal	-	OH	CHO	OH	Me	-	-	-	Unon a (Desmos)	55 -57

		Substi	tuicão	do eso	uėleto		<u></u>	n - C
Substancia	2	5	6	7	3'	4 '	Genero	ker.
Anomuricina	Н	OH	OMe	OMe	-	OMe	Annona	110,111
Anomurina	11	OMe	OMe	OMe	-	OMc	Annona	110,111
Amepavina	Me	-	OMe	OMe	-	<u>OH</u>	Xylopia	113
Coclaurina	н	-	OMe	OH	-	OH	Annona Xylopía	107,111 114
N-Desmetilcolletina	Me	-	OMe	OII	-	OMe	Xylopia	113
Higenamina	H	-	ΟΠ	OH		OH	Аппопа	115,116
Laudanina	Me		OMe	QMe	OH	OMe	Xylopia	113
Laudanos ina	Me		0%kc	OMe	∩∿le	OMe	Monodora	117
O-Metilarmepavina	Ме	-	OMe	OMe	-	ONe	Annona Xylopia	80 113
N-Metilcoclaurina	Me	-	OMe	OH	-	OH	Xylopia	113
N-nor-O-metilarmepavina	н	-	OMe	0Me	-	OMe	Xylopia	113,118
N-Oxi-O-metilarmepavina	N-Oxy	-	OMe	OMe	-	OMe	Xylopia	113
Reticulina	Me	-	OMe	ЮН	OH	OMe	Annona Xylopía	119-125,75,76,111 113,114

Polycarpina

Enantia 108,112

Substância	Estrutura	Gênero	Ref.	
Chondrofolina	01	Uvahia	126	
Curina	02	Isolona	127,128	
Cicleanina	03	lsolona	128	
Dauricina-O-metil éter	04	Popowia	129	
0,0-Dimetilcurina	05	Guatteria	130	
Isochondodendrina	06	Guatteria	130	
		lictona	127,128	
Limacina	<u>07</u>	Phaeanthus	131	
12'-O-Netilcurina	08	Guatteria	132	
Norcycleanina	09	IsoLona	128	
(7-O-metil-isochondodendrina)				
Phaeanthina	10	Phaeanthus	131-134	
Phlebicina	<u>11</u>	Crematosperma	135	
Phaeantharina	12	Phaeanthus	134,136,13	

Tab. 13 - Estrutura e ocorrência de alcalóides <u>bis</u>-benziltetrahidiroisoquinolínicos
<u>bis</u>-benzilisoquinolínicos em Annonaceae.

$$\begin{array}{c} 01 \\ 02 \\ 05 \\ R_1 = R_2 = H; \\ 05 \\ R_1 = R_2 = H; \\ 05 \\ R_1 = R_2 = Me; \\ 05 \\ R_1 = R_2 = Me; \\ 08 \\ R_1 = H; \\ R_2 = Me; \\ 1-R; \\ 1'-R \\ 08 \\ R_1 = H; \\ R_2 = Me; \\ 1-R; \\ 1'-R \\ 08 \\ R_1 = H; \\ R_2 = Me; \\ 1-R; \\ 1'-R \\ 08 \\ R_1 = H; \\ 1'-R \\ 08 \\ R_1 = H; \\ 1'-R \\ 08 \\ 1'-R \\ 08 \\ 1'-R \\ 08 \\ 1'-R \\ 08 \\ 1'-R \\ 1'$$

<u>07</u> R = H <u>10</u> R = Me

Substância	Substituição do esqueleto				leto	-	
	2	3	9	10	11	Gênero	Ref.
Aequalina (cf. discretamina)	OMe	QH	0Ne	OH	-	Mitrella	148
						Schefferomitra	144-146
Coreximina	OH	0Me	-	()Me	OH	Annona	111,206
						Asimina	149
Corypalmina (discretinina)	OMe	OH	OMe	0Ne	-	Pachypodanthium	138,150
10-Desmetilxylopinina	OMe	ONe	-	OH	OMe	Duguetia	151
Discretamina (aequalina)	OMe	OH	OMe	OH	-	Duguetia	151
						Xylopia	J18,147
Discretina	OMe	OH	-	(Me	ONE	Pachypodanthium	138
						Xylopia	147
Discretinina (corypalmina)	OMe	OU	OMe	OMe	~	Xylopia	145,147
Isocorypalmina	OU	OMe	OMe	∩Me	-	Pachupodanthium	150,152
Kikemanina (Schefferina)	OMe	0Ne	OMe	<u>U</u> H	<u>-</u> ·	Polyalthia	153
Schefferina (Kikemanina)	0Ne	OMe	OMe	ОЦ	•-	Scheffenomé tra	144-146
Stepholidina	OH	OMe	OMe	OH I	-	Monanthotaxis	39
Tetrahidropalmatina	OMe	0Ne	OMe	OMic		Pachypodanthium	150
Xylopinina	OMe	OMe		OMe	OMe	Polyalthia	153
						Xylopía	118,147
Tab. 15 - Estrutura e ocorrência de alcalóides protoberberínicos em Annonaceae.

Substância	S	ubstitu	ição do	esquele	to	Gênero	Ref.	
Substancia	2	3	9	10	11			
Berberina	0 - CH	2-0				Xylopia	17	
Columbamina	OH	OMe	OMe	OMe	-	Enantia	139,140	
Jatrorrhizina	OMe	OH	0Me	OMe	-	Enantia	139,140	
Palmatina	OMe	OMe	0Me	OMe	-	Enantia	108,139-143	
Pseudopalmatina	OMe	OMe	-	OMe	ОМе	Enantia	108	
Oxypalmatina		Mu Mu		;0 Jone Jone		Enantia	108	
Staudina	med i nome med i ome ome					Pachypodanthium	138	

Tab. 16 - Estrutura e ocorrência de alcalóides proaporfínicos em Annonaceae.

	Substitu	uição do es	queleto		
Substancia	1	2	6	Genero	Ref.
Crotsparina (norglaziovina)	OH	OMe	H	Monodora	117
Glaziovina	ОН	OMe	Me	Annona Uvania	154
N-Metil-Crotsparina	ОН	OMe	Ме	Isolona	128
Pronuciferina	ОМе	OMe	Ме	Isolona Uvaría Xylopía	127,128 155 118
Stepharina	OMe	OMe	Н	Annona	111,154

Substincia		Subst	ituiç	ão do	esqu	eleto		Género	D - 4
Substancia	1	2	3	6	3	10	11,	Genero	
Anolobina	0-0	ж 0	-	н	ан	-	-	Annona	75,76,125
		2						Asimina	149
								Schefferomitra	144
Ancoaina	0-0	н,-0	-	н	-	•	-	Алпона	36,62,75,76,119,121-125
		•						Can anga	161
								Enantia	108
								Isolanc	89,128
								Mitrelia	148
								Polyal thia	88,153
								Pseuduvaria	162
								Scheffi romitra	144,162
								Xylopía	113.114.163
Artabotrina	OMe	ONe	-	Me	-	CMe	СH;	Artabotrys	156,157
Asimilobing	ONie	QH	-	н	-	-	-	Anaxagorea	164
								Annona	75,76,206
								Ascricia	149
								Molodo rum	165
								Hitrella] 48
								Henan the taxis	39
								Popowia	129
								Schefferometra	144
								livaria	155
Brifolina	0-C	12-0		н	CMC:	-	-	Хуборка	118
Caaverina	ан	OMe	-	н	-	-	-	Isolona	127.128
Calycinina	0-C	H ₂ -0	-	H	OMe	-	ОH	Duguetia	151
Corydina	СH	OMe	-	Me	-	CM:	OMe	Annone	62,160
								xylopia	118
Danguyellina	OMe	ан	OMe	н	-	йМе	ЭH	Χμεορια	118
O-Demetilpurpureina	QMc	OMe	QН	Me	Chie	CMc	-	Annona	154
Dicentrina	0-0	н ₂ -0	-	Me	(Me	OMe	•	Sindinatica	166
Glaucina	OMe	OMe	-	Me	OMe	OMe	-	Alphonsea	167
								Annona	62,160
								Poenduvaria	162
								Uvario	155
9-Hidróxi-1,2-dimetoxinoraporfina	ONie	OMe	-	н	Oi :	-	•	Honantho taxis	39
Isoboldina	ai	OMc	-	Me	αi	ONer	-	Аласна	75.76.206
								Enantia	108
								Guatteria	166
								Honodor a	117,169
1								Polyaltria	177
								Schefferomitra]44
								lbarco	155
								Xylopia	118
Isocorydina	OMe	OMe	-	Me	-	OMe	œ	An to na	154,62
								Accebotrys	156,157
								Asimina	149
Isopilina	ОH	OMe	OMe	H	-	-	-	Enantia	108,170
Laurelliptina	OH	OMe	-	н	ŒH	Ove	•	lsolona	127,128
(norisoboldins)								Monantho taxis	39
								Monudana	171
Laurolitsina ->	OMe	ОН	•	H	СК	(Mg	•	Xylopia	114

-- Tab, 17 -- Cant .. ----

		Su	ubstitu	uição d	ວ ອຣຊມ	eleto			
Substâncim	1	2	3	6	9	10	11	Conero	Ref.
Laurotetazina 🔨	QHr.	04	-	н	ai	OMe		Xulopia	118
Lirinidina	Œi	CMe	-	Me		-	-	- Isolond	128
Hegnoflorina	αι	04c	-	(Mc),	-	()Nik	au	Ena: Cca	108
Menisperina	OMe	Ohie	-	(Me),	-	0.1e	QH	Encentra	108
N-Metil-actinodaphnina	0-0	ж0	-	He	Œli	ርትጵ	-	Autona	120
N-Metil-asimilobina	OMe	́он	-	Me	_		-	Xulous	120
N-Metil-coryding	OH	OHe	-	(He),	-	046	Offie	Folgelting	88 88
N-Metil-laurotetanina	OMe	OMe	-	Hc .	OH	()Ye	-	Enantia	108
O-Metil-pukateina	0-0	н0	•	He	-		(Me	Brustia	151
Norcorydina	ОН	2 CHe	-	н		OMe	OM-	Anne no	151
								Processa	129
								X of the ca	113,118
Norglaucina	OHe	OMe	•	н	CIM2e	OHe	-	Arrionsea	167
								Dusuella	166
Fortsocurvding						<i>.</i>		Fsfaduvatia	162
nor rocory on a	unc	UMC	•	в	,	042	C18 	Austena Xulonia	160
Norisodomesticina	DMc:	a	•		0-0)] 0	-	Xulcone	110
Norlaurelina	0-0	H0	-	н	-	-12 - (Me	-	Geottenia	170
Normantenina	Civie	CMe	-	н	0-0	H0	-	Xulcolo	174
Nornuciferina	CNie	01⊎e	-	E			-	Apr	75 76
	-							Erancia	108
								1301.12	89,127,128
								Pse-cularia	162
Komenavina	0					C 1+	<i>a</i> .	lytopic Discouting	116
Vernaudicentrine	(ME	One ou	ONE		-	Ume OL	UR	Polyacina	153
Norprealcentrina	UMe ~/	OH .	-	н	CIMe	OMe	-	Portiniana	162
Norpurpureina	UME	()Me	ONE	н	CN Ke	(1Me	-	Antona	154
Norstephalagina	0-0	112-0 	OMe	н 	-	-	-	Xylvoia	115
Miciferina Commission	UNE	ume.	-	Me	-	-	-	Honzacholarca	34
COOVANINA	-0-0	ng-0	-	н	-	•	OH	Vugaetaa	151
Polygospermina	OMe	QMC	OM2	H	-	-0-0	⁴ z ⁻⁰	Polyclinia	153
Purpureina	OMe	OMe'	OMe	Me	OMe	OMe	-	Annona	154
Puterina	0-0	i ₂ -0	-	H	-	-	OMe	Puguetia Guattoria	151
Roomerina	0-0	4 =0		Ma	_	_		iniona	75 76 160
		7-0		~~	-	-		Cananga	161
								Guatteria	173
								Isolons	127,128
								xylopia	113,114
Sparsiflorina	OH	OHe	-	К	-	OH .	-	Чэпрарла	117
Surveolina	CIMe	OMe	-	Mo	-	att	011	Artstutnys	156,157
Thaliporfina	СH	04e	•	Ме	0He	OMe	-	Vuaria	155
Wilsonirina	OH	OMe	-	н	OMe	OMe	-	Hunodóra Portecto	117
Yulan	<i>.</i> 	<i>a</i> .						ropenic	117
Ay LOGUYELLINA	OMe	ОН 	OMe	н	0-0	² -0	-	AULOPLA	118
Xylopina .	0-Q	1 ₂ -0	-	H	OMe	•	-	Annona Deoustán	80 151
								Xylopia	113.114.118.197,163
Zenkerina	CH	OMe	-	H	-	0He	-	Teolona	127.128

......

.

.....

.....

.....

	Tab.	17		Cont	
--	------	----	--	------	--

Euletincia		Substi	tuiçā	ວ ເດ	esque	eleto		Gênero	Ref.
SUDSTANCIA	1	1 . 2 3 0 9 10				10	11		
Guattescidina				Trong				Guatleria	158
Guattescina				Frink Jone				: Guatteria	158

Tab. 18 - Estrutura e ocorrência de alcalóides aporfínicos 7-substituídos em Annonaceae.

Subetância		Sub	stitui	ção do	esquele	to		Cânara	Dof
Jubstancia	1	2	3	6	7	9	10	Genero	KA1.
Anaxagoreina	OMe	он	-	H	OHα		-	Anaxagorea	164
Duguetina	0-CH	2-0	-	Ме	OHR	OMe	OMe	Duguetia	166
Guatterina	0-CH	,-0	OMe	Ме	OHB	-	-	Guatteria	176
	-							Fachypedanthium	150
								Pelyalthia	175
Guatterina-N-óxido	0-CH	2-0	OMe	N-Oxy	OHB	-		Pachypodanthium	150
N-Metil-pachypodantina	0-CH	2-0		Me	OMe B	-	-	Pachupedanthium	138
N-Metil-pachypodantina-N-óxido	0-01	2-0	•	N-Oxy	ОМе в	-	~	Polyal thea	88
Noroliveridina	0-CH	2-0	-	11	Olla	OMe		Polyalthea	88
Noroliverina	0-C11	2-0		н	Oble P	OMe	-	Pelualthia) 75
Noreliverolina	0-CH	2-0	-	łŧ	OHB	-	-	Polyalthia	177
Norushinsunina	0-CH	2-0		Lŧ	Olla	-	-	Алиона	75,76,119,123-125
(michelalbina)								Asimina	150
								Melodorum	165
								Polyal thi a	177
Oliveridina	0-CH2	-0	-	Me	OUB	OMe	-	Enantia	178
	-							Iselena	89
								Polyalthia	88,175,179
Oliveridina N-óxido	0-CH ₂	-0	•-	N-Oxy	OHB	OMe		Epantéa	178
Oliverina	0-CH ₂	-0	-	Me	ОМе в	OMe	-	Enantia	178
								Isolona	89
								Polyalthio	88,179,175
Oliverina N-óxido	0-сн ₂	-0	-	N-Oxy	QVP et	OMe	-	Enantea	178
								Isolona	89
Oliverolina	0-CH ₂	-0	-	Me	OHB	-	-	Pachypodanthium	150
								Polynlthia	88,175

---- Tab, 18 --- Cont... ----

		Sub	stitui	ção do	csquele	to			
Substancia	1	2	3	6	7	9	10	Genero	Ref.
Oliverolina N-óxido	0-CH	2-0	-	N-Oxy	OHB	~ '	-	Polyalthia	88
Pachyconfina	OMe	011	-	Me	ΟΠβ		-	Pachypodanthium	150
Pachypodanthina	0-CH	2 ⁻⁰	-	11	ОМс в	-	-	Pachypodanthium Polyalthia	138,180 88,175
Polyalthina	0 - CH	2 ⁻⁰	OMe	Me	OHe	OMe	-	Polyalthia	175
Polysuavina	0 - CH	2-0	-	Me	ОМе в	OH	-	Polyal thia	175
Ushinsunina	O-CH	2-0	-	Me	OHa	~	-	Cananga	161
CH CH R Home	R = H R = Me	Norpad Pachys	chystau staudina	lina a				Pachypedanthium Pachypedanthium	138 138
Red Price 201 - M - M - M - M - M - M - M - M - M - M	R = Me R = H	Melos Melos	nidina _. vina					Guartería Guartería	168 168
	R = (Me R = H	Dugue Dugarda	calina na dha					Paguetia Paguetia	174 174

Culture Contract		Subst	ituiçã	ic do	esqu	eleto			
SUDSTANCIA	1	2	3	8	9	10	11	Genero	Rei.
Atherospermidina	o-c	н0	OMe		-	_	_	Enantia	108
		•						Guattoria	176
Lanuginosina	о- с	ж,-0	-	-	ONE	-	-	Annona	80
		•						Enantia	178
								Polyatthia	88,153
								Xylopia	118,103,183
Liriodenina	0-0	н ₂ -0	:	-	+	-	-	Annona	75,76,119,101,125-125,184
		-						Asimina	149
								Cananga	34.101
								Enantía	103,1~8
								Fusaes	83
								Guatteria	173
						•		Isolona	89
								Melodorum	165
								Mitrella	148
								Pachypodanticum	13152
								Polyaitnaa	88,153,162
								Росиличалис	762
								Schedjenomicta	162
								Uvaniepsis	386
								XyLopia	113.118.163.187
Lysicamina	Chie	ONe	-	-	-	-	۰.	Enantia	108,139
(oxonuciferina)								Polyatthic	175
O-Metil-moschatolina	OMe	QMe	ONe	-	-	-	-	Duguetia	82
								Enantia	139
								Guatteria	182
Oxoanalobina	0-C	н ₂ -0	-	-	СH	-	-	Guasteria	168,198
Oxoglaucina	OMe	OMe	-	-	Che	ON€	-	Annon2	154
Oxplaurelina	0-C	H ₂ -0	-	-	-	OMe	-	Guatteria	189
Oxopukateina	0-0	н ₂ -0	-	-	-	-	OH	Duguetia	82
Oxcpurpureina	OMe	OMe	QMe	-	0He	ONe	•	Annona	154
Oxoputerina	0-C	H ₂ -0	-	-	-	-	()Me	Duguetia	82,151
		•						Guatteria	189
Oxostephanina	0-0	н ₂ -0	-	ONe	-	-	-	Polyalthia	175 -
Subsessilina	(Me	()Me	OMe	-	OH	-	-	Guatteria	181,182
Nenhum nome (composto D')	ŒH	OMe	OMe	-	-	-	-	Guatteria	168
Fuseina		ķ.		~~~ J~H				Fusaec	81,83

	Su	bstit	uição	do esc	que l e t	0		
	N	2	3	4	7	8	Genero	Ref.
Atherosperminina	(Mc) ₂	-	OMe	0Nie	-	-	Апиона	109,111,121
	D						Duguetia	151
							Enantia	139
Argentinina	(Mc) ₂	-	ОЦ	Me	-	-	Апнона	121
							Enantía	139
							Monodora	117
Metóxiatherosperminina	(Mc) ₂	OMe	OMe	OMe	-	-	Meiocarpidium	190
Metóxiatherosperminina-N-óxido	N-Oxy	OMe	ONie	OMe	-	-	Meiocarpidium	190
Metóxi-8-uvariopsina	(Me) ₂	-	0-C	11 ₂ -0	Unle	ONe	llvaríopsis	186
Noratherosperminina	II, Me		OMe	OMe	-	-	Duguetia	191
Noruvariopsamina	H, Me	-	ONe	()^le	0Me	OMe	livariopsis	186
Uvariopsamina	(Me) ₂	-	OMe	0Me	0ì\le	OMe	llvariopsis	186
llvariopsamina-N-óxido	N-Oxy	-	OMe	OMe	OMe	0Ne	Uvariopsis	186
Uvariopsina	(Me) ₂	~	0-C	H ₂ -0	OMe	-	Uvariopsis	186,192,193

Substân	cia	Estrutura	Gênero	Ref.
Cepharanona H aristolactama	3 = a B ₂	Med John H	Schefferomitra	144,194
Probovatina Pallidina	R = Me R = H	Mearin N-me	Duguetia Desmos	195 196

Tab. 21 - Estrutura e ocorrência de outros alcalóides do tipo isoquinolínico em Annonaceae.

Substância	Estrutura	Gênero	Ref.
Eupolauridina		Cananga	161
Onychina	EU-IN	Onychopetalum	84
Annomantina $R = H$ Metoxiannomantina $R = OMe$	R EIN N H H H H H H	Аппопа Аппопа	197,206 197,206
6(Trans-3-metilbuta- -1,3-dienil)-indol.		Monodora	198
3,6- <u>Bis</u> (γ,γ-dimetil- -alil)-indol.	YELL	Uvaría	199

Tab. 22 - Estrutura e ocorrência de alcalóides não-isoquinolínicos em Annonaceae.

...

-

— Tab. 22 — Cont... —

......

Substância	Estrutura	Gênero	Ref.
Polyalthenol	HONE	Polyalthia	88,200
Isopolyalthenol	HON	Pelyal thia	90
Neopolyalthenol	HOLL	Poryal thia	90
Polyveolina	HO	Počyačthia	175,201,202
Polyavolensina R = OAc Polyavolensinol R = H	ROLL	Polyalthia Polyalthia	203 203
Polyavolensinona	THE AND	Polyalthia	203

Substância	Estrutura	Gênero	Ref.
Piperina	Color R M	Xylopia	23
Acido nicotínico	EN ROH	Аннопа	103
Squamolona (4-Oxoperhidro-1,3-diazepin-2-ona)	М М Н Н Н Н Н Н Н С П Н Н Н С П Н Н С С П Н Н С С С Н Н С С С С	Annona	104
1-Carbamoi1-2-pirrolidinona	CH LO O HH2	Annona	105
Zincpolyanemina	S-Z-S-S	Polyalthia	106

---- Tab. 22 --- Cont... ----

Substância	Estrutura	Gênero	Ref.
Acido p-hidroxibenzóico	HOLETROH	Cananga	33,34
Acido vanílico	Hantell	Сапанда	33,34
Asaraldeído	man the	Pachypodanthium Duguetia	92-94 82

Tab. 23 - Estrutura e ocorrência de substâncias $C_6 - C_1$ aromáticas em Annonaceae.

Substância	Estrutura	Gênero	Ref.
2,4,5-Trimetoxi-estireno	ma	Pachypodanthium	92,94
	Fur One	Duguetia	82
Pachysonto1	HO HO Me Ome	Pachypodanthium	94

Tab. 24 - Estrutura e ocorrência de substâncias C₆-C₂ aromáticas em Annonaceae.

Substância		Estrutura	Gênero	Ref.
Acido cafeico		нобн	Annona Asimina	18 18
Ácido p-coumarico		но	Annona	18
Asorona	$R_1 = OMe; R_2 = H$	لي	Guatteria	91
Trans-isoelemicina	$R_1 = H; R_2 = OMe$	meo laz	Guatteria	91
Tran s-isomy ris t icina	$R_1 = R_2 = OMe$	Óme	Guatteria	91

Tab.	25	-	Estrutura	e	ocorrência	de	substâncias	с _б -	-c ₃	aromáticas	em	Annonaceae.
------	----	---	-----------	---	------------	----	-------------	------------------	-----------------	------------	----	-------------

Substância	Estrutura	Gênero	Ref.
Senepóxido	O. OR Ar. "OAc DAC	Uvaría	95
Seneol	May OAc OAc	Uvaria	95
Pipóxido	or of An OH TotAn	Uvaria	04
1,2,3,4,6,7-Hexametoxi- xantona	Mean A phe Alon Me Me	Uvaría	51
Goniothalamina	H H	Gonisthalamus	36
Althcactona	C C C C C C C C C C C C C C C C C C C	Polyalthia	99
Neolignana	me ome	vuguetia	100

Tab. 26 - Estrutura e ocorrência de outras substâncias derivadas do ácido chiquímico em Annonaceae.

3. A PLANTA E SEUS CONSTITUINTES

A Guatteria duckeana é uma árvore da família Annonaceae, descrita na flora Brasiliensis, encontrada no Estado do Amazonas - Manaus, às margens do riacho da ponte do Mindú. ao longo da "Estrada do Aleixo - Município de Manaus". Árvore grande, ramos e pedículo escurecidos, pecíolo e verso das folhagens na cor de ferrugem com pelos descobertos, densamente sedosos. Folhas com pecíolo ao longo de 4-5 mm, caniculadas, ovais, ápice mais ou menos separados em forma de lanças pontudas, com cerca de 1cm (raros com 2cm) ao longo do encurtamento; 10-15cm de comprimento e 4-6cm de largura nervos laterais, arcada ascendente e veias pequenas não distintas. Flores solitárias ou geminadas, pendúnculo muitas vezes recurvado em torno de 5-8mm e bastante espesso. Sépala retorcida, oval arredondada, pontuda. Pétala larqa: espessa, oval-espatulada. Filamento branco-arrepiado, denso; com 1,2-1,4mm de comprimen-Monocarpo rente, fusiforme-afusado, levemente pontudo, deto. senvolvido e rugoso 207.

A planta apresenta interesse econômico, pois é muito usada para construções civil e naval, pontes, estacas, mourões, o que demonstra a resitência da madeira.

O exemplar empregado no presente estudo foi coletado pela equipe de pesquisadores do Instituto Nacional de Pesquisa da Amazônia (INPA), nas redondezas de Manaus.

Elaboração do extrato benzênico (20 g) por proces-

sos cromatográficos conduziu ao isolamento de sete substâncias, que foram designadas pelas siglas GD-1P, GD-2P, GD-3P, GD-4P, GD-5P, GD-6P, GD-7P.

Dados espectrais foram utilizados nas determinações estruturais destas substâncias (Esquema 1).

GD-2P (6)

GD-3P (<u>10</u>)

GD-4P (11)

GD-5P (15)

GD-6P (18)

GD-7P (<u>20</u>) R = CH₃ 22,23-diidro (<u>21</u>) R = CH₂CH₃ 22,23-diidro (<u>22</u>) R = CH₂CH₃ Δ^{22}

Fig. 1 - Folha, flor e fruto de Guatteria duckeana, família Annonaceae.

4. RESULTADOS E DISCUSSÃO

4.1 - Determinação estrutural de GD-1P (4)

O espectro na região do infravermelho (Fig. 2) apresentou uma absorção forte em 1640 cm⁻¹, sugerindo a presença de carbonila amídica terciária (banda I de amida). Esta posição de absorção sugeriu ausência de conjugação com sistema insaturado. A natureza aromática foi deduzida pelas bandas em 1610, 1500, 1455, 850 e 760 cm⁻¹, sendo as duas últimas atribuídas a anéis aromáticos sustentando um hidrogênio e quatro hidrogênios respectivamente. As absorções em 955 e 940 cm⁻¹ sugeriram a existência de um grupo metilenodióxi |208| (Tab. 27).

O espectro ultravioleta (Fig. 3) revelou-se compatível com alcalóide tipo aporfínico 1,2-dioxigenado (1) 1209, já que apresentou absorções em 277 e 317 nm, cromóforo difenílico dioxigenado (Tab. 27).

Inalteração do espectro após adição de HCl (Fig. 3) indicou ausência de nitrogênio amínico ligado diretamente ao anel aromático. Neste caso a protonação do átomo de nitrogênio impediria a deslocalização dos elétrons deste hetero-átomo e a excitação eletrônica envolveria maior energia. O espectro de massas (Fig. 4) forneceu o pico correspondente ao ion molecular em m/z 307, indicando um número ímpar de átomos de nitrogênio na molécula de GD-1P, e em acordo com fórmula molecular $C_{19}H_{17}O_{3}N$ (M^{·+} 307). O pico em m/z 236, relativamente intenso (Tab. 27), representa um fragmento produzido por reação retro-Diels-Alder (Esquema 2). Este processo foi observado para todos alcalóides aporfínicos |210|. O pico base, m/z 235 (Tab. 27) confirmou a natureza aporfínica, sustentando um grupo metilenodioxi, o qual pode ser justificado através dos caminhos de fragmentações descritos no Esquema 2. Estes dados no espectro de massas confirmaram a presença da função amida, revelada pelo espectro i.v (Fig. 2) e sugeriu tratar-se alcalóide N-acetilaporfínico com estrutura parcial (2) ou (3).

Análise da curva de integração do espectro de R.M.N. de ¹H (Fig. 5) indicou a presença de 17 prótons, dos quais três foram atribuídos ao grupo metil do N-acetil, caracterizado pelo sinal simples em 2,23 δ (Tab. 28). As absorções em 8,15 δ (m, 1H, H-11), 7,40-7,20 δ (m, 3H, H-8,9,10) indicaram a localização do grupo OCH₂O no anel A. Conseqüentemente, o grupo OCH₂O ocupa as posições 1,2 ou 2,3, surgindo as alternativas estruturais (4) ou (5) para GD-1P.

A alternativa 5 foi afastada porque os prótons do grupo OCH₂O constituem um sistema AB (6,09 e 5,97 δ), observados em outros alcalóides aporfínicos (Tab. 29). O par de dubletos centrados em 6,09 δ e 5,97 δ (Fig. 5), com constante de acoplamento de 1,0 Hz, foram correlacionados com os dois prótons do grupo metilenodioxi. Estes dois prótons apresentam deslocamentos químicos diferentes porque não ocupam posições equivalentes em relação ao anel D (4). O sinal em 5,20 δ (dd, J 6,0 e J 12,0 Hz) foi atribuído ao H-6a e os multipletos entre 4,10-2,62 δ correspondem aos prótons metilênicos dos C-4, 5,7. O valor de J = 12,0 Hz observado no sinal de H-6a indica que este próton ocupa posição axial.

Com base em todos os dados espectrométricos discutidos, foi possível lançar a estrutura (4) para GD-1P. Esta estrutura corresponde a 1,2-metilenodioxi-N-acetil-aporfína ou N-acetil-anonaina, alcalóide já relatado na literatura |212|.

0, 1500, 1455, 1 5, 955, 940,	430, 850,
293i 317	
3070) (1040)	
ação	
), 263(9) 0), 235(100)
), 263(9) 0), 235(100

Tab. 27 - Dados espectrais de I.V., U.V. e de Massas

Tab.	28	-	Dados	de	resso	nân	cia	ma	gnét	tica	nu	icle	ar	pro	tôn	ica	da
			GD-1P	(10)0 MHz	, C	DC1	3,	TMS)).	0s	des	loc	ame	nto	s q	uí-
			micos	for	am an	ota	dos	em	δ€	e as	c c	nst	ant	es	de	acoj	p1 <u>a</u>
			mento	em	Hz.	(s	Ξ	sin	glet	to,	d	= d	ubl	eto	,	d	d =
			duplo.	-dub	oleto,	m	=	mul	tipl	letc).						

.

•

Deslocamento químico (δ)	Multiplicidade	J (Hz)	Área relativa	Interpretação
8,15	m	-	1	H-11
7,40-7,20	m	-	3	H-8,9,10
6,60	S	-	1	H-3
6,09	d	1,0	1	0-CH ₂ -0
5,97	d	1,0	1	
5,32	dd	6,0	1	H-6a
		12,0		
4,10-2,62	m	_	6	H ₂ -4,5,7
2,23	S	-	3	NCOCH ₃

Tab. 29 - Deslocamentos químicos (δ) dos prótons dos anéis aromáticos, do grupo metilenodioxi e do grupo metil do N-acetil em alcalóides aporfínicos 1,2-dioxigenados. Os valores de J foram anotados em Hz. Os espectros foram registrados em CDCl₃ e TMS como referência interna. (s = singleto, d = cubleto, m = multipleto).

Alcalóide			Prótons			
	C-11 C-10	C-9 C-	8 C-3	0-01 ₂ -0	NCOCH ₃	Ket.
Anonaina (I)	7,70 (m)	7,33 (m)	6,69 (s)	6,18 (d, J 2,0 Hz)	_	160
				6,03 (d, J 2,0 Hz)		
Roemerina (II)	7,82 (m)	7,36 (m)	6,68 (s)	6,04 (d, J 2,0 Hz)		160
				6,00 (d, J 2,0 Hz)		
Asimilobina (III)	8,34 (m)	7,28 (m)	6,70 (s)		·	211
N-acetil-nornucefirina (IV)	8,43 (m)	7,42 (m)	6,68 (s)		2,27 (s)	212
N-acetil-asimilobina (V)	8,53 (m)	7,43 (m)	6,90 (s)		2,27 (s)	212

Fig. 2 - Espectro i.v. de GD-lP ($\underline{4}$) em KBr

Fig. 3 - Espectro u.v. de GD-1P ($\underline{4}$) em EtOH e em EtOH + HC1

Fig. 4 - Espectro de massas de GD-lP ($\underline{4}$)

Fig. 5 - Espectro de rmn¹H (100 MHZ, CDC1₃, TMS) de GD-1P ($\underline{4}$)

4.2 - Determinação estrutural de GD-2P (6)

O espectro da região do infravermelho (Fig. 6) mostrou uma absorção em 1640 cm⁻¹, sugerindo presença de carbonila amídica terciária (banda I de amida). As características aromáticas da substância foram deduzidas pelas bandas em 1600, 1470 cm⁻¹. A absorção em 935 cm⁻¹ sugeriu a presença de grupo metilenodioxi (Tab. 30).

O espectro ultravioleta (Fig. 7, Tab. 30) revelou-se compatível com um alcalóide aporfínico substituído nas posições 1,2 e 11 |209|. Adição de HCl não produziu modificações nos máximos de absorção (Fig. 7).

O espectro de massas (Fig. 8, Tab. 30) forneceu peso molecular de 337 u.m.a, indicando que a estrutura de GD-2P posum número ímpar de átomos de nitrogênio e permitindo dedusui a fórmula molecular $C_{20}H_{19}O_4N$. A diferença de 30 unidades zir de massa entre os pesos moleculares de GD-1P e GD-2P sugeriu a presença de um grupo metoxila na GD-2P, o que foi confirmado por R.M.N.¹H pelo sinal simples em 3,90 ppm (Fig. 9). Os caminhos principais de fragmentações são semelhantes aos de GD-1P e aparecem resumidos no Esquema 3. Os picos em m/z 335, 323 e 321 registrados no espectro de massas (Fig. 8) sugeriram a presença de impurezas, podendo-se cogitar especulativamente da presença de alcalóides desidro-(M^{.+} 335), desmetil (M^{.+} 323) e desidrodesmetil-derivado (M^{.+} 321) da N-acetilputerina. Outros picos presentes no espectro estão em acordo com esta especula-335-m/z 293 (M-CH₂=C=O); (M⁺ ∣м∙+ ção 323-m/z 281 $(M-CH_{2}=C=O);$ M⁺ 323-m/z 252 (M-CH₂=NCCH₃)-m/z 251 (m/z 252-H); M⁺ 321 m/z 279 (M-CH₂=C=O).

6a,7-desidro-4,5-desidro-M⁺ 321

Análise da curva de integração do espectro de R.M.N. 1 H (Fig. 9) indicou a presença de 19 prótons. Os dois sinais simples em 2,22 δ e 3,90 δ foram correlacionados, respectivamente, com o grupo metila do N-acetil e o grupo metoxila aromático. Seis prótons metilênicos são representados pelos multipletos entre 4,20-2,62 δ , correspondendo aos prótons dos C-4,5,7. O próton metínico C-6a aparece como um duplo-dubleto em $5, 10\delta,$ com a constante de acoplamento J = 12,0 Hz indicando posição axial. A multiplicidade dos sinais e os deslocamentos químicos dos prótons do grupo metilenodioxi, dois dubletos centrados em 6,04 δ e 5,86 δ (J = 1,5 Hz), permitiram localizar o grupo metilenodioxi nos átomos de carbono 1 e 2. O singleto em $6,60\delta$ justifica o próton aromático sustentado pelo C-3. Conseqüentemente, o grupo metoxila deve ser localizado no anel aromático D, surgindo assim, as alternativas estruturais (6), (7), (8) e (9) para GD-2P.

As alternativas (7) e (8) foram afastadas com base nos dados de R.M.N. 1 H (Tab. 31):

a) não existe absorção protônica em torno de 7,71 δ (dubleto com J 2,5 Hz) correspondente ao H-11 de (7).

b) não aparece sinal entre 7,88 e 8,15 ppm (dubleto com J = 8,5 Hz) correspondente ao próton H-11 |180,172| na segunda.

Os sinais dos três prótóns aromáticos restantes registrados no espectro de R.M.N.¹H (Fig. 9) revelaram-se de acordo com um sistema AB₂, sugerindo um padrão de substituição aromática 1,2,3. O sinal duplo em 6,90 δ (J = 8,0 Hz) representa dois prótons, interagindo com um próton localizado na posição orto. A alternativa (6) revelou-se compatível, justificando o aparecimento do sinal de H-9 em campo mais baixo (7,25 δ , t, J = 8,0 Hz) parcialmente superposto com o pico do CHCl₃. Os prótons dos carbonos 9 e 11 da estrutura (9) não devem absorver na mesma posição, já que o H-11 sente o efeito anisotrópico do anel A, como observado em GD-1P. Assim, surgiu a alternativa (6) como proposta estrutural para GD-2P. Trata-se da N-acetilputerina, substância já descrita na literatura |172|.

- Tab. 30 Dados espectrais de I.V., U.V. e de massas de GD-2P (6).
- I.V.: KBr 2925, 1640, 1600, 1470, 1260, 1210, 1180, $\sqrt[max]{max}$. 1040, 935.

U.V.:

EtOH	233	262	275	304
λ (nm) máx.	(7480)	(5930)	(6600)	(4380)

- EtOH + HCl λ (nm) Inalteração máx.
- EM: m/z (%) 337 (47) M^{+} , 307 (9) 295 (14) 294 (7) 278(21), 266(32), 265(100), 264(7), 248(7), 236(11), 235(23).

Tab. 31 - Dados de ressonância magnética nuclear protônica (100 MHz, CDCl₃, TMS) da GD-2P (6). Os deslocamentos químicos foram anotados em δ e as constantes de acoplamento em Hz. (s = singleto, d = dubleto, dd = duplo dubleto, t = tripleto, m = multipleto).

Deslocamento	Multiplicidade	J (Hz)	Área	Interpretação
químico δ	-		relativa	Incorprodução
7,25	t	8,0	1	Н – 9
6,90	d	8,0	2	H-8,10
6,60	S		1	H - 3
6 , 0 4	d	1,5	1	OCH ₂ O
5,86	d	1,5	1	
5,10	dd	6,0 12,0		Н – ба
3,90	S	-	3	ОСН
4 , 20 - 2 , 62	m	. –	б	H ₂ -4,5,7
2,22	S	-	3	NCOCH ₃

4.3 - Determinação estrutural de GD-3P (10)

A natureza aromática de GD-3P (10) foi revelada pelas bandas em 1595, 1570, 1510 e 1455 cm⁻¹ que aparecem no espectro de infravermelho (Fig. 10). A banda em 765 cm⁻¹ sugeriu a existência de anel aromático com quatro hidrogênios adjacentes. As bandas em 1035 e 1250 cm⁻¹, correspondendo respectivamente aos estiramentos simétrico e assimétrico de =C-O-C, revelaram-se compatíveis com a presença de função éter. Absorções em 985 e 925 cm⁻¹
Esquema 3 - Caminhos principais de fragmentação de GD-2P (<u>6</u>) no espectrômetro de massa.

Fig. 6 - Espectro i.v. de GD-2P (6) em KBr

Fig. 7 - Espectro u.v. de GD-2P ($\underline{6}$) em EtOH e em EtOH + HC1

Fig. 8 - Espectro de massas de GD-2P ($\underline{6}$)

Fig. 9 - Espectro de rmn¹H (100 MHz, CDCl₃, TMS) de GD-2P ($\underline{6}$)

foram atribuídas a vibrações de dobramento C-H fora do plano de grupamento vinila terminal (Tab. 32).

O espectro ultravioleta (Fig. 11, Tab. 32), revelou bandas de absorção coerentes com a existência de sistema aromático conjugado.

O espectro de massas (Fig. 12, Tab. 32) apresentou o pico do ion molecular em m/z 264, pico base, compatível com a fórmula molecular $C_{18}H_{16}O_2$ (M^{.+} 264). A molécula de GD-3P deve possuir um total de onze insaturações. Esta condição estrutural ajusta-se ao esqueleto fenantrênico sustentando um grupo vinila. As propostas para os principais caminhos de fragmenta-ção desta substância estão descritas no Esquema 4.

Análise da integração no espectro de R.M.N.¹H (Fig. 13) permitiu deduzir a presença de 16 prótons. O multipleto en-11,0-10,35 δ , campo relativamente baixo, corresponde à absortre ção do próton aromático localizado em C-5, em acordo com esqueleto fenantrênico. O H-11 de alcalóides aporfínicos comporta--se de maneira análoga |213|. Comparação com substâncias fenantrênicas relatadas na literatura |191,214| demonstrou analogia dados de R.M.N.¹H. Na região entre 7,93-7,38 δ , (7 prótons), dos aparecem os sinais correspondentes aos seis prótons aromáticos localizados nos carbonos 2,6,7,8,9 e 10 e um próton vinílico terminal (Hc). O singleto largo em 7,36 δ corresponde ao próton aromático H-2. O aparecimento do sinal de Hc em campo baixo decorre de conjugação entre o grupo vinila e o anel aromático. Os duplo dubletos centrais em 5,62 δ (J = 2,0 e J = 16,0 Hz) e 5,42 δ $(J = 2, 0 \in J = 10, 0 Hz)$ correspondem aos prótons Hb e Ha, respectivamente. Os desdobramentos observados nestes sinais resultam das interações geminada (J = 2,0 Hz) e vicinais trans (J = 16,0 Hz) e cis (J = 10,0 Hz) com Hc. O maior deslocamento químico do próton Hb em relação ao Ha decorre de maior efeito anisotrópico exercido pelo sistema aromático, já que o próton Hb ocupa posição estereoquímica que confere maior proximidade com o sistema aromático. Os sinais simples em 4,10 δ e 3,90 δ , cada um representando três prótons, caracterizaram a presença de dois grupamentos metoxila ligados ao sistema aromático (Tab. 33).

Os dados espectrais discutidos, comparação com dados de R.M.N.¹H (Tab. 34) descritos na literatura |191, 214| e as estruturas dos alcalóides isolados da mesma planta permitiram postular a estrutura (10) para a GD-3P. Esta substância, 1-vinil-3,4-dimetoxifenantreno, encontra-se descrita na literatura como produto obtido pela degradação de Hofmann |215|. A ocorrência desta substância em *Guatteria duckeana* permite o registro também como produto natural e possibilita considerações biogenéticas (Cap. 6).

I.V.: $\sqrt{\frac{KBr}{max}}$ (cm ⁻¹)	2940, 1740 1385, 132 925, 85	0, 1595, 1570 5, 1280, 1250 5, 825, 805	1510, 1 1120, 1 765.	1455, 1415, 1035, 985,
U.V.:	220	249i	260	316
λ (nm) máx. (ε)	(2530)	(3010)	(3380)	(950)
EtOH + HCl λ (nm) máx.		Inalter	ação	
E.M.: m/z (%)	264(100) N 221(13),	M ^{+•} , 249(17), 218(15), 217	234(6), 71), 191 (233(15), 5), 189(27).

Tab. 32 - Dados espectrais de l.V., U.V. e de massas de GD-3P $(\underline{10})$.

Tab.	33	-	Dados	de	re	ssor	nân	ncia	mag	gnết	cica	nuc	lea	r pr	otô	nica	u da
			GD-3P	(1(2)	(60	MH	łz,	CC1	L ₄ ,	TMS	5).	0s	de	slo	$cam\epsilon$	entos
			químic	cos	fo	ram	an	nota	dos	em	δe	as	con	stan	tes	de	aco-
			plamer	ito	em	Hz	(s =	sin	ngle	eto,	dd	= d	uplo	I	dub1	eto,
			m = mu	ilti	ip1	eto)).										

Deslocamento	NA-1+1-1-1-1-1-	7 (11-)	Área	Interpretação	
químico (δ)	Multiplicidade	J (HZ)	relativa		
••••••••••••••••••••••••••••••••••••••					
11,00-10,35	m		1	H-5	
7,93- 7,38	m		5	H-6,7,8,9,10	
			1	H-c	
7.,36	s largo		1	H-2	
5,62	dd	2,0	1	H-b	
		16,0			
5,42	dd	2,0	1	H-a	
		10,0			
4,10	5		5	C ₃ -OMe	
3,90	S		3	C ₄ -OMe	

Tab. 34 - Deslocamentos químicos (\$) dos prótons dos anéis aromáticos e dos grupos metil de metoxila em alcalóides fenantrênicos. Os espectros foram registrados em CDCl₃ e TMS como referência interna. (s = singleto, m = mul tipleto).

Prótons							Ref.
Alcaloide	5	6	7 8 9 10	2	OMe-3	OMe-4	
I	9,63 (m)		7,45-7,93 (m)	7,21 (s)	3,99 (s)	.3,90 (s)	191
II	9,65 (m)		7,40-7,90 (m)	7,13 (s)	4,01(s)	3,93(s)	191
III	9,52 (m)		7,40-8,00 (m)	7,27 (s)		3,82 (s)	° 214

Esquema 4 - Caminhos principais de fragmentação de GD-3P (<u>10</u>) no espectrômetro de massa.

Fig. 10 - Espectro i.v. de GD-3P (10) em KBr

Fig. 11 - Espectro u.v. de GD-3P (10) em EtOH e em EtOH + HC1

Fig. 12 - Espectro de massas de GD-3P (10)

4.4 - Determinação estrutural de GD-4P (11)

A natureza aromática da substância foi reconhecida pela análise do espectro no infravermelho (Fig. 14) que apresentou bandas em 1610, 1595 e 1470 cm⁻¹ A absorção entre 1660-1650 cm⁻¹ indica a presença de carbonila conjugada e quelada. A absorção larga entre 3600-3300 cm⁻¹, sugeriu a presença de grupo OH. A absorção em 1245 cm⁻¹ devida à vibração de estiramento assimétrico de =C-O-C, sugeriu a presença de um éter aromático.

O espectro no ultravioleta (Fig. 15, Tab. 35), confirmou o caráter aromático de GD-4P e indicou a presença de hidroxila fenólica, em vista dos deslocamentos batocrômicos dos máximos de absorção observados após adição de hidróxido de sódio.

A análise da curva de integração no espectro de ressonância magnética nuclear de ¹H (Fig. 16) indicou a presença de 14 prótons. O aparecimento de um sinal simples em campo baixo, 11,20 δ (Tab. 36) caracterizou a presença de hidroxila fenólica em ponte de hidrogênio intramolecular, confirmando os dados espectrais de infravermelho. O singleto em $6,30\delta$, correspondente a um próton aromático, revelou que o composto contém anel aromático pentassubstituido. A ocorrência do singleto em 3,90 δ no espectro de R.M.N.¹H, três prótons, foi atribuída a um grupo metoxila ligado a anel aromático. O sinal simples em $2,05\delta$ foi correlacionado um grupo metila aromático e o dubleto centrado em 1,59 δ a três prótons de metila alifática envolvido no sistema -CHCH₃. O multipleto entre 5,00-4,40 δ observado para o sinal do próton metínico deste sistema -CHCH₂, permitiu admitir na sua vizinhança mais dois prótons, ampliando o sistema anterior para -CH2CHCH3. De fato, os prótons metilênicos são representados no espectro por multipletos localizados entre 2,50 e 3,10 δ . Todos os dados discutidos até este ponto, comparados com os dados de GD-5P (15), permitiram propor as possibilidades estruturais (11), (12), (13), (14) para GD-4P.

As alternativas (12), (13) e (14) foram eliminadas devido à posição de absorção do próton aromático em 6,30 ppm, demonstrando maior proteção do que a previsão para estas possibilidades estruturais. Aliás, cálculos de deslocamentos químicos para o próton aromático destas substâncias com base nos efeitos exercidos por grupos substituintes |216| revelaram em acordo com esta dedução.

Com base nos dados espectrométricos discutidos foi possível lançar a estrutura (11) para GD-4P. Esta estrutura corresponde a da 8-hidroxi-6-metoxi-3,5-dimetil-3,4-diidroisocumarina, já relatada na literatura |217| como produto do metabolismo de fungo. Por isto, torna-se possível admitir que a madeira utilizada neste estudo foi infestada por fungo.

I.V.: KBr v (cm ⁻¹) mãx.	3600-3300, 1470, 1445, 800.	2930, 2850, 1370, 1330,	1640, 1620, 1595 1290, 1245, 1140
U.V.: EtOH λ (nm) máx. (ε)	217 (1620)	262 (750)	318 (200)
EtOH + NaOH λ (nm) máx. (ϵ)	235 (1200)	303 (510)	345 (160)

Tab. 35 - Dados espectrais de I.V., U.V. e de massas de GD-4P (11).

Tab. 36 - Dados de ressonância magnética nuclear protônica (60 MHz, CCl₄, TMS) de GD-4P (<u>11</u>). Os deslocamentos quí micos foram anotados em δ (ppm) e as constantes de acoplamento em Hz. (s = singleto, d = dubleto, m = multipleto).

Deslocamento	Multiplicidade	1 (Hz)	Área	Interpretoção
químico (8)		5 (12)	relativa	Incerpretação
11,20	S	-	1	ОН
6,30	S	-	1	H - 7
5,00-4,40	m	-	1	H - 3
3,90	S	-	3	OCH ₃
2,50-3,10	m	-	2	CH ₂ -4
2,05	S	-	3	CH ₃ -C ₅
1,59	d	7,0	3	CH ₃ -C ₃

Fig. 14 - Espectro i.v. de GD-4P ($\underline{11}$) em KBr

Fig. 15 - Espectro u.v. de GD-4P (11) em EtOH e em EtOH + NaOH

4.5 - Determinação estrutural de GD-5P (15).

O espectro no infravermelho (Fig. 17) mostrou uma absorção forte em 1670 cm⁻¹, indicando presença de carbonila conjugada e quelada no caso de diidroisocumarina, carbonila lactônica. A natureza aromática da substância foi evidenciada pelas bandas 1620, 1610 e 1480 cm⁻¹, correspondentes as vibrações do núcleo aromático. A banda em 800 cm⁻¹, correspondente a vibração de dobramento de C-H fora do plano, sugeriu a presença de sistema aromático sustentando dois prótons vicinais.

O espectro ultravioleta (Fig. 18, Tab. 37) confirmou o caráter aromático de GD-5P e evidenciou a presença de hidroxila fenólica, em vista dos deslocamentos bactocrômicos dos máximos de absorção após adição de hidróxido de sódio.

O espectro de ressonância magnética nuclear de ¹H (Fig. 19, Tab. 38) mostrou, através de análise da curva de integração, a presença de doze prótons. A ocorrência do sinal simples em campo baixo (11,08 δ), permitiu a localização de hidroxila fenólica em ponte de hidrogênio intramolecular. Na região característica de prótons aromáticos observou-se sinais references a um sistema AB em 7,30 δ (J = 8,0 Hz) e 6,80 δ (J = 8,0 Hz), o que indicou a existência de dois hidrogênios mantendo entre si relação orto. O sinal simples em 2,25 δ foi atribuído ao grupo metila aromático, desprotegido pelo efeito anisotrópico do anel aromático. Um sinal duplo em 1,62 δ (J = 6,0 Hz, 3H) sugeriu grupo metila num sistema CHCH₃. O próton metínico desta unidade aparece em 4,80-4,20 δ (m), demonstrando a possível presença da unidade -CH₂CHCH₃. Os prótons metilênicos aparecem no espectro representados por dois duplo--dubletos localizados em 3,06 δ (Heq-4) e 2,68 δ (Hax-4). A constante de acoplamento J = 16,0 Hz observada nos dois sinais corresponde a interação de prótons geminados em hexanel 218, indicando que os prótons do grupo CH2 não são equivalentes e retratando a existência de quiralidade no centro vizinho e/ou a rigidez do anel heterociclo, revela uma interação adicional com o próton metínico, através de novo desdobramento J = 10,0 Hz. O valor da constante de acoplamento (J = 10 Hz) observada no sinal do Hax-4 (2,68 δ) indicou uma interação axial-axial com o H-3. A interação equatorial-axial do Heq-4 (3,06 δ) com o H-3 é representada por J = 4,0 Hz.

Todos os dados espectrais discutidos até este ponto, permitiram postular as possibilidades estruturais (15) e (16) para GD-5P.

15

16

A alternativa (16) foi eliminada pela análise do espectro de massa (Esquema 5, Fig. 20, Tab. 37). Através da reação de fragmentação retro-Diels-Alder o ion molecular das diidroisocumarinas elimina molécula de acetaldeído (M-44), enquanto que as cromanonas expulsam propeno (M-42).

O espectro de massas (Fig. 20) de GD-5P (15) revelou o pico correspondente ao ion molecular em m/z 192 ($C_{11}H_{12}O_3$), com abundância relativa 100% (pico base). O pico em m/z 148 representa o fragmento oriundo do pico molecular pela eliminação de molécula de acetaldeído (M-44), caracterizando a GD-5P como uma diidroisocumarina (15). Os outros picos principais registrados estão interpretados no Esquema 5.

A estrutura proposta para a GD-5P (15), 8-hidroxi-3,5dimetil-3,4-diidroisocumarina, corresponde a substância já descrita na literatura como produto elaborado por fungo |217|.

I.V.: KBr (cm ⁻¹) máx.	3400, 2995, 1390, 1370, 800 740	2290, 1670, 1325, 1210,	1620, 1610, 1480, 1110, 1030, 840,
U.V.: EtOH λ (nm) máx. (ε)	221 (3190)	249 (2420)	328 (1570)
EtOH + NaOH	236	255	357
λ (nm) máx. (ε)	(3420)	(3420)	(2270)
E.M.: m/z (%)	192(100)M ^{•+} 149(14), 148 91(30).	, 174 (39), (42), 146(12),	164(3), 163(25), 120(42), 119(10),

Tab. 37 - Dados espectrais de I.V., U.V. e de massas de GD-5P $(\underline{15})$.

Tab. 38 - Dados de ressonância magnética nuclear protônica (60 MHz, CCl_4 , TMS) de GD-5P (<u>15</u>). Os deslocamentos qu<u>í</u> micos foram anotados em δ (ppm) e as constantes de acoplamento em Hz. (s = singleto, d = dubleto, dd = duplo-dubleto, m = multipleto).

Deslocamento químico (δ)	Multiplicidade	J (Hz)	Área relativa	Interpretação
11,08	S	—	1	ОН
7,30	d	8,0	1	H-6
6,80	d	8,0	1	H- 7
4,80-4,20	m		1	H - 3
3,06	dd	16,0	1	Heq-4
		4,0		
2,68	dd	16,0	1	Hax-4
		10,0		
2,25	S		3	CH ₃ -C ₅
1,62	d	6,0	3	CH ₃ -C ₃

Esquema 5 - Caminhos principais de fragmentação de GD-5P (<u>15</u>) no espectrômetro de massa.

m/z 164

Fig. 17 - Espectro i.v. de GD-5P (15) em KBr

Fig. 18 - Espectro u.v. de GD-5P (15) em EtOH e em EtOH + NaOH

Fig. 20 - Espectro de massas de GD-5P (15)

4.6 - Determinação estrutural de GD-6P (18).

O espectro na região do infravermelho (Fig. 21) desta substância apresentou bandas em 1650 cm⁻¹ (C = O conjugada), 1590, 1575 cm⁻¹ (aromático) e 795 cm⁻¹ (3 H adjacentes) 915 e 720 cm⁻¹ (OCH₂O) (Tab. 39).

O espectro na região do ultravioleta (Fig. 22) em meio neutro apresentou bandas compatíveis com alcalóide oxoaporfínico, ocorrendo modificações após adição de solução aquosa de HCl, |209,213|.

O espectro de R.M.N.¹H (Fig. 23, Tab. 40) mostrou sinais para um grupo metoxila em 3,98 δ (s), um grupo metilenodioxi em 6,21 δ e seis prótons aromáticos na região de 7,07--8,78 δ . Os deslocamentos químicos dos prótons do grupo metilenodioxi (6,21 δ , s) e dos carbonos do anel B são características de 1,2-metilenodioxi oxoaporfínico |213|. Os dois dubletos em $8,78\delta$ e $7,66\delta$, com constante de acoplamento (J = 5,0 Hz), correspondem respectivamente aos prótons H-5 e H-4 de um sistema isoquinolínico |213|. O singleto em 7,07 δ representa o próton H-3. Os valores dos deslocamentos químicos e das constantes de acoplamento observados para os sinais dos prótons do anel D, 7,14 δ (dd, J = 2,0 e J = 8,0 Hz), 7,50 δ (t, J = 8,0 Hz) e $8,10\delta$ (dd, J = 2,0 e J = 8,0 Hz), indicaram que os três hidrogênios estão situados em posições adjacentes, estando de acordo com o espectro de infravermelho (Fig. 21). Esta interpretação permitiu lançar as possibilidades estruturais (17) e (18) para GD-6P.

18

O espectro de massas (Fig. 24, Tab. 37) mostrou pico correspondente ao íon molecular em 305μ ($C_{18}H_{11}O_4N$), contendo número ímpar de átomos de nitrogênio. Os picos em m/z 290 (3%), 275 (4%) e 262 (2%), correspondem a fragmentos oriundos da perda de -CH₃, CH₂O e CO respectivamente (Esquema 6).

A estrutura (17), 1,2-metilenodioxi-8-metoxi-7-oxoaporfina (oxostephanina) já relatada na literatura |219|, foi descartada com base no seu alto ponto de fusão (270-272°C), já que GD-6P apresentou ponto de fusão 240-242°C. Deste modo, a estrutura (18) foi proposta para a GD-6P, 1,2-metilenodioxi-11--metoxi-7-oxoaporfina, também já relatada na literatura |82, 189|.

Os espectros de R.M.N.¹H (Fig. 23) e de massas (Fig. 24) revelaram a presença de impurezas, inclusive de natureza alifática. O pico em m/z 291 permitiu cogitar da possibilidade de existência da substância (19) como impureza alcaloídica $(M^{+} 291)$.

I.V.: V V max. V max.	3540-320 1455, 14 965, 9	0 1660-164 1(, 1295, 1 15, 860,	10, 1590, 1 275-1255,2 795, 740.	.575, 1510, 1045, 1025,
U.V.: EtOH	223	249	278	3 11 i
λ (nm) máx. (ε)	(2230)	(2140)	(1890)	(580)
EtOH + HC1	221	260	297	322i
χ (nm) máx. (ε)	(1980)	(2240)	(1830)	(580)
E.M.: m/z (%)	305(18)M	i ^{*+} , 290(3),	276(1),	275(4),
	262(2),	248(4), 2	34(2).	

Tab. 39 - Dados espectrais de I.Y., U.V. e de massas de GD-6P $(\underline{18})$.

Tab. 40 - Dados de ressonância magnética nuclear protônica (100 MHz, CDCl₃, TMS) de GD-6P (<u>18</u>). Os deslocamentos químicos foram anotados em δ(ppm) e as constantes de acoplamento em Hz. (s = singleto, d = dubleto, dd = duplo-dubleto, t = tripleto).

Deslocamento químico (δ)	Multiplicidade	J (Hz)	Área relativa	Interpretação
8,78	d	5,0	1	H-5
8,10	dd	8,0 2,0	1	H- 8
7,66	d	5,0	1	H-4
7,50	t	8,0	1	H-9
7,14	dd	8,0 2,0	1	H-10
7,07	S	-	1	H-3
6,21	S	-	2	och ₂ 0
3,98	S	-	3	OCH ₃

Esquema 6 - Caminhos principais de fragmentação de GD-6P (<u>18</u>) no espectrômetro de massa.

Fig. 21 - Espectro i.v. de GD-6P (18) em KBr

•

Fig. 22 - Espectro u.v. de GD-6P (18) em EtOH e em EtOH + HC1

Fig. 23 - Espectro de rmn¹H (100 MHz, CDC1₃, TMS) de GD-6P (<u>18</u>)

Fig. 24 - Espectro de massas de GD-6P (18)

4.7 - Determinação estrutural de GD-7P (20, 21, 22).

O espectro i.v. (Fig. 25) revelou a presença de grupo OH (υ 3400 cm $^{-1})$ e a natureza alifática de GD-7P.

O espectro de R.M.N. ¹H (Fig. 26) apresentou absorções que permitiram reconhecer a natureza esteroidal, com base nos sinais de grupos metila entre 1,27-0,69, de próton carbinólico em 3,55 δ (m) e de prótons olefínicos em 5,4-5,0 δ (m).

A presença de picos em m/z 400, 412 e 414 no espectro de massas (Fig. 27) sugeriu a existência de três substâncias esteroidais na GD-7P. Estes dados, a interpretação de outros picos do espectro de massas (Esquema 7) e as informações do espectro de R.M.N.¹H (Fig. 26) permitiram propor as estruturas 20, 21 e 22 para os componentes da mistura, substâncias comumente encontradas em plantas superiores |220|.

20 22,23-Diidro- $R = CH_3 M^{+}$ 400 (24-metil-colesterol)

21 22,23-Diidro- R = CH₂CH₃ M⁺ 414 (β - sitosterol)

22 Δ^{22} R = CH₂CH₃ M⁺ 412 (estigmasterol)

Admitindo-se a mesma estabilidade para as três substâncias no espectrômetro de massa, calculou-se as porcentagens aproximadas dos componentes da mistura, com base nas intensidades dos picos correspondentes aos íons moleculares: 20 (6%), 21 (24%) e 22 (14%).

Esquema ? - Caminhos principais de fragmentação dos constituintes de GD-7P no espectrômetro de massa.

Fig. 25 - Espectro i.v. de GD-7P (20, 21, 22) em KBr

Fig. 26 - Espectro de rmn¹H (100 MHz, CCl_4 , TMS) de GD-7P (<u>20</u>, <u>21</u>, <u>22</u>)

Fig. 27 - Espectro de massas de GD-7P (20, 21, 22)

5. PARTE EXPERIMENTAL

5.1 - Material e métodos

 1 - Separação por cromatografia em coluna foram efetuadas usando-se sílica Merck Kieselgel 60 |0,063-0,200 mm (70--230 mesh ASTM)| como adsorvente.

2 - Para análises cromatográficas em camada delgada, utilizou-se sílica Merck Kieselgel G e Kieselgel H (Tipo 60). Para cromatografia em camada preparativa empregou-se sílica Merck Kieselgel 60 PF 254. Em ambos os casos a sílica foi suspensa em água destilada e distribuída em camadas sobre placas de vidro por meio de um espalhador. A espessura das camadas foram de 0,5mm para placas analíticas e de 1,0mm para as preparativas. Como reveladores utilizou-se luz violeta com comprimento de onda de 254 nm e vapores de iodo.

3 - Os critérios de pureza adotados foram determinação do ponto de fusão na faixa convencional e/ou obtenção de mancha única por cromatografia em camada delgada, empregandose no mínimo três sistemas de solventes.

 4 - Os solventes de soluções foram destilados sob pressão reduzida, utilizando-se evaporador rotativo Büchler.

5 - Identificação por comparação direta envolveu cromatografia em camada delgada de sílica, utilizando-se no mínimo três sistemas de solventes.

6 - Os pontos de fusão foram determinados em blocos de Kofler e não foram corrigidos.

7 - Os espectros na região infravermelho foram registrados em espectrofotômetro Infracord, modelo 257 da Perkin--Elmer, existente na Universidade Federal Rural do Rio de Janeiro. Utilizou-se pastilhas de KBr ou filmes sobre pastilha de NaCl.

8 - Os espectros na região do ultravioleta foram registrados em espectrofotômetro modelo 402 da Perkin-Elmer, existente na U.F.R.R.J. Utilizou-se EtOH como solvente.

9 - Os espectros de ressonância magnética nuclear protônica a 60 MHz foram registrados em espectrômetro da VARIAN, modelo T-60, existente na U.F.R.R.J.. Os espectros a 100 MHz foram registrados em espectrômetro VARIAN, modelo XL-100, existente no NPPN/UFRJ, por cortesia do Prof. Paul M. Baker. Como solventes foram usados CCl_4 e $CDCl_3$. TMS foi usado como referência interna. As constantes de acoplamento (J) foram descritas em Hz e os deslocamentos químicos em unidades δ (ppm).

10 - Os espectros de massas foram registrados em espectrômetro da VARIAN, modelo CH-5, existente no NPPN/UFRJ, por cortesia do Prof. Paul M. Baker.

11 - A presença de alcalóides foi verificada por cromatografia em camada delgada de sílica, utilizando-se como revelador o reagente de Dragendorff. 5.2 - Isolamento dos constituintes de Guatteria duckeana.

5.2.1 - Coleta

O material usado para estudo foi coletado pela equipe do Instituto Nacional de Pesquisa da Amazônia (INPA) Manaus.

5.2.2 - Extração

A madeira do tronco, seca e moída, foi submetida a extração com benzeno a frio. O material obtido após a destilação do solvente foi adsorvido em sílica gel para coluna. O material frio e seco foi colocado em um funil de separação e eluído, sucessivamente, com hexano, benzeno e clorofórmio (Esquema 8).

> 5.2.3 - Cromatografia em coluna de sílica da fração hexânica.

O material da fração hexânica (Esquema 8), foi analisado por cromatografia em camada delgada de sílica usando-se benzeno:clorofórmio (1:1) e clorofórmio puro, verificando-se a presença de nove substâncias. Esta fração hexânica foi submetida a cromatografia em coluna, usando-se sílica gel como adsorvente. Coletou-se 406 frações de 250 ml cada, usando-se como eluente: hexano, hexano + benzeno, benzeno, hexano + acetato de etila e acetato de etila (Tab. 41).

103

Esquema 8 - Fracionamento do extrato benzênico da Guatteria duckeana.

Solv	Frações	
Hexano		001-023
Hexano + Benzeno	(9:1)	024-060
	(8:2)	061-110
•	(7:3)	111-150
	(1:1)	151-185
Benzeno		186-202
Hexano + Acetato	de etila (9:1)	203-235
	(8:2)	236-266
	(7:3)	267-290
	(1:1)	291-334
	(3:7)	335-385
Acetato de etila	•	386-406

Tab. 41 - Cromatografia em coluna da fração hexânica do extrato benzênico de Guatteria duckeana.

Estas frações foram reunidas em vários grupos, com base em análise comparativa por cromatografia em camada delgada de sílica, usando-se benzeno: clorofórmio (1:1), clorofórmio e acetato de etila como solventes (Tab. 42).

Frações reunidas	Grupos	Substâncias isoladas	Quantidades
001-015	I		
016-023	II		
024-060	III	GD-3P	25,0 mg
061-110	IV		
111-134	V	GD-5P	35,0 mg
135-160	VI	GD-4P	30,0 mg
161-238	VII		
239-254	VIII		
255-270	ΙX		
271-406	Х		

Grupo III (Fração 024-060):

A análise desta fração por cromatografia em camada delgada revelou a presença de três substâncias. Este material foi submetido a cromatografia em coluna de sílica gel, usando-se como eluente hexano + benzeno em polaridades crescentes. Foram coletadas 186 frações de 10 ml cada uma. Análise comparativa das frações por cromatografia em camada delgada permitiu reunir as frações 089-131, apresentando-se constituídas por uma substância e rastros de impurezas. Esta fração foi novamente submetida a uma coluna filtrante de sílica, usando-se como eluente hexano:benzeno (1:1). Foram coletadas 135 frações de 2 ml cada uma. Após análise comparativa por cromatografia em camada delgada, verificou-se que as frações 005-060 eram constituídas de uma substância pura, que foi denominada GD-3P.

Grupo V (Fração 111-134):

O material deste grupo apresentou-se como um sólido amarelado, após evaporação do solvente. Cromatografia em camada delgada de sílica, usando-se como eluente benzeno: clorofórmio (1:1), revelou a presença de duas substâncias. Este material foi submetido a cromatografia em camada delgada preparativa, utilizando-se como eluente benzeno:clorofórmio (1:1). Obteve-se uma fração de consistência oleosa constituída principalmente de ftalato de iso-octila após comparação direta com amostra autêntica através cromatografia em camada delgada de sílica. A outra fração, após evaporação do solvente e recristalização em benzeno, forneceu uma substância que foi denominada GD-5P.

Grupo VI (Fração 135-160):

Esta fração foi recristalizada em benzeno e forneceu uma substância que foi denominada GD-4P.

5.2.4 - Cromatografia em coluna de sílica dos eluatos benzênico e clorofórmio.

Análise comparativa das duas frações eluídas com benzeno e clorofórmio por cromatografia em camada delgada de sílica, usando-se clorofórmio como solvente, demonstrou serem constituídos dos mesmos componentes, verificando-se a presença de seis substâncias. Estas frações reunidas foram submetidas a cromatografia em coluna de sílica. Foram coletadas 449 frações de 200 ml cada, usando-se como eluente: hexano, hexano + acetato de etila e acetato de etila (Tab. 43).

Tab. 43 - Cromatografia em coluna de sílica gel dos eluatos benzeno + clorofórmico do extrato benzênico de Guatteria duckeana.

Hexano

001-073

Hexano	+	acetato	de	etila	(98:2)	074-130
					(97:3)	131-150
					(9:1)	151-172
					(8:2)	173-194
					(7:3)	195-228
					(6:4)	229-315
					(1:1)	316-388
					(2:8)	389-418

Acetato de etila

419-449

Estas frações foram reunidas em vários grupos, com base em análise comparativa por cromatografia em camada delgada de sílica, usando-se benzeno: acetona (1:1) e acetato de etila como solvente (Tab. 44). Tab. 44 - Frações reunidas e substâncias isoladas dos eluatos benzênico + clorofórmico do extrato benzênico de *Guatteria duckeana*.

Frações	Crupo	Substâncias	Substâncias			
Reunidas	Grupo	Isoladas				
001-049	I	GD-7P		5,0 mg		
050-099	II	GD-4P +	GD-5P	-		
100-179	III					
180-238	IV	GD-1P +	GD-2P	-		
239-449	V	GD-6P		4,0 mg		

Grupo I (Fração 001-049)

Esta fração foi recristalizada em metanol e forneceu uma substância que foi denominada GD-7P.

Grupo IV (Fração 180-238)

O material deste grupo de frações, após evaporação do solvente, revelou por cromatografia em camada delgada de sílica, solvente acetato de etila, a presença de duas substâncias, além de rastros de impurezas. Este material foi submetido a cromatografia em coluna de sílica gel, usando-se como eluente: benzeno, hexano + acetato de etila e acetato de etila. Foram coletadas 207 frações de 10 ml cada uma. Após análise comparativa das frações por cromatografia em camada delgada de sílíca, usando-se como eluente benzeno + clorofórmio (1:1), obteve-se dois sub-grupos distintos 76-91 e 108-149. O material da fração reunida 76-91 após evaporação do solvente revelou uma substância pura que foi denominada GD-1P. O material da fração 108-149 foi analisado por cromatografia em camada delgada de sílica, usando-se como eluente benzeno + clorofórmio (1:1), e constatou-se a presença de uma substância e rastros de impurezas. Esta fração foi submetida a uma cromatografia em coluna filtrante de sílica, usando-se o mesmo solvente da camada delgada. Foram coletadas 68 frações de 2 ml cada uma. Análise por cromatografia em camada delgada de sílica revelou as frações 04-40 constituídas de uma substância pura que foi denominada GD-2P.

Grupo V (Fração 239-449)

O material deste grupo foi submetido a cromatografia em coluna filtrante de sílica, usando-se como eluente benzeno + clorofórmio (1:1), clorofórmio, acetato de etila e metanol. Foram coletadas 48 frações de 2 ml cada uma. Análise por cromatografia em camada delgada de sílica revelou as frações 31-34 constituídas de uma substância pura que foi denominada GD-6P. 5.3 - Dados físicos e espectrais dos constituintes de *Guatteria duckeana*.

1.2-metilenodioxi-N-acetil-aporfina (GD-1P)

Cristais brancos, forma de agulhas (MeOH), p.f. = 179-180°C

 $\sqrt{\begin{array}{c} \text{Kbr} \\ (\text{cm}^{-1}): 2950, 2910, 1640, 1610, 1500, 1455, 1430, 1268, \\ \text{máx.} \\ 1215, 1085, 1055, 958, 940. 850, 795, 760. \end{array}}$

EtOH

- λ (nm) 236, 277, 293i, 317 (\$\epsilon\$ resp. 5340, 5590, 3070 máx. 1040).
- $\begin{array}{cccc} \mbox{EtOH} & + & \mbox{HCl} \\ \lambda & & & (\mbox{nm}) & \mbox{Inalteração} \\ \mbox{max.} \end{array}$
- R.M.N. de ¹H (100 MHz, CDCl₃, TMS) δ : 8,15 (m, 1H H 11); 7,40-7,20 (m, 3H, H-8,9,10); 6.60 (s 1H, H 31; 6,09 e 5,97 (1H cada, d, J = 1,0 Hz (CH₂O) 5,32 (dd, J = 6,0 Hz e J = 12,0 Hz 1H, H-6a), 4,10-2,62 (m, 6H, H2,4,5,7) 2,23 (s, 3H, NCOCH₃).
- E.M. m/z (%): 307(42)M⁺ 264(7), 263(9), 248(19), 236(40), 235(100).

1,2-metilenodioxi-11-metoxi-N-acetilaporfina (GD-2P)								
Cristais amorfos, coloridos, (Acetona), p.f. = 175-177°C								
KBr $\sqrt{\begin{array}{c} \text{KBr} \\ \text{máx.} \end{array}}$ (cm ⁻¹) 2925, 1640, 1600, 1470, 1260, 1210, 1180, 104 935.	0,							
EtOH λ (nm): 233, 2621, 275, 304 (ε resp. 7480, 5930, 660 máx. 9380).	0,							
EtOH + HCl λ (nm): Inalteração máx.								
R.M.N. de ¹ H (100 MHz, CDCl ₃ , TMS) δ : 7,25 (t, J = 8,0 H 1H, H-9); 6,90 (d, J = 8,0 Hz, 2H, H-8,10) 6,0 (s, 1H, H-3); 6,04 e 5,86 (1 H cada, d, J = 1,5 H OCH ₂ O); 5,10 (dd, J =6,0 e J =12,0 Hz, 1H, H-6a 3,90 (s, 3H, OCH ₃); 4,20-2,62 (m, 6H: H2-4 5,7 2,22 (s, 3H, NCOCH ₃).	z, 50 z, i););							

E.M. m/z (%): 337(47) M^{.+} 307(9), 295(14), 294(7), 278(21), 266(32), 265(100), 264(7), 248(7), 236(11), 235(23).

1-vinil-3,4-dimetoxi-fenantreno (GD-3P) Cristais brancos (EtOH), p.f. = 172-174°C $\sqrt{\begin{array}{c} \text{KBr} \\ \text{máx.} \end{array}}$ (cm⁻¹): 2940, 1740, 1595, 1570, 1510, 1455, 1415, 1385, 1325, 1280, 1250, 1120, 1035, 985, 925, 855, 825, 805, 765. $\lambda \xrightarrow{\text{EtOH}} \\ \lambda \xrightarrow{\text{(nm)}}$: 220, 249i, 260, 316 (ε resp. 2530, 3010, 3380, máx. 950). $\lambda \xrightarrow{\text{EtOH}} + \text{HCl} \\ \lambda \xrightarrow{\text{(nm)}}$: Inalteração máx.

- R.M.N. de ¹H (60 MHz, CCl₄, TMS) δ : 11,00-10,35 (m, 1H, H-5); 7,93-7,38 (m, 6H, H-6,7,8,9,10 e Hc); 7,36 (s, 1, 1H, H-2); 5,62 dd, J = 2,0 e J = 16,0 Hz, 1H, Hb); 5,42 (dd, J = 2,0 e J = 10 0 Hz, 1H, Ha); 4,10 (s, 3H, OCH₃-C₃); 3,90 (s, 3H, OCH₃-C₄).
- E.M. m/z (%): 264(100)M^{.+}, 249(17), 234(6), 233(15), 221(13), 218(15), 217(71), 191(5) 189(27).

8-hidroxi-6-metoxi-3,5-dimetil-3,4-diidroisocumarina (GD-4P) Cristais brancos (Benzeno), p.f. = 117-118°C KBr $\sqrt{(cm^{-1})}$: 3600-3300, 2930, 2850, 1640, 1620, 1595, 1470, máx. 1445, 1370, 1330, 1290, 1245, 1140, 800. EtOH λ (nm): 217, 262, 318 (ϵ resp. 1620, 750, 200). máx. EtOH + NaOH (nm): 235, 303, 345 (ε resp. 1200, 510, 160) λ máx. R.M.N. de ^{1}H (60 MHz, CCl4, TMS) $\delta \text{:}$ 11,20 (s. 1H, OH); 6,30 (s, 1H, H-7); 5,40-4,40 (m, 1H, H-3); 3,90 (s, 3H, OCH₃); 2,50-3,10 (m, 2H, CH₂-4), 2,05 (s, 3H,

 CH_3-C_5 ; 1,59 (d, J = 7,0 Hz, 2H. CH_3-C_3).

8-hidroxi-3,5-dimetil-3,4-diialolsocumarina (GD-5P) Cristais brancos (Benzeno), p.f. = 120-122°C \sqrt{KBr} (cm⁻¹): 3400, 2995, 2290, 1670, 1620. 1610, 1480, 1390, máX. 1370, 1325, 1210, 1110, 1030, 840, 800, 740. EtOH (nm): 221, 249, 328 (ε resp. 3290, 2420, 1570). λ máx. EtOH + NaOH (nm): 236, 255, 357 (ε resp. 3420, 3420, 2270). λ máx. R.M.N. de ¹H (60 MHz, CCl₄, TMS): 11,08 (s JH, OH); 7,30 (d, J = 8,0 Hz, 1H, H-6; 6,80 (d, J = 8,0 Hz, 1H, H-7); 4,80-4,20-(m, 1H, H-3); 0,06 (dd, 7 = 16,0 e J = 4,0 Hz, 1H, Heq-4); 2,68 (dd, J = 16,0 e

> J = 10,0 Hz, 1H, Hax.-4), 2,25 (s, 3H, CH_3-C_5); 1,62 (d, J = 6,0 Hz, 3H, CH_3-C_3).

E.M. m/z (%): 192(100)M⁺ 174(39) 164(3) 163(25) 149(14), 148(42), 146(12), 120(42), 119(10), 91(30). 1,2-metilenodioxi-11-metoxi-7-oxoaporfina (GD-6P)

Cristais amarelo-alaranjado (CHCl₃), p.f. = 240-242°C KBr (cm⁻¹): 3540-3200, 1660-1640, 1590, 1575, 1510, 1455, $\sqrt{}$ 1410, 1295, 1275-1255, 1220, 1045, 1025, 965 max 915, 860, 795, 740. EtOH λ (nm): 223, 249, 278, 311i (ϵ resp. 2230, 2140, 1890, máx. 580). EtOH + HCl (nm): 221, 260, 297, 3221 (ε resp. 1980, 2240, λ máx. 1830, 580). R.M.N. de ¹H (100 MHz, CDCl₃. TMS) δ : 8,78 (d, J = 5,0 Hz, 1H, H-5; 8,10 (dd, J = 8,0 e J = 2,0 Hz, 1H, H-8); 7,66 (d, J = 5,0 Hz, 1H, H-4)- 7,50 (t, J = 8,0 Hz, 1H, H-9); 7,14 (dd, J = 8:0 e J = 2,0 H2, 1H, H-10) 7,07 (s, 1H, H-3); 6,21 (s, 2H, OCH₂O); 3,98 (s, 3H, OCH₂).

E.M. m/z (%): 305(18), 290(3), 276(1), 275(4), 262(2), 248(4), 234(2).

6. CONSIDERAÇÕES BIOSSINTÉTICAS

O extrato benzênico de *Guatteria duekeana* forneceu três alcalóides e um fenantreno; os caminhos biossintéticos destas substâncias serão discutidos a seguir.

1 - Alcalóides aporfínicos

As teorias de Robinson e Barton et al e, muitos trabalhos experimentais biossintéticos desenvolvidos por Battersby e outros, envolvendo marcação isotópica, permitiram estabelecer rotas do metabolismo secundário para a formação de alcalóides. Nestes processos biossintéticos pode ocorrer |221|:

- a) hidroxilação aromática, descarboxilação e O-metilação de aminoácido para originar 8-ariletilaminas hidroxiladas, sendo que em muitos casos a hidroxilação precede a descarboxilação;
- b) a condensação de Pictet-Spengler envolvendo β -ariletilamina com substância carbonílica adequada;

c) acoplamento fenólico;

- d) abertura de anel seguida de reciclização;
- e) hidroxilação adicional no esqueleto do alcalóide;
- f) O-metilação e N-metilação do alcalóide, freqüentemente como reação final;

g) conversão de orto-hidroximetoxi em metilenodioxi;

Tirosina, ácido 4-hidróxi-fenilpiruvico e ácido 3,4dihidróxi-fenilpiruvico, oriundos da rota do ácido chiquímico, são incorporados nas duas unidades (isoquinolínica e benzílica) dos alcalóides benzilisoquinolínicos, enquanto a dopamina aparece somente na unidade isoquinolínica (Esquema 9). Alcalóides benzilisoquinolínicos são precursores de outros tipos de alcalóides: protoberberínicos, benzofenantridínicos, aporfínicos, morfínicos, eritrínicos (Esquema 10) |221|.

A proposta biossintética dos alcalóides isolados de *Guatteria duckeana* encontra-se descrita no Esquema 11.

Esquema 10 - Caminhos biossintéticos de alcaloldes oriundos de benzilisoquinolínicos (precursor).

GD-6P

121

2 - Fenantrenos naturais

Os produtos naturais fenantrênicos conhecidos podem ser classificados em dois grupos com base na natureza dos substituintes dos esqueletos fenantrênicos: a) fenantrenos nitrogenados; b) fenantrenos não nitrogenados. Os fenantrenos nitrogenados originam-se biossintéticamente dos alcalóides aporfínicos (Esquema 10), admitindo-se um meio biológico adequado para a reação de degradação de Hoffman |222|. O primeiro constituinte do segundo grupo de derivados fenantrênicos naturais foi descoberto em 1963. Hardegger e col. |223,224| isolaram e determinaram a estrutura do primeiro 9,10-diidrofenantreno natural não nitrogenado, o orquimol (23).

Esta substância, isolada dos bulbos de uma Orchidadaceae, revelou-se como anticorpo contra a ação de fungo. Biossintéticamente, estes fenantrenos foram considerados derivados de diidroestilbenos. já que o 9,10-diidrofenantreno co-ocorre com os estilbenos correspondentes. Os estilbenos derivam de biogênese mista chiquimato-acetato, bem estabelecida em seus passos principais (Esquema 12). Admitindo-se um acoplamento oxidativo direto de produtos dibenzílicos (diidroestilbenos) ou rearranjos dienol-benzeno e dienona-fenol, torna-se possível racionalizar a formação de fenantreno natural (Esquema 13) 225, 226, 227 . A presença de grupos hidróxi, metóxi e metilenodióxi em fenantrenos naturais não nitrogenados parecem justificar a via chiquimato-acetato do postulado biossintético envolvendo diidroestilbenos como precursores (Tab. 45) 228. Porém, paEsquema 12 - Biogênese de compostos dibenzílicos (diidroestilbenos) |228|.

124

I) Acoplamento direto

II) Rearranjos dienona-fenol (rota a) e dienol-benzeno (rota b)

rece improvável que os micrandois (24), (25) e (26) sejam formados pela mesma rota biossintética. Nestas substâncias os substituintes ocupam posições nos anéis aromáticos que sugerem origem da via mevalonato (Esquema 14). A existência de vários diterpenos parcialmente aromáticos permitiram supor que estes terpenoides possam funcionar como precursores para a biossíntese dos fenantrenos (Esquema 15) |228|.

24

25

26

Tab. 45 - Estrutura e ocorrência de fenantrenos naturais não nitrogenados.

€

	Substituição		tituição do esqueleto			Forilia	Cânoro	Po f
2	3	4	6	7	8	ramitta	Genero	Kel (
ONe	OMe	011	~	011	-	Dioscoreaceae	Tamus	229,230
014	OMe	OMe	ОН	011	- c	Combretaceae	Combretum	231
OMe	OMe	ОН	OH	OH	-			231,232,233
OMe	OMe	OMe	OH	OH				231,232,233
011	OMe	OMe	0Me	OH	-			231
0Me	OMe	ОН	0Me	ОН	-			233
OMe	OMe	OMe	0Me	ОН	-			231
OMe	-	ОMe	0Me	ОН	-	Díoscoreaceae	Tamus	230,234
						Combretaceae	Combretum	231,235
OMe	OMe	ОН	-	ОМе	011	Dioscorcaceae	Tamus	229,234
OMe	e OCH ₂ O		-	он	OMe			230,234
OMe	OMe	OMe	-	OMe	OMe			229,234
OMe	e OCH ₂ O		-	OMe	OMe			230,234

Esquema 14 - Biogênese dos pirofosfatos de isopentenila e de γ, γ -dimetil-alila, precursores básicos dos terpenoides.

Esquema 15 - Hipótese biogenética para fenantrenos diterpênicos |228|.
O fenantreno não nitrogenado isolado de *Guatteria* duckeana aponta para outra rota biossintética, já que co-ocorre com alcalóides aporfínicos. Nesta espécie parece provável que alcalóide aporfínico funciona como precursor biogenético do fenantreno, através de reação do tipo degradação de Hofmann (Esquema 16). Aliás, a transformação de alcalóide aporfínico no fenantreno <u>10</u> através de degradação de Hofmann foi descrita recentemente |215|.

Esquema 16 - Proposta biogenética para l-vinil-3,4-dimetoxifenantreno em Guattería duckeana.

Os alcalóides (27) e (28) isolados de Berberis buxifolia e B. actinacantha (família Berberidaceae), respectivamente, revelam modificações mais profundas 236. A rota degradativa de alcalóides aporfínicos que produz estas substâncias oferece condições para oxidação do anel aromático D de precursor alcaloídico.

Esquema 17 - Proposta biossintética baseada na degradação de flavonóides 237.

7. RESUMO

Os constituintes químicos que se obtém da maioria das espécies da família Annonaceae possuem importâncias econômica, química e medicinal, fato que justifica o estudo químico de espécies ainda não estudadas.

Por esta razão após uma revisão de dados publicados sobre a química da família, despertou-se o interesse para o estudo químico de *Guatteria duckeana*.

O extrato benzênico da madeira desta espécie forneceu uma mistura de sitosterol, estigmasterol e 24-metil-colesterol (GD-7P), N-acetil-anonaina (GD-1P), N-acetil-puterina (GD-2P), 1-vinil-3,4-dimetoxi-fenantreno (GD-3P), 1,2-metilenodioxi-11-metoxi-7-oxo-apofina (GD-6P), 8-hidroxi-6-metoxi--3,5-dimetil-3,4-diidroisocumarina (GD-4P) e 8-hidroxi-3,5--dimetil-3,4-diidroisocumarina (GD-5P). duas últimas subs-As tâncias são produtos de metabolismo de fungo, admitindo que a madeira utilizada neste estudo foi infestada por este microorganismo. A ocorrência da substância 1-vinil-3,4-dimetoxi-fenantreno (GD-3P) e alcalóides aporfínicos em Guatteria duckeana produto fenantrênico. permitiu postulação biogenética para o

O isolamento dos constituintes envolveu métodos cromatográficos.

Dados espectrais foram utilizados na elucidação estrutural das substâncias isoladas.

SUMMARY

The chemicals constituents of the majority species of Annonaceae family, have economical, chemistry and medicinal importances, justifying the chemical study of some species that are not being studied.

For this reason, emerged the interest for the chemical study of *Guatteria duckeana*, after a revision from published subjects about the chemical family.

The benzenic extract from the wood of this species provided a mixture of sytosterol, stygmasterol and 24 methyl-cholesterol (GD - 7P), N-acetylanonaine (GD - 1P), N-acetyl-puterine (GD - 2P), 1 vinyl-3,4-dimethoxy phenanthrene (GD - 3P), 1,2-methylenodioxy--11 methoxy-7-oxo-aporphine (GD - 6P), 8-hidroxy-6-methoxy-3,5- dimethyl-3,4-dihydroisocoumarin (GD - 5P). The two last substances are products of fungus metabolism as the available wood in this study was infested by this microorganism.

When the substance 1-vinyl-3,4-dimethoxy-phenanthrene (GD -3P) and alkaloids aporphinics occurred in *Guatteria duckeana* allowed the biogenetic creation for the phenanthrenic product.

The constituents isolation involved chromatographycs methods.

Spectrals features were used for the structural elucidation of the isolated substances.

- 01 Leboeuf, M., Cavé, A., Bhaumik, P.K., Mukherjee, B. and Mukherjee, R. (1982), Phytochemistry 21, 2783
- 02 Heywood, V.H. (1978), Flowering Plants of the World. Un. Press, Oxford.
- 03 Ngiefu, C.K., Paquot, C. and Vieux, A. (1976), Oleagineux, 31, 545.
- 04 Naidu, N.B. and Saletore, S.A. (1954), Indian Soap J. 20, 141.
- 05 Savard, J. and Espil, L. (1951), Centre Tech. Forestier Trop., Nogent sur Marne, Publ. No 3, 7.
- 06 Klein, E. (1975), Dragoco Rep (Ger. Ed.) 22, 167.
- 07 Panichpol, K. and Waterman, P.G. (1978), Phytochemistry, <u>17</u>, 1363.
- 08 Takhtajan, A. (1969), Flowering Plants, Origin and Dispersal Oliver & Boyd, Edinburgh.
- 09 Fries, R.E. (1959), Annonaceae in Die Natürlichen Pflanzenfamitien, (Engler, A. and Prantl, K., eds.) 2nd edn, vol. 17aII, Dunker & Humblot, Berlin.
- 10 Keay, R.W.J. (1954), Annonaceae in Flora of Flora Tropical Africa (Hutchinson, J. and Dalziel, J.M., eds.) 2nd edn, vol. 1, London.
- 11 Le Thomas, A. (1969), Annonacées in Flore du Gabon (Aubréville, A., ed.) vol. 16, Paris.

- 12 Hutchinson, J. (1973), The Families of Flowering Plants. Un. Press, Oxford.
- 13 Hutchinson, J. (1964), The Genera of Flowering Plants vol. 1. Un. Press, Oxford.
- 14 Sinclair, J. (1955), Garden's Bull. Singapore, 14, 149.
- 15 Farr, E.R., Leussink, J.A. and Stafleu, F.A. (1979), Index Nominum Genericorum (Plantarum) Utrecht.
- 16 Le Thomas, A. (1981), Pollen Spores 23, 5.
- 17 Farnsworth, N.R., Blomster, R.N., Quimby, M. W. and Schermerhorn, J.W. (1974), The Lynn Index, Monograph vol. III, p-60.
- 18 Hegnaver, R. (1964), Chemotaxonomie der Pflanzen, vol. III, 116. Basel.
- 19 Gibbs, R.D. (1974), Chemotaxonomy of Flowering Plants. Mc Gill - Queen's University Press, Montreal.
- 20 Mackie, A. and Ghatge, N. (1958), J. Sci. Food Agric. 9, 88.
- 21 Callan, T. and Tutin, F. (1911), Pharm. J. 87, 743.
- 22 Okogun, J.I. and Ekong, D.E.U. (1969), Chem. Ind. (London), 1272.
- 23 Mackie, A. and Mieras, D.G. (1961), J. Sci. Food Agric. 12, 202.
- 24 Gunstone, F.D., Steward, S.R., Cornelius, J.A. and Hammonds, T.W. (1972), J. Sci. Food Agric. 23, 53.
- 25 Jimenez-Martin, J. (1971), Ars Pharm. 12, 203.

- 26 Cabo Torres, J., Jimenez, J. and Villar, A. (1972), Ion (Madrid) 32, 213.
- 27 Mannino, S. and Amelotti, G. (1974), Riv. Ital. Sostanze Grasse 51, 111.
- 28 Izzo, R. (1979), Riv. Soc. Ital. Sci. Aliment. 8, 241.
- 29 Shoeb, Z.E. (1970), Grasas Aceites (Seville) 21, 270.
- 30 Mitsuhashi, T. and Kimura, S. (1967), Tokyo Takugei Diagaku Kiyo, Dai-4-Bu 18, 63.
- 31 Matsui, T. (1980), Meiji Daigaku Nogakubu Kenkyu Hokoku, 43.
- 32 Touché, A., Desconclois, J.F., Jacquemin, H., Leliévre,
 Y. and Forgacs, P. (1981), Pl. Méd. Phytoth. 15, 4.
- 33 Siv, Y.Y. and Paris, R.R. (1972), Pl. Méd. Phytoth. <u>6</u>, 299.
- 34 Siv, Y.Y. (1971), Trav. Lab. Matiére Méd. Pharm. Gal. Fac. Pharm. Paris 56, 87.
- 35 Agrawal, S. and Misra, K. (1979), Curr. Sci. 48, 141.
- 36 Santos, A.C. (1930), Philippine J. Sci. 43, 561.
- 37 Cavé, A., Bouquet, A. and Paris, R.R. (1973), C.R.Acad. Sci. Paris Sér. D 276, 1899.
- 38 Waterman, P.G. and Pootakahm, K. (1979), Planta Med. 366.
- 39 Waterman, P.G. and Pootakahm, K. (1979), Planta Med. 247.

- 40 Hufford, C.D. and Lasswell, W. L. Jr. (1978), Lloydia 41, 156.
- 41 Hufford, C.D. and Lasswell, W. L. Jr. (1978), Lloydia 41, 151.
- 42 Lasswell, W.L.Jr. and Hufford, C.D. (1977), J. Org. Chem. 42, 1295.
- 43 Hufford, C.D. and Oguntimein, B.O. (1980), Phytochemistry 19, 2036.
- 44 Hufford, C.D. and Lasswell, W.L.Jr. (1976), J. Org. Chem. <u>41</u>, 1297.
- 45 Lasswell, W.L.Jr. and Hufford, C.D. (1976), Lloydia <u>39</u>, 469.
- 46 El-Sohly, H.N., Lasswell, W.L.Jr. and Hufford, C.D. (1979) J. Nat. Prod. <u>42</u>, 264.
- 47 Hufford, C.D. and El-Sohly, H.N. (1978), Lloydia 41, 652.
- 48 Cole, J.R., Torrance, S.J., Wiedhopf, R.M., Arora, S.K. and Bates, R.B. (1976), J. Org. Chem. <u>41</u>, 1852.
- 49 Okorie, D.A. (1977), Phytochemistry 16, 1591.
- 50 Lasswell, W.L.Jr. and Hufford, C.D. (1976), Lloydia <u>39</u>, 470.
- 51 Tammami, B., Torrance, S.J., Fabela, F.V., Wiedhopf, R. M. and Cole, J.R. (1977), Phytochemistry 16, 2040.
- 52 Hufford, C.D., Laswell, W.L.Jr., Hirotsu, K. and Clardy, J. (1979), J. Org. Chem. <u>44</u>, 4709.
- 53 Hufford, C.D. and Laswell, W.L. Jr. (1977), Lloydia 40, 608.

- 54 Hufford, C.D., Oguntimein, B.O., Van Engen, D., Muthard, D. and Clardy, J. (1980), J. Am. Chem. Soc. <u>102</u>, 7365.
- 55 Joshi, B.S. and Gawad, D.H. (1974), Indian J. Chem. <u>12</u>, 1033.
- 56 Joshi, B.S. and Gawad, D.H. (1976), Indian J. Chem. 14, 9.
- 57 Chopin, J., Hauteville, M., Joshi, B.S. and Gawad, D.H. (1978), Phytochemistry <u>17</u>, 332.
- 58 Ekong, D.E.U. and Ogan, A.U. (1968), J. Chem. Soc. C, 311.
- 59 Oliveros-Belardo, L. (1975), Lloydia <u>38</u>, 537.
- 60 Balbaa, S.I., Haggag, M.Y. and Taha, K.F. (1979), Egypt. J. Pharm. Sci. 18, 1.
- 61 Karawya, M.S., Abdel Wahab, S.M. and Hifnawy, M.S. (1979) Planta Med. <u>37</u>, 57:
- 62 Rao, R.V.K., Murty, N. and Rao, J.V.L.N. (1978), Indian J. Pharm. Sci. <u>40</u>, 170.
- 63 Lasswell, W.L.Jr. and Hufford, C.D. (1977), Phytochemistry <u>16</u>, 1439.
- 64 Bohlmann, F. and Rao, N. (1973), Chem. Ber. 106, 841.
- 65 Liang, X.T., Yu, D.Q., Wu, W.L. and Deng, H.C. (1979), Hua Hsueh Hsueh Pao <u>37</u>, 215.
- 66 Liang, X.T., Yu, D.Q. and Pan, W.D. (1979), Hua Hsueh Hsueh Pao 37, 231.
- 67 Teng, L.C. and Debardeleben, J.F. (1971), Experientia 27, 14.

- 68 Ganguly, A. K., Gopinath, K. W., Govindachari, T. R., Nagnarajan, K., Pai, B.R. and Parthasaraty, P.C. (1969) Tetrahedron Letters 133.
- 69 Osmann, A.M., Fayez, M.B.E., Younes, M.E.G., El-Gammal, M.H.A. and Abdel Salam, A. (1971), U.A.R.J. Chem. <u>14</u>, 15.
- 70 Fiagbe, N., Karlsson, B., Pilotti, A.M. and Berg, J. E. (1979), Acta Crystallogr. Sect B <u>35</u>, 236.
- 71 Boakye-Yiadom, K., Fiagbe, N.I.Y. and Ayim, J.S.K. (1977) Lloydia 40, 543.
- 72 Ekong, D.E.U., Olagbemi, E.O. and Odutola, F. A. (1969) Phytochemistry 8, 1053.
- 73 Eshiet, I.T.U., Akisanya, A. and Taylor, D.A.H. (1971) Phytochemistry 10, 3294.
- 74 Adesogan, E.K. and Durodola, J.I. (1976), Phytochemistry 15, 1311.
- 75 Yang, T.H. and Chen, C.M. (1973), Taiwan Yao Hsueh Tsa Chih 25, 1.
- 76 Yang, T.H. and Chen, C.M. (1974), Proc. Natl. Sci. Council Taiwan 7, 177.
- 77 Yang, T.H., Chen, C.M., Chang, J.L. and Chung, K.W. (1971) Taiwan Yao Hsueh Tsa Chih 23, 8.
- 78 Gopinath, K.W., Govindachari, T.R., Parthasarathy, P.C. and Wiswanathan, N. (1961), Helv. Chim. Acta 44, 1040.
- 79 Mussini, P., Orsini, F. and Ferrari, G. (1973), J. Chem. Soc. Perkin Trans. 2551.

- 80 Bhaumik, P.K., Mukherjee, B., Juneau, J.P., Bhacca, N.S. and Mukherjee, R. (1979), Phytochemistry <u>18</u>, 1584-1586.
- 81 Santos, A.C., Chua, M.T., Eufemio, N. and Libre, J.R. (1968), Philipp J. Sci. 97, 153.
- 82 Gottlieb, O.R., Magalhães, A.F., Magalhães, E.G., Maia,
 G.S. and Marsaioli, A.J. (1978), Phytochemistry <u>17</u>,
 837-838.
- 83 Braz F^o, R., Gabriel, S.J., Gomes, C.M.R., Gottlieb, O. R., Bichara, M.D.G.A. and Maia, J.G.S. (1976), Phytochemistry 15, 1187.
- 84 De Almeida, M.E.L., Braz F^o, R., von Bülow, M.V., Gottlieb,
 O.R. and Maia, J.G.S. (1976), Phytochemistry <u>15</u>, 1186.
- 85 Mannino, S. and Amelotti, G. (1975), Riv. Ital. Sostanze Grasse 52, 79.
- 86 Ismail, A.A., Shawki, W.M. and Hamza, A.S. (1978), Egypt. J. Hortic. 5, 83.
- 87 Hamonniére, M., Fournet, A., Leboeuf, M., Bouquet, A. and Cavé, A., C.R. Acad. Sci. Paris, Sér. C 282, 1045.
- 88 Hamonniére, M., Leboeuf, M. and Cavé, A. (1977), Phytochemistry 16, 1029.
- 89 Hocquemiller, R., Cabalion, P., Bruneton, J. and Cavé, A. (1978), Pl. Méd. Phytoth. 12, 230.
- 90 Hocquemiller, R., Dubois, G., Kunesch, N., Leboeuf, M. and Cavé, A. (To be published).
- 91 Enqiquez, R.G., Chavez, M.A. and Jauregui, F. (1980), Phytochemistry <u>19</u>, 2024.

- 92 Bévalot, F., Leboeuf, M., Bouquet, A. and Cavé, A. (1976) Pl. Méd. Phytoth. 10, 179.
- 93 Waterman, P.G. (1976), Phytochemistry 15, 347.
- 94 Bévalot, F., Leboeuf, M. and Cavé, A. (1978), C.R. Acad. Sci. Paris, Sér. C 286, 405.
- 95 Hollands, R., Becher, D., Gaudemer, A., Polousky, J. and Ricroch, N. (1968), Tetrahedron 24, 1633.
- 96 Holbert, G.W., Ganem, B., Van Engen, D., Clardy, J., Borsub, L., Chantrapromma, K., Sadavongvivad, C. and Thebtaranonth, Y. (1979), Tetrahedron Letters, 715.
- 97 Hlubucek, J.R. and Robertson, A.V. (1967), Aust. J. Chem. 20, 2199.
- 98 Jewers, K., Davies, J.B., Dougan, J., Manchanda, A. H., Blunden, G., Kyi, A. and Wetchapinan, S. (1972), Phytochemistry 11, 2025.
- 99 Loder, J.W. and Nearn, R.H. (1977), Heterocycles 7, 113.
- 100 Aiba, C.J., Gottlieb, O.R. and Maia, J.G.S. (1975), Communication presented at the XXVII Annual Meeting of Sociedade Brasileira para o Progresso da Ciência, Belo Horizonte.
- 10] Gopinath, K.W., Mahanta, P.K., Bohlmann, F. and Zdero, C. (1976), Tetrahedron 32, 737.
- 102 Bohlmann, F., Stoehr, F. and Staffeldt, J. (1978), Chem. Ber. <u>111</u>, 3146.
- 103 Rossi, C.A. (1950), Boll. Soc. Ital. Biol. Sper. 26, 27.

- 104 Yang, T.S. and Chen, C.M. (1972), J. Chin. Chem. Soc. (Taipei) <u>19</u>, 149.
- 105 Marquez, V.E., Kelley, J.A. and Driscoll, J.S. (1980), J. Org. Chem. 45, 5308.
- 106 Han, K.Y., Hsu, P.H., Huang, H.P., Liu, M.C., Hsu, H.Y., Meng, L.N., Chen, C.L. and Chu, T.Y. (1980), K'o Hsueh Tung Pao 25, 285.
- 107 Forgacs, P., Desconclois, J.F., Mansard, D., Provost, J., Tiberghien, R., Tocquer, J. and Touché, A. (1981), Pl. Méd. Phytoth. <u>15</u>, 10.
- 108 Jossang, A., Leboeuf, M. and Cavé, A. (1977), Planta Méd. 32, 249.
- 109 Aguilar-Santos, G., Librea, J.R. and Santos, A.C. (1967), Philipp. J. Sci. 96, 399.
- 110 Leboeuf M., Legueut, C., Cavé, A., Desconclois, J.F. and Forgacs, P. (1980), Planta Méd. 204.
- 111 Leboeuf, M., Legueut, C., Cavé, A., Desconclois, J.F., Forgacs, P. and Jacquemin, H. (1981), Planta Méd. 37.
- 112 Jossaug, A., Leboeuf, M., Cavé, A., Damak, M. and Riche, C. (1977), C. R. Acad. Sci. Paris, Sér. C, 284, 467.
- 113 Nieto, M., Sévenet, T., Leboeuf, M. and Cavé, A. (1976), Planta Méd. 48.
- 114 Johns, S.R., Lamberton, J.A. and Sioumis, A.A. (1968), Aust. J. Chem. 21, 1883.

- 115 Leboeuf, M., Cavé, A., Touché, A., Provost, J. and Forgacs, P. (1981), J. Nat. Prod. 44, 53.
- 116 Wagner, H., Reiter, M. and Ferstl, W. (1980), Planta Méd. <u>40</u>, 77.
- 117 Leboeuf, M. and Cavé, A. (1974), Pl. Méd. Phytoth. <u>8</u>, 147.
- 118 Hocquemiller, R., Cavé, A. and Raharisololalao, A. (1981), J. Nat. Prod. <u>44</u>, 551.
- 119 Urzua, A. and Cassels, B.K. (1977), Rev. Latinoam.Quím. <u>8</u>, 133.
- 120 Yang, T.H., Chen, C.M. and Kuan, S.S. (1971), J. Chin. Chem. Soc. (Taipei) <u>18</u>, 133.
- 121 Yang, T.H. and Chen., C.M. (1979), Proc. Natl. Sci. Counc. Repub. China <u>3</u>, 63.
- 122 Gopinath, K.W., Govindachari, T.R., Pai, B. R. and Viswanathan, N. (1959), Chem. Ber. 92, 776.
- 123 Yang, T.H., Chen, C.M. and Kong, H.H. (1970), Taiwan K'o Hsueh 24, 99.
- 124 Yang, T.H., Chen, C.M. and Kong, H.H. (1973), Pei I Hsueh Pao 130.
- 125 Yang, T.H. and Chen, C.M. (1970), J. Chin. Chem. Soc. (Taipei) 17, 243.
- 126 Panichpol, K., Waigh, R.D. and Waterman, P. G. (1977), Phytochemistry 16, 621.
- 127 Hocquemiller, R., Cabalion, P., Bouquet, A. and Cavé, A. (1977), C.R. Acad. Sci. Paris, Sér. C, 285, 447.

- 128 Hocquemiller, R., Cabalion, P., Fournet, A. and Cave, A. (To be published).
- 129 Johns, S.R., Lamberton, J.A., Li, C.S. and Sioumis, A.A. (1970), Aust. J. Chem. 23, 363.
- 130 Galeffi, C., Marini-Bettolo, G.B. and Vecchi, D. (1975), Gazz. Chim. 1tal. 105, 1207.
- 131 Johns, S.R., Lamberton, J.A. and Sioumis, A.A. (1968), Aust. J. Chem. 21, 1387.
- 132 Santos, A.C. (1931), Rev. Filippina Med. Farm. 22, 243.
- 133 Santos, A.C. (1932), Chem. Ber. 65, 472.
- 134 Santos, A.C. (1974), Acta Manilana, Ser. A 12, 48.
- 135 Cava, M.P., Wakisaka, K., Noguchi, I., Edie, D. L. and Darocha, A.I. (1974), J. Org. Chem. <u>39</u>, 3588.
- 136 Santos, A.C. (1951), Arch. Pharm. 284, 360.
- 137 Bruchausen, F., Santos, A.C., Knabe, J. and Aguilar-Santos, G. (1957), Arch. Pharm. 290, 232.
- 138 Bévalot, F., Leboeuf, M. and Cavé, A. (1977), Pl. Méd. Phytoth. 11, 315.
- 139 Hamonniére, M., Leboeuf, M., Cavé, A. and Paris, R. R. (1975), Pl. Méd. Phytoth. 9, 296.
- 140 Nijland, M.M., Van Laer, A.M.H. and Uffelie, O.F.(1966), Pharm. Weekblad 101, 405.
- 141 Seitz, G. (1959), Naturwissen. 46, 263.
- 142 Buzas, A. and Egnell. C. (1965), Ann. Pharm. Fr. 23, 351.

- 143 Buzas, A., Osowiecki, M. and Regnier, G. (1959), C. R. Acad. Sci. Paris 248, 1397.
- 144 Gellert, E. and Rudtzats, R. (1972), Aust. J. Chem. <u>25</u>, 2477.
- 145 Brochmann-Hanssen, E. and Chiang, H.C. (1977), J. Org. Chem. 42, 3588.
- 146 Pai, B.R., Suguna, H. and Rajeswari, S. (1978), Indian J. Chem. <u>16</u>, 646.
- 147 Schmutz, J. (1959), Helv. Chim. Acta 42, 335.
- 148 Ellis, J., Gellert, E. and Summons, R.E. (1972), Aust. J. Chem. 25, 2735.
- 149 Tomita, M. and Kozuka, M. (1965), J. Pharm. Soc. Jpn. 85, 77.
- 150 Bévalot, F., Leboeuf, M., Bouquet, A. and Cavé, A. (1977), Ann. Pharm. Fr. <u>35</u>, 65.
- 151 Roblot, F., Hocquemiller, R., Jacquemin, H. and Cave, A. (1978), Pl. Méd. Phytoth. 12, 259.
- 152 Sarpong, K., Santra, D.K., Kapadia, G.J. and Wheeleer, J.W. (1977), Lloydia 40, 616.
- 153 Guinaudeau, H., Ramahatra, A., Leboeuf, M. and Cavé, A. (1978), Pl. Méd. Phytoth. 12, 166.
- 154 Sonnet, P.E. and Jacobson, M. (1971), J. Pharm. Sci. <u>60</u>, 1254.
- 155 Leboeuf, M. and Cavé, A. (1980), Pl. Méd. Phytoth. <u>14</u>, 143.

156 - Barger, G. and Sargent, L.J. (1939), J. Chem. Soc. 991.

- 157 Schlittler, E. and Huber, H.H. (1952), Helv.Chim. Acta 35, 111.
- 158 Hocquemiller, R., Razamisafy, S. and Cavé, A. (1982), Tetrahedron 38, 911.
- 159 Reyes, F.R. and Santos, A.C. (1931), Philipp. J. Sci. <u>44</u>, 409.
- 160 Bhakuni, D.S., Tewari, S. and Dahr, M.M. (1972), Phytochemistry 11, 1819-1822.
- 161 Leboeuf, M., Streith, J. and Cavé, A. (1975), Ann. Pharm. Fr. <u>33</u>, 43.
- 162 Johns, S.R., Lamberton, J.A., Li, C.S. and Sioumis, A.A. (1970), Aust. J. Chem. 23, 423.
- 163 Casagrande, C. and Merotti, G. (1970), Farmaco, Ed. Sci. 25, 799.
- 164 Hocquemiller, R., Razamisafy, S., Moretti, C., Jacquemin, H. and Cavé, A. (1981), Planta Méd. 41, 48.
- 165 Bick, I.R.C. and Preston, N.W. (1971), Aust. J. Chem. 24, 2187.
- 166 Casagrande, C. and Ferrari, G. (1970), Farmaco, Ed. Sci. 25, 442.
- 167 Mahanta, P.K., Mathur, R.K. and Gopinath, K.W. (1975), Indian J. Chem. 13, 306.
- 168 Phoebe Jr., C.H. (1980), Ph.D. Thesis, University of Pittsburgh, U.S.A.

- 169 Leboeuf, M., Parello, J. and Cavé, A. (1972), Pl. Méd. Phytoth. 6, 112.
- 170 Leboeuf, M. and Cavé, A. (1972), Pl. Méd. Phytoth. <u>6</u>, 87.
- 171 Djakoure, L.A., Kone, D. and Douzona, L.L. (1978), Ann. Univ. Abidjan, Sér. C 14, 19.
- 172 Hsu, C.C., Dobberstein, R.H., Cordell, G.A. and Farnsworth, N.R. (1977), Lloydia <u>40</u>, 505-507.
- 173 Ammar, H.A., Knapp, J.E., Schiff Jr., P.L. and Slatkin, D.J. (1979), J. Nat. Prod. 42, 696.
- 174 Roblot, F., Hocquemiller, R. and Cavé, A. (1981), C. R. Acad. Sci. Paris, Sér. II 293, 373.
- 175 Cavé, A., Guinaudeau, H., Leboeuf, M., Ramahatra, A. and Razafindrazaka, J. (1978), Planta Méd. <u>33</u>, 243.
- 176 Harris, W.M. and Geissman, T.A. (1965), J. Org. Chem. 30, 432.
- 177 Zarga, M.H.A. and Shamma, M. (1982), J. Nat. Prod. (in press).
- 178 Nieto, M., Cavé, A. and Leboeuf, M. (1976), Lloydia <u>39</u>, 350.
- 179 Hamonnière, M., Leboeuf, M. and Cavé, A. (1974), C. R. Acad. Sci. Paris, Sér. C 278, 921.
- 180 Bévalot, F., Leboeuf, M. and Cavé, A. (1976), C.R. Acad. Sci. Paris, Sér. C 282, 865.
- 181 Skiles, J.W. and Cava, P. (1979), J. Org. Chem. 44, 409.

- 182 Hasegawa, M., Sojo, M., Lira, A. and Marquez, C. (1972), Acta Cient. Venez. 23, 165.
- 185 Nieto, M., Leboeuf. M. and Cavé, A. (1975), Phytochemistry 14, 2508.
- 184 Warthen, D., Gooden, E.L. and Jacobson, M. (1969), J. Pharm. Sci. 58, 637.
- 185 Anjaneyulu, B., Babu Rao, V., Ganguly, A.K., Govindachari, J.R., Joshi, B.S., Kamat, V.N., Manmade, A.H., Mohamed, P.A., Rahimtula, A.D., Saksena, A.K., Varde, D.S. and Viswanathan, N. (1965), Indian J. Chem. <u>3</u>, 237.
- 186 Leboeuf, M. and Cavé, A. (1972), Phytochemistry 11, 2833.
- 187 Ngo, V.T., Dong, V.T. and Nguyen, T.M. (1974), Tap San, Hoa-Hoc. 12, 46.
- 188 Phoebe Jr., C.H., Schiff Jr., P.L., Knapp, J. E. and Slatkin, D.J. (1980), Heterocycles <u>14</u>, 1977.
- 189 Hsu, C.C., Dobberstein, R.H., Cordell, G.A. and Farnsworth, N.R. (1977), Lloydia <u>40</u>, 152-156.
- 190 Leboeuf, M., Fournet, A., Bouquet, A. and Cavé, A. (1977), Pl. Méd. Phytoth. 11, 284.
- 191 Leboeuf, M., Bévalot, F. and Cavé, A. (1980), Planta Méd. 38, 33-42.
- 192 Bouquet, A., Cavé, Ad., Cavé, A. and Paris, R.R. (1970),
 C. R. Acad. Sci. Paris, Sér. C <u>271</u>, 1100.
- 193 Bouquet, A. and Fournet, A. (1972), Pl. Méd. Phytoth.<u>6</u>, 149.

- 194 Dyke, S.F. and Gellert, E. (1978), Phytochemistry <u>17</u>, 599.
- 195 Roblot, F., Hocquemiller, R. and Cavé, A. (1980), Planta Méd. 39, 206.
- 196 Leboeuf, M., El Tohami, M., Cavé, A., Forgacs, P. and Provost, J. (in press).
- 197 Leboeuf, M., Cavé, A., Forgacs, A., Provost, J., Chiaroni, A. and Riche, C. (1982), J. Chem. Soc. Perkin Trans. 1, 1205.
- 198 Nwaji, M.N., Onyiriuka, S.O. and Taylor, D.A.H. (1972), J. Chem. Soc. Chem. Commun. 327.
- 199 Achenbach, H. and Raffelsberger, B. (1979), Tetrahedron Letters 2571.
- 200 Leboeuf, M., Hamonniére, M., Cavé, A., Gottlieb, H. E., Kunesch, N. and Wenkert, E. (1976), Tetrahedron Letters 3559.
- 201 Riche, C., Chiaroni, A., Dubois, G., Hocquemiller, R., Kunesch, N., Leboeuf, M. and Cavé, A. (1980), Planta Méd. 39, 206.
- 202 Hocquemiller, R., Dubois, G., Leboeuf, M., Cavé, A., Kunesch, N., Riche, C. and Chiaroni, A. (1981), Tetrahedron Letters 22, 5057.
- 203 Okorie, D.A. (1980), Tetrahedron 36, 2005.
- 204 Quevauviller, A. and Hamonniëre, M. (1977), C. R. Acad. Sci., Sér. D 284, 93.
- 205 Hufford, C.D., Sharma, A.S. and Oguntimein, B.O. (1980), J. Pharm. Sci. 69, 1180.

- 206 Leboeuf, M., Cavé, A., Forgacs, P., Tiberghien, R., Provost, J., Touché, A. and Jacquemin, H. (1982), Ann. Pharm. Fr. (in press).
- 207 Fries, R.E. (1939), Acta Horti Bergiani Tom XII, pp. 468, 469.
- 208 Nakanishi, Koji. Infrared Absorption Spectroscopy Practical Holden-Day, San Francisco and Nankodo Company Ltda., Tokyo, 1962.
- 209 Sangster, A.W. and Stuart, K.L. (1965), Ultraviolet spectra of alkaloids., Chem. Rev. 65, 69-130
- 210 Ohashi, M., Wilson, J.M., Budziziewicz, H., Shamma, M. and Djerassi, C. (1963), Mass spectrometry in structural and stereochemical problems. XXXI. Aporphines and related alkaloids. J. Am. Chem. Soc. 85, 2807-2810.
- 211 Chen-Loung Chen, Hou-Min Chen and Ellis B. Cowling (1976), Phytochemistry 15, 547-550.
- 212 Hufford, C.D. (1976), Phytochemistry 15, 1169-1171.
- 213 Shamma, M. (1972), Isoquinoline Alkaloids. Academic Press, New York.
- 214 Bick, I.C. and Douglas, G.K. (1965), Austral. J. Chem. 18, 1997.
- 215 Bhakuni, D.S., Jain, S. and Chaturvedi, R. (1979), Tetrahedron 35, 2323-2326.
- 216 Gottlieb, O.R. (1968), Introdução à Espectrometria de Ressonância Magnética Protônica, U.F.R.R.J., la. edição.

- 218 Huber, O., Volz, G. and Dann, O. (1954), Ann. 587, 15.
- 219 WatanaBe, Y., Matsui, M., Iibuchi. M. and Hiroe, S. (1975), Phytochemistry 14, 2522-2523.
- 220 Braz F°, R. e Abreu, H. dos S. (1982), Ciência e Cultura 34, 517 (Supl.).
- 221 Kurt B. G. Torsell, "Natural Product Chemistry A mechanistic and biosynthetic approach to secondary metabolism". John Wiley, New York (1983).
- 222 Munavalli, S. and Viel, C. (1969), Ann. Pharm. Fr. 27 (6), 449 e 611.
- 223 Hardegger, E., Schellembaum, M. and Corrodi, H. (1963), Helv. Chim. Acta 46, 1171.
- 224 Hardegger, E., Billand, H.R. and Corrodi, H. (1963), Helv. Chim. Acta 46, 1354.
- 225 Batterby, A.R. (1963), Proc. Chem. Soc. 189.
- 226 Barton, D.H.R. and Cohen, T. (1957), "Festschrift Prof. Dr. Stoll", pág. 124, Birkhauser, Basel.
- 227 Barton, D.H.R. (1964), Pure Appl. Chem. 9, 35.
- 228 Alvarenga, M.A. Tese de Doutoramento, Instituto de Quí mica - Universidade de São Paulo (1973), p. 41. "Os Micrandois: representantes de uma nova classe de fenantrenos naturais".
- 229 Reisch, J., Bathory, M., Szendrey, K., Novak, I. and Minker, E. (1973), Phytochemistry 12, 228.

- 230 Reisch, J., Bathory, M., Szendrey, K., Minker, E. and Novak, 1. (1969), Tetrahedron Letters, 67.
- 231 Letcher, R.M. and Nhamo, L.R.M. (1972). J. Chem. Soc. (Perkin I) 2941.
- 232 Letcher, R.M. and Nhamo, L.R.M. (1971), J. Chem. Soc. (c) 3070.
- 234 Reisch, J., Bathory, M., Szendrey, K. and Novak, 1. (1970), Herba Hung 9, 43; Chem. Abstr. 75, 85214u.
- 235 Letcher, R.M. and Nhamo, L.R.M. (1972), Tetrahedron Letters 4869.
- 236 Shamma, M., Hsuan-Yin, Lan, Freyer, A.J., Leet, J. E., Urzua, A. and Fajardo, V. (1983), J. Chem. Soc. Chem. Commun, 799.
- 237 Referência 221 págs. 143-145.