UFRRJ INSTITUTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

TESE

ACILGUANIDINAS E GUANIDINAS ANÁLOGAS DE ALCALOIDES BROMOPIRRÓLICOS, PLANEJADAS COMO INIBIDORES SELETIVOS DE BUTIRILCOLINESTERASE

Paula do Nascimento Goulart

2021

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

Acilguanidinas e guanidinas análogas de alcaloides bromopirrólicos, planejadas como inibidores seletivos de butirilcolinesterase

PAULA DO NASCIMENTO GOULART

Orientadora Renata Barbosa Lacerda Coorientador Arthur Eugen Kümmerle

> Tese submetida como requisito parcial para obtenção do grau de Doutora em Química, no Programa de Pós-Graduação em Química, Área de Concentração em Química.

Seropédica, RJ 2021

Universidade Federal Rural do Rio de Janeiro Biblioteca Central / Seção de Processamento Técnico

Ficha catalográfica elaborada com os dados fornecidos pelo(a) autor(a)

Goulart, Paula do Nascimento, 1989-ACILGUANIDINAS E GUANIDINAS ANÁLOGAS DE ALCALOIDES BROMOPIRRÓLICOS, PLANEJADAS COMO INIBIDORES SELETIVOS DE BUTIRILCOLINESTERASE / Paula do Nascimento Goulart. - Rio de Janeiro, 2021. 214 f.
Orientadora: Renata Barbosa Lacerda. Coorientador: Arthur Eugen Kümmerle. Tese (Doutorado). -- Universidade Federal Rural do Rio de Janeiro, Quimica, 2021.
1. Butirilcolinesterase. 2. Acilguanidinas. 3. Guanidinas. 4. Alcalóides Marinhos. I. Lacerda, Renata Barbosa, 1980-, orient. II. Kümmerle, Arthur Eugen, 1979-, coorient. III Universidade Federal Rural do Rio de Janeiro. Quimica. IV. Título.

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

PAULA DO NASCIMENTO GOULART

Tese submetida como requisito parcial para a obtenção do grau de **Doutora em Química**, no Programa de Pós-Graduação em Química

TESE APROVADA EM 29/04/2021

Conforme deliberação número 001/2020 da PROPPG, de 30/06/2020, tendo em vista a implementação de trabalho remoto e durante a vigência do período de suspensão das atividades acadêmicas presenciais, em virtude das medidas adotadas para reduzir a propagação da pandemia de Covid-19, nas versões finais das teses e dissertações as assinaturas originais dos membros da banca examinadora poderão ser substituídas por documento(s) com assinaturas eletrônicas. Estas devem ser feitas na própria folha de assinaturas, através do SIPAC, ou do Sistema Eletrônico de Informações (SEI) e neste caso a folha com a assinatura deve constar como anexo ao final da tese / dissertação.

Membros da banca:

Renata Barbosa Lacerda (Dr.) UFRRJ (Orientadora) Presidente da Banca

Marina Amaral Alves (Dr^a.) University of Turku, Finlândia– Titular externo

> Nelilma Correia Romeiro (Dr^a.) UFRJ Titular externo

Luzineide Wanderley Tinoco (Dr^a.) UFRJ-Titular externo

Cristiane Martins Cardoso de Salles (Dr.) UFRJ – Titular interno

FOLHA DE ASSINATURAS

Emitido em 29/04/2021

DELIBERAÇÃO Nº 201/2021 - PPGQ (12.28.01.00.00.00.60)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 30/04/2021 17:05) CRISTIANE MARTINS CARDOSO DE SALLES PROFESSOR DO MAGISTERIO SUPERIOR DBQ (11.39.00.24) Matricula: 1681790 (Assinado digitalmente em 30/04/2021 16:23) RENATA BARBOSA LACERDA PROFESSOR DO MAGISTERIO SUPERIOR Dept^eCF (12.28.01.00.00.00.47) Matrícula: 1979542

(Assinado digitalmente em 30/04/2021 16:28) LUZINEIDE WANDERLEY TINOCO ASSINANTE EXTERNO CPF: 975.679.577-87

(Assinado digitalmente em 30/04/2021 16:47) MARINA AMARAL ALVES ASSINANTE EXTERNO CPF: 120.842.887-03 (Assinado digitalmente em 12/05/2021 11:38) NELILMA CORREIA ROMEIRO ASSINANTE EXTERNO CPF: 935.373.877-68

Dedico esse trabalho à Minha Mãe Rosane e aos meus avós Lourdes e Antônio (*in memorian*), com carinho.

AGRADECIMENTOS

Agradeço a Deus e aos meus ancestrais, à Iansã, a Ogum, pela vida, pela saúde, pela proteção.

Agradeço à minha Mãe Rosane, pelo amor grande que me acolhe e me conduz, pelo apoio em todos os momentos, pelas renuncias, por acompanhar minha trajetória profissional, por estar presente e participante de forma amorosa e generosa em toda a minha vida, pela referência que ela representa sendo quem é e pelos valores que me fazem ser quem eu sou hoje.

Agradeço aos meus avós Lourdes, Antônio e Therezinha Lucca pelo amor no cuidado das pequenas e grandes coisas, por uma vida cheia de afeto e de ensinamentos. Agradeço de forma especial aos meus orientadores Renata Lacerda e Arthur Kümerlle, pela oportunidade e por me acolherem em meio a desafios e superações pessoais e profissionais para mim. A eles eu devo a chance de fazer o doutorado, que, sem dúvidas, está sendo a etapa mais importante na minha vida acadêmica, na busca pela minha formação como ser humano, social e profissional.

Agradeço ao Professor Glauco Favilla, parte fundamental da minha formação acadêmica e profissional, um grande amigo que me permitiu evolução em tantos aspectos da minha vida, que me acolhe sempre de forma generosa, que demonstra amizade e cuidado nos desafios da minha trajetória acadêmica. Agradeço a referência que ele representa pra mim como profissional e como pessoa.

Agradeço à Universidade Rural por ser a minha segunda casa durante grande parte da minha vida, por me conceder excelente formação tanto na graduação quanto na pós graduação. É um pedaço da minha história que contém muitas experiências fundamentais para mim.

Agradeço aos professores membros da banca, por aceitarem dedicar parte de seu tempo para contribuição com este trabalho.

Agradeço aos professores que contribuíram para minha formação e que representam pra mim toda a referência e gratidão. Em especial, agradeço à professora Rosane Nora, ao professor Marco Edilson, ao professor Mauricio Goulart, ao professor Luciano Suzart, à professora Clarissa da Silva, à professora Therezinha Aido e a todo o Instituto de Química.

Agradeço aos meus amigos e aos companheiros de jornada. Agradeço à minha melhor amiga Dandara, pelo compartilhamento de vida, de sonhos, de acolhimento nos fracassos e impulso nas vitórias. Agradeço ao Erick Lorenzato; meu amigo e irmão de vida, ao Marcos Guedes; professor, chefe e amigo de profissão e de vida, à Thays Coelho, amiga de ouvido e dos melhores conselhos, à Helena Guedes; amiga de muitos aprendizados compartilhados e suporte afetivo. Agradeço à Letícia e Andressa pelo acolhimento e amor. Agradeço aos amigos da UFRRJ. Em especial, os amigos e companheiros de laboratório Felipe Vitório, Gleyton, Daiana, Luciana, Lucas, Gabriel do Rio e Leonardo Araújo, pelos auxílios em tantos momentos e pelo apoio sempre.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) - Código de Financiamento 001.

RESUMO

Os produtos naturais são uma das principais fontes de inspiração para o desenvolvimento de novos candidatos a protótipos de fármacos. Dentre os produtos de origem natural, os alcaloides bromopirrólicos são de grande interesse dos químicos medicinais por serem uma classe de metabólitos secundários exclusivamente marinhos, produzidos por esponjas, e com diversas atividades biológicas. O presente trabalho descreve o planejamento estrutural, a síntese e avaliação, in vitro e in silico, de novos derivados bromopirrólicos guanidínicos e acilguanidínicos desenhados como análogos estruturais de alcaloides marinhos oroidínicos. O planejamento estrutural se baseou em estratégias como o bioisosterismo, hibridação molecular e homologação para o planejamento de modificações nas subunidades características destes alcaloides, como a cadeia alquílica espaçadora e a subunidade guanidínica cíclica. A estratégia sintética explorou a reação de condensação entre o intermediário-chave 1-(terc-butiloxicarbonil)-3-(4,5dibromopirrol-2-carbonil)-2-metil-2-isotioureia com diferentes aminas e posterior remoção do grupo de proteção (N-Boc) em meio ácido para a obtenção das acilguanidinas alvo. Os análogos guanidínicos acíclicos foram obtidos através da reação entre o intermediário 2-tricloroacetil-4,5dibromopirrol, ou 2-tricloroacetil-pirrol, e amino-alquilguanidinas N,N'-bis-protegidas previamente sintetizadas, e posterior reação de desproteção em meio ácido. Foram sintetizados em bons rendimentos 32 compostos originais (68a-c; 69a-c; 50a-f; 62a-h; 62g'; 62h'; 51a-h; 51g'; 51h'), entre guanidinas e acilguanidinas (protegidas e desprotegidas), análogos sintéticos dos alcaloides marinhos oroidínicos, todos caracterizados por RMN de ¹H e RMN de ¹³C. A triagem in vitro sobre as enzimas acetilcolinesterase (AChE) e butirilcolinesterase (BuChE) identificou a guanidina 68c como um inibidor não seletivo de AChE (CI_{50} de 22,8µM) e BuChE $(CI_{50} de 27,3 \mu M) e 50c$ como um inibidor seletivo de BuChE ($CI_{50} de 13,3 \mu M$). As acilguanidinas se destacaram como inibidores seletivos de BuChE, principalmente as acilguanidinas livres 51a e 51g com CI₅₀ de 4,8 μM e 3,8 μM, respectivamente, e 52c, 52d e 52f com inibição da BuChE maior que 83% a 30 µM. A relação estrutura-atividade mostrou a importância da função acilguanidina livre para a inibição seletiva de BuChE, assim como a presença dos substituintes bromos no anel. Os estudos de *docking* molecular corroboraram os resultados experimentais mostrando a importância das subunidades bromopirrol, acilguanidina e anel benzílico para interação com os resíduos de aminoácidos presentes no sítio ativo da BuChE. Adicionalmente, a avaliação in silico das propriedades ADME e druglike mostrou que as novas guanidinas e acilguanidinas bromopirrólicas tem potencial para boa absorção gastrointestinal e bom perfil drug-likeness.

Palavras Chave: acilguanidinas, guanidinas, alcaloides marinhos, química medicinal, Butirilcolinesterase

ABSTRACT

Natural products are one of the main sources of inspiration for development of new drug prototypes candidates. Among products of natural origin, bromopyrrolic alkaloids are of great interest to medicinal chemists because they are a class of exclusively marine secondary metabolites, produced by sponges, and with diverse biological activities. The present work describes design, synthesis and evaluation, in vitro and in silico, of new guanidines and acylguanidines bromopyrrole derivatives designed as structural analogues of oroidine marine alkaloids. Structural planning was based on strategies such as bioisosterism, molecular hybridization and homologation for planning changes in the characteristic subunits of these alkaloids, such as the spacer alkyl chain and the cyclic guanidine subunit. Synthetic strategy explored the condensation reaction between the key intermediate 1-(*tert*-butyloxycarbonyl)-3-(4,5-dibromopyrrol-2-carbonyl)-2-methyl-2isothiourea with different amines and subsequent removal of the protection group (N-Boc) in acid medium to obtain the target acylguanidines. The acyclic guanidinic analogs were obtained by the reaction between the intermediate 2-trichloroacetyl-4,5dibromopyrrole, or 2-trichloroacetyl-pyrrole, and previously synthesized N,N'-bisprotected amino-alkylguanidines, and subsequent deprotection reaction in acidic medium. We synthesized 32 original compounds (68a-c; 69a-c; 50a-f; 62a-h; 62g'; 62h'; 51a-h; 51g'; 51h') in good yields, among guanidines and acylguanidines (protected and unprotected), which are synthetic analogs of oroidinic marine alkaloids, all characterized by ¹H NMR and ¹³C NMR. In vitro screening for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition, identified guanidine 68c as a non-selective inhibitor of AChE (CI₅₀ of 22.8µM) and BuChE (CI₅₀ of 27.3 µM) and 50c as a selective inhibitor of BuChE (IC₅₀ of 13.3 µM). Acylguanidines stood out as selective BuChE inhibitors, mainly free acylguanidines 51a and 51g with IC₅₀ of 4.8 μ M and 3.8 μ M, respectively, and 52c, 52d and 52f with BuChE inhibition greater than 83% at 30 µM. Structure-activity relationship showed the importance of free acylguanidine function for selective inhibition of BuChE, as well as the presence of bromine substituents in pyrrole ring. The molecular docking studies corroborated by showing the importance of bromopyrrole, acylguanidine and benzyl ring subunits for interaction with the amino acid residues in BuChE active site. Additionally, in silico evaluation of ADME and druglike properties showed that new bromopyrrole guanidines and acylguanidines have the potential for good gastrointestinal absorption and good drug-likeness properties.

Keywords: acylguanidines, guanidines, marine alkaloids, medicinal chemistry,

LISTA DE FIGURAS

Figura 1. Estrutura química da oroidina e características estruturais
Figura 2. Espécies de Agelas caribenhas (A e C) e Axinella corrugata. (B e D)
(ADAPTADO DE SPONGEGUIDE,2020.) ¹⁴
Figura 3 - Estrutura química das dispacamidas (2a, 2b, 3c, 3d)
Figura 4. Estrutura química geral das dispacamidas
Figura 5. À esquerda, esponja Hymenidacion sp (ADAPTADO DE FAPERJ,2020)E à
direita, esponja Agelas clathrodes (ADAPTADO DE BIOLIB, 2020)
Figura 6. Estruturas químicas de alguns representantes da classe dos alcaloides marinhos
oroidínicos. ²⁷
Figura 7. Atrofia do tecido cerebral. (Adaptado de DREAMSTIME, 2020)
Figura 8. Ilustração da origem dos emaranhados de de neurofibrilas, formados a partir da
hiperfosforilação da proteína tau e desestabilização dos microtúbulos celulares.
(Adaptado de ZAINAGHI, 2006)
Figura 9. Diferenças entre o cérebro normal e o cérebro com a DA. Os neurônios têm
dificuldades de comunicação entre si, em função das placas senis (Adaptado de
BALTAR, 2007)
Figura 10. Deposição de placas beta senis e tranças neurofibrilares. A figura representa
as duas principais evidências patológicas associadas á doença de Alzheimer (Adaptado
de SOUZA, 2017)
Figura 11. Comparação entre neuronios normais e lesionados (Adaptado de SOUZA,
2017)
Figura 12. Sintese da Acetilcolina
Figura 15. Sinapse connergica. Sintese da acetilconna (15) catalisada pela enzima conna
acetilacina (13) pala anzima acetilacinactoresa (d); a ratorno da acina ac tarminal
acetificonna (13) pera enzina acetificonnesterase (d), e retorno da conna ao terminar avônio para povo síntese do sectificolina (13) (a) (Adaptado de BIONINIA)
Figure 14 Neurônios em condições fisiológicas normais (A) e neurônios de portador da
DA cercados por plaças Bamilóides (em amarelo) (B). Clivagem normal pelas enzimas
α_{-} v-secretases (à esquerda) e anormal pelas enzimas β_{-} v-secretases (à direita) da APP:
denosição de agregados pentídicos AB no cérebro (C) (Adantado de (HARDY &
SELKOE 2002: RAIASEKHAR & GOVINDARAIII 2018)
Figura 15. Proteólise da APP. Formação dos peptídeos AB. levando à formação das
placas Aß insolúveis em cérebros portadores da DA (Adaptado de RANG e
colaboradores. 2015) ⁸³
Figura 16. Comparação entre neurônios saudáveis e de portadores da DA (com agregação
de placas Aβ) (Adaptado de HARDY & HIGGINS, 1992)
Figura 17. Hiperfosforilação da PTau (Adaptado de CITRON, 2010)
Figura 18. Dano mitocondrial na doença de Alzheimer. A superprodução de amilóide
(A) danifica as mitocôndrias, causando disfunção dos complexos mitocondriais I e IV,
que resultam na superprodução de espécies reativas de oxigênio (ROS) e na depleção
ATP (Adaptado DE LUQUE e colaboradores, 2014)
Figura 19. Hidrólise dos éteres de colina pelas colinesterases
Figura 20. Estruturas químicas da fisostigmina (20), rivastigmina (21), galantamina (22),
tacrina (23) e donepezila (24)
Figura 21. O sítio ativo de acetilcolinesterase humana (hAChE) ¹²² (A; pdb 4ey4) e
butirilcolinesterase humana (hBChE) (B; pdb 1p0i). ¹²³ Os resíduos da tríade catalítica
(em palitos) e do sítio oxiânion (em linhas) estão representados em azul. Os principais
resíduos aromáticos da cavidade de ligação à colina estão em amarelo. Os resíduos do

PAS localizados na borda do canal profundo estão em verde (Adaptado de MASSOULIÉ Figura 22. A – sítio ativo da acetilcolinesterase humana (hAChE) (pdb 4ev4). B – sítio ativo da butirilcolinesterase humana (hBChE) (B; pdb 1p0i). C – Sobreposição dos sitos ativos da hAChE e hBChE. D – Representação da superfície do canal profundo da hAChE (cinza). E – Representação da superfície do canal profundo da hBChE (cinza). Os resíduos estão representados: no PAS (em verde); na tríade catalítica (em magenta); na cavidade oxiânion (em laranja); no sítio de ligação de acil (em ciano); no sítio de ligação de colina Figura 23. Representação da hidrólise pelas colinesterases (Adaptado de Harel e Figura 24. Estruturas químicas dos compostos carbamato-isossorbida-5-lipoato....... 45 Figura 27. Derivados N-acilaminotiazínicos-fonotiazínicos (27-34) inibidores seletivos Figura 28. Derivados quinolínicos (37-39) inibidores seletivos de BuChE candidatos a Figura 30. Novos derivados híbridos tacrina-ácido ferúlico (41-43) inibidores seletivos Figura 31. Derivados híbridos triazol-escitalopram inibidores seletivos de BuChE (44a-Figura 32. Derivados híbridos triazólicos inibidores seletivos de BuChE (45-47)...... 50 Figura 33-Relações estruturais entre os novos compostos guanidínicos (50a-f) e acilguanidínicos (51a-h, 51g', 51h') planejados e os protótipos oroidínicos (1-2) e os Figura 35. Espectro RMN ¹³C (DEPTQ) (500 MHz) CDCl3 (δ-ppm) do composto 69b. Figura 36. Espectro de RMN ¹H (500 MHz) em DMSO-d₆ (δ -ppm) da guanidina Figura 37-Espectro RMN ¹³C (DEPTQ) (500 MHz) em DMSO-d6 (δ-ppm) da guanidina Figura 39-Espectro RMN ¹³C (DEPTQ) (500 MHz) DMSO-d6 (δ-ppm) do composto Figura 40 - Radar de biodisponibilidade para a guanidina 68c. A área rosa representa a faixa ótima para cada propriedade (lipofilicidade: XLOGP3 entre -0.7 e +5.0, tamanho: Peso molecular entre 150 e 500 g/mol, polaridade: TPSA entre 20 and 130 Å, solubilidade: log S até 6, saturação: fração de carbonos com hibridização sp3 de no Figura 41-Radar de biodisponibilidade para a guanidina 50c. A área rosa representa a faixa ótima para cada propriedade (lipofilicidade: XLOGP3 entre -0.7 e +5.0, tamanho: MW entre 150 e 500 g/mol, polaridade: TPSA entre 20 and 130 Å, solubilidade: log S até 6, saturação: fração de carbonos com hibridização sp3 de no mínimo 0.25, e flexibilidade: Figura 42-Modelo BOILED-Egg para as guanidinas 68c (azul) e 50c (vermelho). Área branca: absorção gastrointestinal; Área amarela: absorção gastrintestinal e penetração na

Figura 43 - Radar de biodisponibilidade para as acilguanidine 62a, 62b e 62g. A área rosa representa a faixa ótima para cada propriedade (lipofilicidade: XLOGP3 entre -0.7 e +5.0, tamanho: MW entre 150 e 500 g/mol, polaridade: TPSA entre 20 and 130 Å, solubilidade: logP S até 6, saturação: fração de carbonos com hibridização sp3 de no Figura 44-Modelo BOILED-Egg para as para as acilguanidinas 62a (molécula 1), 62b (molécula 2) e **62g** (molécula 3). Área branca: absorção gastrointestinal; Área amarela: Figura 45 - Radar de biodisponibilidade para as acilguanidinas livres 51a, 51b e 51g. A área rosa representa a faixa ótima para cada propriedade (lipofilicidade: XLOGP3 entre -0.7 and +5.0, tamanho: MW entre 150 e 500 g/mol, polaridade: TPSA entre 20 e 130 Å, solubilidade: logP S até 6, saturação: fração de carbonos com hibridização sp3 de no Figura 46-Modelo BOILED-Egg para as para as acilguanidinas 51a (molécula 1), 51b (molécula 2) e **51g** (molécula 3). Área branca: absorção gastrointestinal; Área amarela: Figura 47- Radar de biodisponibilidade para as acilguanidinas livres 51c, 51d e 51f. A área rosa representa a faixa ótima para cada propriedade (lipofilicidade: XLOGP3 entre -0.7 and +5.0, tamanho: MW entre 150 e 500 g/mol, polaridade: TPSA entre 20 e 130 Å, solubilidade: logP S até 6, saturação: fração de carbonos com hibridização sp3 de no Figura 48-Modelo BOILED-Egg para as para as acilguanidinas 51c (molécula 1), 51d (molécula 2) e **51f** (molécula 3). Área branca: absorção gastrointestinal; Área amarela: Figura 49-Comparação entre os dockings dos compostos 51c (A) (R = Br, R1=F, n=1, X=CH), 51d (B) (R = Br, R1=Cl, n=1, X=CH), 51f (C) (R = Br, R1=OCH3, n=1, **X=CH**)e **51a** (D) (**R = Br, R1=H, n=1, X=CH**)......94 Figura 50 - (A) Docking molecular para o composto 51b. (B) Superfície de van der waals representando a sobreposição dos compostos 51d e 51 b e a enzima BchE. (C) Representação da superfície interna do sítio ativo da enzima BchE e sobreposição dos Figura 51- Docking molecular para os compostos 51a (R=Br, R₁=H, n=1, X=CH), 51g (R=Br, R1=H, n=2, X=CH)e 51h(R=Br, R1=H, n=3, X=CH). A figura ilustra a sobreposição das moléculas mencionadas dentro da cavidade do sítio ativo da enzima Figura 52- Comparação entre os dockings moleculares dos compostos 51g (R=Br,

LISTA DE TABELAS

Tabela 1. Tabela de rendimentos reacionais e característica física das amino-
alquilguanidinas (65a-c)
Tabela 2-Guanidinas acíclicas bis-protegidas (68a-c; 69a-c) sintetizadas, rendimentos
reacionais e características físicas 59
Tabela 3-Guanidinas bis-brotegidas sintetizadas (68a-c; 69a-c) e principais sinais
observados no RMN ¹ H (CDCl ₃ - δ em ppm)
Tabela 4-Guanidinas bis-brotegidas sintetizadas (68a-c; 69a-c) e principais sinais
observados no RMN ¹³ C (DEPTQ, CDCl ₃ - δ em ppm)
Tabela 5-Guanidinas acíclicas pirrólicas e bromopirrólica (50a-f) sintetizadas,
rendimentos reacionais e características físicas
Tabela 6- Guanidinas acíclicas pirrólicas e bromopirrólica sintetizadas (50a-f) e
principais sinais observados no RMN ¹ H em DMSO-d ₆ (δ-ppm)
Tabela 7-Guanidinas acíclicas pirrólicas e bromopirrólica sintetizadas (50a-f) e
principais sinais observados no RMN13C ((DEPTQ, DMSO-d6, (δ-ppm)
Tabela 8-Acilguanidinas pirrólicas e bromopirrólicas protegidas, rendimentos reacionais
e características físicas
Tabela 9- Principais sinais nos espectros de RMN ¹ H (500 MHz, CDCl ₃ , δ-ppm) que
permitem a caracterização dos derivados acilguanidínicos protegidos (62a-h; 62g'; 62h').
Tabela 10 - Acilguanidinas pirrólicas e bromopirrólicas desprotegidas (livres)
sintetizadas, rendimentos reacionais e características físicas75
Tabela 11 - Principais sinais de RMN1H (DMSO-d6, δ -ppm) para as acilguanidinas finais
(51a-h ; 51g' ; 51h')
Tabela 12-Principais sinais de RMN13C (DEPTQ, DMSO-d6, δ -ppm) para as
acilguanidinas finais (51a-h ; 51g' ; 51h')79
Tabela 13- Atividade anticolinesterásica dos derivados guanidínicos acíclicos bis-
protegidos (68a-c ; 69a-c)
Tabela 14-Atividade anticolinesterásica dos derivados guanidínicos acíclicos livres (50a-
f)
Tabela 15-Atividade anticolinesterásica dos derivados guanidínicos acíclicos bis-
protegidos (62a-h ; 62g' ; 62h')
Tabela 16-Atividade anticolinesterásica dos derivados guanidínicos acíclicos bis-livres
(51a-h: 51g': 51h')

LISTA DE ESQUEMAS

Esquema 1-Análise retrossintéica para obtenção da série de guanidinas acíclicas	s (50a-f).
	53
Esquema 2-Análise retrossintética para obtenção da série de acilguanidinas pir	rólicas e
bromopirrólicas (51a-h, 51g', 51h').	
Esquema 3 -Reação de bromação do 2-tricloroacetilpirrol	
Esquema 4 -Mecanismo da reação de bromação do 2-tricloroacetilpirrol	
Esquema 5-Síntese do sal isometiltiouronium (53)	
Esquema 6 -Sintese do agente guanilante N,N'-bis(Boc)-S-metilisotioureia (63).	
Esquema 7-Proposta para o mecanismo de formação do agente gu	anilante,
Isometilitioureia dis-protegida (03).	
Esquema 8 - Sintese das amino-aiquiguandinas disprotegidas nomologas (05a-c) e
Esquema O Proposta da macanismo para a formação das amino alquilgu	
Esqueina 9-Froposta de inceanismo para a formação das animo-alquigu bisprotegidas homólogas (652-c)	amumas 57
Esquema 10 -Síntese das guanidinas acíclicas bis-protegidas (68a-c)	
Esquema 10 -Sintese das guandinas actericas dis-protegidas (00a-c, 09a-c) Esquema 11 -Proposta de mecanismo para a formação das guanidinas acieli	
protegidas (689-c; 699-c)	59 Solo
Esquema 12- Reação de desproteção em meio ácido para obtenção das gu	anidinas
acíclicas finais (50a-f)	62
Esquema 13 -Proposta de mecanismo para a reação de desproteção das gu	anidinas
acíclicas em meio ácido.	
Esquema 14 -Síntese do agente guanilante, a N-Boc-S-metilisotiouréia (55)	
Esquema 15-Proposta de mecanismo de formação do agente guanilante, a N	J-Boc-S-
metilisotiouréia (55).	67
Esquema 16 - Síntese dos ácidos carboxílicos pirrólico (58) e bromopirrólico (5	59) 68
Esquema 17-Proposta mecanística para a reação de bromação do pirrol-2-carbo	xaldeído
(59)	68
Esquema 18 - Esquema de síntese dos intermediários chave pirrol- e 4,5-dib	promo-2-
carboxamido-(tiometil)-metilenocarbamato de terc-butila (60 e 61)	69
Esquema 19 - Proposta de mecanismo de formação dos derivados cloretos de ác	cido (H).
	69
Esquema 20-Proposta de mecanismo de reação entre o agente guanilante (a	55) e os
cloretos de ácido, para formação dos intermediários-chave (60 e 61)	
Esquema 21-Principais sinais observados nos espectros de RMN ¹ H (azul)) e l	RMN ¹³ C
(vermelho) dos intermediários-chave (60 e 61) (500 MHz, CDCl ₃ , δ -ppm)	
Esquema 22-Síntese das acilguanidinas protegidas (62a-h; 62g'; 62h')	
Esquema 23-Proposta para o mecanismo de formação das acilguanidinas pr	otegidas
(62a-h; 62g'; 62h')	
Esquema 24 - Desproteção em meio ácido para obtenção das acilguanidinas livi	res (51a-
h; 51g ² ; 51h ²)	
Esquema 25-Proposta mecanistica para a desproteção em meio acido (exemp	plificado
para 62a) que leva a obtenção das actiguanteinas livres planejadas (ilustrado	$rac{}^{2}$ para a
Obtenção de 51 a)	
Esquema 20-Keação ocorrida no ensaro de Eliman	80 00
Esquema 21. Sintese do sai 2-mem-isonourono (55) (Hickey, 2012)	
Esquema 20. Sintese do 4 5-dibromonirrol-2-carboxaldeido (57)	
Esquema 27. Sintese do 4,3-dibioniophior-2-carboxaldeido (57)	
Esquema so. Reação de oritação do aldeido pintoneo (so-s/)	100

Esquema	31.	Síntese		do 4,5	dibro	mopirre	ol-2-cai	boxar	nid	lo-(tiome	etil)-
metilenocarba	amato de	terc-buti	la (6	50)				•••••			101
Esquema 32.	Procedi	mento ge	ral p	oara a obten	ção da	s acilg	uanidin	as pro	teg	gidas (62	a-h,
62g', 62h')					•••••			•••••			102
Esquema 33	Proce	dimento	de	desproteçã	o em	meio	ácido	para	a	síntese	das
acilguanidina	s livres (51a-h, 51	lg',	51h ²)	•••••				•••••		107

LISTA DE ESPECTROS

Espectro 1-Composto (53) RMN 1H (500 MHz, DMSO – D6)	121
Espectro 2-Composto (53) RMN DEPT Q (500 MHz, DMSO – D6)	122
Espectro 3-Composto (55) RMN 1H (500 MHz, DMSO – D6)	123
Espectro 4-(Composto 55) DEPTQ (500 MHz, DMSO – D6)	124
Espectro 5-Composto (58) RMN1H (500 MHz, DMSO-d6)	125
Espectro 6-Composto (58) DEPTQ (500 MHz, DMSO-d6)	126
Espectro 7-Composto (57)RMN1H (500 MHz, CDCl3)	127
Espectro 8-Composto (57) DEPTQ (500 MHz, CDCl3)	128
Espectro 9-Composto (61) RMN1H(500 MHz, CDCl3)	129
Espectro 10-Composto (61) DEPTQ (500 MHz, CDCl3)	130
Espectro 11-Composto (60) RMN1H (500 MHz, CDCl3)	131
Espectro 12-Composto (60) DEPT Q (500 MHz, CDCl3)	132
Espectro 13-Composto (62a) RMN1H (500 MHz, CDC13)	133
Espectro 14-Composto (62a) DEPT Q (500 MHz, CDCl3)	134
Espectro 15-Composto (62b) RMN1H (500 MHz, CDCl3)	135
Espectro 16-Composto (62b) DPTQ (500 MHz, CDCl3)	136
Espectro 17-Composto (62g)RMN1H (500 MHz, CDCl3)	137
Espectro 18-, Composto (62g) DEPTO (500 MHz, CDCl3)	138
Espectro 19-Composto (62c) RMN1H (500 MHz, CDCl3)	139
Espectro 20-Composto (62c) DEPTO (500 MHz, CDC13)	140
Espectro 21-Composto (62d) RMN 1H (500 MHz, CDCl3)	141
Espectro 22-Composto (62d) RMN 13C (500 MHz CDC13)	142
Espectro 22 Composto (62d) RMN1H (500 MHz, CDCl3)	143
Espectro 22 Composto (62f) DEPTO (500 MHz, CDCl3)	144
Espectro 25-Composto (62e) BMN1H (500 MHz, CDCl3)	145
Espectro 26-Composto (62e) DEPTO (500 MHz, CDCl3)	146
Espectro 27-Composto (62g') RMN1H (500 MHz, CDCl3)	147
Espectro 28 -Composto ($62g'$) DEPTO (500 MHz , CDCl3)	1/18
Espectro 20-Composto (51a) RMN1H (500 MHz, DMSO-d6)	1/0
Espectro 20-Composto (51a) DPTO (500 MHz, DMSO-d6)	150
Espectro 31-Composto (62b)PMN1H (500 MHz, CDCl3)	150
Espectro 32 Composto (62b) DEPTO (500 MHz, DMSO d6)	152
Espectro 32-Composto (020) DEFTQ (500 MHz, DMSO-d0)	152
Espectro 24 Composto (51g) DEDTO (500 MHz, DMSO-d6)	155
Espectro 54-Composto (51g) DEPTQ (500 MHz, DMSO-do)	154
Espectro 35-Composto (51c) RIVINTH (500 MHz, DMSO-d0)	155
Espectro 50-Composto (51c) KIVINI 5C (500 MHz, DMSO-do)	150
Espectro 37-Composito (59) KMINTH (500 MHZ, DMSO-d0)	15/
Espectro 38- Composto (51 I) RMINTH (500 MHz, DMSO-d6)	158
Espectro 39-Composto (62n) RMN1H (500 MHz, CDCl3)	159
Espectro 40-Composto (62n) RMNTH (500 MHz, CDCl3)	160
Espectro 41-Composto $(62h^2)$ RMIN1H (500 MHz, CDCl3)	161
Espectro 42-Composto (62h ²) RMN13C (500 MHz, CDC13)	162
Espectro 43-Composto (51 e) KMN1H (500 MHz, DMSO-d6)	163
Espectro 44-Composto (51 e) KMN13C (500 MHz, DMSO-d6)	164
Espectro 45-Composto (51 d) RMN 1H (500 MHz, DMSO-d6)	165
Espectro 46-Composto (51 d) RMN 13C (500 MHz, DMSO-d6)	166
Espectro 47-Composto (51h) RMN 1H (500 MHz, DMSO-d6)	167
Espectro 48-Composto (51h) RMN 13C (500 MHz, DMSO-d6)	168
Espectro 49-Composto (51g') RMN 1H (500 MHz, DMSO-d6)	169

Espectro	50-Composto (51g') RMN 13C (500 MHz, DMSO-d6) 1	170
Espectro	51-Composto (51h') RMN 1H (500 MHz, DMSO-d6) 1	171
Espectro	52-Composto (51h') RMN 13C (500 MHz, DMSO-d6) 1	172
Espectro	53-Composto (63) RMN 1H (500 MHz, CDCl3) 1	173
Espectro	54-Composto (63) RMN 13C (500 MHz, CDCl3) 1	174
Espectro	55-Composto (68a) RMN 1H (500 MHz, CDCl3) 1	175
Espectro	56-Composto (68a) RMN 13C (500 MHz, CDCl3) 1	176
Espectro	57-Composto (68b) RMN 1H (500 MHz, CDCl3) 1	177
Espectro	58-Composto (68b) RMN 13C (500 MHz, CDCl3)1	178
Espectro	59-Composto (68c) RMN 13C (500 MHz, CDCl3) 1	179
Espectro	60-Composto (69a) RMN 1H (500 MHz, CDCl3)1	80
Espectro	61-Composto (69a) RMN 13C (500 MHz, CDCl3)1	181
Espectro	62-Composto (69b) RMN 13H (500 MHz, CDCl3)1	182
Espectro	63-Composto (69b) RMN 13C (500 MHz, CDCl3)1	183
Espectro	64-Composto (69c) RMN 1H (500 MHz, CDCl3)1	184
Espectro	65-Composto (69c) RMN 13C (500 MHz, CDCl3)	185
Espectro	66-Composto (50d) RMN 1H (500 MHz, DMSO-d6)1	186
Espectro	67-Composto (50d) RMN 1H (500 MHz, DMSO-d6)1	187
Espectro	68-Composto (50a) RMN 1H (500 MHz, DMSO-d6)	88
Espectro	69-Composto (50a) RMN 13C (500 MHz, DMSO-d6)	189
Espectro	70-Composto (50e) RMN 1H (500 MHz, DMSO-d6) 1	190
Espectro	71-Composto (50e) RMN 13C (500 MHz, DMSO-d6)	191
Espectro	72-Composto (50b) RMN 1H (500 MHz, DMSO-d6)	192
Espectro	73-Composto (50b) RMN 13C (500 MHz, DMSO-d6) 1	193
Espectro	74-Composto (50f) RMN 1H (500 MHz, DMSO-d6)	194
Espectro	75-Composto (50f) RMN 13C (500 MHz, DMSO-d6)	195
Espectro	76-Composto (50c) RMN 1H (500 MHz, DMSO-d6) 1	196
Espectro	77-Composto (50c) RMN 13C (500 MHz, DMSO-d6) 1	197

LISTA DE ABREVIATURAS E SÍMBOLOS

µM – micromolar ACh – Acetilcolina AChE – Acetilcolinesterase ACTI – Iodeto de acetiltiocolina $A\beta$ – beta-amiloide ABDPs – degradação proteolítica por proteases degradantes de AB ATP – trifosfato de adenosina BChE – Butirilcolinesterase BCTI – Iodeto de butiriltiocolina BSA – Albumina Sérica Bovina CCDA - Cromatografia em camada delgada analítica ChAT - enzima colina acetiltransferase d – dupleto DA – Doença de Alzheimer dd – duplo dupleto DEPTQ - distorsionless enhancement by polarization transfer including the detection of quaternary nuclei1 DMSO-d₆ – Dimetilsulfóxido deuterado DTNB - Ácido 5,5'-ditiobis-2-nitrobenzóico *Ee*AChE – Acetilcolinesterase de enguia elétrica EqBChE – Butirilcolinesterase de soro equino FDA – Food and Drug Administration hAChE – Acetilcolinesterase de ser humano Hex – hexano IC₅₀ – Concentração inibitória média

IS – Índice de Seletividade J – Constante de acoplamento m – multipleto Na₂SO₄ – sulfato de sódio PDB – Protein Data Bank Ph – Fenila pH – Potencial Hidrogeniônico PPA - proteína percussora da amiloide ppm – partes por milhão Ptau – proteína Tau q – quarteto qu – quinteto RMN - Ressonância Magnética Nuclear RMN¹³C-Ressonância Magnética Nuclear de Carbono 13 RMN¹H – Ressonância Magnética Nuclear de Hidrogênio s – simpleto S_EAr – Substituição Eletrofílica Aromática sl – simpleto largo S_N2 – Substituição Nucleofílica Bimolecular SNC – Sistema nervoso central t – tripleto δ – deslocamento químico

 λ – comprimento de onda

Sumário

1.INTRODUÇÃO	22
1.1 Alcalóides Bromopirrólicos	22
1.1.1 Oroidina	22
1.1.2 Dispacamidas	22
1.1.3 Outros importantes alcalóides oroidínicos	24
1.2 A Doença de Alzheimer (DA)	25
1.2.1 Hipótese Colinérgica	30
1.2.2. Formação das placas beta-amiloides	31
1.2.3. Hipótese da Proteína Tau (PTau)	35
1.2.4 Hipótese dos metais	36
1.2.5 Hipótese do Estresse oxidativo	37
1.2.6 Tratamento da DA	38
1.3 Colinesterases e Inibidores	40
1.3.1 Butirilcolinesterase (BuChE)	43
1.3.2 Inibidores de Butirilcolinesterase	45
2. OBJETIVOS E PLANEJAMENTO ESTRUTURAL	51
3. RESULTADOS E DISCUSSÃO	53
3.1. Estratégia Sintética	53
3.2. Síntese das Guanidinas Acíclicas Pirrólicas e Bromopirrólicas (50a-f)	54
3.1.2. Síntese das Acilguanidinas (51a-h; 51g' e 51h')	66
3.3. Triagem farmacológica <i>in vitro</i> frente as enzimas Acetilcolinesterase (AChE) e Butirilcolinesterase (BuChE)	80
3.4. Estudos in silico das propriedades ADME das guanidinas e acilguanidinas	84
3.5 Estudo de interação enzimática in silico dos análogos acilguanidínicos	91
3.5.1 Docking molecular para as acilguanidinas com a Butirilcolinesterase	92
4. Conclusões	97
5. Materiais e Métodos	98
5.1 Informações gerais	98
5.2 Procedimentos Sintéticos	98
5.3 Avaliação Farmacológica	119
5.3.1 Avaliação in vitro dos novos derivados guanidínicos e acilguanidínicos sobre a atividade das enzimas acetilcolinesterase (AChE) e butirilcolinesterase (BuChE)	119
5.3.2. Estudo de interação enzimática in silico dos derivados guanidínicos e acilguanidínicos.	119
6. Referências Bibliográficas	121

1.INTRODUÇÃO

1.1 Alcalóides Bromopirrólicos

Os alcalóides bromopirrólicos constituem uma família de produtos naturais marinhos que foram identificados como metabólitos secundários de esponjas marinhas. ²Desde meados da década de 1970, cerca de 140 compostos foram classificados como alcalóides bromopirrólicos e se apresentam como estruturas que variam de simples a derivados policíclicos mais complexos. Esses produtos naturais são associados a uma ampla gama de atividades biológicas e, sendo assim, têm sido de grande interesse tanto para produtos naturais quanto para síntese orgânica.³ É relatado que esses alcalóides têm um conjunto diversificado de atividades farmacológicas, como antibacteriana, antitubercular,⁴ anitibiofilme,⁵ antineoplásico ⁶e agentes antivirais.^{7,8}

Dentre os organismos marinhos, as esponjas marinhas se destacam como a fonte mais importante de alcaloides bromopirrólicos apresentando importantes atividades farmacológicas.⁹ Os compostos dessa classe de alcalóides são caracteriados estruturalmente pela presença das subunidades bromopirrólica, carboxamida e imidazólica funcionalizada, conectadas através de uma cadeia espaçadora alifática. A maioria dos alcaloides marinhos bromopirrólicos são chamados de alcaloides oroidínicos, em referência ao primeiro e mais simples membro representante da classe, a oroidina (figura 1).¹⁰

1.1.1 Oroidina

A oroidina (1) é o alcaloide marinho bromopirrólico de maior abundância e é considerado como o precursor dos demais alcaloides desta classe. A oroidina (1) foi o primeiro composto isolado dessa família, a partir da esponja *Agelas oroides*.¹¹ A síntese da oroidina foi publicada pela primeira vez em 2006 e a partir daí, vários análogos sintéticos vêm sendo descritos.^{12 13}

A classe de alcalóides oroidínicos se mostra bem adequada para uso como um ponto de partida para o desenvolvimento de novos análogos que podem ser triados quanto às suas atividades biológicas.¹⁴

Figura 1. Estrutura química da oroidina e características estruturais.

1.1.2 Dispacamidas

As dispacamidas (**2A**, **2B**, **3C** e **3D**) são alcaloides marinhos bromopirrólicos isolados de esponjas marinhas de diversas espécies caribenhas do gênero *Agelas*, como mostrado na figura 3.¹⁵ Farmacologicamente, as dispacamidas revelaram atividades inibidoras significativas contra algumas quinases importantes como GSK-3, DYRK1A e CK 1 o que pode levar à inspiração para a pesquisa a respeito de novos inibidores potentes dessas quinases que desempenham papéis importantes no diabetes e distúrbios neurodegenerativos, por exemplo Doença de Alzheimer.¹⁶ Também apresentaram

atividades anti-histamínica pronunciada *in vivo* no modelo íleo da cobaia por meio de uma ligação reversível não competitiva aos receptores de histamina.^{17 18} Elas diferem da oroidina na configuração da ligação dupla; na cadeia espaçadora propenílica da oroidina, a ligação dupla está entre os carbonos C-9 e C-10 e apresentam configuração *E*. Já nas dispacamidas, a ligação dupla está entre os carbonos C-10 e C-11 na cadeia espaçadora e apresenta configuração *Z* devido ao nitrogênio do anel imidazolônico ser o grupo de maior prioridade na regra CIP (Cahn Ingold Prelog).¹⁹ A figura 3 ilustra as estruturas químicas das dispacamidas mencionadas.

Figura 2. Espécies de Agelas *caribenhas* (A e C) e Axinella *corrugata*. (B e D) (ADAPTADO DE SPONGEGUIDE,2020.)¹⁴

Figura 3 - Estrutura química das dispacamidas (2a, 2b, 3c, 3d).

Estruturalmente, as dispacamidas são caracterizadas pela presença de uma unidade aminoimidazolônica conectada ao núcleo bromopirrólico através de uma cadeia espaçadora propenílica, que tem como substituinte o grupo hidroxila (no caso das dispacamidas $3c \ e \ 3d$)²⁰, como mostrado na figura 4 a seguir.

Figura 4. Estrutura química geral das dispacamidas.

1.1.3 Outros importantes alcalóides oroidínicos

Dentre os muitos membros conhecidos desta classe de alcaloides, isolados de mais de vinte esponjas de vários gêneros, podemos citar alguns exemplos como a himenidina (4) que foi isolada pela primeira vez da esponja *Hymeniacidon* sp (figura 5)²¹ e também foi isolada da esponja *Agelas clathrodes*.^{22 23} Seu esqueleto se assemelha ao da oroidina (1), porém é não-bromada na posição 5 do pirrol. Esse composto apresenta atividade antiserotoninérgica e antimuscarínica.¹⁸ A himenidina, bem como a taurodiscapamida A exibem inibição significativa contra o crescimento de bactérias Gram positivas Staphylococcus aureus e Bacillus subtilis e as bactérias Gram negativas Escherichia coli e Pseudomonas aeruginosa, além de mostrar inibição contra a proliferação do fungo Candida albicans.²⁴ A taurodispacamida A (8) também apresentou boa atividade antibacteriana^{25,26}

Figura 5. À esquerda, esponja *Hymenidacion sp* (Adaptado de FAPERJ,2020)²⁷E à direita, esponja *Agelas clathrodes* (Adaptado de BIOLIB, 2020).²⁸

Também podemos destacar a a midpacamida (5), que também foi isolada de esponjas marinhas do gênero *Agelas* e apresentou atividade antibacteriana.²⁹ A midpacamida (5) difere da oroidina (1) pelo substituinte N do anel pirrol, na funcionalização da cadeia de três carbonos, bem como na oxidação do anel imidazol, que na midpacamida (5) é um grupo metil hidantoína na posição 3. Essa classe de alcalóides apresenta interessantes atividades apoptóticas³⁰.

As ageladinas representam um grupo de compostos com potentes propriedades anti-inflamatórias. A Ageladina A (6), é um alcalóide pirrol aminoimidazólico isolado da esponja marinha *Agelas nakamurai* isolado por Fusetani e colaboradores. Sabe-se que essa classe de alcalóides inibe vários subtipos de metaloproteinases de matriz (MMPs), associadas a doenças inflamatórias causadas por infiltração de macrófagos, como doenças de pele, aterosclerose, aneurismas e cânceres.³¹³² e a dispirina (7) mostrou excelente atividade anti-histamínica.³³ As mukanadinas E (9) e G (10) também são uma classe de grande interesse farmacêutico, apresentando atividades antifúngicas ^{34 35} - essas três

últimas classes de alcaloides oroidinícos apresentaram significativa atividade anticolinérgica (Figura 6).

Figura 6. Estruturas químicas de alguns representantes da classe dos alcaloides marinhos oroidínicos.²⁷

Atualmente, admite-se que esses alcalóides desempenham o papel de marcadores químicos dessas esponjas filogeneticamente relacionadas.³⁶ Os alcaloides oroidínicos representam uma grande diversidade estrutural e atividades farmacológicas com potenciais terapêuticos, o que dá a essa classe de substâncias importantes potenciais químicos e farmacológicos a serem explorados para o planejamento e síntese de novos candidatos a protótipos de fármacos.³⁷

1.2 A Doença de Alzheimer (DA)

A demência é caracterizada por um declínio cognitivo progressivo levando a deficiência ocupacional. No entanto, a DA deve ser diferenciada de outras causas de demência, incluindo demência vascular, demência com corpos de Lewy, doença de Parkinson com demência, demência frontotemporal e demências reversíveis.³⁸ No entanto, a DA pode ser considerada a mais representativa dessas doenças, correspondendo a cerca de 60% a 70% dos casos totais.³⁹

Quando o primeiro caso de uma mulher de 51 anos apresentando deterioração de memória relativamente rápida juntamente com distúrbios psiquiátricos foi diagnosticado como DA por Alois Alzheimer em 1907, esta doença foi considerada um distúrbio relativamente incomum com uma variedade de doenças progressivas e condições neurológicas fatais, incluindo demência senil e idade precoce de início.⁴¹ Após seu falecimento foram comprovadas, através de exames, atrofia e deposições anormais de proteínas no cérebro, o que levou o psiquiatra Alzheimer à conclusão de que se tratava de um

caso específico de demência. Anos depois, Emil Kraepelin deu o nome à doença em homenagem ao psiquiatra alemão.⁴⁰

A doença de Alzheimer (DA) é uma das doenças neurodegenerativas mais comuns que frequentemente causam demência e afetam indivíduos de meia idade à velhice, aproximadamente um em cada quatro indivíduos com mais de 85 anos.³⁷ A DA tem vários fatores etiológicos, incluindo genética, fatores ambientais e estilos de vida gerais⁴¹ e suas marcas fisiopatológicas incluem deposição de proteína β -amilóide (peptídeo A β) extracelular na forma de placas senis e depósitos intracelulares da proteína tau associada a microtubulos como emaranhados neurofibrilares (NFTs) nos cérebros com Alzheimer. Estudos clínicos e neuropatológicos subsequentes identificaram placas senis e NFTs como as causas mais comuns da doença em idosos. A DA é geralmente reconhecida como uma entidade clínicopatológica com múltiplas causas. Especificamente, o diagnóstico desta doenca é baseado não apenas na perda de memória e comprometimento de pelo menos um outro domínio cognitivo, mas também em um declínio na função cerebral global, uma deterioração na capacidade de realizar atividades da vida diária e o aparecimento de distúrbios em função social ou ocupacional. Além disso, déficits psicométricos idiopáticos característicos na avaliação clínica e outras confirmações post mortem da presença das lesões características mencionadas acima são bastante necessárias para o seu diagnóstico. A DA é caracterizada pela perda maciça de neurônios e tecido cerebral, como mostrado na comparação da figura 7, bem como pela degeneração neurovascular e interrupção da função sináptica a começar pelo hipocampoárea que desempenha papel essencial nas funções cognitivas⁴². Suas principais características são: a presenca de placas na superfície extracelular dos neurônios, constituidas por agregados de pepitídeos β -amilóide (A β) e depósitos intracelulares de filamentos neurofibrilares insolúveis compostos por formas hiperfosforiladas da proteína tau (PTau) - figura 8.43 A DA também está associada a outros eventos bioquímicos como déficit do neurotransmissor acetilcolina,⁴⁴ estresse oxidativo,⁴⁵ neuroinflamação⁴⁶ e disfunção da homeostase metálica.⁴⁷

Figura 7. Atrofia do tecido cerebral. (Adaptado de DREAMSTIME, 2020)⁴⁸

A placa beta-amilóide se espalha por todo o cérebro em um estágio inicial, décadas antes de o paciente perceber sinais da doença. A proteína Tau, por outro lado, começa a se espalhar em um estágio posterior, do lobo temporal para outras partes do cérebro. Quando ocorre o espalhamento dessa proteína, os neurônios começam a morrer e o paciente experimenta os primeiros problemas com a doença.⁴⁹

Figura 8. Ilustração da origem dos emaranhados de de neurofibrilas, formados a partir da hiperfosforilação da proteína tau e desestabilização dos microtúbulos celulares. (Adaptado de ZAINAGHI, 2006)⁵⁰

É importante destacar que não existe um teste simples para realizar o diagnóstico da doença de Alzheimer. Os estudos baseiam-se na identificação das modificações cognitivas específicas, de acordo com os critérios do *National Institute of Neurologic and Communicative Disorders and Stroke and the Alzheimer Disease and Related Disorders Association.*⁵¹ Apesar dos avanços significativos nos exames de imagem cerebral, a confirmação segura da DA só é obtida ao examinar o cérebro após a morte. As novas pesquisas sobre o desenvolvimento de testes que podem detectar biomarcadores da doença de Alzheimer ainda incluem apenas o estágio inicial.²⁸

O risco de desenvolver a DA pode ser influenciado por fatores genéticos e exógenos, no entanto, o fator de risco mais relevante é a idade⁴² e, numericamente, a porcentagem de indivíduos com DA praticamente duplica a cada 5 anos de idade a partir dos 60 anos. A ocorrência dessa doença em indivíduos com 60 anos é de 1%, porém, observa-se um incremento exponencial nessa porcentagem, com o aumento da idade, de modo que a prevalência é em torno de 30% em pessoas com 85 anos.⁵²

Os fatores de risco genéticos que podem levar a uma predisposição à DA são, principalmente, mutações na APP (proteína trans-membrana encontrada preferencialmente nas terminações nervosas), na presenilina e também alguns fatores exógenos.⁵³ As presenilinas são proteínas cujas funções ainda não estão bem estabelecidas, mas sabe-se que existe relação dos seus genes correspondentes (PSEN1 e PSEN2) com a doença de Alzheimer.^{54,55,56} Sabe-se que mutações nesses genes estão relacionadas com alterações na clivagem da APP, aumentando a produção de β -amiloide (figura 9), ocasionando casos de Alzheimer de início precoce.^{57,58}

Figura 9. Diferenças entre o cérebro normal e o cérebro com a DA. Os neurônios têm dificuldades de comunicação entre si, em função das placas senis (Adaptado de BALTAR, 2007)⁵⁹

A neuropatologia da DA inclui também a hiperfosforilação da proteína Tau que origina a formação de tranças neurofibrilares e pode conduzir, por si só, à patologia e sintomatologia associadas à DA, como se observa na figura 10. As tranças neurofibrilares são visíveis, habitualmente, em doenças neurodegenerativas e resultam da hiperfosforilação das proteínas Tau, que se agregam intracelularmente de forma anormal. As funções das proteínas Tau no seu estado normal incluem a regulação dinâmica de microtúbulos, que dependem do estado de fosforilação. Observando a figura 11, percebese que as alterações na fosforilação da Tau, têm um impacto na estabilidade dos microtúbulos, alterando o transporte axonal e comprometendo a viabilidade neuronal, com consequente impacto a nível cognitivo.⁶⁰

Figura 10. Deposição de placas beta senis e tranças neurofibrilares. A figura representa as duas principais evidências patológicas associadas à doença de Alzheimer (Adaptado de SOUZA, 2017)⁶¹

Os fatores de risco exógenos incluem: trauma cerebral,²⁸ tabagismo,^{62,63} obesidade,^{64,65} diabetes,⁶⁶ hipertensão, ^{67,68}colesterol ,⁶⁹ níveis elevados de homocisteína ⁷⁰, e exposição exógena a metais ⁷¹incluindo chumbo ⁷²mercúrio,⁷³ e alumínio. ^{74,75, 76} O risco de desenvolver a doença de Alzheimer pode ser reduzido, evitando os fatores de risco exógenos, além de promover estímulos à capacidade neuronal,^{77,78} como a leitura, jogos que estimulem a mente e memória e tocar instrumentos musicais²⁷; ter boa alimentação, através da ingestão de vitamina B12, ácido fólico, antioxidantes como vitamina E, ácidos graxos insaturados, cereais e peixes ;^{79,80} e realizar atividades físicas regulares.⁸¹

A figura 11 ilustra a diferença entre neurônios normais e neurônios lesionados. Na situação (a), a proteína Tau apresenta-se na sua forma normal estabilizando os microtúbulos e não se verifica hiperfosforilação da proteína. Não há alteração da função neuronal. Por outro lado, na situação (b), a proteína Tau apresenta defeito e, consequentemente, não consegue fixar os microtúbulos. Ocorre hiperfosforilação desta proteína e formação de tranças neurofibrilares, que conduzem a lesão neuronal e posteriormente ao aparecimento da AD.

Figura 11. Comparação entre neurônios normais e lesionados (Adaptado de SOUZA, 2017)⁸²

A DA é uma doença heterogênea conduzida pela interação entre múltiplos fatores deletérios. Sua origem e o modo como exatamente estes fatores contribuem para o progresso da doença continuam indeterminados até o momento. Estas irresoluções levaram a propostas de várias hipóteses baseadas nas alterações dos aspectos moleculares e fisiopatológicos observadas no cérebro do portador da DA, como uma tentativa de explicar a complexidade e a natureza multifatorial da DA. Entre as mais importantes hipóteses estão: déficit colinérgico, amiloide, propagação da PTau, estresse oxidativo, inflamação e disfunção metálica

1.2.1 Hipótese Colinérgica

O núcleo basal de Meynert é uma região responsável pela produção da enzima colina acetiltransferase (ChAT), sendo uma das áreas mais danificadas pela doença de Alzheimer. A ChAT é transportada para regiões como hipocamo, córtex cerebral e amígdala, sendo responsável por catalisar a reação de síntese da acetilcolina (13) que é um neurotransmissor responsável por regular o desempenho cognitivo e o processo de aprendizado e memória (Figura 12). Uma vez sintetizada, parte da acetilcolina (13) é transportada e armazenada em vesículas sinápticas (b) (Figura 13).

Figura 12. Síntese da Acetilcolina.

Após ser liberada inteiramente por exocitose, a acetilcolina interage especificamente com os receptores colinérgicos presentes nas membranas pré e póssinápticas, transmitindo a mensagem entre os neurônios (c), ou sofre hidrólise pela enzima acetilcolinesterase (AChE), gerando como produtos um acetato e colina (d) (Figura 13).⁸³

Na DA, observa-se a diminuição dos neurônios colinérgicos e atrofia cerebral, especialmente no córtex, no hipocampo, nos gânglios basais de Meynert, causando déficit de transmissão colinérgica. Estudos comprovam uma diminuição na quantidade de acetilcolina, acetil-transferase e acetilcolinesterase em cérebro de pacientes com doença de Alzheimer. Nesse contexto, o papel do sistema colinérgico se mostra fundamental nas questões associadas à memória e nos processos de aprendizagem no cérebro humano, o que leva a concluir que a degeneração do sistema colinérgico contribui expressivamente com o comprometimento das funções cognitivas em indivíduos com DA.⁸⁴

A hipótese colinérgica representa a base racional para o desenvolvimento de estratégias que tem como foco a otimização da neurotransmissão colinérgica. Níveis sinápticos de acetilcolina podem ser aumentados através da inibição da acetilcolinesterase, usando precursores de acetilcolina, aumentando a liberação de acetilcolina ou agonistas muscarínicos, entretanto a única abordagem eficaz comprovada no tratamento dos sintomas cognitivos e funcionais da DA foi baseada nos inibidores colinesterásicos.

Secreção e Reabsorção de AcetilColina

Figura 13. Sinapse colinérgica. Síntese da acetilcolina (13) catalisada pela enzima colina acetiltransferase (a); armazenamento (b); interação com receptores (c); decomposição da acetilcolina (13) pela enzima acetilcolinesterase (d); e retorno da colina ao terminal axônio para nova síntese de acetilcolina (13) (e) (Adaptado de BIONINJA)⁸⁵

1.2.2. Formação das placas beta-amiloides

O estudo sobre placas beta-amiloides foi publicado pela primeira vez em 1991 por John Hardy e David Allso, para identificar mutações no gene da proteína precursora A β (APP) no cromossomo 21, também encontrada em indivíduos portadores da Síndrome de Down, que apresentam histórico de depósitos de placas A β no final da infância ou no início da idade adulta e desenvolvem posteriormente as características neuropatológicas características da DA.⁸⁶ Essa observação sugeriu que o metabolismo de APP e a deposição de A β eram os eventos cruciais na evolução na doença de Alzheimer. Sendo assim, o peptídeo A β desempenha um fundamental fator a ser considerado na origem da doença devido sua neurotoxicidade, capaz de levar à formação das placas senis e desencadear uma sequência de eventos, resultando na morte celular.⁸⁷ Os peptídeos A β são originados a partir da clivagem da APP, uma proteína de membrana integral altamente conservada e cuja expressão está localizada principalmente em torno da sinapse do tecido neuronal. Sua importância essencial para a formação de sinapses. A APP pode ser transformada pela enzima α -secretase, depois pela enzima γ -secretase na via não amiloidogênica; este processo não produz A β insolúvel. Na via amiloidogênica, a APP é

primeiramente clivada pela β -secretase e depois pela γ -secretase, produzindo peptídeos A β fibrilogênicos que possuem diferentes tamanhos, de 38 a 42 aminoácidos (Figura 14).^{77, 88}

Este modelo defende que a neurodegeneração na DA inicia-se com a clivagem da proteína percursora amiloide (PPA), resultando em um processo contínuo de acúmulo, agregação e depósito de formas tóxicas da substância beta-amiloide. Este depósito no tecido cerebral é seguido de agregação e polimerização na forma de placas senis, causando a distrofia dos neurônios adjacentes, destruição do citoesqueleto e consequente formação de emaranhados neurofibrilares.^{89,90,91} Parte da neurotoxicidade das placas senis deve-se à agregação de metais, como zinco e cobre, às fibras amiloidais insolúveis. Além disso, as placas amiloides podem desempenhar outros papeis na cascata inflamatória, pelo fato de ativarem a micróglia e os astrócitos (o que conduzirá à posterior morte neuronal). O peptídeo beta-amiloide também é capaz de aumentar a permeabilidade da barreira hematoencefálica e causar aumento da vasoconstrição, favorecendo o processo inflamatório. O excesso de inflamação leva à neurodegeneração, podendo resultar na demência observada na DA.^{79,81}

Figura 14. Neurônios em condições fisiológicas normais (A) e neurônios de portador da DA, cercados por placas βamilóides (em amarelo) (B). Clivagem normal pelas enzimas α- γ-secretases (à esquerda) e anormal pelas enzimas β-γ-secretases (à direita) da APP; deposição de agregados peptídicos Aβ no cérebro (C) (Adaptado de (HARDY & SELKOE, 2002; RAJASEKHAR & GOVINDARAJU, 2018).

Sabe-se que portadores da doença de Alzheimer possuem acúmulo dessas placas no entorno de suas células neuronais. A longo prazo, o acúmulo destas placas leva à morte neuronal em regiões específicas, como mencionado anteriormente. O peptídeo β -Amiloide (A β) é o principal componente destes depósitos extracelulares de amiloides no tecido cerebral de portadores de DA e estão presentes principalmente na região do hipocampo. O mecanismo de clivagem proteolítica da PPA pode ocorrer por duas vias, sendo elas a via não-amiloidogênica 7 e a amiloidogênica. Segundo essa hipótese, duas secretases, a β -secretase e a γ -secretase, clivam a PPA em diferentes lugares, originando

fragmentos de peptídeo A β de diferentes tamanhos, em especial com 40 e 42 resíduos, sendo eles respectivamente os peptídeos A β 1-40 e A β 1-42.^{92,93} Embora o fragmento de A β 1-40 seja o mais comum, atualmente considera-se que o fragmento de A β 1-42, o mais hidrofóbico, possui um maior potencial amiloidogênico, apesar de ambos serem capazes de se agregar e originar protofibrilas, fibrilas e, por fim, placas insolúveis.⁹⁴ Em cérebros saudáveis o peptídeo A β também é formado, mas sofre uma degradação proteolítica por proteases de degradação de peptídeos A β (A β DPs), que são responsáveis por regular os níveis de peptídeos A β no cérebro (Figura 15), mostrando que no paciente com DA existe um desbalanço nesse processo natural.⁹⁵

Figura 15. Proteólise da APP. Formação dos peptídeos Aβ, levando à formação das placas Aβ insolúveis em cérebros portadores da DA (Adaptado de RANG e colaboradores, 2015)⁸³

Na presença do peptídeo em sua forma mais tóxica (A β 1-42), os neurônios do córtex e do hipocampo também sofrem modificações, resultando na indução de déficits cognitivos e de memória, ainda que não ocorra a morte neuronal.⁹⁶ Portanto, o acúmulo progressivo do peptídeo e a série de eventos amiloidogênicos que levam à formação das placas, verificado experimentalmente por meio da administração repetida de peptídeos A β em ratos, são considerados importantes mecanismos nas fases iniciais de perda da memória.⁹⁷ Dessa forma, a produção de agregados de placas A β é considerada central na patologia da DA, ainda que estas deposições possam ser também detectadas em pequenas quantidades em cérebros de idosos sadios (Figura 16).⁹⁸

Figura 16. Comparação entre neurônios saudáveis e de portadores da DA (com agregação de placas Aβ) (Adaptado de HARDY & HIGGINS, 1992)

1.2.3. Hipótese da Proteína Tau (PTau)

Nessa hipótese, a abordagem da doença de Alzheimer leva em consideração a hiperfosforilação da proteína Tau (PTau), que promove a desintegração de microtúbulos e a agregação intracelular de PTau para formar emaranhados neurofibrilares intracelulares (ENF).⁹⁹ A proteína Tau está associada ao microtúbulo (MAP), e atua modulando a estabilidade dos microtúbulos, principalmente os microtúbulos axonais, já que a proteína tau é predominantemente encontrada nos axônios dos neurônios, sendo sua fosforilação fundamental para garantir a estabilidade da função desses neurônios. No entanto, em portadores de DA, observa-se uma fosforilação desordenada, que leva à desintegração dos microtúbulos, que formam os filamentos que se agregam dentro da célula, formando filamentos helicoidais emparelhados, que se depositam e atuam como barreiras físicas ao transporte axonal, prejudicando a transmissão sináptica (Figura 17).¹⁰⁰

Figura 17. Hiperfosforilação da PTau (Adaptado de CITRON, 2010)¹⁰¹

Apesar da PTau desempenhar um papel importante na DA, a hipótese PTau por si só não é suficiente para explicar todas as condições sintomáticas observadas na DA.¹⁰² Ambas as hipóteses estão intimamente ligadas entre si, já que os agregados A β e a hiperfosforilação da PTau juntos, desempenham um papel crucial no avanço da DA. Não existe um consenso sobre a identificação do evento que inicia a DA, há estudos que defendem a teoria de que os agregados A β desencadeia a taupatia e outros o contrário.¹⁰³ Entretanto, estudos recentes evidenciam que pepitídeos A β podem induzir a hiperfosforilação da proteína PTau, entretanto os fatores que desencadeiam este desequilíbrio ainda não são bem entendidos.¹⁰⁴

1.2.4 Hipótese dos metais

Essa hipótese leva em consideração a instabilidade homeostática de íons metálicos (Cu, Fe, Zn e Al) observada no cérebro de portadores de DA⁷⁸ As altas concentrações desses metais no cérebro interagem com a placa A β levando à produção de agregados que se mostram tóxicos para o metabolismo neuronal. Os íons de cobre e zinco são conhecidos por acelerar a agregação de peptídeos A β levando a formação de placas senis.¹⁰⁵ Metais com redutores ligados a A β (por exemplo, Cu e Fe) demostraram estabilizar os oligômeros dos peptídeos A β ,¹⁰⁶ e estão diretamente envolvidos na formação de espécies reativas de oxigênio, resultando em estresse oxidativo que leva a morte neuronal.¹⁰⁷

Em cérebros saudáveis, os íons metálicos estão em baixas concentrações. E essa concentração é rigorosamente regulada através da barreira hematoencefálica.¹⁰⁸ Quando esses íons metálicos estão em desequilíbrio, ocorrem consequências tóxicas para a sobrevivência das células, como aumento da resposta ao estresse oxidativo e o enovelamento incorreto de proteínas, contribuindo com a evolução de doenças neurodegenerativas.¹⁰⁹ Existem estudos demonstrando alterações da homeostase metálica, incluindo ferro (Fe), cobre (Cu) e zinco (Zn) em paciente com a DA. No entanto, não apenas os metais fisiológicos têm sido implicados na evolução dessa doença, também são reportados alguns metais considerados tóxicos, tais como o alumínio, o chumbo e o mercúrio.¹¹⁰
Em neurônios vulneráveis de pacientes com a doença de Alzheimer, o ferro ligado ao RNA pode sofrer oxidação via reação de Fenton causando anormalidades no RNA, resultando em uma redução da síntese de proteínas. O cobre exerce distúrbios oxidativos semelhantes no tecido neuronal. Além de interagir com a APP sofrendo redução de cobre (II) a cobre (I), o cobre também contribui para o aumento da produção do intermediário radicalar hidroxila. Sabe-se também que enzimas pró-oxidantes (como xantina oxidase, ferroxidase, óxido nítrico sintase) podem ser ativadas indiretamente por esses íons metálicos.^{111,112}

1.2.5 Hipótese do Estresse oxidativo

O oxigênio é fundamental para o funcionamento de todas as células vivas do nosso organismo,¹¹³ assim como as espécies reativas de oxigênio (ERO) e de nitrogênio (ERN) quando possuem geração e homeostase controlada, desempenham um papel fundamental na sinalização celular e na luta contra infecções.¹¹⁴ Entretanto, quando ocorre o desequilíbrio entre a homeostase pró-oxidante / antioxidante, o aumento da geração de ERO/ERN e radicais livres provocam estresse e danos oxidativos nas células.¹⁰³ Como o cerébro possui um consumo de oxigênio significativo, quando comparado aos demais orgãos do corpo, torna-se altamente provável a ocorrência de estresse oxidativo, que ocasiona danos às funções fisiológicas e ocasiona a morte neuronal.⁸⁹ Sabe-se também que os hidroperóxidos contribuem para a maturação dos eritrócitos e participam dos processos de diferenciação e proliferação celular.¹¹⁵

Em condições normais, as espécies consideradas oxidantes normalmente não mostram danos oxidativos significativamente altos, pois existem mecanismos de proteção (incluindo enzimas como a superóxido dismutase (SOD), a catalase e a glutationa peroxidase (GPx) e compostos antioxidantes como as vitaminas C e E). O estresse oxidativo ocorre quando os mecanismos de proteção antioxidante ficam sobrecarregados, como resultado da produção excessiva das espécies oxidativas. ¹¹⁶ O estresse oxidativo no cérebro de pacientes com DA se manifesta com o aumento da oxidação proteica, peroxidação lipídica, oxidação do DNA e RNAm e formação de espécies reativas de oxigênio, ocasionando danos ao funcionamento celular.¹¹⁷

Alterações mitocondriais observadas em indivíduos com DA também contribuem para aumentar o estresse oxidativo, porque ao sofrerem disfunção, as mitocôndrias podem aumentar a liberação de EROs e provocar uma crise energética através da perda de ATP. Os neurônios são bastante afetados pelas mutações no DNA das mitocôndrias, pois sua principal fonte energética é a cadeia transportadora de elétrons dentro da mitocôndria. Existe uma importante relação entre a hipótese da beta amiolide e o estresse oxidativo: a β A desempenha uma importante função no aumento do estresse oxidativo em portadores de Doença de Alzheimer. Na mitocôndria, os agregados β A inibem a cadeia transportadora de elétrons, diminuindo a respiração celular e induzindo a liberação de EROs.¹¹⁸ A figura 18 ilustra o processo de estresse oxidativo.

Figura 18. Dano mitocondrial na doença de Alzheimer. A superprodução de amilóide (A) danifica as mitocôndrias, causando disfunção dos complexos mitocondriais I e IV, que resultam na superprodução de espécies reativas de oxigênio (ROS) e na depleção ATP (Adaptado DE LUQUE e colaboradores, 2014)¹¹⁹

1.2.6 Tratamento da DA

As terapias atuais para o tratamento da doença de Alzheimer não são capazes de curar a doença. Os medicamentos disponíveis não desfazem as alterações cerebrais que causam a DA, apenas atuam no controle dos transtornos cognitivos e da progressão da doença.¹²⁰ Além disso, muitas abordagens terapêuticas têm sido aplicadas com foco nos sintomas comportamentais como, agitação, depressão, alucinações e delírios. Tais sintomas se mostram mais comuns com a progressão da doença.¹²¹ O tratamento sintomático da DA baseia-se em dois modos de ação diferentes: inibidores de colinesterases e antagonismo do receptor de N-metil-D-aspartato.

O composto dicarboxílico L-glutamato é o aminoácido livre mais abundante no sistema nervoso central (SNC). A maior parte do L-glutamato presente no tecido nervoso (70%) apresenta funções metabólicas (participa da biossíntese de proteínas, entre outras) idênticas às exercidas por este aminoácido nos outros tecidos.¹²² Além dessas funções, o L-glutamato é o principal neurotransmissor excitatório no SNC de mamíferos, tendo importante papel em alterações plásticas associadas às funções de aprendizagem e memória. regulação neuroendócrina. como em algumas assim doencas neurodegenerativas, tais como doença de Huntington, doença de Parkinson, doença de Alzheimer, epilepsia e na formação de redes neurais durante o desenvolvimento.^{123,124,125}

A acetilcolina (13) é encontrada no cérebro, medula espinhal e gânglios do sistema nervoso autônomo. É sintetizada pela transferência do grupo acetila do acetil-CoA para a colina, um álcool de amônio quaternário (15) - enzimaticamente catalisada (colina acetiltransferase) - e atua em receptores inotrópicos (nicotínicos) e metabotrópicos (muscarínicos). A acetilcolina livre, não ligada a receptores, é hidrolisada pela acetilcolinesterase (AChE), em ácido acético e colina, como mostra a Figura 19, como um mecanismo fisiológico para interromper suas ações.^{126,73}

Figura 19. Hidrólise dos éteres de colina pelas colinesterases.

A acetilcolina está diretamente relacionada com processos cognitivos e, consequentemente, à doença de Alzheimer, o que tem sido importante na estratégia terapêutica usando anticolinesterásicos. A inibição da AChE aumenta a concentração de ACh nas sinapses e resulta na produção de respostas nos receptores colinérgicos muscarínicos e nicotínicos. A fisostigmina (**20**) foi um dos primeiros inibidores de acetilcolinisterase estudados, produzindo poucas melhorias nos sintomas congitivos e seu uso foi limitado devido à administração em muitas doses e às reações adversas severas.¹²⁷ São exemplos de fármacos anticolinesterásicos utilizados no tratamento de primeira linha para pacientes com DA fraca a moderada: a Tacrina (**23**),¹²⁸ descontinuada em 2013, Donepezila (**24**),¹²⁹ Rivastigmina (**21**)¹³⁰ e Galantamina (**22**).¹³¹ Esses fármacos não apresentam o grupamento carbamato (exceto a Rivastigmina) e são classificados como anticolinesterásicos.

Figura 20. Estruturas químicas da fisostigmina (20), rivastigmina (21), galantamina (22), tacrina (23) e donepezila (24).

A tacrina (23) (tetrahidroaminoacridina, Cognex TM) foi o primeiro fármaco aprovado para o tratamento da DA e é classificada como um inibidor de acetilcolinesterase não-clássico. É um inibidor reversível e não competitivo de acetilcolinesterase e butirilcolinesterase.¹³² A molécula da tacrina (23) foi inicialmente sintetizada como um antisséptico, em 1940 por Adrian Albert na Austrália. Na década de setenta, William Summers começou a usar a tacrina (23) para o tratamento do coma por overdose e delírio. Posteriormente, na década de oitenta, Summers e colaboradores, na UCLA, demonstram a utilidade do uso da tacrina (**23**) por via oral para tratar pacientes com DA.¹³³ Em 1993 acontece a aprovação da tacrina (**23**) pelo FDA para o tratamento da DA. Entretanto, embora houvesse eficácia terapêutica, esse fármaco possuía efeitos adversos significativos relacionados à sua alta hepatotoxicidade, o que levou a sua descontinuação em 2013.¹³⁴,¹³⁵

A donepezila (24) (Aricept[™]), uma indanona-benzilpiperidina, dá origem a uma nova classe de inibidores reversíveis e não competitivos de acetilcolinesterase não relacionados à tacrina (23) ou fisostigmina (20). O fármaco apresenta uma alta seletividade para a acetilcolinesterase e possui ação central tendo maior afinidade para a AChE do cérebro do que aquela encontrada no sistema nervoso periférico, aumentando assim os níveis de acetilcolina na fenda sináptica.¹³⁶ A donepezila (24) é majoritariamente metabolizada pelo fígado, pelas enzimas hepáticas CYP2D6 e CYP3A4, podendo interagir com fármacos que inibem essas enzimas.¹³⁷ Quando comparada à tacrina (23), a donepezila (24) se mostra mais seletiva contra a AChE central, maior tempo de meia-vida e pouco potencial para hepatotoxicidade.

A rivastigmina (**21**) (Exelon[™]) é um arilcarbamato que possui inibição reversível de ação longa, que inibe a acetilcolinesterase e a butirilcolinesterase com afinidades semelhantes,¹³⁸ porém seletivo para a acetilcolinesterase cerebral e com baixa toxicidade. Tem meia-vida de apenas duas horas, porém é capaz de inibir a AChE por mais de dez horas devido à lenta dissociação da enzima carbamilada. A rivastigmina (**21**) possui metabolismo não hepático, tornando raras as interações medicamentosas.¹³⁹

A galantamina (22) (RazadyneTM) é um alcaloide terciário que atua na melhora da função colinérgica como inibidor reversível, competitivo e seletivo da acetilcolinesterase $(AChE)^{140}$ e como um modulador alostérico dos receptores colinérgicos nicotínicos. Ao se ligar à subunidade α potencializa a resposta à acetilcolinesterase.¹⁴¹ Entretanto, não possui ação central, de modo que efeitos colaterais periféricos podem ser observados no tratamento com esse fármaco.¹³⁰

1.3 Colinesterases e Inibidores

As colinesterases, pertencentes à família das serina hidrolases presentes nas sinapses colinérgicas, são responsáveis por catalisar a hidrólise dos ésteres de colina, permitindo que o neurônio colinérgico, ao ser ativado, retorne ao seu estado de repouso. Existem duas formas de colinesterase codificadas por dois genes distintos, acetilcolinesterase (AChE, EC 3.1.1.7) e butirilcolinesterase (BuChE, E.C. 3.1.1.8) (Figura 21).¹⁴² Ambas são formadas por subunidades globulares catalíticas, das quais são constituídas as formas solúveis. A AChE encontra-se mais abundantemente no sistema nervoso central, no líquido cefalorraquidiano. Já a BuChE encontra-se no plasma sanguíneo sendo por este motivo conhecida também como colinesterase plasmática. Em outros locais, as unidades catalíticas encontram-se ligadas a proteínas acessórias à membrana basal (na junção neuromuscular), à membrana neuronal nas sinapses neuronais colinérgicas e também à membrana dos eritrócitos, cuja função é desconhecida.⁷³

Figura 21. O sítio ativo de acetilcolinesterase humana (hAChE)¹²² (A; pdb 4ey4) e butirilcolinesterase humana (hBChE) (B; pdb 1p0i).¹²³ Os resíduos da tríade catalítica (em palitos) e do sítio oxiânion (em linhas) estão representados em azul. Os principais resíduos aromáticos da cavidade de ligação à colina estão em amarelo. Os resíduos do PAS localizados na borda do canal profundo estão em verde (Adaptado de MASSOULIÉ e colaboradores, 1993)

A AChE e BuChE apresentam semelhanças estruturais. Comparativamente, seus aminoácidos apresentam 65% de semelhança. Ambas contêm um sítio aniônico catalítico (SAC) no final de um canal profundo e estreito repleto de aminoácidos aromáticos, e um sítio aniônico periférico (SAP) localizado na entrada do canal (Figura 22).¹⁴³

Tríades catalíticas de acetilcolinesterase e butirilcolinesterase humanas (hAChE) e (hBuChE) conservam os aminoácidos: Ser203, His447, Glu334 em hAChE e Ser198, His438, Glu325 em hBuChE.¹⁴⁴Além da tríade catalítica, o sítio ativo contém a cavidade do grupo acila, que acomoda o grupo acil do substrato durante a catálise; a cavidade de ligação à colina; e o sítio oxiânion.^{145, 146, 147}

Figura 22. A – sítio ativo da acetilcolinesterase humana (hAChE) (pdb 4ey4).¹⁴⁸ B – sítio ativo da butirilcolinesterase humana (hBChE) (B; pdb 1p0i)¹⁴⁹. C – Sobreposição dos sitos ativos da hAChE e hBChE. D – Representação da superfície do canal profundo da hAChE (cinza). E – Representação da superfície do canal profundo da hBChE (cinza). Os resíduos estão representados: no PAS (em verde); na tríade catalítica (em magenta); na cavidade oxiânion (em laranja); no sítio de ligação de acil (em ciano); no sítio de ligação de colina (em amarelo) (Adaptado de PDB, 2020.)

Nas duas enzimas, a tríade catalítica Ser, His, Glu é conservada.¹¹⁸ E, assim, o mecanismo catalítico envolve a ativação do grupo hidroxila da serina via sistema de revezamento de carga que envolve o ânion carboxilato do glutamato, o ânion imidazol da histidina e o ânion hidroxila da serina, aumentando-se a nucleofilicidade do sistema, fazendo-o capaz de atacar o carbono eletrofílico do substrato, gerando um intermediário tetraédrico. Após sucessivas transferências de próton entre o intermediário e o resíduo de histidina, a colina é liberada, resultando na serina acetilada. Ao final, a hidrólise da serina acetilada regenera o sítio catalítico da enzima e forma um equivalente do ácido carboxílico correspondente (Figura 22).¹⁵⁰,¹⁵¹

Figura 23. Representação da hidrólise pelas colinesterases (Adaptado de Harel e colaboradores, 1996.)

Considerando os inibidores de acetilcolinesterase já conhecidos e utilizados para o tratamento da DA, é importante destacar as interações importantes entre eles e a enzima. Embora todos os inibidores da colinesterase tenham como alvo a AChE visando a diminuir a clivagem da acetilcolina, cada inibidor liga-se a diferentes resíduos de aminoácidos nas cavidades da AChE, conforme revelado pelas estruturas de raios-X ligadas ao inibidor da acetilcolinesterase do Torpedo Califórnica (Tc-AChE).^{152,153,154}

A donepezila (20) interage em uma das cavidades inferiores com um resíduo de triptofano (Trp-84) e em uma cavidade superior com um outro resíduo (Trp-279)¹⁵². Para a Galantamina o que se obsevra é a interação com o Trp-84 do sítio ativo e uma ligação de hidrogênio com o resíduo de glutamato (Glu 199)¹⁵³. Outro inibidor comercializado para DA, a rivastigmina, parece apresentar interações semelhantes às da Donepezila e da Galantamina em Tc AChE. ¹⁵⁵ Estudos cinéticos realizados Tc-AChE, mostram a rivastigmina como um inibidor reversível.¹⁵² O caso da rivastigmina apresenta uma questão adicional a ser considerada: não há estrutura de raios-X da rivastigmina com AChE humana, apenas com Tc-AChE. Adicionalmente, no sistema Tc-AChE, devido à carbamilação, a rivastigmina é clivada em duas porções químicas no complexo formado, além de ocorrer a carbamilação na formação do complexo. Não é bem compreendido, no entanto, se a carbamilação é essencial para a hidrólise da acetilcolina pela rivastigmina, uma vez que esse processo não acontece com a Donepezila ou com a Galantamina. ¹⁵⁶

1.3.1 Butirilcolinesterase (BuChE)

Estudos indicam que a quantidade de acetilcolinesterase (AChE) no cérebro diminui com a progressão da DA. Em contrapartida, a atividade enzimática da butirilcolinesterase permanece inalterada e/ou aumenta, compensando a diminuição de AChE. Estudos com camundongos geneticamente modificados, com desativação da AChE, mostraram que os mesmos não sofreram hiperativação colinérgica na ausência desta enzima, indicando que a hidrólise da ACh foi controlada pela BuChE.¹⁵⁷

Como a BuChE é relativamente abundante no plasma (cerca de 3mg/litro), e é capaz de degradar um grande número de compostos contendo éster, ela desempenha importantes funções farmacológicas e toxicológicas, como no metabolismo de lipoproteínas e fármacos. Sendo, por exemplo, uma enzima com potencial desintoxicante usada contra organofosfatos neurotóxicos¹⁵⁸ ¹⁵⁹ A BuChE é inespecífica, hidrolisa tanto a ACh, mas com taxa de hidrólise mais lenta, quanto outros ésteres como a butirilcolina (BuCh) e é amplamente distribuída em vários tecidos, como no plasma, pulmões, fígado, coração, sistema nervoso central e periférico, principalmente de origem glial.¹⁶⁰

A análise por cristalografia raio-X da BChE demonstrou que a sua atividade catalítica se deve a uma tríade de aminoácidos, serina, histidina e glutamato localizados no fundo de uma fenda de 20 Å. A diversidade entre as enzimas AChE e BChE resulta da variação de aminoácidos na sequência que determina o tamanho e forma do sítio ativo^{161,162}, o que, analisando a figura 21, sugere que a butirilcolinesterase acomode melhor substratos mais volumosos, quando comparada à AChE.

No cérebro de indivíduos saudáveis, a AChE é a principal enzima responsável pela regulação da acetilcolina. No entanto, nos estágios avançados da DA, o nível de AChE no cérebro diminui gradativamente até 90%, enquanto observa-se aumento de até 165% dos níveis butirilcolinesterase,^{163,164} o que mostra o caráter compensatório da BuChE na ausência de AChE, e consequentemente, sua relevância para a hidrólise da ACh nos estágios avançados da doença de Alzheimer.

A BChE também apresenta relevante importância em outras funções metabólicas. Existem evidências que mostram que a butirilcolinesterase está envolvida em funções não clássicas, ^{165,166} como a proliferação celular e diferenciação sugerindo uma possível influência na tumorigênese. Barbosa e colaboradores conduziram um estudo no qual foi avaliada a atividade histoquímica da BChE em tumores cerebrais e constatou-se que em tumores cerebrais menos agressivos a atividade da BChE era baixa ou moderada, enquanto que, em tumores mais agressivos, a atividade dessa enzima era mais elevada. ¹⁶⁷ A enzima BChE afeta a proliferação celular devido aos seus efeitos antiapoptóticos, que podem influenciar nos estágios iniciais do desenvolvimento de tumores, bem como desempenhar um importante papel nos estágios posteriores da transformação tumoral, colaborando para o crescimento celular.¹⁶⁸

A BChE também tem sido associada a alguns fatores de risco no desenvolvimento de doenças cardiovasculares, como por exemplo: obesidade, metabolismo de lípideos, pressão sanguínea e arterial e resistência à insulina. ¹⁶⁹Estudos realizados com obesos adultos compararam a atividade da BChE entre obesos e pessoas com boa nutrição e verificaram maiores valores na atividade da BChE em obesos.^{170,171}

Embora a BuChE tenha menor afinidade pela acetilcolina se comparado a AChE, sua atividade parece ser crucial para o processo quando há presença de altos níveis de Ach. Desta forma a butirilcolinesterase (BuChE) parece desempenhar uma importante função na hidrólise da acetilcolina em estágios mais avançados da doença de Alzheimer (DA) e

seus os inibidores seletivos são potenciais candidatos a fármacos para o tratamento da DA, conforme o avanço da enfermidade.

1.3.2 Inibidores de Butirilcolinesterase

Uma grande variedade de novas entidades químicas (NEQ's) com propriedades inibitórias seletivas sobre a butirilcolinesterase vem sendo planejadas e investigadas como potenciais candidatos a fármacos para o tratamento da DA. Diversas classes de compostos sintéticos e naturais tem sido descritas na literatura, destacando-se algumas classes como seletivas contra a butirilcolinesterase: carbamatos, derivados indólicos, benzimidazólicos, fenotiazínicos, quinolínicos, derivados da tacrina e triazóis. Alguns dos compostos dessas classes são reportados a seguir.

1.3.2.1 Derivados de carbamatos

Os carbamatos constituem uma importante classe de compostos orgânicos em química medicinal, sendo utilizados também como inseticidas, fungicidas e parasiticidas no setor agrícola e também com atividades anticâncer, anti-HIV e asma, por exemplo, como o irinotecan, efavirenz, ritonavir, zafirlucast, etc.¹⁷² Os carbamatos também se destacam como uma importante classe de derivados anticolinesterásicos, sendo inibidores reversíveis que interagem de maneira covalente com as colinesterases, da mesma forma que a ACh, porém são hidrolisados pela AChE mais lentamente. Podemos destacar como importantes exemplos de anticolinesterásicos clinicamente úteis, o alcaloide fisostigmina (**20**), um metilcarbamato natural também denominado eserina, (CI₅₀ AChE 28nM e CI₅₀ BuChE 16nM), usado no tratamento do glaucoma desde 1877, e a rivastigmina (**21**), um análogo simplificado do primeiro, importante no tratamento de primeira linha para pacientes com DA leve a moderada.^{173,174} Diferentes estruturas contendo a subunidade carbamato tem sido extensivamente estudadas também na busca por inibidores seletivos de BuChE, como mostrado nos exemplos relacionados a seguir. A figura 22 mostra dois dos compostos importantes e seletivos (**25**) IC50 BuChE 1,82 μ M e (**26**) IC50 BuChE 0,17 μ M descritos por Jones e colaboradores dentro da classe dos carbamatos.¹⁷⁵

Figura 24. Estruturas químicas dos compostos carbamato-isossorbida-5-lipoato.

1.3.2.2 Derivados Indólicos

O núcleo indólico é um heteroaromático bicíclico importante dentro da síntese orgânica e da química medicinal. Está presente nas proteínas na forma do aminoácido triptofano, nos alcaloides indólicos, como a estricnina e LSD (dietilamina do ácido lisérgico), e em importantes fármacos de diferentes classes como no AINE indometacina, no fármaco para enxaqueca sumatriptano e no antiemético ondansetron, usado como adjuvante no tratamento de quimioterapia do câncer.¹⁷⁶ O núcleo indólico também está presente em diversos protótipos inibidores seletivos de BuChE descritos na literatura, alguns dos quais são descritos abaixo.

Alguns compostos planejados por Purgatório e colaboradores estão mostrados a seguir, na figura 23. Uma nova série de derivados 1,2,3,4,5,6-hexahidroazepino[4,3-

b]indol (HHAI), os quais foram testados para atividade anticolinesterásica e agregação A β amiloide.⁶⁸ Os novos derivados HHAI's foram identificados como inibidores potentes e seletivos de BuChE (**27a-e**) (CI₅₀ BChE , respectivamente). A partir da análise dos dados de CI₅₀, observa-se que a atividade anti-BuChE foi potencializada com o aumento do número de unidades metilênicas na cadeia espaçadora dos derivados **27a-e**, o que corrobora com as características dos respectivos sítios ativos de AChE e BuChE.¹⁷⁷

Figura 25. Novos protótipos indólicos inibidores BuChE. (27 a-e).

1.3.2.3 Derivados Benzimidazólicos

O núcleo benzimidazol, também conhecido como 1,3-benzodiazol, está presente em várias classes importantes de fármacos, como os anti-helmínticos albendazol, fenbendazol, oxfenbendazol, thiabendazol e mebendazol e, os inibidores da bomba de prótom, úteis no tratamento da úlcera péptica, omeprazol, lansoprasol e pantoprasol. A versatilidade sintética, bem como a diversidade de atividades farmacológicas fazem deste núcleo uma importante estrutura privilegiada em química medicinal.¹⁷⁸,¹⁷⁹

Como exemplo de compostos com atividade seletiva anti-BuChE, podemos destacar os novos derivados 2-amino-benzimidazólicos substituídos (**28a** (CI₅₀ BChE 1,57 μ M) e **28b** (CI₅₀ BChE 2,03))¹⁸⁰ estudados e sintetizados por Zhu e colaboradores (Figura 24).

Figura 26. Derivados Benzimidazólicos (28a e 28b)

1.3.2.4 Derivados Fenotiazínicos

O núcleo heteroaromático tricíclico fenotiazina está presente em diversos compostos com interessantes atividades terapêuticas. Podemos citar como algumas das importantes classes de fármacos contendo este heterociclo, os anti-Parkinsonianos, neurolépticos, antidepressivos e anti-histamínicos.¹⁸¹ Alguns derivados fenotiazínicos inibidores seletivos de BuChE são descritos a seguir.

Os trabalhos de Gonzalez-Munoz e colaboradores levaram à identificação de novos derivados *N*-acilamino-fenotiazinas (**29-36**) como inibidores seletivos de BuChE (Figura 27) com potencial para atravessar BHE.^{182,183} Esses derivados também

apresentaram propriedades neuroprotetoras contra os danos causados por estresse oxidativo.

Observa-se que o aumento de carbonos nas cadeias espaçadoras promovem uma melhora na atividade seletiva anti-BuChE, como já constatado em outros trabalhos. Os estudos de relação estrutura-atividade revelaram a importância das duas unidades metilênicas como espaçador, bem como da presença da amina terciária na cadeia lateral.

Figura 27. Derivados *N*-acilaminotiazínicos-fonotiazínicos (27-34) inibidores seletivos de BuChE.

1.3.2.5. Derivados quinolínicos

A quinolina, 1-aza-naftaleno ou benzo $[\beta]$ piridina, é um composto heteroaromático de nitrogênio. O núcleo quinolínico pode ser encontrado em diversos compostos bioativos naturais e sintéticos, com diversas atividades como: antimaláricos, antibacterianos, antifúngicos, anti-inflamatórios, analgésicos, etc.¹⁸⁴

Knez e colaboradores planejaram derivados (**37-39**) (Figura 28) e os compostos foram avaliados frente a inibição da BuChE recombinante humana, AChE murina e agregação A β . Os autores constataram que o grupamento metóxi-etileno é fundamental para a atividade colinesterásica. De forma geral, os compostos reportados por esses autores apresentaram atividades razoáveis na inibição da agregação A β . ¹⁸⁵

Figura 28. Derivados quinolínicos (**37-39**) inibidores seletivos de BuChE candidatos a agentes multifuncionais para o tratamento da DA.

1.3.2.6. Derivados da tacrina

O núcleo nitrogenado tricíclico 1,2,3,4-tetrahidroacridina está presente na molécula da tacrina (9-amino-1,2,3,4-tetrahidroacridina), primeiro anti-ChE aprovado para o tratamento da DA.¹⁸⁶ Devido à toxicidade hepática da tacrina, uma grande variedade de derivados tem sido extensivamente investigada na busca por fármacos mais seguros para o tratamento da DA.

Chen e colaboradores propuserem uma série de compostos (**40a-b** CI₅₀ BChE 7,6 μ M e CI₅₀ BChE 3,9 μ M, respectivamente.) como promissores inibidores seletivos de BuChE candidatos a agentes multialvos para o tratamento da DA (Figura 29).¹⁸⁷ A nova série contém o núcleo farmacofórico para as colinesterases, 9-amino-1,2,3,4-tetrahidroacridina (tacrina), ligado ao esqueleto do furbiprofeno através de espaçador alquílico de diferentes tamanhos. Adicionalmente, a cadeia lateral alifática tem um grupo doador de óxido nítrico, cuja liberação está relacionada à relaxação vascular.

Figura 29. Derivados da tacrina (40a-b) inibidores seletivos de BuChE.

Outra interessante classe de compostos foi mostrada no estudo de Benchekroun e colaboradores.^{188,189} Dentre os compostos testados, alguns deles mostrados na figura 30 e destaca-se o derivado **41**, o mais potente e seletivo para BuChE, quando comparado à AChE com CI₅₀ eqBuChE = 1,0 nM e CI₅₀ eeAChE = 115,5 nM, se mostrando 115 vezes mais seletivo para butirilcolinesterase.

Figura 30. Novos derivados híbridos tacrina-ácido ferúlico (41-43) inibidores seletivos de BuChE.

1.3.2.7 Derivados triazólicos

O núcleo heterocíclico triazol está presente em diversos protótipos descritos por suas atividades anticâncer, antibacterianas, antiparasitárias, antimaláricos, antivirais, neuroprotetores e inibidores de colinesterases.^{190,191} Devido à ampla utilização de derivados triazólicos em compostos biologicamente ativos, Nisa e colaboradores descreveram uma nova série de derivados 1,2,4-triazóis do escitalopram (figura 31).¹⁰⁷ Os derivados triazólicos foram submetidos aos ensaios de inibição da atividade de ambas enzimas colinesterásicas. Dois derivados foram identificados como bons inibidores seletivos de BuChE: **44a** (R = 2-F) e **44b** (R = 4-F), CI₅₀ = 4,52 µM e CI₅₀ = 5,31 µM respectivamente, com **44a** sendo 41 vezes mais seletivo para BuChE e **44b** sendo 49 vezes mais seletivo.

Alguns derivados de 1,2,4-triazóis-tiadiazóis foram planejados como agentes duais inibidores de ChE's e MAO (monoaminoxidases) (figura 32).¹⁹² O derivado **46** apresentou CI₅₀ de 0,056 μ M para a BuChE e se mostrou um inibidor não seletivo para as monoaminooxidades (CI₅₀ MAO-A = 2,89 μ M e CI₅₀ MAO-B = 2,97 μ M), valor comparável com o inibidor seletivo clorgylina utilizada como padrão (IC₅₀ MAO-A = 3,64 μ M). Santos e colaboradores¹⁹³ descreveram novos derivados 3-amino-1,2,4-triazóis (**47a-d**), planejados através da hibridação molecular com a donepezila (**20**) e

bioisosterismo não clássico. O amino-triazol **44c** (n = 5) foi o mais seletivo para BuChE demonstrando ser mais potente na atividade anti-BuChE que o padrão utilizado (donepezila: CI₅₀ BuChE = 2,39 μ M).

Figura 32. Derivados híbridos triazólicos inibidores seletivos de BuChE (45-47)

2. OBJETIVOS E PLANEJAMENTO ESTRUTURAL

O presente trabalho descreve o planejamento, a síntese, a avaliação in vitro e in silico de novos compostos guanidínicos (50a-f) e acilguanidínicos (51a-h; 51g'; 51h') planejados como análogos estruturais dos alcaloides bromopirrólicos oroidínicos, oroidina (1) e dispacamida (2). Os novos derivados foram planejados como inibidores seletivos da enzima butirilcolinesterase (BuChE) candidatos a protótipos de fármacos para o tratamento da Doença de Alzheimer (DA). As guanidinas e acilguanidinas foram planejadas através de modificações estruturais nos protótipos naturais (1 e 2), alcaloides oroidínicos, e inibidores seletivos de BuChE (48 e 49) (Figura 33). A subunidade guanidínica cíclica, presente nos protótipos oroidina e dispacamida, nesta última uma acilguanidina cíclica, aparece na forma acíclica diretamente ligada ao carbono carbonílico formando a subunidade acilguanidina, que é o espacador entre o núcleo pirrólico ou dibromopirrólico e os diferentes substituintes aromáticos que garantem a variabilidade estrutural da série (51a-h; g1g'; 51h') para avaliação de relações estrutura atividade (REA). Na série de derivados guanidínicos acíclicos (50a-f), a subunidade guanidina está conectada ao núcleo 2-carbóxi-pirrol ou 2-carbóxi-4,5-dibromopirrol através de um espacador alguílico, que varia de duas a guatro unidades metilênicas, gerando uma série homóloga. O núcleo 4,5-dibromopirrólico foi mantido nas séries planejadas, considerando-se que esta é uma das principais características dos alcaloides oroidínicos e também considerando a relação bioisostérica entre o pirrol e o núcleo indólico, presente em alguns inibidores potentes e seletivos de BuChE (48 e 49)¹⁹⁴.

Dessa forma, constituem objetivos específicos deste trabalho:

a- Sintetizar e caracterizar estruturalmente (RMN de ¹H, RMN de ¹³C e ponto de fusão) os novos derivados guanidínicos e acilguanidínicos bromopirrólicos planejados como análogos estruturais dos alcaloides oroidínicos;

b- Realizar triagem *in vitro* dos novos compostos sintetizados frente a capacidade de inibição das enzimas AChE e BuChE; Determinar as potências (CI₅₀) dos derivados com maior percentual de inibição (>50% de inibição), bem como o índice de seletividade (IS) entre as enzimas BuChE/AChE e a relação estrutura-atividade (REA);

c- Determinar o perfil farmacocinético *in silico* para os compostos selecionados na triagem *in vitro* com as enzimas-alvo;

d- Realizar estudos de *docking* (atracamento molecular) com os melhores compostos selecionados na triagem *in vitro* com as enzimas-alvo;

Figura 33-Relações estruturais entre os novos compostos guanidínicos (50a-f) e acilguanidínicos (51a-h, 51g', 51h') planejados e os protótipos oroidínicos (1-2) e os indóis inibidores seletivos de BuChE (48-49).

3. RESULTADOS E DISCUSSÃO

3.1. Estratégia Sintética

A estratégia sintética adotada para a obtenção dos novos derivados pirrólicos e bromopirrólicos guanidínicos acíclicos (**50a-f**)) e acilguanidínicos (**51a-h; 51g' e 51h'**) pode ser observada através das respectivas análises retrossintéticas mostradas nos esquemas 1 e 2.

Para a série de derivados pirrólicos e bromopirrólicos guanidínicos acíclicos (**50af**), podemos observar, através da desconexão de duas ligações C-N, que os compostos finais podem ser sintetizados a partir da guanidina bis-protegida correspondente (**B**) após remoção dos grupos de proteção *N*-Boc (*terc*-butoxicarbonil - *Boc*) em meio ácido. A guanidina acíclica bis-protegida (**B**), por sua vez, é obtida pela reação de substituição à carbonila do derivado 2-tricloroacetilpirrol ou 2-tricloroacetil-4,5-dibromopirrol (**C**) com intermediário amino-alquilguanidínico bis-protegido (**D**), o que pode ser observado no esquema através da desconexão de uma ligação C-N. Também pela desconexão de uma ligação entre o carbono imínico e nitrogênio da amina (C-N), as amino-alquilguanidinas bis-protegidas (**D**) podem ser obtidas através da guanilação dos diaminoalcanos correspondentes (**E**) com o agente guanilante, a *N,N'*-bis(Boc)-*S*-metilisotiouréia (**F**). O agente guanilante (**F**) pode ser obtido através da proteção dos nitrogênios da metilisotiouréa (**G**), a qual é obtida pela *S*-metilação da tiouréia (**H**), em uma reação de substituição nucleofílica de segunda ordem (S_N2). O esquema 1 ilustra a análise descrita.

Esquema 1-Análise retrossintéica para obtenção da série de guanidinas acíclicas (50af).

Através da desconexão de uma ligação C-N podemos observar que os derivados acilguanidínicos bromopirrólicos (**51a-h**, **51g'** e **51h'**) (**A**) podem ser obtidos pela remoção do grupo de proteção *N*-Boc das acilguanidinas protegidas correspondentes (**C**). Estas, por sua vez, através da desconexão da ligação C-N da amida, podem ser obtidas através da reação entre benzilaminas ou homólogos de interesse com o intermediário isometiltioureia bromopirrólico (**C**), em uma reação de substituição no carbono imínico. O intermediário-chave (**C**) pode ser obtido através da reação entre o cloreto de ácido pirrólico (**D**) e o agente guanilante *N*-Boc-S-metilisotiouréia (**F**). O agente guanilante é obtido pela reação de monoproteção da metilisotiouréia (**G**), a qual é obtida pela *S*-metilação da tiouréia (**H**) (Esquema 2).

Esquema 2-Análise retrossintética para obtenção da série de acilguanidinas pirrólicas e bromopirrólicas (51a-h, 51g', 51h').

3.2. Síntese das Guanidinas Acíclicas Pirrólicas e Bromopirrólicas (50a-f)

Para a síntese dos derivados guandínicos acíclicos (**50a-f**), foi necessário a obtenção de dois blocos de construção: primeiramente foi sintetizado o bloco 4,5dibromo-2-tricloro-acetilpirrol (**C**) e na sequência foi feita a síntese das aminoalquilguanidinas acíclicas bis-protegidas (**D**), como identificado na análise retrossintética mostrada no Esquema 1.

A primeira etapa realizada foi a reação de bromação do reagente comercial 2tricloro-acetilpirrol (**66**), que consiste em uma substituição eletrofílica aromática (SEAr) do reagente comercial (**66**) com bromo molecular (Br₂) em ácido acético glacial (AcOH) à temperatura baixa. O produto sólido, 2-tricloro-acetil-4-5-dibromopirrol (**67**) foi obtido em 75% de rendimento (Esquema 3). O mecanismo de SEAr ocorre através do ataque nucleofílico da ligação dupla do anel pirrólico à molécula de bromo com formação intermediário catiônico (**B** e **D**) e posterior perda do próton para a restituição da aromaticidade do anel formando o derivado bromado. O mesmo processo ocorre novamente levando ao produto dibromado (Esquema 4). O derivado 4,5-dibromo-2tricloro-acetilpirrol pode ser identificado espectroscopicamente através de um sinal característico no RMN ¹H do hidrogênio ligado ao nitrogênio do anel pirrólico (em δ = 5,00 ppm) e um único sinal referente ao único hidrogênio ligado ao anel pirrólico (em δ = 7,2 ppm). E no espectro DEPTQ, é possível notar sinais característicos em torno de (δ =99 ppm) e (δ =103 ppm) referentes aos carbonos bromados do anél pirrólico.

Esquema 3-Reação de bromação do 2-tricloroacetilpirrol.

Esquema 4-Mecanismo da reação de bromação do 2-tricloroacetilpirrol.

De posse dos blocos de construção bromopirrólicos (**66** e **67**), a etapa seguinte foi a obtenção dos intermediários amino-alquilguanidínicos bis-protegidos (**65a-c**). Primeiramente sintetizamos o agente guanilante, N,N'-bis(Boc)-S-metilisotiouréia (**63**), de acordo com o esquema 5. A síntese foi realizada a partir do reagente comercial tiouréia (**52**), através de reação de S-metilação com iodeto de metila (CH₃I) em metanol (MeOH), sob refluxo. Nesta reação o enxofre da tiuréia age como nucleófilo e o iodeto de metila como fonte de metila eletrofílica. O produto (**53**) foi obtido como um sólido amarelo em rendimento bruto igual a 90% e ponto de fusão igual a 238-240°C com decomposição (literatura igual a 244 °C com decomposição). O mecanismo de S-metilação da tiouréia consiste em uma substituição nucleofílica (S_N2), na qual o enxofre ataca o carbono eletrofílico da metila, deixando o iodeto livre na forma de sal de amônio e formando o isometil tiouronium (**53**) (Esquema 5). O produto **53** foi caracterizado pelos sinais dos hidrogênios da metila ligada ao enxofre, em δ =2,5 ppm, e pelos hidrogênios do grupo amino em δ =8,5ppm.

Esquema 5-Síntese do sal isometiltiouronium (53).

A segunda etapa consistiu na reação de proteção dos dois nitrogênios do sal de isometiltiouréia (**53**) para formação da N,N'-bis(Boc)-S-metilisotiouréia (**63**), a partir da reação entre o intermediário **53** e di-*terc*-butil-dicarbonato (anidrido do ácido *terc*-butilcarboxílico – [(Boc)₂O]) em diclorometano e solução saturada de bicarbonato de

sódio (NaHCO₃). O grupo de proteção *Boc* é frequentemente utilizado para a proteção de aminas a fim de se mascarar as propriedades nucleofílicas desse grupo funcional. A reação gerou o produto bis-protegido (63) em 79% de rendimento como um óleo amarelo claro que posteriormente se cristalizou em um sólido branco. O mecanismo desta reação é uma substituição nucleofília acílica, na qual o nitrogênio (NH₂) da 2-metil isotiouréia (53) age como nucleófilo e ataca o carbono carboxílico do [(Boc)₂O]. Consequentemente, a ligação C=O se quebra e um intermediário tetraédrico é formado (C), seguida da abstração do hidrogênio do amônio por uma base presente no meio, neste caso o bicarbonato de sódio. O intermediário tetraédrico formado é instável, assim, o íon carbonato (E) é eliminado, já que é uma base mais fraca que a amina, restituindo, então, a ligação dupla. O mesmo processo ocorre com o segundo grupamento amino resultando na formação da N.N'-bis(Boc)-S-metilisotiouréia (63). O carbonato de terc-butila (E) eliminado sofre decomposição em CO₂ (gás) e terc-butóxido (G) (Esquema 18). A N,N'bis(Boc)-S-metilisotiouréia (63) é identificada por um sinal característico no RMN¹H dos hidrogênios das metilas dos grupos *Boc* em δ =1,5ppm e pelo sinal dos hidrogênios da metila ligada ao enxofre, em torno de δ =2,5ppm. No espectro de carbono 13 os principais sinais também são os carbonos referentes às metilas do grupo Boc em 27,9 e 27,2 ppm e a metila ligada ao enxofre em 14,7 ppm.

Esquema 6-Síntese do agente guanilante *N*,*N*'-bis(Boc)-*S*-metilisotiouréia (63).

Esquema 7-Proposta para o mecanismo de formação do agente guanilante, isometiltiouréia bis-protegida (63).

De posse do agente guanilante (63) foi realizada a síntese dos intermediários amino-alquilguanidínicos bis-protegidos (65a-c), através da reação entre 63 e os diaminoalcanos homólogos de interesse (etilenodiamina (a), 1,3-diaminopropano (b) e

1,4-diaminobutano (c)) em diclorometano a temperatura ambiente (Esquema 19). As amino-alquilguanidinas bis-protegidas (**65a-c**) foram obtidas em rendimentos que variaram entre 75 a 80% (Tabela 1) como óleos transparentes. Os produtos obtidos foram conservados em refrigerador e utilizados no dia seguinte sem purificação prévia ou caracterização. Isto foi necessário devido à instabilidade destes derivados, os quais, em temperaturas mais altas, tendem a gerar produto de ciclização (**65D**)¹⁹⁵ das amino-alquilguanidinas, observando-se o aparecimento de mancha mais polar na CCF e diminuição da intensidade da mancha referente ao produto de interesse.

Esquema 8 - Síntese das amino-alquilguanidinas bisprotegidas homólogas (65a-c) e produto lateral de ciclização (65d).

O mecanismo proposto para a formação dos produtos **65a-c** começa pelo ataque nucleofílico do par de elétrons do grupo amina do diaminoalcano (a, b ou c) sobre o carbono imínico do agente guanilante (**63**) com quebra da ligação π e consequente formação do intermediário tetraédrico (**B**/**C**), posteriormente o par de elétrons do nitrogênio restaura a dupla ligação imínica com eliminação do grupo tiometila sob a forma de metilmercaptam (D), o qual tem um odor bem característico que pode ser percebido ao longo da execução das reações em questão (Esquema **9**).

Esquema 9-Proposta de mecanismo para a formação das amino-alquilguanidinas bisprotegidas homólogas (65a-c).

$H_2N \xrightarrow{NBoc} NH$						
Produto	n	Rendimento (%)	Aspecto físico			
65a	65a 1 76 Óleo transparente					
65b 2 71 Óleo transparente						
65c	65c 3 80 Óleo transparente					

Tabela 1. Tabela de rendimentos reacionais e característica físicas das aminoalquilguanidinas (**65a-c**)

Tendo em mãos os blocos de construção necessários para a construção das guanidinas finais alvos deste trabalho, a etapa seguinte consistiu na realização das reações de condensação entre o 2-tricloroacetilpirrol (**66**) ou 4,5-dibromo-2-tricloroacetilpirrol (**67**) e as amino-alquilguanidinas acíclicas bis-protegidas (**65a-c**). As reações foram realizadas em diclorometano e trietilamina a temperatura ambiente (Esquema 21), os seis derivados pirrólicos alquilguanidínicos bis-protegidos foram obtidos com rendimentos entre 60-80%, após purificação em coluna cromatográfica (eluente hexano/acetato de etila em gradiente de concentração). Dentre os derivados obtidos, três derivados são dibromados no anel pirrólico (**69a-c**), outros três são não bromados (**68a-c**) e variam também no espaçador alquílico, que tem de duas a quatro unidades metilênicas (Tabela 2). O mecanismo reacional proposto consiste em uma substituição nucleofílica à carbonila, com o ataque nucleofílico do grupo amino livre das aminoalquilguanidinas bisprotegidas ao carbono eletrofílico (**A**) com posterior eliminação do grupo tricloro-acetil na forma de CHCl₃ e restauração da dupla ligação (Esquema 10).

Esquema 10-Síntese das guanidinas acíclicas bis-protegidas (68a-c; 69a-c).

Esquema 11-Proposta de mecanismo para a formação das guanidinas acíclicas bisprotegidas (68a-c; 69a-c).

Tedefondis e cardeterísticas físicas.									
	R NBoc								
		R ~ .	MH+/)	NHBoc					
		H							
Derivados	R	n	R (%)	PF (°C)	Aspecto físico				
68a	Н	1	71	118-121	sólido amarelo				
68b	Н	2	75	129-131	sólido castanho				
68c	Н	3	80	119-123	sólido castanho				
69a	Br	1	82	-	óleo castanho claro				
69b	Br	2	60	112-115	sólido castanho				
69c	Br	3	69	135-137	sólido amarelo				

 Tabela 2-Guanidinas acíclicas bis-protegidas (68a-c; 69a-c) sintetizadas, rendimentos reacionais e características físicas.

As guanidinas acíclicas bis-protegidas (**68a-c**; **69a-c**) foram caracterizadas através dos dados de RMN de ¹H e RMN ¹³C (DEPT Q). As figuras 34 e 35 mostram os espectros de RMN ¹H e RMN ¹³C (DEPTQ) do derivado **69b** para ilustrar as características gerais dos sinais observados nos espectros desta classe de compostos. No espectro de RMN ¹H os principais sinais que caracterizam os produtos são o hidrogênio do NH da subunidade amida e os hidrogênios ligados aos nitrogênios guanidínicos, os quais podem ser observados como simpletos ou sinais largos em 11,58 ppm, 8,54 ppm e 8,06 ppm, respectivamente. Adicionalmente, observamos o hidrogênio (CH) do núcleo pirrólico na região dos aromáticos em 6,98 ppm, os hidrogênios dos metilenos espaçadores, em 3,45ppm (multipleto com integração de 4 H's) e 1,73ppm (multipleto com integração de 18 H's). No espectro de RMN¹³C (DEPTQ), podemos observar quatro sinais entre 153-163 ppm correspondentes aos carbonos das três carbonilas (da amida e dos dois carbamatos) e do carbono imínico da função guanidina. Observamos também o

sinal do carbono pirrólico (CH) em 112,9 ppm, os carbonos quaternários do pirrol em 127,3/104,9/99,3 ppm, os carbonos metilênicos em 36,8/35,2/28,6 ppm, os carbonos quaternários das *terc*-butilas em 83,4 e 80,2ppm, além das metilas dos grupos *Boc* em 28,5 e 28,0 ppm.

Figura 34-Espectro RMN ¹H (500 MHz) CDCl₃ (δ-ppm) do composto 69b.

Figura 35. Espectro RMN ¹³C (DEPTQ) (500 MHz) CDCl3 (δ-ppm) do composto 69b.

Tabela 3-Guanidinas bis-brotegidas sintetizadas (**68a-c**; **69a-c**) e principais sinais
observados no RMN¹H (CDCl₃ - δ em ppm)

	$R \xrightarrow{HN+}_{R} NH$								
	n	R	N <u>H</u> 's (s ou sl)	CH's pirrol (s)	$C\underline{H}_2$	$-\mathbf{C}(\mathbf{C}\underline{\mathbf{H}}_{3})_{3}(\mathbf{s})$			
68a	1	Н	11,51/11,45/8,47/8,10	6,83/6,73/6,05	3,45	1,40/1,40			
68b	2	Н	11,58/9,72/8,52	6,96/6,89/6,18	3,51/3,41/1,72	1,51			
68c	3 H 11,47/9,71/8,39 6,89/6,65/6,20 345-3,41/1,98 1,49 e 1,44								
69a	1	Br	12,69/11,49/8,44/8,19	6,86	3,48/1,98	1,46 e 1,40			
69b	2	Br	11,58/8,56/8.08	6,99	3,43/1,73	1,51			
69c	3	Br	12,65/11,52/8,32/8,13	6,92	3,30/3,22	1,48 e 1,40			

(s) = simpleto; (sl) = sinal largo;

	$R \xrightarrow{HN+} O n=1-3$										
	n	R	C=O	C=N	<u>C</u> 's pirrol	- <u>C</u> (CH ₃) ₃	<u>C</u> H ₂	-C(<u>C</u> H ₃) ₃			
68a	1	Н	163,5/156,3/152,3	161,4	126,6/121,7/ 110,2/108,9	83,3/78,7	40,5/38,9	28,4/28,1			
68b	2	Н	163,6/157,4/153,8	157,4	126,4/121,2/ 110,2/109,6	83,7/79,8	36,9/ 34,9/30,3/	28,0/28,6			
68c	3	Н	163,5/156,4/153,3	161,5	121,4/109,5/ 109,4	83,3/79,5	40,5/39,1/2 6,9/26,4	28,1/28,4			
69a	1	Br	163,1/156,3/152,3	161,4	128,6/121,7/ 110,2/108,9	83,3/78,7	38,9/	28,4/28,1			
69b	2	Br	163,2/157,5/153,3	159,7	127,4/112,9/ 104,9/99,3	83,4/80,2	36,8/35,2/2 8,6	28,5/28,0			
69c	3	Br	163,7/155,2/152,8	159,4	128,9/112,8/ 104,9/98,2	83,4/78,8	40,1/38,7/2 7,0/26,6	28,5/28,1			

Tabela 4-Guanidinas bis-brotegidas sintetizadas (**68a-c**; **69a-c**) e principais sinais observados no RMN¹³C (DEPTQ, CDCl₃ - δ em ppm)

De posse dos derivados guanidínicos acíclicos bis-protegidos (**68a-c**) e (**69a-c**), foram realizadas as reações de desproteção em meio ácido, para remoção dos grupos de proteção *N*-Boc e consequentemente a obtenção dos produtos finais, as guanidinas acíclicas livres correspondentes (**50a-h**) (Esquema 12). Foi utilizado nestas reações o ácido trifluoroacético (TFA), um ácido muito comum usado na desproteção de ésteres *terc*-butílicos por ser um ácido forte (pKa = -0,25, em água) solúvel em diclorometano, o que representa uma condição branda e eficiente. Os rendimentos das reações de desproteção se mostraram muito bons, próximos de 100% e são mostrados na Tabela 5.

Esquema 12- Reação de desproteção em meio ácido para obtenção das guanidinas acíclicas finais (50a-f)

O mecanismo proposto para a reação de desproteção das guanidinas acíclicas (**68a-c** e **69a-d**) em meio ácido está ilustrado no Esquema 13, para o composto final **50a**, e se inicia com a protonação do oxigênio da carbonila do grupo de proteção *Boc* e posterior rearranjo com a perda de 2-metilpropeno (**C**) e dióxido de carbono (CO₂). O mesmo processo ocorre com o outro grupamento *Boc* do outro nitrogênio guanidínico para a formação das guanidinas acíclicas finais (**50a-f**).

Esquema 13-Proposta de mecanismo para a reação de desproteção das guanidinas acíclicas em meio ácido.

$R \xrightarrow{NH}_{NH} NH$ $R \xrightarrow{NH}_{NH} NH_{2}$							
Derivados	R	n	R (%)	PF (°C)	Aspecto físico		
50a	Н	1	97	-	óleo castanho claro		
50b	Н	2	94	182-185	sólido castanho		
50c	Н	3	99	-	óleo amarelo claro		
50d	Br	1	98	-	óleo castanho escuro		
50e	Br	2	99	-	óleo castanho escuro		
50f	Br	3	97	151-152	sólido amarelo claro		

Tabela 5-Guanidinas acíclicas pirrólicas e bromopirrólica (**50a-f**) sintetizadas,rendimentos reacionais e características físicas.

Os compostos-alvo finais, as guanidinas acíclicas pirrólicas e bromopirrólicas sintetizadas (**50a-f**) foram caracterizadas através de seus respectivos espectros de RMN ¹H e RMN ¹³C (DEPTQ). As figuras 36 e 37 ilustram os espetros de hidrogênio e carbono 13, respectivamente, da guanidina bromopirrólica **50d**, nos quais podemos observar os principais sinais que caracterizam esta série de derivados. Os sinais de hidrogênio que caracterizam esta guanidina livre em 8,29 e 7,64 ppms (tripletos com integração de 1 H), os NH's da guanidina livre em 8,29 e 7,64 ppms (tripletos com integração de 1 H) e os sinais dos dois metilenos espaçadores em 3,33 e 3,27 ppm (multipletos com integração de 2H's cada um). Adicionalmente, os hidrogênios das metilas dos grupos de proteção *Boc* não são observadas, em torno de 1,5 ppm, confirmando a realização da desproteção.

Os sinais característicos no espectro de carbono 13 são a carbonila e o carbono imínico da função guanidina em 159,8 e 157,4 ppm, respectivamente. Observa-se também os carbonos do núcleo pirrólico em 113,3 ppm (CH), 128,3 ppm (carbono quaternário ligado a carboxamida), os carbonos ligados ao bromo em 105,2 e 98,3 ppm, além dos carbonos metilênicos (CH₂) em 40,8 e 38,4 ppm. Adicionalmente, não são observados os carbonos característicos do grupo *Boc* em torno de 28 ppm (metilas) e 80 ppm (carbono quaternário da *terc*-butila), corroborando mais uma vez que a desproteção foi bem sucedida. A Tabela 6 resume os principais sinais característicos para esta série de derivados.

Figura 36. Espectro de RMN ¹H (500 MHz) em DMSO-d₆ (δ -ppm) da guanidina bromopirrólica **50d**.

Figura 37-Espectro RMN ¹³C (DEPTQ) (500 MHz) em DMSO-d6 (δ-ppm) da guanidina bromopirrólica **50d**.

Tabela 6- Guanidinas acíclicas pirrólicas e bromopirrólica sintetizadas (**50a-f**) e principais sinais observados no RMN ¹H em DMSO-d₆ (δ-ppm)

	$R \xrightarrow{HN}_{NH_2} NH_2$ $R \xrightarrow{HN+}_{NH} n=1-3$ $R \xrightarrow{H}_{H} O$							
	R	n	NHCO	NH"s (s, sl ou t))	CH pirrol (s)	CH_2		
			(s ou sl)					
50a	Н	1	11,49	8,16/7,86/7,65	6,87/6,76/6,10	3,34/3,27		
50b	Н	2	11,46	8,16/7,77	6,85/7,85/6,08	3,26/2,81/1,76		
50c	Н	3	12,42	8,05/7,71	6,85/6,76/6,08	3,24/3,14/1,51		
50d	Br	1	12,76	8,29/7,64	6,93	3,33/3,27		
50e	Br	2	12,69	8,16/7,65	6,91	3,25/3,15/1,68		
50f	Br	3	12,67	8,17/7,63	6,92	3,21/3,11/1,49		

(s) = simpleto; (sl) = sinal largo; (t) = tripleto

Tabela 7-Guanidinas acíclicas pirrólicas e bromopirrólica sintetizadas (**50a-f**) e principais sinais observados no RMN¹³C ((DEPTQ, DMSO-d6, (δ-ppm)

	$R \xrightarrow{HN} NH_{2}$ NH $R \xrightarrow{HN+} 0$ $n=1-3$ $R \xrightarrow{H} 0$								
	R	n	CO e CN	CH pirrol	CH ₂	C-Br			
50a	Н	1	161,2/157,47	122,1/110,6/109,1	41,0/38,3	-			
50b	Н	2	161,4	122.0/110,3/108,9	37,3/35,9/28,2	-			
50c	Н	3	161,3/157,3	121,7/110,2/108,9	40,9/38,3/27,2/26,6	-			
50d	Br	1	159,8/157,4	113,3	40,8/38,9	105,2/98,3			
50e	Br	2	159,1/156,8	112,6	38,5/35,9/28,7	104,6/97,9			
50f	Br	3	159,3/157,2	112,9	40,9/38,5/26,9/26,5	104,8/98,2			

3.1.2. Síntese das Acilguanidinas (51a-h; 51g' e 51h')

A primeira etapa da síntese dos novos compostos acilguanidínicos pirrólicos e bromopirrólicos planejados (51a-h; 51g' e 51h') foi a obtenção do agente guanilante N-Boc-Smetilisotiouréia (55) fundamental para a posterior obtenção dos intermediários-chave 60 e 61. A obtenção do agente guanilante (55) se inicia com a reação de substituição nucleofílica bimolecular (S_N2) entre a tiouréia (52) e iodeto de metila (CH₃I) para a obtenção do sal de iodo isometiltiouronium (53), a partir do qual foi realizada a reação de proteção de um dos nitrogênios para obtenção do derivado monoprotegido correspondente (55) (Esquema 14). O mecanismo proposto para a reação de monoproteção do sal (53) passa por uma reação de substituição nucleofília acílica. Inicialmentente, o nitrogênio (NH₂) de 53 age como nucleófilo e ataca o carbono carboxílico do [(Boc)₂O] (54). Consequentemente, a ligação C=O se quebra e um intermediário tetraédrico é formado (C), seguida da abstração do hidrogênio do amônio por uma base presente no meio, neste caso a trietilamina (Et₃N). O intermediário tetraédrico (D) formado é instável, assim, o íon carbonato (E) é eliminado, já que é uma base mais fraca que a amina, restituindo, então, a ligação dupla, resultando na formação da 2-metil isotiouréia *N*-protegida (55). O carbonato de *terc*-butila (G) eliminado sofre decomposição em CO₂ (gás) e *terc*-butóxido (G) (Esquema 15). Esta reação é realizada através da adição lenta de anidrido Boc (Boc₂O, di-terc-butil-dicarbonato) em diclorometano sobre excesso do sal 53 em meio básico para garantir a monoproteção e obtenção do agente guanilante (55), um sólido branco obtido em 85% de rendimento, que foi caracterizado através de seu espectro de RMN ¹H no qual podemos observar os sinais característicos das metilas do grupo Boc e da metila ligada ao átomo de enxofre, respectivamente em 1,51 (com integração igual a nove hidrogênios) e 2,45 ppm (com integração de três hidrogênios). No espectro de RMN ¹³C (DEPTQ) foi observado a presença de um sinal em campo alto, em 28,17 ppm referente aos carbonos metílicos do grupo terc-butila, além dos sinais referentes aos carbonos quaternários: um em 78,11 ppm correspondente ao carbono quaternário do grupo terc-butila e outro sinal em 160,98 referente ao carbono do carbamato.

Esquema 14-Síntese do agente guanilante, a N-Boc-S-metilisotiouréia (55).

Esquema 15-Proposta de mecanismo de formação do agente guanilante, a *N*-Boc-*S*-metilisotiouréia (55).

De posse do agente guanilante (55) passamos para a etapa seguinte, que consistiu na síntese dos intermediários-chave pirrole 4,5-dibromopirrol-2-carboxamido-(tiometil)metilenocarbamato de terc-butila (60 e 61) (Esquema 18). Para tal foi necessária a obtenção dos ácidos carboxílicos pirrólico (58) e bromopirrólico (59), os quais foram obtidos a partir do reagente comercial 2-pirrolcarboxaldeído (56) (Esquema 16). O aldeído (56) foi submetido a uma reação de substituição eletrofílica aromática (SEAr), cujo mecanismo está ilustrado no Esquema 28, com bromo (Br₂) em ácido acético glacial para obtenção do derivado dibromado correspondente (57) em 55% de rendimento. Os ácidos carboxílicos correspondentes (58 e 59) foram obtidos em cerca de 60% de rendimento a partir dos respectivos aldeídos (56 e 57) através de reação de oxidação com óxido de prata (Ag₂O), um agente oxidante brando e com baixo potencial de oxidação, adequado para aldeídos, os quais estão em um estágio de oxidação intermediário entre os álcoois e ácidos carboxílicos.¹⁷⁷

Esquema 16 - Síntese dos ácidos carboxílicos pirrólico (58) e bromopirrólico (59).

Esquema 17-Proposta mecanística para a reação de bromação do pirrol-2carboxaldeído (59).

Os ácidos pirrólicos (**58** e **59**) foram caracterizados através da análise dos respectivos espectros de RMN ¹H, onde podemos observar a ausência do sinal referente ao hidrogênio característico do grupamento aldeído em torno de 9,3 ppm, bem como o surgimento do sinal em torno de 12 ppm referente ao hidrogênio da carboxila do ácido carboxílico e os CH's do pirrol em 6,96/6,72/6,13 ppm para o derivado não bromado. No caso do derivado bromado somente um sinal de grupo CH é observado em 6,83 ppm.

Os ácidos carboxílicos (**58 e 59**) foram então submetidos a reação para a obtenção dos intermediários-chave (**60 e 61**) (Esquema 18). Para tal, os ácidos foram submetidos à reação com o cloreto de oxalila (COCl₂) em dimetilformamida (DMF), quantidade catalítica, e diclorometano como solvente, para a formação do cloreto de ácido correspondente. O mecanismo para a formação do cloreto de ácido está ilustrado no Esquema 19 e mostra que há o desprendimento de monóxido de carbono (CO), dióxido de carbono (CO₂) e ácido cloréd clorédrico (HCl). Outra característica desta reação é a formação do intermediário reagente de Vilsmeyer (**E**), eletrófilo que irá reagir como o ácido carboxílico para formação do cloreto de ácido correspondente. Uma vez que o cloreto de ácido é extremamente reativo frente à presença de água (umidade presente na atmosfera) e nucleófilos em geral, esta espécie não é isolada ou estocada, sendo usada *in situ*. Desta forma, após evaporação do solvente, o cloreto de ácido formado na primeira etapa reage com o agente guanilante (**55**) na presença de diclorometano e piridina, através de uma reação de substituição nucleofílica à carbonila (Esquema 20) para a obtenção dos derivados **60 e 61** com um rendimento que varia entre 70-80%.

Esquema 18 - Esquema de síntese dos intermediários chave pirrol- e 4,5-dibromopirrol-2-carboxamido-(tiometil)-metilenocarbamato de *terc*-butila (**60** e **61**).

Esquema 19 - Proposta de mecanismo de formação dos derivados cloretos de ácido (H).

Esquema 20-Proposta de mecanismo de reação entre o agente guanilante (55) e os cloretos de ácido, para formação dos intermediários-chave (60 e 61).

Os intermediários chave (**60 e 61**) foram caracterizados através de seus espectros de RMN ¹H e RMN ¹³C (DEPTQ) nos quais podemos observar principalmente os sinais característicos das metilas do grupo *Boc*, da metila ligada ao enxofre, além dos sinais que caracterizam o núcleo pirrólico e a carboxamida. Os principais sinais observados nos espectros de RMN ¹H e RMN ¹³C (DEPTQ) dos intermediários-chave (**60 e 61**) estão ilustrados no esquema 21.

Esquema 21-Principais sinais observados nos espectros de RMN¹H (azul)) e RMN¹³C (vermelho) dos intermediários-chave (**60** e **61**) (500 MHz, CDCl₃, δ-ppm).

O intermediário-chave **61** foi submetido a reação com as aminas de interesse [(a) benzilamina, (b) picolilamina, (c) *p*-flúor-benzilamina, (d) *p*-cloro-benzilamina, (e) *p*-metoxibenzilamina, (f) *p*-toluilbenzilamina, (g) fenetilamina e (h) 3-fenilpropanamina) (Figura 36) em diclorometano, trietilamina e DIPEA (di-isopropiletilamina) para a formação das acilguanidinas bromopirrólicas planejadas (**62a-h**). O intermediário-chave não bromado (**60**) foi submetido às mesmas condições reacionais, porém somente utilizando a fenetilamina e 3-fenilpropanamina para a obtenção das acilguanidinas correspondentes (**62g' e 62h'**) (Esquema 22). As acilguanidinas foram obtidas em bons rendimentos, entre 70-85%, e a reação ocorre através do ataque nucleofílico do nitrogênio da amina ao carbono imínico eletrofílico do intermediário-chave formando um intermediário tetraédrico a partir do qual ocorre a restauração da dupla ligação imínica com a perda do grupo tiometila na forma de metanotiol (HSMe), de odor desagradável e característico perceptível ao longo da execução e isolamento das reações em questão (Esquema 23).

Esquema 22-Síntese das acilguanidinas protegidas (62a-h; 62g'; 62h').

Figura 36- Aminas (a-f) selecionadas para a síntese dos compostos acilguanidínicos planejados.

(62a-g; 62g'; 62h')

Esquema 23-Proposta para o mecanismo de formação das acilguanidinas protegidas (62a-h; 62g'; 62h').

Tabela 8-Acilguanidinas pirrólicas e bromopirrólicas protegidas,	rendimentos
reacionais e características físicas.	

R NH H O N-Boc							
Derivados	R	W	R (%)	PF (°C)	Aspecto físico		
62a	Br	Benzil	69	171-172	Solido branco		
62b	Br	Picolil	85	159-163	Solido amarelo claro		
62c	Br	<i>p</i> -fluor-benzil	72	155-158	Solido amarelo claro		
62d	Br	<i>p</i> -cloro-benzil	77	167-168	Sólido amarelo claro		
62e	Br	<i>p</i> -metil-benzil	80	183-185	Sólido branco		
62f	Br	<i>p</i> -metóxi-benzil	59	147-150	Solido castanho claro		
62g	Br	fenetil	75	131-132	Solido amarelo claro		
62h	Br	fenilpropil	82	164-167	Sólido castanho claro		
62g'	Η	fenetil	63	151-154	Sólido castanho claro		
62h'	Н	Fenilpropil	72	159-160	Sólido amarelo claro		

As acilguanidinas protegidas foram caracterizados através de seus espectros de RMN ¹H e RMN ¹³C (DEPTQ). Esta classe de derivados tem como sinais de hidrogênios

característicos as metilas do grupo de proteção *Boc*, que aparecem como um simpleto com integração de nove hidrogênios entre 1,50 ppm, os sinais de do hidrogênio da amida em torno de 12 ppm, os hidrogênios ligados aos nitrogênios da função guanidina entre 8-10 ppm e os metilenos espaçadores que separam o anel aromático e a função acilguanidina em torno de 4,6 ppm. Os sinais dos anéis aromáticos aparecem na região característica em torno de 7 ppm, variando entre multipletos, quando o anel não é substituído, ou o padrão a/b característico para os anéis substituídos em *para*. Adicionalmente, é importante observarmos o desaparecimento do sinal correspondente à metila do grupo tiometila em 2,5ppm do intermediário-chae anterior (**60** ou **61**).

Os espectros de RMN ¹³C (DEPTQ) dos derivados **62a-f**, **62g'** e **62h'** apresentam como características principais a presença dos sinais das carbonilas e carbono imínico (C=N) entre 153 e 169 ppm, os carbonos das metilas e o carbono quaternário do grupo de proteção *Boc* em torno de 28 e 83 ppm, respectivamente, além do sinal do metileno, ou metilenos, em torno de 40 ppm. Os sinais dos carbonos do anel aromático aparecem em torno de 120 e 130 ppm. Também observarmos o desaparecimento do sinal correspondente ao carbono da metila do grupo tiometila do intermediário anterior (**60** ou **61**), em torno de 15 ppm.

Abaixo, são mostrados os espectros de RMN ¹H e RMN ¹³C (DEPTQ) do derivado acilguanidínico protegido **62a** para ilustrar os sinais característico desta classe (Figuras 37 e 38).

Figura 37. Espectro RMN ¹H (500 MHz) CDCl₃ (δ-ppm) do composto 52a.

Figura 38. Espectro RMN ¹³C (DEPTQ, 500 MHz) CDCl₃ (δ-ppm) do composto 52a.

Tabela 9- Principais sinais nos espectros de RMN¹H (500 MHz, CDCl₃, δ-ppm) que permitem a caracterização dos derivados acilguanidínicos protegidos (**62a-h**; **62g**';

			62 n ²).							
	R NH H O N-Boc									
	R	W	NH's	CH (pirrol)	CH (Aromático)	CH ₂	CH ₃			
62 ^a	Br	Benzil	12,07/9,37/8,89 (s)	6,89 (s)	7,32-7,80 (m)	4,69 (s)	1,49 (s)			
62b	Br	Picolil	11,92/10,61/9,26/8, 70 (s)	6,89 (s)	7,33/7,38/7, 27 (s)	4,79 (s)	1,53 (s)			
62c	Br	<i>p</i> -fluor-benzil	12,06/9,46/8,86 (s)	6,89 (s)	7,33/7,06	4,65 (s)	1,49 (s)			
62d	Br	<i>p</i> -cloro-benzil	12,07/8,92(s)	6,92(s)	7,33/7,36	4,69(s)	1,52(s)			
62e	Br	<i>p</i> -metil-benzil*	12,08/8,91 (s)	6,95 (s)	7,29/7,21	4,68 (s)	1,52 (s)			
62f	Br	p-metóxi-benzil**	12,08/8,85 (s)	6,92 (s)	7,28/6,91	4,65 (s)	1,51 (s)			
62g	Br	fenetil	12,07/8,67 (s)	6,95 (s)	7,35/7,28	3,78/2,98 (s)	1,52 (s)			
62h	Br	fenilpropil	12,05/8,62 (s)	6,83 (s)	7,31 (t)/7,22	3,52	1,52 (s)			
					(dd)	(dd)/2,52				
						(t)/1,99 (m)				
62g [•]	Н	fenetil	12,37/9,26/8,53 (s)	7,00/6,93 /6,29 (s)	7,37-7,27	3,78/2,99 (s)	1,51 (s)			
62h'	Н	fenilpropil	12,43/8,50 (s)	6,95/6,90	7,36-7,22	3,56(m)/2,75	1,53/1,57			
			. ,	/6,27 (s)	(m)	(t)/2,03 (m)	(s)			

^a Sinal do grupo metila como um simpleto em 2,38 (integração 3 hidrogênios)

^b Sinal do grupo metoxila como um simpleto em 3,83 (integração 3 hidrogênios)

	R HN-W R NH N H O Boc										
	R	w	C=O e C=N	CH Pirrol	C-Br	CH aromático	Cq aromático	CH ₂	Boc		
62a	Br	Benzil	156,4/153,3	116,6		128,9/127,8/1 27,5	131,9	45,2	28,0/83,7		
62b	Br	Picolil	168,5/153,0	116,3	100,4	149,2/137,2/1 22,7/122,2	155,7	47	28,1/83,4		
62c	Br	<i>p</i> -fluor- benzil	163,3/153,1	115,8		116,7/129,3	156,2	44,6	28,2/83,4		
62d	Br	<i>p</i> -cloro- benzil	169,02/153,20	116,89	100,58	129,07,128,92	156,25	44,49	28,03		
62e	Br	<i>p</i> -metil- benzil	156,1/153,1/	116,9	100,6	129,6/127,6	134,8	45,1	28,0/83,7		
62f	Br	<i>p</i> -metóxi- benzil	169,0/156,1/1 53,1	116,8	100,5	129,0/114,3	159,2/132,0	44,8	28,0/83,9		
62g	Br	fenetil	169,3/156,1/1 53,1	116,7	100,6	128,6/126,5	131,9	35,6/42,8	28,0/83,6		
62h	Br	fenilpropil	169,08/156,3/ 153,3	116,9	100,4	128,6/128,4/1 26,3	131,99	40,5/33,0/3 0,7	28,06/83,5		
62g'	Н	fenetil		126,6/113,9/1 10,6	-	128,8/128,7		42,6/35,7	28,03/83,1		
62h'	Н	fenilpropil	171,1/156,3/1 53,5	121,8/114,3/1 10,7	-	128,6/126,2	131,3	40,5/30,8/2 8,4	28,2/28,4/8 3,2		

Tabela 10. Principais sinais nos espectros de RMN¹³C (DEPTQ, 500 MHz, CDCl₃, δ -ppm) que permitem a caracterização dos derivados acilguanidínicos protegidos (**62a-h**; **62g'**; **62h'**).

^a Sinal do grupo metila em 21,2 ppm

^b Sinal do grupo metoxila em 55,3 ppm

A etapa final consistiu na remoção do grupo de proteção *Boc* em meio ácido para a obtenção das acilguanidinas desprotegidas **50a-h**; **50g'** e **50h'** (Esquema 24). Da mesma forma que a metodologia usada para a desproteção das guanidinas acíclicas da série anterior, esta etapa também foi realizada em TFA (ácido trifluoroacético) e diclorometano a temperatura ambiente. ¹⁹⁶As reações demoraram cerca 48h para o consumo total das acilguanidinas protegidas e levaram à formação quantitativa dos compostos finais desprotegidos após remoção do TFA e do solvente sob vácuo. O mecanismo proposto para a reação de desproteção está ilustrado no Esquema 25 e se inicia com a protonação do oxigênio da carbonila do grupo *Boc* e posterior rearranjo com a perda de 2-metilpropeno e dióxido de carbono (CO₂) para a formação das acilguanidinas livres finais (**51a-h; 51g'; 51h'**).

Esquema 24 - Desproteção em meio ácido para obtenção das acilguanidinas livres (51a-h; 51g'; 51h')

Esquema 25-Proposta mecanística para a desproteção em meio ácido (exemplificado para 62a) que leva à obtenção das acilguanidinas livres planejadas (ilustrado para a obtenção de 51a).

Derivados	R	W	R (%)	PF (°C)	Aspecto físico				
51a	Br	Benzil	100	160-162	Sólido amarelo claro				
51b	Br Picolil 98 155-159 Sólido castanho claro								
51c	Br <i>p</i> -fluor-benzil 100 169-171 Sólido amarelo escuro								
51d	Br	p-cloro-benzil	100	178-180	Sólido amarelo claro				
51e	Br	p-metil-benzil	98	172-174	Sólido branco				
51f	Br	p-metóxi-benzil	100	151-154	Sólido castanho claro				
51g	Br	fenetil	97	139-142	Sólido amarelo claro				
51h	Br	fenilpropil	99	153-154	Sólido amarelo claro				
51g'	Н	fenetil	100	160-162	Sólido branco				
51h'	Н	fenilpropil	100	139-143	Sólido amarelo claro				

Tabela 10 - Acilguanidinas pirrólicas e bromopirrólicas desprotegidas (livres)sintetizadas, rendimentos reacionais e características físicas.

Todas as acilguanidinas pirrólicas e bromopirrólicas sintetizadas (**51a-h; 51g'; 51h')** foram caracterizadas através de seus respectivos espectros de RMN¹H e RMN¹³C (DEPTQ), cujos principais sinais estão mostrados nas tabelas 11 e 12. Os espectros do derivado **51e** são utilizados como exemplos para esta série de derivados. Os principais sinais de hidrogênio (Figura 38) que caracterizam as acilguanidinas bromopirrólicas são aqueles ligados aos nitrogênios, em 13,4 (NHCO) e 11,37/9,45/8,93 ppm (outros NH's guanidínicos). Estes derivados também podem ser caracterizados pela presença dos sinais dos aromáticos, que, no caso do derivado **51e**, mostram dois sinais: um multipleto entre 7,27-7,30 ppm com integração de três hidrogênios (dois CH's da fenila e CH pirrólico) e um dupleto em 7,20 ppm com integração de dois hidrogênios, correspondentes aos outros dois CH's da fenila *para*-substituída. Adicionalmente, observamos o dupleto em 4,54 ppm correspondendo ao metileno espaçador e a metila como um simpleto em 2,30 ppm. Nota-se também a ausência do sinal referente às metilas do grupo *Boc*, em 1,5 ppm, confirmando a desproteção.

Figura 38-Espectro RMN ¹H (500 MHz) DMSO-d6 (δ-ppm) do composto 52e.

No espectro de RMN¹³C (DEPTQ) (Figura 40) podemos destacar os sinais da carbonila e do carbono imínico, ambos da função acilguanidina, em 158,4 e 153,4 ppm, respectivamente. Observamos também os dois sinais dos CH's da fenila para-substituída em 129,2 e 127,4 ppm, além do CH do pirrol em 117,0, os carbonos quaternários da fenila em 137,1 e 132,7 ppm, os carbonos pirrólicos ligados ao bromo em 110,6 e 99,5 ppm, o carbono pirrólico ligado à carbonila em 125,1 ppm, o metileno espaçador em 44,1 ppm e a metila em 20,7 ppm. Também não se observam os sinais que caracterizariam a presença do grupo *Boc*, em torno de 28 ppm (metilas) e em torno de 80 ppm (carbono quaternário da terc-butila), confirmando mais uma vez o sucesso da desproteção.

Figura 39-Espectro RMN ¹³C (DEPTQ) (500 MHz) DMSO-d6 (δ-ppm) do composto **52e**.

				u).							
	R	W	NH's	CH (pirrol)	Aromáticos	CH ₂ 's					
51 a	Br	Benzil	13,40/11,37/9,45/8,93 (s)	7,30 (m)	7,30-7,38 (m)	4,55 (d)					
51b	Br	Picolil	13,49/11,58/9,87/8,97 (s)	7,42-7,36 (m)	8,61 (s)/7,89 (s)/7,42-7,36 (m)	4,75 (s)					
51c	Br	<i>p</i> -fluor-benzil	13,40/11,28/9,44/8,90 (s)	7,48-7,39 (m)	7,48-7,39 (m)	4,57 (d)					
51d	Br	p-cloro-benzil	9,39 (s)/ 11,25 (s)	7,27 (s)	7,41 (d)/7,48 (d)	4,60 (d)					
51e	Br	<i>p</i> -metil-benzil ^a	13,40/11,36/9,45/8,93 (s)	7,36-7,21 (m)	7,36-7,21 (m)	4,54 (d)					
51f	Br	<i>p</i> -metóxi-benzil ^b	13,44/11,07/9,20	7,21 (s)	7,34 (d) / 6,98 (d)	4,50 (d)					
51g	Br	fenetil	13,49/11,42/9,19/8,86 (s)	7,25 (s)	7,32 (s)	3,59/2,89 (s)					
51h	Br	fenilpropil	13,42/11,03/8,95 (s)	7,30-7,23 (m)	7,30-7,23 (m)	2,65/1,87/1 ,25 (m)					
51g'	Н	fenetil	12,17/11,10/9,18/8,81 (s)	6,28 (s)	7,34-7,16 (m)	3,59 (dd)/2,91 (t)					
51h'	Н	fenilpropil	12,17/11,09/9,19/8,80 (s)	6,29 (s)	7,31 (t)/7,25-7,19 (m)	3,349dd)/2 ,66(m)/1,8 9(m)					

Tabela 11- Principais sinais de RMN¹H (DMSO-d6, δ-ppm) para as acilguanidinas finais (**51a-h**; **51g**'; **51h**').

^a Sinal do grupo metila como um simpleto em 2,30 ppm (integração 3 hidrogênios)

^b Sinal do grupo metoxila como um simpleto em 3,75 ppm (integração 3 hidrogênios)

	R HN-W NH										
$\begin{array}{ccc} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$											
	R	W	CO e CN	Pirrol	Aromáticos	CH ₂ 's					
51 ^a	Br	Benzil	154,12	117,45/99,9	127,6/128,2/129,1	44,7					
					/136,24						
51b	Br	Picolil	159,0	125,5/117,5/111,1	154,2/149,2/138,0	46,1					
				/99,6	/123,5/122,1						
51c	Br	<i>p</i> -fluor-benzil	154,10	115,85/107,71/99,	130,07	44,10					
				96							
51d	Br	p-cloro-benzil	166,9/	99,90/117,65	129,05/129,69/	44,03					
			154,28		131,34/132,83/						
					135,44						
51e	Br	<i>p</i> -metil-benzil ^a	158,4/153,4	127,4/117,0/110,6	137,1/132,7/129,2	44,1					
				/99,5	/127,4						
51f	Br	<i>p</i> -metóxi-benzil ^b	159,0	117,0/99,4	129,0/127,6/114,1	43,9					
51g	Br	fenetil	159,1/153,5	117,3/111,1/99,8	138,4/129,3/128,9	42,8/33,					
					/127,0	9					
51h	Br	fenilpropil	157,16	116,6	128,9/128,7/126,5	41,4/32,					
						4/29,9					
51g'	Н	fenetil	160,5/154,2	138,4/127,1/115,7	129,3/128,9/127,2	42,7/34,					
				/110,8	/123,5	2					
51h'	Η	fenilpropil	160,5/154,1	141,5/126,4/115,5	128,9/128,7/127,1	41,2/32,					
			2	/110,8	/126,4	5/29,9					

Tabela 12-Principais sinais de RMN¹³C (DEPTQ, DMSO-d6, δ-ppm) para as acilguanidinas finais (**51a-h**; **51g'**; **51h'**).

^a Sinal do grupo metila em 20,7 ppm

^b Sinal do grupo metoxila em 55,2 ppm

3.3. Triagem farmacológica *in vitro* frente as enzimas Acetilcolinesterase (AChE) e Butirilcolinesterase (BuChE)

As guanidinas e acilguanidinas pirrólicas e bromopirrólicas planejadas e sintetizadas foram submetidas à triagem farmacológica para avaliar a ação das mesmas sobre a atividade das enzimas AChE e BuChE através do método de Ellman.¹⁹⁷ A metodologia consiste na clivagem enzimática da acetiltiocolina ou butiriltiocolina promovida pela AChE ou BChE, levando a formação de ácido acético ou butírico, respectivamente, e tiocolina. Este último é um marcador da atividade enzimática, que ao reagir com o DTNB, leva a formação do ácido 2-nitro-4-tiobenzóico e do ácido 2-nitro-3-mercaptotiobenzóico. O produto ácido 2-nitro-4-tiobenzóico apresenta coloração amarela, a qual pode ser quantificada por medida da absorbância em um leitor de placas equipado com filtro de luz a $\lambda = 415$ nm. Desta forma, a atividade da enzima é medida de maneira indireta por meio da reação do produto de clivagem enzimática com um reagente pró-cromofórico (Esquema 26). Todos os compostos foram testados na concentração de 30µM e a donepezila foi utilizada como padrão de referência.

Esquema 26-Reação ocorrida no ensaio de Ellman.

A tabela 13 mostra os resultados obtidos para os derivados guanidínicos bisprotegidos (**68a-c; 69a-c**) frente as enzimas AChE e BuChE. Os resultados mostram que os derivados **68a-c** e **69a-c** apresentaram, de forma geral, inibição fraca ou moderada das enzimas testadas. Dentre os derivados, podemos destacar o composto não bromado **68c**, o qual possui quatro metilenos espaçadores entre a função guanidina e a carboxamida, como o melhor inibidor de AChE e BuChE, com percentual de inibição de 64,3% e 49,0%, respectivamente. Adicionalmente, foi determinado o CI₅₀ para a inibição das enzimas AChE e BuChE pelo derivado **68c**, o qual se mostrou um inibidor não seletivo dessas enzimas com CI₅₀ de 22,8 μ M e 27,3 μ M, respectivamente. Através desses resultados, observamos também que, de forma geral, a presença do bromo no anel pirrólico não parece ser fundamental para a atividade dos compostos testados, com exceção do composto **69b**, que se mostrou um melhor inibidor de AChE e BuChE (44,7% de inibição para as duas enzimas) em comparação a seu análogo não bromado **68b** (13,0 % de inibição para a AChE e 5,0% de inibição para a BuChE).

Tabela 13- Atividade anticolinesterásica dos derivados guanidínicos acíclicos bis-
protegidos (68a-c; 69a-c)

Derivado	R	n	% de inibição	CI50	% de inibição	CI50	IS
			sobre a AChE ^b	$(\mu M)^a$	sobre a BuChE ^c	$(\mu M)^a$	
68a	Н	1	20,9	-	31,2	-	-
68b	Н	2	13,0	-	5,5	-	-
68c	Η	3	64,3	22,8	49,0	27,3	0.84
69a	Br	1	27,1	-	32,8	-	-
69b	Br	2	44,7	-	44,7	-	-
69c	Br	3	23,9	_	10,3	_	-
Donepezila	-	-	-	0,007	-	2,39	341

^aConcentração necessária para inibir 50% da atividade colinesterásica, dados obtidos \pm desvio padrão (DP) de triplicatas de ensaios independentes; ^bAChE de enguia elétrica; ^cBuChE de soro equino; Índice de seletividade (IS) é dado como AChE CI₅₀ / BuChE CI₅₀.

Os resultados da triagem *in vitro* para os derivados guanidínicos acíclicos livres (**50a-f**) (Tabela 14), mostrou que a maioria dos compostos são inibidores fracos das enzimas AChE e BuChE. A única exceção foi a guanidina **50c**, um derivado não bromado e com quatro unidades metilênicas como espaçador entre a carboxamida e a função guanidina. Este derivado se mostrou um inibidor seletivo de BuChE, com inibição de 71,2% na concentração de 30 μ M e CI₅₀ de 13,3 μ M. Como na série anterior, o derivado mais ativo foi um composto com mais unidades metilênicas no espaçador e não bromado. Adicionalmente, aparentemente para o derivado **50c**, a remoção do grupo *Boc* foi benéfica para a atividade seletiva anti-BuChE, visto que o análogo protegido deste derivado (**68c**, da série anterior) inibiu as duas enzimas com percentual semelhante na mesma concentração testada e CI₅₀ superior tanto para AChE (22,8 μ M) quanto BuChE (27,3 μ M).

Tabela 14-Atividade anticolinesterásica dos derivados guanidínicos acíclicos livres(50a-f)

Derivado	R	n	% de inibição	CI50	% de inibição	CI50	IS
			sobre a AChE ^b	$(\mu M)^a$	sobre a BuChE ^c	$(\mu M)^a$	
50a	Η	1	35,0	-	33,8	-	-
50b	Η	2	10,7	-	21,7	-	-
50c	Η	3	36,0	-	71,8	13,3	-
50d	Br	1	37,1	-	39,6	-	-
50e	Br	2	36,7	-	36,7	-	-
50f	Br	3	4,3	_	5,0	_	-
Donepezila	-	-	-	0,007	-	2,39	341

^a Concentração necessária para inibir 50% da atividade colinesterásica, dados obtidos \pm desvio padrão (DP) de triplicatas de ensaios independentes; ^bAChE de enguia elétrica; ^cBChE de soro equino; Índice de seletividade (IS) é dado como AChE CI₅₀ / BuChE CI₅₀.

Os resultados da triagem *in vitro* para os derivados acilguanidínicos protegidos (**62a-h; 62g'; 62h'**) (Tabela 15), destacou três derivados como bons inibidores seletivos de BuChE. São eles **62a** (benzil, CI₅₀ de 11,7 μ M para BuChE), **62b** (picolil, CI₅₀ de 22,8 μ M para BuChE) e **62g** (fenetil, CI₅₀ de 2,0 μ M para BuChE), o que parece sugerir, assim como dados da literatura já mostraram, que o aumento ca cadeia metilênica espaçadora favorece a inibição seletiva da BuChE. Porém no caso desta série de compostos o limite parece ser duas unidades metilênicas, visto que o homólogo com cadeia espaçadora de três unidades metilênicas (**62h**, 29,3% de inibição a 30 μ M) a perda de atividade foi significativa. Isto pode ser devido a impedimento estérico no sítio ativo da enzima e/ou maior flexibilidade conformacional da molécula. Outra característica que parece ser importante para esta série de acilguanidinas é a presença do bromo no anel pirrólico, uma vez que a ausência dos átomos de bromo (**62g'**; 40,7% de inibição a 30 μ M) resultou em considerável perda de atividade anti-BuChE comparativamente ao análogo dibromado correspondente (**62g;** 91,3% de inibição a 30 μ M).

Tabela 15-Atividade anticolinesterásica dos derivados guanidínicos acíclicos bis-protegidos (62a-h; 62g'; 62h')

Derivado	R	W	% de inibição sobre a AChE ^b	CI ₅₀ (µM) ^a	% de inibição sobre a BuChE ^c	CI ₅₀ (µM) ^a	IS
62 a	Br	Benzil	1,9	-	48,4	11,7	-
62b	Br	Picolil	12,7	-	47,8	22,8	-
62c	Br	p-fluor-benzil	4,3	-	10,1	-	-
62d	Br	p-cloro-benzil	2,2	-	20,1	-	-
62e	Br	p-metil-benzil	2,7	-	7,5	-	-
62f	Br	p-metóxi-benzil	7,0	-	45,3	-	-
62g	Br	fenetil	63,3	22,2	91,3	2,0	11,1
62h	Br	fenilpropil	0,4	-	29,4	-	-
62g'	Н	fenetil	3,7	-	40,7	-	-
62h'	Н	fenilpropil	6,4	-	24,1	-	-
Donepezila	-	-	-	0,007	-	2,39	341

^a Concentração necessária para inibir 50% da atividade colinesterásica, dados obtidos \pm desvio padrão (DP) de triplicatas de ensaios independentes; ^bAChE de enguia elétrica; ^cBuChE de soro equino; Índice de seletividade (IS) é dado como AChE CI₅₀ / BuChE CI₅₀.

Os derivados acilguanidínicos livres (62a-h; 62g'; 62h') corroboram com os resultados da série guanidínica acíclica (50a-f) (Tabela 14), pois também mostram que a presenca da subunidade guanidina livre é importante para a atividade inibitória sobre a BuChE (Tabela 17). Todos os compostos acilguanidínicos livres inibiram a enzima BuChE em percentual superior a 50% na concentração testada (30 µM), diferentemente dos análogos protegidos correspondentes (Tabela 16) dos quais somente três compostos foram ativos. A única excessão foram os derivados **51h** (44,5%) e **51h'** (32,9%), os quais possuem três unidades metilênicas entre o anel aromático e a subunidade guanidínica, corroborando os resultados da série protegida correspondente que mostrou que este tamanho de cadeia prejudicou a atividade inibitória dos compostos sobre a BuChE. Adicionalmente, a presença da acilguanidina livre também levou ao aumento da potência anti-BuChE dos derivados 51a (4,8 µM) e 51b (17,7 µM) em comparação com os análogos protegidos 62a (11,7 μ M) e 62b (22,8 μ M). Podemos destacar ainda as acilguanidinas 51c (p-fluor-benzil), 51d (p-cloro-benzil) e 51f (p-metóxibenzil) com inibição da BuChE superior a 80% na concentração de triagem utilizada (30 µM). Assim como na série anterior a presença do anel dibromopirrólico se mostrou fundamental para a inibição seletiva da BuChE, uma vez que os análogos não bromados no anel pirrólico se mostraram menos ativos que os compostos bromados correspondentes.

Tabela 16-Atividade anticolinesterásica dos derivados guanidínicos acíclicos bis-livres(51a-h; 51g'; 51h')

Derivado	R	W	% de inibição	CI ₅₀	% de inibição	CI ₅₀	IS
			sobre a AChE ^b	(µM) ^a	sobre a BuChE ^c	(µM) ^a	
51 ^a	Br	Benzil	37,8	-	86,1	4,8	-
51b	Br	Picolil	42,3	-	57,9	17,7	-
51c	Br	p-fluor-benzil	28,4	-	92,5	-	-
51d	Br	p-cloro-benzil	21,5	-	91,5	-	-
51e	Br	p-metil-benzil	25,7	-	52,3	-	-
51f	Br	p-metóxi-benzil	62,5	-	83,2	-	-
51g	Br	fenetil	66,9	21,5	90,01	3,8	5,7
51h	Br	fenilpropil	25,4	-	44,5	-	-
51g'	Η	fenetil	44,3	-	53,7	-	-
51h'	Η	fenilpropil	23,3	_	32,9	-	-
Donepezila	-	-	-	0.007	-	2.39	341

^a Concentração necessária para inibir 50% da atividade colinesterásica, dados obtidos \pm desvio padrão (DP) de triplicatas de ensaios independentes; ^bAChE de enguia elétrica; ^cBChE de soro equino; Índice de seletividade (IS) é dado como BuChE CI₅₀/AChE CI₅₀.

3.4. Estudos in silico das propriedades ADME das guanidinas e acilguanidinas ¹⁹⁸

Os estudos acerca dos diversos caminhos que o princípio ativo deve percorrer no complexo compartimento biológico, desde a sua administração por via oral até atingir a circulação sistêmica para exercer o efeito terapêutico desejado, fazem parte da chamada fase farmacocinética.¹⁹⁹ Os estudos de propriedades de ADME é muito importante para aindústria farmacêutica, pois avaliam e exploram teoricamente, em previsões das prorpiedades, os processos farmacocinéticos de absorção (A), distribuição (D), metabolismo (M) e excreção (E), nos estágios iniciais do processo de descoberta de fármacos. Pode-se supor, portanto, que o estudo das propriedades ADME podem contribuir para que possíveis triagens sejam conduzidas de forma clara e objetiva.

Sendo assim, com o objetivo de avaliar a *drugability*, ou farmacoabilidade, das guanidinas e acilguanidinas que se destacaram na triagem enzimática, as propriedades farmacocinéticas (ADME) foram avaliadas *in silico*. Utilizamos o SwissADME (http://www.swissadme.ch), uma ferramenta gratuita da internet que permite avaliar parâmetros farmacocinéticos e a *drugability* de pequenas moléculas. São avaliados parâmetros como área de superfície polar topológica (TPSA), log P, solubilidade, absorção intestinal humana (HIA), permeação da barreira hematoencefálica (BBB), etc.

Foram selecionados para esta etapa os compostos que se destacaram na triagem enzimática. Dessa forma, avaliamos as guanidinas acíclicas **68c** (CI₅₀ de 22,8 μ M e 27,3 μ M para AChE e BuChE, respectivamente) e **50c** (CI₅₀ de 13,3 μ M para BuChE), além das acilguanidinas **62a** (CI₅₀ de 11,7 μ M para BuChE), **62b** (CI₅₀ de 22,8 μ M para BuChE), **62g** (CI₅₀ de 2,0 μ M para BuChE), **51a** (CI₅₀ de 4,8 μ M para BuChE), **51b** (CI₅₀ de 17,7 μ M para BuChE) e **51g** (CI₅₀ de 3,8 μ M para BuChE). Avaliamos também o perfil

das acilguanidinas livres **51c** (*p*-fluor-benzil), **52d** (*p*-cloro-benzil) e **52f** (*p*-metóxibenzil), as quais também se destacaram como inibidores seletivos de BuChE (inibição maior que 80%), apesar de não terem tido suas potências determinadas até o momento.

A guanidina acíclica **68c** foi avaliada e o radar de biodisponibilidade (Figura 40), que permite a avaliação rápida da *drug-likeness*, levando em consideração a lipofilicidade, tamanho, polaridade, solubilidade, flexibilidade e saturação, previu este composto como não biodisponível oralmente por ser muito flexível, ou seja, a molécula possui muitas ligações rotacionáveis. Todos os outros parâmetros, como tamanho, lipofilicidae, instauração, polaridade e solubilidade estão dentro da área ótima para biodispolibilidade oral.

Figura 40 - Radar de biodisponibilidade para a guanidina 68c. A área rosa representa a faixa ótima para cada propriedade (lipofilicidade: XLOGP3 entre -0.7 e +5.0, tamanho: Peso molecular entre 150 e 500 g/mol, polaridade: TPSA entre 20 and 130 Å, solubilidade: log S até 6, saturação: fração de carbonos com hibridização sp3 de no mínimo 0.25, e flexibilidade: até 9 ligações rotacionáveis.)

O radar de biodisponibilidade (Figura 41) para a guanidina **50c**, análogo desprotegido de **68c**, mostra que este derivado deve ter biodisponibilidade oral, pois todos os parâmetros avaliados a colocam dentro da faixa rosa, faixa ótima para biodisponibilidade. Neste caso, como não temos a presença dos grupos *Boc* esta guanidina tem menor número de ligações rotacionáveis e portanto um perfil de flexibilidade melhor que seu análogo **68c**.

Figura 41-Radar de biodisponibilidade para a guanidina 50c. A área rosa representa a faixa ótima para cada propriedade (lipofilicidade: XLOGP3 entre –0.7 e +5.0, tamanho: MW entre 150 e 500 g/mol, polaridade: TPSA entre 20 and 130 Å, solubilidade: log S até 6, saturação: fração de carbonos com hibridização sp3 de no mínimo 0.25, e flexibilidade: até 9 ligações rotacionáveis.

A guanidina **68c** apresentou um valor calculado de TPSA de 133,9 A° e log P de 2,79; seu análogo não protegiddo, **50c**, apresentou valor calculado de TPSA de 106,7 A° e log Ps de 0,12. Estas características colocam **68c** e **50c** na área branca do modelo BOILED-Egg (Figura 42), com alta probabilidade de absorção grastrointestinal, porém com poucas chances de atravessar a barreira hemato-encefálica, o que seria desejável para os candidatos atuarem no sistema nervoso central. Adicionalmente, as guanidinas **68c** e **50c** apresentam bom perfil *drug-likeness* de acordo com as regras de Lipinski, Ghose, Veber (somente **50c**), Egan (somente **50c**) e Muegge.

Figura 42-Modelo BOILED-Egg para as guanidinas **68c** (azul) e **50c** (vermelho). Área branca: absorção gastrointestinal; Área amarela: absorção gastrintestinal e penetração na barreira hemato-encefálica.

Analisando o perfil ADME para as acilguanidinas protegidas **62a**, **62b** e **62g** observamos que todas devem ter biodisponibilidade oral, com todos os parâmetros avaliados as colocando dentro da faixa rosa, faixa ótima, do radar de biodispolibilidade.

Figura 43 - Radar de biodisponibilidade para as acilguanidinas 62a, 62b e 62g. A área rosa representa a faixa ótima para cada propriedade (lipofilicidade: XLOGP3 entre -0.7 e +5.0, tamanho: MW entre 150 e 500 g/mol, polaridade: TPSA entre 20 and 130 Å, solubilidade: logP S até 6, saturação: fração de carbonos com hibridização sp3 de no mínimo 0.25, e flexibilidade: até 9 ligações rotacionáveis.

A acilguanidina **62a** apresentou valor de TPSA calculado igual a 95,5 A° e logP de 3,99; **62b** apresentou valor de TPSA calculado igual a 108,4 A° e logP de 3,24; **62g** apresentou valor de TPSA calculado igual a 78,5 A° e logP de 4,44. Estas características colocam as três acilguanidinas protegidas na área branca do modelo BOILED-Egg (Figura 44), com alta probabilidade de absorção grastrointestinal, porém fora na área amarela que indicaria capacidade de atravessar a barreira hemato-encefálica, o que seria desejável para os candidatos atuarem no sistema nervoso central. A molécula **62g**, com maior LogP é que aparece mais próxima a região amarela, indicando uma maior probabilidade de penetração no sistema nervoso central. Adicionalmente, as acilguanidinas **62a**, **62b** e **62g** apresentam bom perfil *drug-likeness* de acordo com as regras de Lipinski, Veber e Egan.

Analisando o perfil ADME para as acilguanidinas livres **51a**, **52b** e **52g** observamos que, com exceção do número de insaturações, os demais parâmetros avaliados as colocam dentro da faixa rosa, faixa ótima, do radar de biodispolibilidade (Figura 45).

Figura 45 - Radar de biodisponibilidade para as acilguanidinas livres 51a, 51b e 51g. A área rosa representa a faixa ótima para cada propriedade (lipofilicidade: XLOGP3 entre -0.7 and +5.0, tamanho: MW entre 150 e 500 g/mol, polaridade: TPSA entre 20 e 130 Å, solubilidade: logP S até 6, saturação: fração de carbonos com hibridização sp3 de no mínimo 0.25, e flexibilidade: até 9 ligações rotacionáveis.

A acilguanidina **51a** apresentou valor de TPSA calculado igual a 80,7 A° e logPs de 2,88; **51b** apresentou valor de TPSA calculado igual a 81,6 A° e logPs de 2,52; **51g** apresentou valor de TPSA calculado igual a 80,7 A° e logPs de 3.22. Estas características colocam as três acilguanidinas protegidas na área branca do modelo BOILED-Egg (Figura 46), com alta probabilidade de absorção grastrointestinal e bem próximas da área amarela que indicaria capacidade de atravessar a barreira hemato-encefálica, o que seria desejável para os candidatos atuarem no sistema nervoso central. Adicionalmente, as acilguanidinas **51a**, **51b** e **51g** também apresentam bom perfil *drug-likeness* de acordo com as regras de Lipinski, Veber e Egan.

Figura 46-Modelo BOILED-Egg para as para as acilguanidinas **51a** (molécula 1), 51b (molécula 2) e **51g** (molécula 3). Área branca: absorção gastrointestinal; Área amarela: absorção gastrintestinal e penetração na barreira hemato-encefálica.

Analisando o perfil ADME para as acilguanidinas livres **51c** (*p*-fluor-benzil), **51d** (*p*-cloro-benzil) e **52f** (*p*-metóxi-benzil), as quais também se destacaram como inibidores seletivos de BuChE, observamos também que, com exceção do número de insaturações, os demais parâmetros avaliados as colocam dentro da faixa rosa, faixa ótima, do radar de biodispolibilidade (Figura 47).

Figura 47- Radar de biodisponibilidade para as acilguanidinas livres 51c, 51d e 51f. A área rosa representa a faixa ótima para cada propriedade (lipofilicidade: XLOGP3 entre -0.7 and +5.0, tamanho: MW entre 150 e 500 g/mol, polaridade: TPSA entre 20 e 130 Å, solubilidade: logP S até 6, saturação: fração de carbonos com hibridização sp3 de no mínimo 0.25, e flexibilidade: até 9 ligações rotacionáveis.

A acilguanidina **51c** apresentou valor de TPSA calculado igual a 80,7 A° e logP de 3,15; **51d** apresentou valor de TPSA calculado igual a 80,7 A° e logP de 3,40; **51f** apresentou valor de TPSA calculado igual a 90,0 A° e logP de 2,87. Estas características colocam as três acilguanidinas protegidas na área branca do modelo BOILED-Egg (Figura 48), com alta probabilidade de absorção grastrointestinal e próximas da área amarela que indicaria capacidade de atravessar a barreira hemato-encefálica, perfil desejável para candidatos a fármacos com atuação no sistema nervoso central. Adicionalmente, as acilguanidinas **51c**, **51d** e **51f** também apresentam bom perfil *drug-likeness* de acordo com as regras de Lipinski, Veber e Egan.

Figura 48-Modelo BOILED-Egg para as para as acilguanidinas 51c (molécula 1), 51d (molécula 2) e 51f (molécula 3). Área branca: absorção gastrointestinal; Área amarela: absorção gastrintestinal e penetração na barreira hemato-encefálica.

3.5 Estudo de interação enzimática in silico dos análogos acilguanidínicos

Para a realização do estudo de *docking* molecular entre os compostos da série de acilguanidinas e a enzima ecBuChE foi utilizado o modelo obtido por homologia disponível no banco de dados do Swiss-Model (<u>https://swissmodel.expasy.org/repository/uniprot/Q9N1N9</u>). A utilização de um modelo obtido por homologia é necessária pois só há disponível do *Protein Data Bank* dados referentes a butirilcolinesterase humana (hBuChE) e não da ecBuChE que foi utilizado nos ensaios enzimáticos de atividade biológica. O modelo por homologia foi obtido utilizando o template da enzima butirilcolinesterase humana (hBuChE – PDB 6I2T)²⁰⁰com identidade de sequência de 90,4%.)^{201 202}

O estudo de *docking* molecular foi realizado utilizando o programa GOLD 5.6 (CCDC Software Ltd., Cambridge, UK) com a função GoldScore e os compostos a serem estudados foram previamente tratados, através da minimização de energia via método semi-empírico PM6 (Spartan '14 V1.1.4 [Wavefunction, Inc]), considerando suas respectivas formas catiônicas, visto que em meio biológico (pH=7,5), estes encontram-se protonados. Foi determinado um raio de exploração 15 Å em torno do átomo de oxigênio da cadeia lateral do resíduo de Ser - 226 e então os compostos foram ancorados para realização do *docking* molecular.^{203 204}

As colinesterases possuem dois locais de ligação conhecidos: o CAS, onde as enzimas hidrolisam seus substratos; e o PAS, ambos localizados nas extremidades de um longo canal no sitio ativo destas enzimas. Ambos os locais foram explorados no estudo de ancoragem, para determinar como ocorre a interação desses compostos no sítio ativo da BuChE.

No programa GOLD, as funções de encaixe produzem valores de *scores* que são valores adimensionais, entendidas como "pontuações de aptidão". A pontuação de cada pose identificada é calculada como o negativo da soma de uma série de termos de energia envolvidos no processo de interação proteína-ligante, para que quanto mais positiva a pontuação, melhor a interação. Os valores de *scores* são um indicativo de quão boa é a posição do ancoramento, o que significa que uma pontuação mais alta indica uma melhor interação entre o ligante e o local de ligação.

Normalmente, os maiores valores de *score* refletem uma melhor interação do ligante com a proteína, entretanto, após a análise de todas as soluções geradas pelo programa GOLD 5.6, observou-se que nem sempre o maior valor representava de fato a pose correta. As poses escolhidas nas figuras abaixo foram selecionadas com base nos valores de *scores* obtidos, bem como na análise qualitativa do modo de interação entre o ligante e o receptor.

Analisando o resultado do *screening* realizadocom as guanidinas e acilguanidinas (**68 a-c**, **69 a-c**, **50 a-f**) e (**51a -h'** e **62 a-h'**) a uma concentração de 30μ M, é possível observar que a série mais promissora parece ser a das acilguanidinas livres (**51a-h'**). Sendo assim, optou-se por realizar o estudo de modelagem molecular (*docking* molecular com a enzima BuchE) dessa série para avaliar o perfil de interação entre os compostos mais ativos a 30μ M e a enzima mencionada.

3.5.1 Docking molecular para as acilguanidinas com a Butirilcolinesterase

Considerando as moléculas estudadas através do *screening* para inibição enzimática, aquelas escolhidas para o estudo do perfil de interação foram aquelas cuja taxas de inibição mostraram-se superiores a 50%. Essas moléculas e os resultados correlacionados estão mostrados abaixo, na tabela 17. Foi verificado que, de forma geral, as moléculas dessa série interagem dentro da cavidade do sítio ativo através de algumas interações principais, como: a interação bromo- π entre o bromo ligado ao anel pirrolico com o anel aromático referente ao resíduo do aminoácido triptofano (Trp-259), a interação π em forma de 'T' entre o anel pirrólico e o resíduo do aminoácido fenilalanina (Phe-357), a interação de hidrogênio entre o NH pirrólico e o resíduo do aminoácido histidina (Hys- 466), a interação entre o NH guanidínico e o resíduo do aminoácido ácido glutâmico (Glu- 225) e a interação entre o anel aromático da acilguanidina e o resíduo do aminoácido triptofano (Trp-110).

 Tabela 17- Porcentagens de inibição para os melhores compostos avaliados no screening.

	a				EeAchE -	- EeBuchE	
	Comp	osto			% inibição AChE em	% inibição BuChE em	
códigos	R	R ₁	n	Х	30mM	30mM	
51 ^a	Br	Н	1	СН	37,8	86,1	
51b	Br	Н	1	Ν	42,3	57,9	
51c	Br	F	1	CH	28,4	92,5	
51d	Br	Cl	1	CH	21,5	91,5	
51e	Br	CH ₃	1	CH	25,7	52,3	
51f	Br	CH ₃ O	1	CH	62,5	83,2	
51g	Br	Н	2	CH	66,9	90,01	
51h	Br	Н	3	CH	25,4	44,5	
51g'	Н	Н	2	CH	44,3	53,7	
51h'	Н	Н	3	СН	23,3	32,9	

Ao analisar os compostos mais ativos da série **51 a-h'** pode-se observar que tais moléculas apresentam um perfil semelhante ao considerar as interações bromo- π , as interações do tipo 'T', as interações de hidrogênio para os nitrogênios do anel pirrólico e dos grupamentos acilguanidínicos. A figura 49, a seguir, ilustra as interações mencionadas, comparando os compostos **51c**, **51d**, **51f** e **51a**, indicando diferenças mínimas de distância entre as moléculas e os resíduos de aminoácidos.

Figura 49-Comparação entre os dockings dos compostos 51c (1) = Br, R1=F, n=1, X=CH), 51d (B) (R = Br, R1=Cl, n=1, X=CH), 51f (C) (R = Br, R1=OCH3, n=1, X=CH)e 51a (D) (R = Br, R1=H, n=1, X=CH).

Pode-se também ressaltar que a presença de grupos substituintes na fenila das acilguanidinas parece interferir na atividade inibitória. Quando são comparados os compostos **51c**, **51d** e **51 f**, que possuem como substituintes no anel um átomo de flúor, um átomo de cloro e um grupo metoxila, respectivamente, com o composto **51a**, com a fenila não substituída, verifica-se que as melhores atividades são aquelas relacionadas aos compostos **51c** (**R=Br**, **R**₁ = **F**, **n=1**, **X=CH** inibição = **92,5%**) e **51d** (**R=Br**, **R**₁ = **Cl**, **n=1**, **X=CH** , inibição = **91,5%**), sugerindo que halogênios como substituintes contribuem para um acréscimo no valor da atividade.

Para o composto **51b** (**R**=**Br**,**R**₁ = **H**, **n**=**1**, **X**=**N**), nota-se que o modo de interação é semelhante às anteriores para o anel bromopirrólico, no entanto, o anel picolil se mostra ocupando uma cavidade diferente daquela ocupada pelos demais anéis aromáticos dos outros derivados acilguanidínicos, o que pode ser observado na figura 50 a seguir, que compara as interações dos compostos **51d** (**R**=**Br**, **R**₁ = **Cl**, **n**=**1**, **X**=**CH**) e **51b** (**R**=**Br**, **R**₁ = **H**, **n**=**1**, **X**=**N**). Essa diferença de interação pode justificar o descréscimo de atividade inibitória para o composto **51b**.

Figura 50 - (A) Docking molecular para o composto 51b. (B) Superfície de van der waals representando a sobreposição dos compostos 51d e 51 b e a enzima BchE. (C) Representação da superfície interna do sítio ativo da enzima BchE e sobreposição dos compostos 51d e 51b.

Considerando a diferença entre os homólogos, observa-se que o composto fenetílico (**51g**. **R=Br**, **R**₁=**H**, **n=2**, **X=CH**) apresenta melhor atividade (90,1%), quando comparado ao seu análogo benzílico (**51^a**, **R=Br**, **R**₁ = **H**, **n=1**, **X=CH**), atividade 86,1%, sugerindo que o sítio ativo acomoda bem um grupo metilênico adicional, verificando-se um aumento de atividade. No entanto, para o análogo com três grupos metilenos (**51h**, **R=Br**, **R**₁ = **H**, **n=3**, **X=CH**), observamos um decréscimo na atividade inibitória (44,5%). A figura 51 abaixo mostra o ancoramento molecular dos compostos **51a**, **51g** e **51h**, sobrepostos no interior do sítio ativo. O composto **51g** mostra um valor de inibição (90,1%) comparável aos valores encontrados para os compostos que apresentam halogênios como substituintes no anel fenílico, como por exemplo o **51c** (**R=Br**, **R**₁=**F**, **n=1**, **X=CH**)(inibição = 92,5%).

Figura 51- Docking molecular para os compostos 51a (R=Br, R1=H, n=1, X=CH), 51g (R=Br, R1=H, n=2, X=CH)e 51h(R=Br, R1=H, n=3, X=CH). A figura ilustra a sobreposição das moléculas mencionadas dentro da cavidade do sítio ativo da enzima BuChE.

Outro fator importante a ser destacado é a ausência dos átomos de bromo no anel pirrólico, que parece contribuir para um decréscimo no valor da atividade inibitória. Isso pode ser observado quando são comparados os compostos **51g** (**R=Br**, **R1=H**, **n=2**, **X=CH**) e **51g'** (**R=H**, **R1=H**, **n=2**, **X=CH**). No ancoramento molecular desses compostos é possível observar que são perdidas a interação bromo- π e a interação de hidrogênio referente ao NH (do anel pirrólico) para o composto com o anel pirrólico não bromado. A figura 52 a seguir ilustra a diferença observada entre o composto bromado e o não bromado e suas respectivas interações com a enzima BuChE.

Figura 52- Comparação entre os *dockings* moleculares dos compostos 51g (R=Br, R₁=H, n=2, X=CH) e 51g'(R=H, R₁=H, n=2, X=CH).

4. Conclusões

Neste trabalho foram planejados e sintetizados em bons rendimentos 32 compostos originais (68a-c; 69a-c; 50a-f; 62a-h; 62g'; 62h'; 51a-h; 51g'; 51h'), entre guanidinas e acilguanidinas (protegidas e desprotegidas), análogos sintéticos dos alcaloides marinhos oroidínicos, todos caracterizados por RMN¹H e RMN¹³C. A triagem in vitro sobre as enzimas acetilcolinesterase (AChE) e butirilcolinesterase (BuChE) revelou que a guanidina pirrólica protegida 68c é um inibidor não seletivo de AChE (CI₅₀ de 22,8µM) e BuChE (CI₅₀ de 27,3 µM) e que a guanidina pirrólica livre **50c** é um inibidor mais potente e seletivo de BuChE (CI₅₀ de 13,3µM). As novas acilguanidinas bromopirrólicas se destacaram como inibidores seletivos de BuChE, especialmente as acilguanidinas livres 51a (benzil), 51c (p-flúor-benzil), 51d (p-cloro-benzil), 51f (pmetóxi-benzil) e 51g (fenetil), as quais inibiram a atividade BuChE em mais de 80% na concentração de 30 µM. Os resultados mostraram a importância da função acilguanidina livre para a inibição seletiva de BuChE, bem como da presença dos bromos no anel pirrólico. Os resultados in vitro foram corroborados pelos estudos de docking com a BuChE, os quais mostraram que as acilguanidinas bromopirrólicas interagem dentro da cavidade do sítio ativo através da interação bromo- π com o anel aromático do aminoácido triptofano (Trp-259), interação π em forma de 'T' entre o anel pirrólico e o resíduo do aminoácido fenilalanina (Phe-357), interação de hidrogênio entre o NH pirrólico e o resíduo do aminoácido histidina (Hys- 466), interação entre o NH guanidínico e o resíduo do aminoácido ácido glutâmico (Glu- 225) e interação entre o anel aromático da acilguanidina e o resíduo do aminoácido triptofano (Trp-110). Adicionalmente, avaliação in silico das propriedades ADME e druglike mostrou que de forma geral as novas guanidinas e acilguanidinas obtidas tem potencial para boa absorção gastrointestinal e bom perfil drug-likeness.

Como perspectivas para este trabalho temos a conclusão da determinação dos CI_{50} para os derivados **51c**, **51d**, **51e** e **51f**, além da realização dos estudos de cinética enzimática para as acilguanidinas mais potentes. É importante ressaltar que a obtenção destes resultados fazia parte dos objetivos iniciais deste trabalho, o que não foi possível realizar devido à pandemia e, consequentemente, à limitação de acesso ao prédio e seus laboratórios.

5. Materiais e Métodos

5.1 Informações gerais

As reações químicas foram acompanhadas por análises por cromatografia em camada fina (CCF) utilizando placas de sílica de 200 µm de espessura utilizando-se como fase móvel n-hexano/acetato de etila e diclorometano/metanol em diferentes combinações e proporções. A visualização das substâncias por CCF foi realizada em lâmpada de ultravioleta (254 e 365 nm).

As fases orgânicas foram secas com sulfato de sódio (Na₂SO₄) anidro e os solventes orgânicos foram removidos sob pressão reduzida em evaporador rotatório, modelo RV 10 digital e banho IKA, modelo HB 10 digital.

Os compostos foram purificados por cromatografia líquida de adsorção em coluna flash, isolera Biotage, modelo ISSO-4SV (ICE-UFRRJ). Para a confecção da pastilha, utilizouse sílica gel 70-230 mesh (Merck). E para a fase móvel foram utilizados n-hexano/acetato de etila e diclorometano/metanol em diferentes proporções de acordo com as propriedades físicoquímicas de cada composto.

Os espectros de RMN de ¹H e ¹³C foram obtidos em espectrômetros Bruker Avance-500 e Bruker Avance-400 (ICE-UFRRJ), operando a 500/400 MHz, e 125/100 MHz, respectivamente. As amostras (20 - 25mg) foram dissolvidas em dimetilsulfóxido (DMSO-d6) ou clorofórmio (CDCl₃) e colocadas em tubos de 5 mm de diâmetro. Os deslocamentos químicos (d) foram expressos em parte por milhão (ppm) a partir do padrão interno tetrametilsilano (TMS), e as constantes de acoplamento (*J*) foram dadas em Hertz (Hz). As áreas dos picos foram obtidas por integração eletrônica e suas multiplicidades foram descritas do seguinte modo: s -simpleto; d -dupleto; dd -duplo dupleto; t -tripleto; td – tripleto de dupleto; dt–dupleto de triplete; q - quarteto; qu-quinteto; h –hepteto; m -multipleto; sl –sinal largo.

5.2 Procedimentos Sintéticos

Síntese do sal 2-metil-isotiourônio ²⁰⁵ (R=90%, Sólido amarelo, ponto de fusão 96-100°C)

$$H_2N \xrightarrow{S} NH_2 \xrightarrow{CH_3I} H_2N \xrightarrow{S} H_2N \xrightarrow{NH_2I-} 90 \text{ min, } 90\% (53)$$

Esquema 27. Síntese do sal 2-metil-isotiourônio (53) (Hickey, 2012)

Uma mistura de tioureia (**52**) (3g; 0,039 mol), iodometano (CH₃I) (2,5 ml; 0,039 mol) e metanol (30 ml) foi aquecida sob refluxo durante aproximadamente noventa minutos. O metanol foi removido sob vácuo e o sólido amarelo obtido foi transferido para um funil de Buchner e lavado com éter dietílico (5x15 ml). (R = 90%; PF literatura: 117°C; PF determinado: 96-100°C).

RMN¹H (500 MHz) DMSO-d6 / TMS (δ-ppm): 8,89 (NH₂, s, 2H); 2,56 (CH₃, s, 3H).

DEPTQ (500 MHz) DMSO-d6 / TMS (δ-ppm): 171,1 (-<u>C</u>SCH₃); 13,5 (-S<u>C</u>H₃);

Síntese da isometiltioureia mono-Boc (55)(R=80%, sólido branco, ponto de fusão 75-79°C) 206

Esquema 28. Síntese da isometiltioureia mono-Boc (55) (Guerritz, 2012)

Em um balão de 50 mL foram adicionados 1g (4,58 mmol) do sal metil isotiouréia (**53**) em 10 ml de diclorometano. Sob banho de gelo foram adicionados 639μ L de trietilamina (4,58 mmol) e sobre esta solução foram adicionados gota a gota durante um período de 45 minutos 500mg (2,293 mmol) de di-*terc*-butil-dicarbonato (Boc₂O ou anidrido BOC) (**54**) dissolvidos em 5 ml diclorometano. O banho de gelo foi removido e a reação deixada permaneceu sob agitação por um período de aproximadamente 24h. A mistura reacional foi diluída com 15 ml de diclorometano e a fase orgânica lavada com água (2 x 10 ml), seca com sulfato de sódio anidro e concentrada em evaporador rotatório. O produto (**55**) foi obtido como um sólido branco em 60% de rendimento. PF determinado: 75-78 °C; PF literatura: 77 °C.

RMN¹H (500 MHz) DMSO-d6 / TMS (δ-ppm): 8,56 (s, NH₂); 2,32 (s, 3H, CH₃); 1,41 (s, 9H, 3CH₃).

DEPTQ (500 MHz) DMSO-d6 / TMS (δ-ppm): 171,7 (C=O); 160,9 (C=N); 78,1 (<u>C</u>(CH₃)₃); 28,2 (C(<u>C</u>H₃)₃); 13,1 (S<u>C</u>H₃).

Síntese do 4,5-dibromopirrol-2-carboxaldeído (R=60%, Sólido violeta, ponto de fusão 146-150°C) $^{\rm 207}$

Esquema 29. Síntese do 4,5-dibromopirrol-2-carboxaldeído (57)

10,52 mmol de Bromo (2 eq) em ácido acético glacial (5 ml) foi adicionado lentamente a uma solução do pirrol-2-carboxaldeído (**56**) (5,26 mmol) em 10 ml de ácido acético glacial sob banho de gelo e água. A mistura fica sob agitação durante 1h. Após consumo total do material de partida, a mistura reacional é vertida sobre uma mistura de água destilada e gelo, filtrada em funil de Buchner e o sólido obtido é lavado com água gelada. O produto (**57**) foi obtido como um sólido em 60% de rendimento. (PF da literatura: 144-148°C; PF determinado: 146-150°C).

RMN¹H (500 MHz) CDCl₃ / TMS (δ-ppm): 10,40 (sl, 1H, NH); 9,34 (s, 1H, CHO); 6,97 (s, 1H, CH pirrol).

DEPTQ (500 MHz) CDCl₃ / TMS (δ-ppm): 177,9 (C=O); 123,2 (<u>C</u>H pirrol); 113,4 (<u>C</u>CHO); 102,2 (<u>C</u>-Br);

Reação de oxidação do aldeído pirrólico

Esquema 30. Reação de oxidação do aldeído pirrólico (56-57)

A uma suspensão de Ag₂O (2eq; 3,96 mmol) em 50 ml solução de hidróxido de sódio 8,5%, adiciona-se o aldeído (1,98 mmol; 1 eq) em 5 ml de etanol. A mistura fica sob agitação e refluxo durante noventa minutos ou até consumo total do aldeído de partida. O precipitado formado é filtrado e lavado com água quente. O filtrado mais as lavagens são acidificados com HCl concentrado e extraídos com diclorometano. O produto é obtido como um sólido em 60% de rendimento.

4,5-Dibromopirrol-2-ácido carboxílico (58) (R=60%, sólido roxo, ponto de fusão 146-150°C)

RMN¹H (500 MHz) DMSO-d6 / TMS (δ-ppm): 12,97 (s, 1H, OH); 12,77 (sl, 1H, NH); 6,83 (s, 1H, CH pirrol).

DEPTQ (500 MHz) DMSO-d6 / TMS (δ-ppm): 160, 3 (C=O); 124,9 (<u>C</u>OOH); 116,9 (<u>C</u>H pirrol); 106,8 e 98,7 (<u>C</u>-Br).

Pirrol-2-ácido carboxílico (59) (R= 88%, sólido roxo, ponto de fusão, 90-92°C)

RMN¹H (500 MHz) DMSO-d6 / **TMS (δ-ppm):** 12,26 (s, 1H, OH); 6,96 (s, 1H, CH pirrol); 6,72 (s, 1H, CH pirrol); 6,13 (s, 1H, CH pirrol).

DEPTQ (500 MHz) DMSO-d6 / TMS (δ-ppm): 161, 9 (C=O); 123,6 (COOH); 123,9/114,7/109,4 (CH's pirrol).

Síntese do 4,5-dibromopirrol-2-carboxamido-(tiometil)-metilenocarbamato de *terc*-butila (Adaptado de Konig, 2010)²⁰⁸

DCM, piridina, t.a, 2-4h, 80%

Esquema 31. Síntese do 4,5-dibromopirrol-2-carboxamido-(tiometil)metilenocarbamato de *terc*-butila (**60**)

A uma solução do ácido (**58** ou **59**) (1452 mg;5,4 mmol) em 40 ml de diclorometano foi adicionado 1,8 ml de cloreto de oxalila sob agitação. Após dez minutos adicionou-se 2 gotas de DMF e a mistura ficou sob agitação a temperatura ambiente por 24 horas. A solução escura foi concentrada em evaporador rotatório para gerar o cloreto de ácido correspondente. A amina (**55**) (1g, 5,4 mmol) foi solubilizada em 30 ml de diclorometano e 1,5 ml de piridina. O cloreto de ácido solubilizado em diclorometano foi adicionado gota a gota à solução da amina. A mistura continuou sob agitação a temperatura ambiente durante duas a quatro horas. A mistura reacional foi diluída com água e extraída com diclorometano. A fase orgânica foi seca com sulfato de sódio anidro e evaporada sob vácuo para gerar o produto (**60** ou **61**) como um sólido em aproximadamente 80% de rendimento.

Pirrol-2-carboxamido-(tiometil)-metileno-carbamato de *terc*-butila (61) (R=80%, sólido amarelo claro, Ponto de Fusão 192-194°C)

RMN¹H (**500 MHz**) **CDCl₃ / TMS** (δ-ppm): 9,55 (N<u>H</u>CO); 7,10 (s, 1H, C<u>H</u> pirrol); 7,02 (s, 1H, C<u>H</u> pirrol); 6,30 (s, 1H, C<u>H</u> pirrol); 2,52 (s, 3H, -SC<u>H</u>₃); 1,51 (s, 9H, 3C<u>H</u>₃).

DEPTQ (**500 MHz**) **CDCl₃** / **TMS** (δ-ppm): 170,5 (NH<u>C</u>O); 151,1 (<u>C</u>=O ou <u>C</u>=N); 130,4 (<u>C</u>C=O); 116,8 / 111,0 / 110,9 (<u>C</u>H's pirrol); 83,4 (<u>C</u>(CH₃)₃); 27,9 (3<u>C</u>H₃); 14,6 ppm (-S<u>C</u>H₃).

4,5-Dibromopirrol-2-carboxamido-tiometilmetileno-carbamato de *terc*-butila (60) (R=80%, Sólido amarelo claro, ponto de fusão: 194-197°C)

RMN¹H (500 MHz) CDCl₃ / TMS (δ-ppm): 7,04 (s, 1H, C<u>H</u> pirrol); 2,51 (s, 3H, -SC<u>H</u>₃); 1,52 (s, 9H, 3C<u>H</u>₃).

DEPTQ (500 MHz) CDCl₃ / TMS (δ-ppm): 119,3 (<u>C</u>H pirrol); 84,0 (<u>C</u>(CH₃)₃); 28,0 (3<u>C</u>H₃); 15,1 (-S<u>C</u>H₃).

Procedimento geral para a obtenção das acilguanidinas protegidas (62a-f, 62g', 62h')¹⁸²

Esquema 32. Procedimento geral para a obtenção das acilguanidinas protegidas (62a-h, 62g', 62h')

Uma mistura do intermediário chave isometiltioureia (**60** ou **61**) (1 eq), da amina de escolha (1,1 eq), trietilamina (1 eq) e DIPEA (1 eq) em diclorometano (10 ml / 1 mmol) foi agitada a temperatura ambiente durante 24h. Após a reação se completar, observada pelo consumo total do material de partida por CCF, dilui-se a mistura com diclorometano e lavou-se a fase orgânica com água destilada. A fase orgânica foi seca com sulfato de sódio anidro e evaporada sob pressão reduzida.

4,5-Dibromopirrol-2-carboxamido-(benzilamina)-metilenocarbamato de *terc*-butila (62a) (R = 69%, sólido branco, ponto de fusão: 167-169°C)

RMN¹H (500 MHz) CDCl₃ / TMS (\delta-ppm): 12,06 (s, 1H, N<u>H</u>CO); 9,37 (s, 1H, N<u>H</u>C=N); 7,37-7,32 (m, 5H, benzila); 6,89 (s, 1H, C<u>H</u> pirrol); 4,69 (d, 2H, J = 4,4 Hz, CH₂); 1,49 (s, 9H, 3C<u>H</u>₃).

DEPTQ (**500 MHz**) **CDCl₃ / TMS** (δ-ppm): 168,9 (<u>C</u>=O); 156,3 (<u>C</u>=O); 153,1 (<u>C</u>=N); 137,6 e 132,0 (<u>C</u>-Br); 129,1/127,9/127,7 (benzila); 116,9 (<u>C</u>H pirrol); 100,5 (Cq pirrol); 83,7 (<u>C</u>(CH₃)₃); 45,1 ppm (<u>C</u>H₂); 28,2 ppm (3<u>C</u>H₃).

4,5-Dibromopirrol-2-carboxamido-(2-piridinil-metilamino)-metilenocarbamato de *terc*butila (62b) ($\mathbf{R} = 85\%$, sólido amarelo claro, após purificação em coluna cromatográfica eluente hexano x acetato de etila, gradiente de concentração, ponto de fusão 159-163°C)

RMN¹H (500 MHz) CDCl₃ / TMS (δ-ppm): 11,92 (s, 1H, N<u>H</u>CO); 10,61 (s, 1H, N<u>H</u>C=N); 9,20 (s, 1H, NH pirrol); 8,70/7,74/7,37/7,27 (4s, 4Hs, piridinil); 6,89 (s, 1H, C<u>H</u> pirrol); 4,79 (sl, 2H, CH₂); 1,53 (s, 9H, 3CH₃).

DEPTQ (**500 MHz**) **CDCl₃** / **TMS** (δ-ppm): 168,5 (C=O); 155,7 (C=O); 153,0 (C=N); 149,2 ppm (CH piridina); 137,1 (CH piridina); 132,1 (Cq piridina); 122,6 (CH piridina); 122,2 (CH piridina); 116,1 (CH pirrol); 100,5 (C-Br); 83,5(<u>C</u>(CH₃)₃); 47,0 (CH₂); 28,1 (3CH₃).

4,5-Dibromopirrol-2-carboxamido(*p*-flúor-benzilamina)metilenocarbamato de *terc*butila (62c) (R =72%, sólido amarelo claro, após purificação em coluna cromatográfica eluente hexano x acetato de etila, gradiente de concentração, ponto de fusão 155-158°C)

RMN¹H (500 MHz) CDCl₃ / TMS (\delta-ppm): 12,06 (s, 1H, N<u>H</u>CO); 9,46 (s, 1H, N<u>H</u>C=N); 8,86 (NH pirrol); 7,34-7,32 (m, 2CH, benzila); 7,06 (d, J = 8,5 Hz, 2CH, benzila); 6,89 (s, 1H, C<u>H</u> pirrol); 4,63 (d, J = 5,2 Hz, 2H, CH₂); 1,49 (s, 9H, 3CH₃).

DEPTQ (500 MHz) CDCl₃ / TMS (δ-ppm): 163,2 (<u>C</u>=O ou <u>C</u>-F); 156,2 (<u>C</u>=O); 153,2 (<u>C</u>=N); 116,7 (2<u>C</u>H's benzil); 115,9 (2<u>C</u>H's benzil); 115,8 (<u>C</u>H pirrol); 83,7 (<u>C</u>(CH₃)₃); 44,6 (<u>C</u>H₂); 28,02 (3<u>C</u>H₃).

4,5-Dibromopirrol-2-carboxamido-(*p*-cloro-benzilamina)-metilenocarbamato de *terc*-butila (62d) ($\mathbf{R} = 77\%$, sólido amarelo claro, após purificação em coluna cromatográfica eluente hexano x acetato de etila, gradiente de concentração, ponto de fusão 167-168°C)

RMN¹H (500 MHz) CDCl₃ / TMS (\delta-ppm): 1,52 (s, 9H, 3CH3); 4,68 (d, J = 5,9 Hz, 2H, CH₂); 6,92 (s, 1H, CHpirrol); 7,28 (d, J = 8,2 Hz, 2H, 2CH aromatico); 7,36 (d, J = 8,2 Hz, 2H, 2CH aromatico); 8,92 (s, NH); 12,07 (s,NH).

DEPTQ (500 MHz) CDCl₃ / TMS (δ-ppm): 28,03(3<u>C</u>H3 Boc); 44,49(<u>C</u>H2); 83,82(<u>C</u>-CH3 Boc); 100,58 (<u>C</u>-Br); 116,89(<u>C</u>Hpirrol); 128,92(CH aromático); 129,07(CH aromático); 153,20(<u>C</u>=O Boc); 156,25(<u>C</u>=N); 136,07 (<u>C</u>-fenila); 133,62 (<u>C</u>-Cl); 169,03(NH-<u>C</u>=O)

4,5-Dibromopirrol-2-carboxamido-(*p*-metil-benzilamina)-metilenocarbamato de *terc*butila (62e) ($\mathbf{R} = 80\%$, sólido branco, após purificação em coluna cromatográfica eluente hexano x acetato de etila, gradiente de concentração, ponto de fusão 183-185°C)

RMN¹H (500 MHz) CDCl₃ / TMS (\delta-ppm): 12,08 (s, 1H, N<u>H</u>CO); 8,91 (N<u>H</u> pirrol); 7,30 (d, J = 7,69 Hz, 2C<u>H</u>, toluila); 7,20 (d, J = 7,9 Hz, 2H, 2C<u>H</u>'s toluila); 7,30-7-21 (s, 1H, C<u>H</u> pirrol); 4,68 (s, J = 5,9 Hz, 2H C<u>H</u>₂); 2,38 (s, 3H, C<u>H</u>₃); 1,52 (s, 9H, 3C<u>H</u>₃).

DEPTQ (500 MHz) CDCl₃ / TMS (δ-ppm): 156,1 (C=N); 153,1 (<u>C</u>=O); 153,1 (C=O); 134,8 (C₁ toluila); 129,6 (2<u>C</u>H toluila); 127,6 (2<u>C</u>H toluila); 116,9 (<u>C</u>H pirrol); 100,6 (<u>C</u>-Br); 83,7 (<u>C</u>(CH₃)₃); 45,1 (<u>C</u>H₂); 28,1 (3<u>C</u>H₃); 21,2 (<u>C</u>H₃).

4,5-Dibromopirrol-2-carboxamido-(*p*-metóxi-benzilamina)-metilenocarbamato de *terc*butila (62f) (R = 59%, sólido castanho claro, ponto de fusão 147-150°C)

RMN¹H (500 MHz) CDCl₃ / TMS (\delta-ppm): 12,08 (s, 1H, N<u>H</u>CO); 8,85 (N<u>H</u> pirrol); 7,30 (d, J = 8.5 Hz, 2C<u>H</u>, benzila); 7,94-6,98 (m, 3H, 2C<u>H</u>'s benzila, C<u>H</u> pirrol); 4,65 (d, J = 5.5 Hz, 2H, C<u>H</u>₂); 1,51 (s, 9H, 3C<u>H</u>₃).

DEPTQ (500 MHz) CDCl₃ / TMS (δ-ppm): 169,2 (<u>C</u>=ONH); 159,2 (C=O); 156,1 (<u>C</u>OCH₃); 153,1 (C=N); 132,0 (Cq benzila); 129,5 (Cq pirrol); 100,5 (CBr); 129,0 (2<u>C</u>H's benzil); 116,8 (CH pirrol); 114,3 (2<u>C</u>H's benzil); 83,6 (<u>C</u>(CH₃)₃); 44,7 (<u>C</u>H₂); 28,0 (3<u>C</u>H₃).

4,5-Dibromopirrol-2-carboxamido-(fenetilamina)-metilenocarbamato de *terc*-butila (62g) ($\mathbf{R} = 75\%$, sólido amarelo claro, após purificação em coluna cromatográfica eluente hexano x acetato de etila, gradiente de concentração, ponto de fusão: 131-132°C)

RMN¹H (500 MHz) CDCl₃ / TMS (δ-ppm): 12,07 (s, 1H, N<u>H</u>CO); 10,10 (sl, 1H, N<u>H</u>C=N); 8,67 (s, 1H, N<u>H</u> pirrol); 7,37 (t, 2H, fenila); 7,28 (m, 3H, fenila); 6,95 (s, 1H, C<u>H</u> pirrol); 3,77 (q, 2H, J= 7,02 e 7,27, CH₂); 2,98 (t, 2H, CH₂); 1,52 (s, 9H, 3CH₃).

DEPTQ (500 MHz) CDCl₃ / TMS (δ-ppm): 169,0 (<u>C</u>=O); 156,2 (<u>C</u>=O); 153,1 (<u>C</u>=N); 138,4 (Cq fenila); 131,9 (Cq pirrol); 128,8 (4<u>C</u>H fenila); 126,7 (<u>C</u>H fenila); 116,6 (CH pirrol); 100,3 (C-Br); 83,5 (<u>C</u>(CH₃)₃); 42,8 (<u>C</u>H₂); 35,6 (<u>C</u>H₂); 28,1 (3<u>C</u>H₃).

4,5-Dibromopirrol-2-carboxamido-(propilamina)-metilenocarbamato de *terc*-butila (62h) ($\mathbf{R} = 82\%$, sólido castanho claro, após purificação em coluna cromatográfica eluente hexano x acetato de etila, gradiente de concentração, ponto de fusão 164-167°C)

RMN¹H (500 MHz) CDCl₃ / TMS (\delta-ppm): 12,05 (s, N<u>H</u>CO); 8,62 (s, N<u>H</u>CN); 7,31 (t, J = 7.4 Hz, 2H, 2CH fenila); 7,22 (m, 3H, 3CH's fenila); 6,83 (s, 1H, CH pirrol); 3,52 (dd, J = 13.2, 6.7 Hz, 2H, CH₂); 2,72 (t, J = 7.4 Hz, 2H, CH₂); 2,04 – 1,86 (m, 2H, CH₂); 1,52 (s, 9H, 3CH₃).

DEPTQ (**500** MHz) CDCl₃ / TMS (δ-ppm): 169,08 (C=O); 156,3 (C=O); 153,32 (C=N); 140,98 (Cq fenila); 132,07 (Cq pirrol); 128,69 (2CH's fenila); 128,54 (2CH's fenila); 126,36 (CH fenila); 116,96 (CH pirrol); 100,49 (C-Br); 83,59 (<u>C</u>(CH₃)₃); 40,63 (CH₂); 33,20 (CH₂); 30,89 (CH₂); 28,18 (3CH₃).

Pirrol-2-carboxamido-(fenetilamina)-metilenocarbamato de *terc*-butila (62g') ($\mathbf{R} = 63\%$, sólido castanho claro, após purificação em coluna cromatográfica eluente hexano x acetato de etila, gradiente de concentração, ponto de fusão 151-154°C)

RMN¹H (**500 MHz**) **CDCl₃** / **TMS** (δ -**ppm**): 12,35 (s, 1H, N<u>H</u>CO); 9,28 (s, 1H, N<u>H</u>C=N); 8,50 (s, 1H, N<u>H</u> pirrol); 7,38-7,32 (m, 2H, 2CH); 7,30-7,25 (m, 4H, 3CH's fenila e CH pirrol) 6,99 (s, 1H, C<u>H</u> pirrol); 6,91 (s, 1H, C<u>H</u> pirrol); 3,75 (dd, J = 13,8, 6,7 Hz, 2H, CH₂); 2,97 (t, J = 7,5 Hz, 2H, CH₂); 1,49 (s, 9H, 3CH₃).

DEPTQ (500 MHz) CDCl₃ / TMS (δ-ppm): 171,0 (<u>C</u>=O); 156,0 (<u>C</u>=O); 153,3 (<u>C</u>=N); 138,7 (Cq fenila); 131,2 (Cq pirrol); 128,8 (2<u>C</u>H's fenila); 128,7,7 (2<u>C</u>H's fenila); 121,6 / 114,2 / 110,5 (3CH's pirrol); 83,2 (<u>C</u>(CH₃)₃); 42,8 (<u>C</u>H₂); 35,7 (<u>C</u>H₂); 28,0 (3<u>C</u>H₃).

Pirrol-2-carboxamido-(propillamina)-metilenocarbamato de *terc*-butila (62h') (R = 72%, sólido amarelo claro, após purificação em coluna cromatográfica eluente hexano x acetato de etila, gradiente de concentração, ponto de fusão 159-160°C)

RMN¹H (500 MHz) CDCl₃ / TMS (δ-ppm): 12,43 (s, N<u>H</u>CO); 8,50 (s, N<u>H</u>C=N); 7,30 (m, 5H, fenila); 6,95 (s, 1H, CH pirrol); 6,90 (s, 1H, CH pirrol); 6,27 (s, 1H, CH pirrol); 3,63 – 3,40 (m, 2H, CH₂); 2,75 (t, *J* = 7.3 Hz, 2H, CH₂); 2,09 – 1,95 (m, 2H, CH₂); 1,53 (s, 9H, 3CH₃).

DEPTQ (**500 MHz**) **CDCl₃** / **TMS** (δ-ppm): 171,06 (<u>C</u>=O); 156,09 (<u>C</u>=O); 153,54 (<u>C</u>=N); 141,35 (Cq fenila); 131,28 (Cq pirrol); 128,63 (2<u>C</u>H's fenila); 126,18 (2<u>C</u>H's fenila); 121,76 (<u>C</u>H fenila); 114,25 / 111,19 / 110,46 (3CH's pirrol); 83,20 (<u>C</u>(CH₃)₃); 40,46 (<u>C</u>H₂); 33,19 (<u>C</u>H₂); 30,83 (<u>C</u>H₂); 28,32 (3<u>C</u>H₃).

Procedimento geral para a síntese das acilguanidinas livres (51a-h, 51g', 51h') (Guerritz, 2012)¹⁸²

Esquema 33. Procedimento de desproteção em meio ácido para a síntese das acilguanidinas livres (51a-h, 51g', 51h')

A uma solução da acilguanidina protegida (**62a-h**, **62g'**, **62h'**) (0,2 mmol) em diclorometano (5 ml) são adicionados 4 equivalentes de ácido trifluoracético (TFA). A mistura fica sob agitação a temperatura ambiente até consumo total do material de partida (24-48h). O produto é isolado evaporando-se a mistura reacional sob pressão reduzida.

N-(N-Benzilcarbamimidoil)-4,5-dibromopirrol-2-carboxamida (51a) (R = 100%, sólido amarelo claro, ponto de fusão: 160-162°C)

RMN¹H (500 MHz) DMSO-d6 / TMS (δ-ppm): 13,41 (sl, N<u>H</u>); 11,06 (sl, N<u>H</u>), 9,27 (sl, N<u>H</u>); 7;39 (m, 5H, fenila); 7,21 (s, 1H, C<u>H</u> pirrol); 4,58 (d, 2H, C<u>H</u>₂, *J* = 5,86 Hz).

DEPTQ (500 MHz) DMSO-d6 / TMS (δ-ppm): 136,3 (Cq fenila); 129,1 (2<u>C</u>H fenila); 128,2 (<u>C</u>H fenila); 127,8 (2<u>C</u>H fenila); 117,5 (<u>C</u>H pirrol); 99,9 (<u>C</u>-Br); 44,7 (<u>C</u>H₂).

N-(N-(2-Piridinilmetil)carbamimidoil)-4,5-dibromopirrol-2-carboxamida (51b) (R = 98%, sólido castanho claro, ponto de fusão: 155-159°C)

RMN¹H (500 MHz) DMSO-d6 / TMS (δ-ppm): 13,48 (sl, N<u>H</u>), 11.57 (sl, N<u>H</u>), 9.86 (sl, N<u>H</u>); 8,95 (sl, N<u>H</u>); 8,60 (s, 1H, <u>CH</u> piridinil), 7.88 (s, 1H, <u>CH</u> pirrol), 7,42-7,36 (m, 3H, <u>CH</u> piridinil); 4.74 (s, 2H, C<u>H</u>₂).

DEPTQ (**500 MHz**) **DMSO-d6** / **TMS** (δ-ppm): 159,0 (<u>C</u>=ONH); 154,2 (C=N); 125,5 (Cq piridinila); 111,1 (Cq pirrol); 149,2 / 138,0 / 123,5 / 122,1 (4<u>C</u>H piridinila); 117,1 (<u>C</u>H pirrol); 99,8 (C-Br); 46,1 (CH₂).

N-(N-(4-fluorobenzil)carbamimidoil)-4,5-dibromopirrol-2-carboxamida (51c) (R = 100%, sólido amarelo escuro, ponto de fusão: 169-171°C)

RMN¹H (500 MHz) DMSO-d6 / **TMS (δ-ppm):** 13,40 (s, N<u>H</u>CO); 11,28 (s, NH); 9,44 (s, NH); 8,90 (s, NH); 7,48 – 7,39 (m, 2H, 2CH fenil); 7,25 (m, 3H, 2CH fenil e CH pirrol); 4,57 (d, *J* = 5.8 Hz, 2H, CH₂).

DEPTQ (**500 MHz**) **DMSO-d6** / **TMS** (δ-**ppm**): 44,10(<u>C</u>H2); 99,96 (<u>C</u>-Br); 104,71(<u>C</u>-Br); 115,85(<u>C</u>H pirrol); 130,0(<u>C</u>H aromático); 130,07(<u>C</u>Haromatico); 123,6(C-C=O); 135,49(Cquaternario-aromatico); 154,10(C=NH).
N-(N-(4-clorobenzil)carbamimidoil)-4,5-dibromopirrol-2-carboxamida (51d) (R = 100%, sólido amarelo claro, ponto de fusão: 178-180°C)

RMN¹H (500 MHz) DMSO-d6 / **TMS (δ-ppm):** 13,43 (s, N<u>H</u>CO); 11,18 (s, NH); 9,39 (s, NH); 7,47 (d, *J* = 8.2 Hz, 2H, 2CH fenil); 7,40 (d, *J* = 8.2 Hz, 2H, 2CH fenil); 7,26 (s, 1H, CH pirrol); 4,59 (d, *J* = 5.9 Hz, 2H, CH₂).

DEPTQ (500 MHz) DMSO-d6 / TMS (δ-ppm): 44,03(<u>C</u>H2); 99,90 (<u>C</u>-Br); 117,65(<u>C</u>H pirrol); 129,05 e 129,69(2CH fenila); 131,34 (<u>C</u>-Cl); 132,83 e 135,44(2<u>C</u>H fenila); 154,28 (<u>C</u>=NH); 166,9 (<u>C</u>=O).

N-(N-(4-metilbenzil)carbamimidoil)-4,5-dibromopirrol-2-carboxamida (51e) (R = 98%, sólido branco, ponto de fusão: 172-174°C)

RMN¹H (500 MHz) DMSO-d6 / TMS (\delta-ppm): 13,40 (s, N<u>H</u>CO); 11,36 (s, NH); 9,45 (s, NH); 8,93 (s, NH); 7,36 – 7,24 (m, 3H, 2CH fenil e CH pirrol); 7,21 (d, *J* = 7.9 Hz, 2H, 2CH fenil); 4,54 (d, *J* = 5.9 Hz, 2H, CH₂); 2,30 (s, 3H, CH₃). **DEPTQ (500 MHz) DMSO-d6 / TMS (\delta-ppm):** 153,37 (NH<u>C</u>O ou <u>C</u>=N); 137,12 (Cq fenil); 132,71 (Cq fenil); 129,21 (2<u>C</u>H₂ fenil); 127,39 (2<u>C</u>H₂ fenil); 125,06 (Cq pirrol); 117,02 (<u>C</u>H pirrol); 110,58 (<u>C</u>-Br); 99,45 (<u>C</u>-Br); 44,10 (<u>C</u>H₂); 20,69 (<u>C</u>H₃).

N-(N-(4-metóxibenzil)carbamimidoil)-4,5-dibromopirrol-2-carboxamida (51f) (R = 100%, sólido castanho claro, ponto de fusão: 151-154°C)

RMN¹H (500 MHz) DMSO-d6 / **TMS (\delta-ppm):** 13,44 (s, NH); 11,07 (s, NH), 9,20 (s, NH); 7;34 (d, 2H, J = 8,4 Hz, 2CH fenila); 7,21 (s, 1H, CH pirrol); 6,98 (d, 2H, J = 8,4 Hz, 2CH fenila); 4,50 (d, 2H, J = 5,7 Hz, CH₂); 3,75 (s, 3H, -OCH₃).

DEPTQ (500 MHz) DMSO-d6 / TMS (δ-ppm): 44,30 (<u>C</u>H₂); 55,62 (<u>C</u>H₃); 99,87 (<u>C</u>-Br); 114,53 (2<u>C</u>H aromaticos); 117,41 (CH pirrol); 126,8 (-Cq pirrol); 129,46 (2<u>C</u>H aromaticos); 159,41 (C4 fenila).

N-(N-fenetilcarbamimidoil)-4,5-Dibromopirrol-2-carboxamida (51g) (R = 97%, sólido amarelo claro, ponto de fusão 139-142°C)

RMN¹H (500 MHz) DMSO-d6 / TMS (δ-ppm): 13.39 (sl, NH), 11.40 (sl, NH), 9.18 (sl, NH), 8.85 (sl, NH), 7.31 (m, 5H, fenila), 7.24 (s, 1H, <u>C</u>H pirrol), 3.59 (m, 2H, CH₂), 2.89 (m, 2H, CH₂).

DEPTQ (500 MHz) DMSO-d6 / TMS (δ-ppm): 158.95 (C=O); 153,80 (<u>C</u>=NH);138,4 (Cq fenila); 129,27 (2<u>C</u>H fenila); 128,93 (2<u>C</u>H fenila); 127,06 (<u>C</u>H fenila); 117,49 (CH pirrol); 111,1 (Cq pirrol); 99,90 (C-Br); 42.86 (CH₂).

N-(N-propilcarbamimidoil)-4,5-Dibromopirrol-2-carboxamida (51h) (R = 99%, sólido amarelo claro, ponto de fusão: 153-154°C)

RMN¹H (500 MHz) DMSO-d6 / TMS (δ-ppm): 13,42 (s, N<u>H</u>CO); 11,03 (s, N<u>H</u>CN); 8,95 (s, NH pirrol); 7,23- 7,30 (m, 6H, fenila e CH pirrol); 2,65 (m, 2H); 1,87 (m, 2H); 1,25(m, 2H).

DEPTQ (500 MHz) DMSO-d6 / TMS (δ-ppm): 128,87 (2<u>C</u>H's fenila); 128,73 (2<u>C</u>H's fenila); 126,45 (<u>C</u>H fenila); 41,42 (<u>C</u>H₂); 32,51 (<u>C</u>H₂); 29,86 (<u>C</u>H₂).

N-(*N*-fenetilcarbamimidoil)-pirrol-2-carboxamida (51g') (R=100%, solido branco, ponto de fusão: 160-162°C)

RMN¹H (500 MHz) DMSO-d6 / TMS (δ-ppm): 12,17 (sl, NH); 11,10 (sl, NH); 9,18 (sl, NH); 8,81 (sl, NH); 7,37-730 (m, 4H,); 7,25 (s, 1H, CH fenila); 7,21 (s, 1H, CH pirrol), 7,16 (s, 1H, CH pirrol); 6,28 (s, 1H, CH pirrol); 3.61 (dd, *J* = 13.4, 6.8 Hz, 2H CH₂), 2.91 (t, *J* = 7,3 Hz, 2H, CH₂).

DEPTQ (500 MHz) DMSO-d6 / TMS (δ-ppm): 160,5 (<u>C</u>=ONH); 154,24 (<u>C</u>=NH); 138,4 (Cq fenila); 123,5 (Cq pirrol); 129,9 / 129,3 / 127,2 (<u>C</u>H''s fenila); 127,1 / 115,7 / 110,8 (CH's pirrol); 42.86 e 34,1 (2<u>C</u>H₂).

N-(*N*-propillcarbamimidoil)-pirrol-2-carboxamida (51h')(R=100%, solido amarelo claro, ponto de fusão: 139-143°C)

RMN¹H (500 MHz) CDCl₃ / TMS (δ-ppm): 12,43 (s, N<u>H</u>CO); 8,50 (s, N<u>H</u>C=N); 7,30 (m, 5H, fenila); 6,95 (s, 1H, CH pirrol); 6,90 (s, 1H, CH pirrol); 6,27 (s, 1H, CH pirrol); 3,63 – 3,40 (m, 2H, CH₂); 2,75 (t, *J* = 7.3 Hz, 2H, CH₂); 2,09 – 1,95 (m, 2H, CH₂); 1,53 (s, 9H, 3CH₃).

DEPTQ (500 MHz) CDCl₃ / TMS (δ-ppm): 171,06 (C=O); 156,09 (C=O); 153,54 (C=N); 141,35 (Cq fenila); 131,28 (Cq pirrol); 128,63 (2CH's fenila); 126,18 (2CH's fenila); 121,76; 41,2-32,5-29,9 (3<u>C</u>H₂)

Síntese da isometiltioureia bis-protegida (63)²⁰⁹

Esquema 8. Procedimento de síntese do agente guanilante (63)

A uma solução do sal de isometiltiouréia (53) (10 mmol) em diclorometano (7,5 ml), adicionase solução saturada de bicarbonato de sódio (7,5 ml) e di-*terc*-butil-dicarbonato (54) (40 mmol). A mistura reacional fica sob agitação a temperatura ambiente durante 24 horas. A mistura é particionada entre água destilada e diclorometano, a fase orgânica é lavada com água destilada e a fase orgânica é seca com sulfato de sódio anidro. A fase orgânica é evaporada em evaporador rotatório para fornecer o agente guanilante (63) como um sólido branco em 90% de rendimento.

RMN¹H (500 MHz) CDCl₃ / TMS (δ-ppm): 2,40 (s, 3h, SC<u>H</u>₃); 1,50 (s, 9H, 3CH₃); 1,25 (s, 9H, 3CH₃).

DEPTQ (500 MHz) CDCl₃ / TMS (δ-ppm): 28,0 (3<u>C</u>H₃); 27,2 (3<u>C</u>H₃); 14,7 (S<u>C</u>H₃).

Procedimento geral de síntese das amino-alquilguanidinas bis-protegidas (65a-c)

Esquema 9. Procedimento para síntese das amino-alquilguanidinas bis-protegidas (65ac)

A metilisotiouréia bis-protegida (63) (20.0 mmol) em CH_2Cl_2 (30 mL) foi adicionada de uma única vez sobre uma solução do diaminoalcano (50.0 mmol) in CH_2Cl_2 (44 mL). A reação ficou sob agitação a 21 °C durante 30-70 min. A mistura reacional foi lavada com água destilada (3 × 25 mL), solução saturada de cloreto de sódio (30 mL), seca com Na₂SO4 e filtrada. Após remoção do solvente, o óleo obtido é conservado na geladeira e usado sem purificação. Estes intermediários (65a-c) não foram caracterizados devido à instabilidade química dos mesmos. Todas as aminoalquilguanidinas bis-protegidas são obtidas como um óleo transparente.

Procedimento geral de síntese dos derivados pirrol-2-carboxamido-alquilguanidínicos bis-protegidos (68a-c; 69^a-c)

Esquema 10. Procedimento obtenção dos derivados pirrol-2-carboxamido-acilguanidínicos bis-protegidos (**68a-c; 69a-c**)

A uma solução do tricloroacetilpirrol (**66** ou **67**) (2,35 mmol) em CH_2Cl_2 (40 ml) foi adicionada a aminoalquilguanidina bis-protegida (**65a-c**) (5,4 mmol) e 1,5 ml de trietilamina. A mistura ficou sob agitação à temperatura ambiente por 24h ou até consumo total dos materiais de patida.

A mistura reacional foi diluída com água destilada e extraída com CH_2Cl_2 . A fase orgânica foi seca com sulfato de sódio anidro e evaporada sob vácuo para gerar o produto como um sólido em 70-80% de rendimento.

Pirrol-2-carboxamido-etilguanidina bis-protegida (68a) ($\mathbf{R} = 71\%$, sólido amarelo escuro, após purificação em coluna cromatográfica eluente hexano x acetato de etila, gradiente de concentração, ponto de fusão 118-121°C)

RMN¹H (500 MHz) CDCl₃ / TMS (δ-ppm): 1,46 (s, 9H, 3CH₃); 1,40 (s, 9H, 3CH₃); 3,35-3,48 (m, 2H, CH₂); 6,05 (s, 1H, CH); 6,73 (s, 1H, CH); 6,83 (s, 1H, CH); 8,10 (t, NH); 8,47(t, NH); 11,45 (s, NH); 11,51(s, NH).

RMN¹³C (500 MHz) CDCl₃ / TMS (δ-ppm): 163,5 (C=O); 161,4 (C=O); 156,3 (C=N); 152,28 (C=O); 126,56 (Cq pirrol); 108,9 (CH); 110,2 (CH); 121,66 (CH); 78,7 e 83,3 (*terc*-butilas Boc), 38,9 (CH₂); 28,1 e 28,4 (metilas Boc)

4,5-Dibromopirrol-2-carboxamido-etilguanidina bis-protegida (69a) ($\mathbf{R} = 82\%$, óleo castanho claro, após purificação em coluna cromatográfica eluente hexano x acetato de etila, gradiente de concentração)

RMN¹H (500 MHz) CDCl₃ / TMS (δ-ppm): 1,40 e 1,46 (2s, 18H, 6CH₃); 1,98 (s, 2H, CH₂); 3,45 (s, 2H, CH₂); 6,86 (s, 1H, CH); 8,19 (s, NH); 8,44 (s, NH); 11,49 (s, NH); 12,69 (s, NH).

RMN¹³C (500 MHz) CDCl₃ / TMS (δ-ppm): 28,4 e 28,1 (metilas *Boc*); 38,9 (CH₂); 78,5 e 83,3 (*terc*-butilas *Boc*); 98,2 e 104,9 (2C-Br); 112,8 (CH); 128,6 (Cq pirrol); 152,3 (C=O); 156,31 (C=O); 159,6 (C=N); 163,43 (C=O).

Pirrol-2-carboxamido-propilguanidina bis-protegida (68b) (R = 75%, sólido castanho escuro, após purificação em coluna cromatográfica eluente hexano x acetato de etila, gradiente de concentração, ponto de fusão 129-131°C)

RMN¹H (500 MHz) CDCl₃ / TMS (δ-ppm): 1,51 e 1,50 (2sl, 18H, 6CH₃); 1,72 (t, 2H, CH₂); 3,41-3,51 (dd, 4H, 2CH₂); 6,18 (s, 1H, CH); 6,89 (s, 1H, CH); 6,96 (s, 1H, CH); 7,60 (m, NH); 9,72 (s, NH); 11,61 (s, NH).

RMN¹³C (500 MHz) CDCl₃ / TMS (δ-ppm): 28,2 e 28,5 (metilas *Boc*); 36,8/35,2/ 30,4 (3 <u>CH₂</u>); 79,8 e 83,7 (*terc*-butilas *Boc*); 109,6 (<u>CH</u> pirrol); 110,2 (<u>CH</u>pirrol); 121,2 (<u>CH</u>pirrol); 125,4 (<u>C</u>q pirrol); 153,4 (<u>C</u>=N); 157,4 (<u>C</u>=O); 161,3 (<u>C</u>=O); 163,6 (<u>C</u>=O).

4,5-Dibromopirrol-2-carboxamido-propilguanidina bis-protegida (69b) ($\mathbf{R} = 60\%$, sólido amarelo, após purificação em coluna cromatográfica eluente hexano x acetato de etila, gradiente de concentração, ponto de fusão 112-115°C)

RMN¹H (**500 MHz**) **CDCl₃ / TMS** (δ-ppm): 11,58 (s, NHCO); 8,54 (s, NH); 8,06 (s, 1H); 7,26 (s, NH); 6,98 (s, 1H, CH pirrol), 3,55 – 3,17 (m, 4H, 2CH₂), 1.73 (s, 2H, CH₂), 1.51 (s, 18H, 3CH₃).

DEPTQ (500 MHz) CDCl₃ / TMS (δ-ppm): 163,2 (NH<u>C</u>O); 159,7 (<u>C</u>=N); 157,5 (<u>C</u>=O); 153,2 (<u>C</u>=O); 127,4 (Cq pirrol); 112,9 (CH pirrol); 104,9 (<u>C</u>-Br); 99,3 (<u>C</u>-Br); 83,5 (<u>C</u>(CH₃)₃); 80,2 (<u>C</u>(CH₃)₃); 36,8 (<u>C</u>H₂); 35,1 (<u>C</u>H₂); 30,4 (<u>C</u>H₂); 28,6 (3<u>C</u>H₃); 28,0 (3<u>C</u>H₃).

Pirrol-2-carboxamido-butilguanidina bis-protegida (68c) (R = 80%, sólido amarelo, ponto de fusão 119-123°C)

RMN¹H (500 MHz) CDCl₃ / TMS (δ-ppm): 1,44 e 1,49 (m, 18H, metilas *Boc*); 1,58 (m, 4H, 2CH₂); 3,44-3,41 (m, 4H, 2CH₂); 6,89/6,65/6,20 (s, CH's pirrol); 8,39 (s, NH); 9,71 (s, NH); 11,49 (s, NH).

4,5-Dibromopirrol-2-carboxamido-butilguanidina bis-protegida (69c) ($\mathbf{R} = 69\%$, sólido amarelo, após purificação em coluna cromatográfica eluente hexano x acetato de etila, gradiente de concentração, ponto de fusão 135-137°C)

RMN¹H (500 MHz) CDCl₃ / TMS (δ-ppm): 1,44 (m, 18H, metilas *Boc*); 1,50 (m, 2CH2); 3,51-3,40 (m, 2CH2); 6,79(s, 1H, CHpirrol); 7,42 (s, NH); 8,49 (s, NH); 11,49 (s, NH).

RMN¹³C (500 MHz) CDCl₃ / TMS (δ-ppm): 27,8 (<u>C</u>H₂); 28,2 e 28,1 (6<u>C</u>H₃ – Boc); 29,68 (CH₂); 39,7 (CH₂); 40,3 (CH₂); 79,8 (C quaternário Boc); 83,4 (Cquaternário Boc); 99,5 e 104,9 (Cpirrol-Br); 113,1 (CH pirrol); 127,5 (Cq pirrol); 153,4 (C=O); 156,7 (C=O); 159,6 (C=N); 163,3 (C=O).

Procedimento geral de síntese dos derivados pirrol-2-carboxamido-alquilguanidínicos

Esquema 11. Metodologia de desproteção das guanidinas acíclicas bis-protegidas (50a-f)

A uma solução do derivado guanidínico bis-protegido (**68a-c** ou **69a-c**) (0,2 mmol) em diclorometano (5 ml) são adicionados 8 equivalentes de ácido trifluoracético (TFA). A mistura fica sob agitação a temperatura ambiente até consumo total do material de partida (24-48h). O produto é isolado evaporando-se a mistura reacional sob pressão reduzida.

Pirrol-2-carboxamida-N-2-etilguanidina (50a)(R=97%, óleo castanho claro)

RMN¹H (500 MHz) DMSO-d6 / TMS (δ-ppm): 11.49 (s, 1H, N<u>H</u>CO), 8.16 (s, 1H, NH), 7.86 (s, 1H, NH), 7.65 (s, 1H, NH), 6.87 (s, 1H, CH pirrol), 6.76 (s, 1H, CH pirrol), 6.10 (s, 1H, CH pirrol), 3.34 (d, J = 5.4 Hz, 2H, CH₂), 3.27 (d, J = 5.5 Hz, 2H, CH₂).

DEPTQ (500 MHz) DMSO-d6 / TMS (δ-ppm): 161.69 (CO), 157.47 (C=N), 126.32 (Cq pirrol), 122.10 (CH pirrol), 110.68 (CH pirrol), 109.10 (CH pirrol), 41.02 (CH₂), 38.29 (CH₂).

4,5-Dibromopirrol-2-carboxamida-N-2-etilguanidina (50b) (R=98%, óleo castanho escuro)

RMN¹H (500 MHz) DMSO-d6 / TMS (δ-ppm): 12.76 (s, 1H, N<u>H</u>CO), 8.28 (t, J = 5.2 Hz, 1H, NH), 7.59 (t, J = 5.2 Hz, 1H, NH), 6.92 (s, 1H, CH pirrol), 3.37 – 3.30 (m, 2H, CH₂), 3.30 – 3.22 (m, 2H, CH₂).

DEPTQ (500 MHz) DMSO-d6 / TMS (δ-ppm): 159.37 (CO), 156.87 (CN), 127.90 (Cq pirrol), 112.78 (CH pirrol), 104.94 (C-Br), 97.82 (C-Br), 40.36 (CH₂), 37.88 (CH₂).

Pirrol-2-carboxamida-N-3-propilguanidina (50c) (R=94%, sólido castanho escuro, 182-185°C)

RMN¹H (**500 MHz**) **DMSO-d6** / **TMS** (δ-ppm): 11.46 (s, 1H, N<u>H</u>C=O), 8.16 (s, 1H, NH), 7.77 (s, 3H, NH e NH₂), 6.85 (s, 1H, CH pirrol), 6.75 (s, 1H, CH pirrol), 6.08 (s, 1H, CH pirrol), 3.26 (s, 2H, CH₂), 2.81 (s, 2H, CH₂), 1.76 (s, 2H, CH₂).

RMN¹³C (500 MHz) DMSO-d6 / **TMS (δ-ppm):** 161.42 (C=O), 126.35 (Cq pirrol), 122.02 (CH pirrol), 110.33 (CH pirrol), 108.96 (CH pirrol), 37.27 (CH₂), 35.92 (CH₂), 28.17 (CH₂).

4,5-Dibromopirrol-2-carboxamida-N-3-propilguanidina (50d) (R=99%, óleo castanho escuro)

RMN¹H (400 MHz) DMSO-d6 / TMS (δ-ppm): 12.71 (s, 1H, NH), 8.20 (s, 1H, NH), 7.77 (s, 1H, NH), 6.94 (d, J = 2.1 Hz, 1H, CH pirrol), 3.26 (d, J = 5.8 Hz, 2H, CH₂), 3.15 (d, J = 5.8 Hz, 2H, CH₂), 1.75 – 1.65 (m, 2H, CH₂).

RMN¹³C (500 MHz) DMSO-d6 / TMS (δ-ppm): 159.49 (C=O), 157.33 (C=N), 128.58 (Cq pirrol), 113.05 (CH pirrol), 105.07 (C-Br), 98.33 (C-Br), 38.90 (CH₂), 36.41 (CH₂), 29.12 (CH₂).

Pirrol-2-carboxamida-N-4-butilguanidina (50e) (R=99%, óleo amarelo claro)

RMN¹H (400 MHz) DMSO-d6 / TMS (δ-ppm): 11.41 (s, 1H, NH), 8.05 (t, *J* = 5.6 Hz, 1H, NH), 7.67 (t, *J* = 5.5 Hz, 1H, NH), 6.85 (s, 1H, CH pirrol), 6.76 (s, 1H, CH pirrol), 6.08 (dd, *J* = 5.8, 2.4 Hz, 1H, CH pirrol), 3.24 (d, *J* = 5.5 Hz, 2H, CH₂), 3.14 (d, *J* = 5.7 Hz, 2H, CH₂), 1.51 (s, 4H, 2CH₂).

RMN¹³C (400 MHz) DMSO-d6 / **TMS (δ-ppm):** 161.18 (C=O), 157.20 (C=N), 126.76 (Cq pirrol), 121.62 (CH pirrol), 110.17 (CH pirrol), 108.94 (CH pirrol), 40.94 (CH₂), 38.27(CH₂), 27.16 (CH₂), 26.50 (CH₂).

4,5-Dibromopirrol-2-carboxamida-*N*-4-butilguanidina (50f) (R=97%, sólido amarelo claro, ponto de fusão: 151-152°C)

RMN¹H (500 MHz) DMSO-d6 / TMS (δ-ppm): 12.67 (s, 1H, N<u>H</u>CO), 8.17 (s, 1H, NH), 7.63 (s, 1H, NH), 6.92 (s, 1H, CH pirrol), 3.44 (q, J = 7.0 Hz, 2H, CH₂), 3.22 (d, J = 5.6 Hz, 2H, CH₂), 3.11 (d, J = 5.5 Hz, 1H, CH₂), 1.06 (t, J = 7.0 Hz, 2H, CH₂).

RMN¹³C (500 MHz) DMSO-d6 / TMS (δ-ppm): 159.34 (C=O), 157.18 (C=N), 128.67 (Cq pirrol), 112.90 (CH pirrol), 104.82 (C-Br), 98.20 (C-Br), 40.91 (CH₂), 38.47 (CH₂), 26.90 (CH₂), 26.47(CH₂).

5.3 Avaliação Farmacológica

5.3.1 Avaliação in vitro dos novos derivados guanidínicos e acilguanidínicos sobre a atividade das enzimas acetilcolinesterase (AChE) e butirilcolinesterase (BuChE)

A avaliação da porcentagem de inibição dos compostos para atividade anticolinesterásica foi realizada de acordo com o método adaptado de Ellman (ELLMAN, 1961)¹⁷⁹. Todas as soluções utilizadas nos ensaios foram preparadas em tampão tris-HCl 0.02 M (pH = 7.5, ajustado com solução 1 M de HCl ou NaOH) e as soluções estoque dos compostos (62 e) e (62 a) foram preparados em solução de DMSO: EtOH (7:3)(35mM) e a dos demais compostos em solução de EtOH (35 mM). Em uma placa de 96 poços de fundo plano foram adicionados 150 µL de solução do composto inibidor (68a-c;69a-c; 50a-f; 62a-h'; donepezila) em oito diferentes concentrações diluídas em série, as quais variam entre 50 – 0,001µM para AChE (fator de diluição=2) e de 50 - 0,1µM para BChE (fator de diluição=2). O controle veículo (DMSO - concentração final 0,02% v / v para AChE e 0,02% v / v para BChE), foi utilizado como referência (controle negativo). Em seguida, foram adicionados 60 µL de ácido 5,5'-ditiobis-2-nitrobenzóico (DTNB, reagente de Ellman) a 1,1 mM e 30 µL de acetilcolinesterase isolada de cérebro de enguia elétrica (EeAChE) ou butirilcolinesterase isolada de soro equino (EqBChE) a 0,20 U/mL na presenca de 1 mg/mL de albumina sérica bovina (BSA). A absorbância foi então registada utilizando um leitor de placas iMark (BioRad) equipado com um filtro de luz de = 415 nm e esta medida foi usada como uma referência em branco. Após uma incubação de 10 minutos a 25°C, 24 µL de solução do substrato iodeto de acetiltiocolina (ACTI) ou iodeto de S-butiriltiocolina (BCTI) a 2,75 mM foram adicionados e a absorbância foi registrada após 5 minutos de incubação a 25°C a λ = 415 nm por 3 vezes dentro de 60 segundos. A atividade enzimática foi calculada como porcentagem referente à média dos valores de absorbância medidos para o controle tratado com DMSO e EtOH, descontada dos valores de referência em branco. Os ensaios foram realizados em triplicatas (para o cálculo do desvio-padrão) e os valores da porcentagem de inibição foram calculados com auxílio do programa Excel 2010. Os valores de CI₅₀ foram calculados com auxílio do programa Graphpad Prism 7.0 utilizando o modelo de regressão não linear para a inibição dose-resposta.

5.3.2. Estudo de interação enzimática in silico dos derivados guanidínicos e acilguanidínicos.

As colinesterases possuem dois locais de ligação conhecidos: o CAS, onde as enzimas hidrolisam seus substratos; e o PAS, ambos localizados nas extremidades de um longo canal no sitio ativo destas enzimas. Ambos os locais foram explorados no estudo de ancoragem, para determinar como ocorre a interação desses compostos no sítio ativo da BchE

Para a realização do estudo de ancoramento molecular (*docking*) foi realizada a previsão da interação de alguns dos derivados guanidínicos e acilguanidínicos (com a enzima BChE a partir do programa GOLD 5.6 (CCDC Software Ltd., Cambridge, UK) e a estrutura cristalográfica da BuChE de enguia elétrica (*Electrophorus electricus*) (EeAChE) obtida no banco de dados de proteínas (PDB, do inglês *Protein Data Bank*) de código 1CB2 e resolução de 4,5 Å. Foram utilizados o raio de ligação a 15 Å em torno de átomo de oxigênio do resíduo da serina 203 e a função Goldscore e para a previsão da interação do compostos com a EeBChE.

Sendo assim, alguns dos compostos finais foram previamente tratados, através da minimização de energia via método semi-empírico PM6, considerando suas respectivas

formas catiônicas, visto que em meio biológico (pH aproximadamente igual a 7), estas estruturas encontram-se protonadas.

Assim sendo, estes foram ancorados nos sítios ativos da EeBuchE. No programa GOLD, as funções de encaixe produzem valores de *scores* que são valores adimensionais, capazes de medir "pontuações de aptidão". A pontuação de cada pose identificada é calculada como o negativo da soma de uma série de termos de energia envolvidos no processo de interação proteína-ligante, para que quanto mais positiva a pontuação, melhor a interação. Os valores de *scores* são um guia de quão boa é a posição do ancoramento, o que significa que uma pontuação mais alta indica uma melhor interação entre o ligando e o local de ligação.

Desse modo, os resultados exibiram os compostos ancorados com as subunidades pirrólicas, guanidínicas, acilguanidínicas e aromáticas voltadas para o interior da cavidade enzimática, isto é, no CAS, tendo como interações principais: a interação bromo - π entre o anel pirrólico bromado e o anel aromático do triptofano 259, a interação de hidrogêncio entre os NH's pirrólicos e a Histidina 466, a interação de hidrogênio entre os NH's guanidínicos e o resíduo glutamato 225 e a interação entre os anéis aromáticos das fenilas com o resíduo do triptofano 110.

Neste contexto, foram avaliadas as demais estruturas cristalográficas da EeBChE disponíveis no PDB (1CO2 e 1EEA), utilizando a função Goldscore e o raio de ligação a 15 e 20 Å em torno de átomo de oxigênio do resíduo de serina presente no CAS.

6. Espectros

Espectro 1-Composto (53) RMN 1H (500 MHz, DMSO - D6)

Espectro 2-Composto (53) RMN DEPT Q (500 MHz, DMSO – D6)

Espectro 3-Composto (55) RMN 1H (500 MHz, DMSO - D6)

Espectro 4-(Composto 55) DEPTQ (500 MHz, DMSO - D6)

Espectro 5-Composto (58) RMN1H (500 MHz, DMSO-d6)

Espectro 6-Composto (58) DEPTQ (500 MHz, DMSO-d6)

Espectro 7-Composto (57)RMN1H (500 MHz, CDCl3)

Espectro 8-Composto (57) DEPTQ (500 MHz, CDCl3)

Espectro 9-Composto (61) RMN1H(500 MHz, CDCl3)

Espectro 10-Composto (61) DEPTQ (500 MHz, CDCl3)

Espectro 11-Composto (60) RMN1H (500 MHz, CDCl3)

Espectro 12-Composto (60) DEPT Q (500 MHz, CDCl3)

Espectro 13-Composto (62a) RMN1H (500 MHz, CDCl3)

Espectro 14-Composto (62a) DEPT Q (500 MHz, CDCl3)

Espectro 15-Composto (62b) RMN1H (500 MHz, CDCl3)

Espectro 16-Composto (62b) DPTQ (500 MHz, CDCl3)

Espectro 17-Composto (62g)RMN1H (500 MHz, CDCl3)

Espectro 18-. Composto (62g) DEPTQ (500 MHz, CDCl3)

Espectro 19-Composto (62c) RMN1H (500 MHz, CDCl3).

Espectro 20-Composto (62c) DEPTQ (500 MHz, CDCl3)

Espectro 21-Composto (62d) RMN 1H (500 MHz, CDCl3)

Espectro 22-Composto (62d) RMN 13C (500 MHz, CDCl3)

Espectro 23-Composto (62f) RMN1H (500 MHz, CDCl3)

Espectro 24-Composto (62f) DEPTQ (500 MHz, CDCl3)

Espectro 25-Composto (62e) RMN1H (500 MHz, CDCl3)

Espectro 26-Composto (62e) DEPTQ (500 MHz, CDCl3)

Espectro 27-Composto (62g') RMN1H (500 MHz, CDCl3)

Espectro 28-Composto (62g') DEPTQ (500 MHz, CDCl3)

Espectro 29-Composto (51a) RMN1H (500 MHz, DMSO-d6)

Espectro 30-Composto (51a) DPTQ (500 MHz, DMSO-d6)

Espectro 31-Composto (62b)RMN1H (500 MHz, CDCl3)

Espectro 32-Composto (62b) DEPTQ (500 MHz, DMSO-d6)

Espectro 33-Composto (51g) RMN1H (500 MHz, DMSO-d6)

Espectro 34-Composto (51g) DEPTQ (500 MHz, DMSO-d6)

Espectro 35-Composto (51c) RMN1H (500 MHz, DMSO-d6)

Espectro 36-Composto (51c) RMN13C (500 MHz, DMSO-d6)

Espectro 37-Composto (59) RMN1H (500 MHz, DMSO-d6)

Espectro 38- Composto (51 f) RMN1H (500 MHz, DMSO-d6)

Espectro 39-Composto (62h) RMN1H (500 MHz, CDCl3)

Espectro 40-Composto (62h) RMN1H (500 MHz, CDCl3)

Espectro 41-Composto (62h') RMN1H (500 MHz, CDCl3)

Espectro 42-Composto (62h') RMN13C (500 MHz, CDCl3)

Espectro 43-Composto (51 e) RMN1H (500 MHz, DMSO-d6)

Espectro 44-Composto (51 e) RMN13C (500 MHz, DMSO-d6)

Espectro 45-Composto (51 d) RMN 1H (500 MHz, DMSO-d6)

Espectro 46-Composto (51 d) RMN 13C (500 MHz, DMSO-d6)

Espectro 47-Composto (51h) RMN 1H (500 MHz, DMSO-d6)

Espectro 48-Composto (51h) RMN 13C (500 MHz, DMSO-d6)

Espectro 49-Composto (51g') RMN 1H (500 MHz, DMSO-d6)

Espectro 50-Composto (51g') RMN 13C (500 MHz, DMSO-d6)

Espectro 51-Composto (51h') RMN 1H (500 MHz, DMSO-d6)

Espectro 52-Composto (51h') RMN 13C (500 MHz, DMSO-d6)

Espectro 53-Composto (63) RMN 1H (500 MHz, CDCl3)

Espectro 54-Composto (63) RMN 13C (500 MHz, CDCl3)

Espectro 55-Composto (68a) RMN 1H (500 MHz, CDCl3)

Espectro 56-Composto (68a) RMN 13C (500 MHz, CDCl3)

Espectro 57-Composto (68b) RMN 1H (500 MHz, CDCl3)

Espectro 58-Composto (68b) RMN 13C (500 MHz, CDCl3)

Espectro 59-Composto (68c) RMN 13C (500 MHz, CDCl3)

Espectro 60-Composto (69a) RMN 1H (500 MHz, CDCl3)

Espectro 61-Composto (69a) RMN 13C (500 MHz, CDCl3)

Espectro 62-Composto (69b) RMN 13H (500 MHz, CDCl3)

Espectro 63-Composto (69b) RMN 13C (500 MHz, CDCl3)

Espectro 64-Composto (69c) RMN 1H (500 MHz, CDCl3)

Espectro 65-Composto (69c) RMN 13C (500 MHz, CDCl3)

Espectro 66-Composto (50d) RMN 1H (500 MHz, DMSO-d6)

Espectro 67-Composto (50d) RMN 1H (500 MHz, DMSO-d6)

Espectro 68-Composto (50a) RMN 1H (500 MHz, DMSO-d6)

Espectro 69Composto (50a) RMN 13C (500 MHz, DMSO-d6)

Espectro 70-Composto (50e) RMN 1H (500 MHz, DMSO-d6)

Espectro 71-Composto (50e) RMN 13C (500 MHz, DMSO-d6)

Espectro 72-Composto (50b) RMN 1H (500 MHz, DMSO-d6)

Espectro 73-Composto (50b) RMN 13C (500 MHz, DMSO-d6)

Espectro 74-Composto (50f) RMN 1H (500 MHz, DMSO-d6)

Espectro 75-Composto (50f) RMN 13C (500 MHz, DMSO-d6)

Espectro 76-Composto (50c) RMN 1H (500 MHz, DMSO-d6)

Espectro 77-Composto (50c) RMN 13C (500 MHz, DMSO-d6)

7. Referências Bibliográficas

¹ Burger, R., & Bigler, P. (1998). COMMUNICATIONS DEPTQ: Distorsionless Enhancement by Polarization Transfer Including the Detection of Quaternary Nuclei. 534, 529–534.

² R. Rane, N. Sahu, C. Shah, R. Karpoormath, Curr. Top. Med. Chem. 2014, 14, 253–273.

³ van Rensburg, M., Copp, B. R., & Barker, D. (2018). Synthesis and Absolute Stereochemical Reassignment of Mukanadin F: A Study of Isomerization of Bromopyrrole Alkaloids with Implications on Marine Natural Product Isolation. *European Journal of Organic Chemistry*, 2018(24), 3065–3074. https://doi.org/10.1002/ejoc.201800422

⁵ Richards, J., Ballard, T., Huigens, R., Melander, C., 2008. Synthesis and screening of an oroidin library against Pseudomonas aeruginosa biofilms. Chem. Biol. Chem. 9, 1267–1279.

⁶ Tasdemir, D., Mallon, R., Greenstein, M., Feldberg, L., Kim, S., Collins, K., Wojciechowicz, D., Mangalindan, G., Concepcio´n, G., Harper, M., Ireland, C., 2002. Aldisine alkaloids from the Philippine sponge Stylissa massa are potent inhibitors of mito gen-activated protein kinase kinase-1 (MEK-1). J. Med. Chem. 45, 529–532.

7 Paul, A.K., Robert, E.S., Moustapha, E.S.K., Rober Jr., G.H., Dan, cR., Kenneth, L.R., 1991. Bioactive bromopyrrole metabolites from the Caribbean sponge Agelas conifera. J. Org. Chem. 56, 2975-2975.

⁸ Tsuda, M., Yasuda, T., Fukushi, E., Kawabata, J., Sekiguchi, M., Fromont, J., Kobayashi, J., 2006. Agesamides A and B, bromopyrrole alkaloids from sponge Agelas species: application of DOSY for chemical screening of new metabolites. Org. Lett. 8, 4235–4238.

⁹ Rane, R.; Sahu, N,; Shah, C.; Karpoormath, R. Marine bromopyrrole alkaloids: Synthesis and diverse medicinal applications. *Current Topics in Medicinal Chemistry* **2014**, *14*, 253.

¹⁰ Forenza, S.; Minale, L.; Riccio, R. New bromo-pyrrole derivatives from sponges *agelas-oroides*. *Chemical Communications* **1971**, 1129.

⁴ Tasdemir, D., Topaloglu, B., Perozzo, R., Brun, R., O'Neill, R., Carballeira, N.M., Zhang, X., Tonge, P.J., Linden, A., Ruedi, P., 2007. Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorg. Med. Chem. 15, 6834–6845.

¹¹ FORENZA, S.; MINALE, L.; RICCIO, R.; FATTORUSSO, E. New bromo-pyrrole derivatives from the sponge Agelas oroides. Journal of the Chemical Society D: Chemical Communications, v. 285, n. 18, p. 1129, 1971.

¹²Takale, B. S.; Desai, N. V.; Siddiki, A. A.; Chaudhari, H, K.; Telvekar, V. N. Synthesis and biological evaluation of pyrrole-2- carboxamide derivatives: oroidin analogues. *Medicinal Chemistry Research* **2014**, *23*, 1387.

¹³ Richards, J. J.; Reyes, S.; Stowe, S. D.; Tucker, A. T.; Ballard, T. E.; Mathies, L. D.; Cavanagh, J.; Melander, C. Amide isosteres of oroidin: Assessment of antibiofilm activity and *C. elegans* toxicity. *Journal of Medicinal Chemistry* **2009**, *52*, 4582.

¹⁴ C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Adv. Drug Delivery Rev., 2001, 46, 3

¹⁵ Disponível em https://spongeguide.uncw.edu/myresults.php?searchtype=3&taxa=1, acessado em 18/5/2020.

¹⁶ Bharate SB, Yadav RR, Battula S, Vishwakarma RV. 2012. Meridianins: marinederived potent kinase inhibitors. MiniRev Med Chem. 12:618–631.

¹⁷ Cafieri, F.; Fattorusso, E.; Mangoni, A.; Taglialatela-Scafati, O. Dispacamides, antihistamine alkaloids from Caribbean Agelas sponges. Tetrahedron Lett., 1996, 7, 3587-3590.

¹⁸ Cafieri, F.; Fattorusso, E.; Mangoni, A.; Taglialatela-Scafati, O. Dispacamides, antihistamine alkaloids from Caribbean *Agelas* sponges. *Tetrahedron Letters* **1996**, *37*, 3587.

¹⁹ Cahn, R. S.; Ingold, C. K.; Prelog, V. Specification of molecular chirality. *Angewandte Chemie International Edition*

²⁰ Vergne, C.; Appenzeller, J.; Ratinaud, C.; Martin, M.; Debitus, C.; Zaparucha, A.; Al-Mourabit, A. Debromodispacamides B and D: Isolation from the marine sponge *Agelas mauritiana* and stereoselective synthesis using a biomimetic proline route. *Organic Letters* **2008**, *10*, 493.

²¹ KOBAYASHI, J.; OHIZUMI, Y.; NAKAMURA, H.; HIRATA, Y. A Novel antagonist of serotonergic receptors, hymenidin, isolated from the okinawan marine Sponge Hymeniacidon Sp. Experientia, v. 42, n. 10, p 1176-1177, 1986.

²² MORALES, J. J.; RODRIGUEZ, A. D. The structure of clathrodin, a novel alkaloid isolated from the caribbean sea sponge Agelas clathrodes. Journal of Natural Products, v. 54, n. 2, p. 629–631, 1991.

²³ ASSMANN, M.; ZEA, S.; KÖCK, M. Sventrin, a new bromopyrrole alkaloid from the caribbean sponge Agelas sventres. Journal of Natural Products. v. 64, p. 1593- 1595, 2001.

²⁴ Sun, J., Wu, J., An, B., De Voogd, N. J., Cheng, W., & Lin, W. (2018). Bromopyrrole alkaloids with the inhibitory effects against the biofilm formation of gram negative bacteria. *Marine Drugs*, 16(1). https://doi.org/10.3390/md16010009

²⁵ Fattorusso, E.; Taglialatela-Scafati, O. Two novel pyrrole-imidazole alkaloids from the Mediterranean sponge *Agelas oroides*. *Tetrahedron Letters* **2000**, *41*, 9917.

²⁶ Zhang, H., Khalil, Z., Conte, M. M., Plisson, F., & Capon, R. J. (2012). A search for kinase inhibitors and antibacterial agents: Bromopyrrolo-2-aminoimidazoles from a deep-water Great Australian Bight sponge, Axinella sp. *Tetrahedron Letters*, 53(29), 3784–3787. https://doi.org/10.1016/j.tetlet.2012.05.051

²⁷Disponivel em <u>http://www.faperj.br/?id=470.2.5</u>, acessado em 14/8/2020.

²⁸ Disponível em <u>https://www.biolib.cz/en/taxon/id299844/</u>, acessado em 14/8/2020.

²⁹ Chevolot, L.; Padua, S.; Ravi, B. N.; Blyth, P. C.; Scheuer, P. J. Isolation of 1-methyl-4,5 dibromopyrrole-2-carboxilic acid its 3'- (hydantoyl)propylamide (midpacamide) from a marine sponge. *Heterocycles*

³⁰ Jiménez, C., & Crews, P. (1994). Mauritamide A and accompanying oroidin alkaloids from the sponge agelas mauritiana. *Tetrahedron Letters*, 35(9), 1375–1378. https://doi.org/10.1016/S0040-4039(00)76222-8

³¹ Fujita, M.; Nakao, Y.; Matsunaga, S.; Seiki, M.; Itoh, Y.; Yamashita, J.; Van Soest R. W. M.; Fusetani, N. Ageladine A: An antiangiogenic matrixmetalloproteinase inhibitor from the marine sponge *Agelas nakamurai*. *Journal of the American Chemical Society* **2003**, *125*, 15700.

³² Analogs, A. A. (2011). Synthesis and Matrix Metalloproteinase-12 Inhibitory Activity of. 59(May).

³³ Piña, I. C.; White, K. N.; Cabrera, G.; Rivero, E.; Crews, P. Bromopyrrole carboxamide biosynthetic products from the Caribbean sponge *Agelas dispar. Journal of Natural Products* **2007**, *70*, 613.

³⁴ Kusama, T.; Tanaka, N.; Takahashi- Nakaguchi, A.; Gonoi, T.; Fromont, J.; Kobayashi, J. Bromopyrrole alkaloids from a marine sponge *Agelas sp.* Chemical *and* Pharmaceutical *Bulletin* **2014**, *62*, 499.

³⁵ Kusama, T., Tanaka, N., Takahashi-nakaguchi, A., Gonoi, T., Fromont, J., & Kobayashi, J. (2014). Bromopyrrole Alkaloids from a Marine Sponge Agelas sp . 62(May), 499–503.

³⁶ Braekman, J. C.; Daloze, Q.; Stoller, C.; van Soest, R. W. Biochem. Syst. Ecol. 1992, 20, 417.

³⁷ Lacerda, R. B. (2015). Bromopyrrole marine alkaloids. Revista Virtual de Quimica, 7(2), 713–729. https://doi.org/10.5935/1984-6835.20150032

³⁸ R. J. Castellani, R. K. Rolston, and M. A. Smith, "Alzheimer disease," Disease-a-Month, vol. 56, no. 9, pp. 484–546, 2010.

³⁹ ADI. Alzheimer's Disease International. World Alzheimer Report 2015: The Global Impact of Dementia. An analysis of prevalence, incidence, cost trends. Disponível em: https://www.alz.co.uk/research/world-report-2015. Acesso em: 21/6/2020.

⁴⁰ MAURER, Konrad; VOLK, Stephan; GERBALDO, Hector. Auguste D and Alzheimer's disease. **The Lancet**, v. 349, n. 9064, p. 1546-1549, 1997.

⁴¹ R. N. Kalaria, G. E. Maestre, R. Arizaga et al., "Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors," The Lancet Neurology, vol. 7, no. 9, pp. 812–826, 2008.

⁴² RAUK, Arvi. The chemistry of Alzheimer's disease. **Chemical Society Reviews**, v. 38, n. 9, p. 2698-2715, 2009.

⁴³ De Paula, V. J. R., Guimarães, F. M., & Forlenza, O. V. (2009). Papel da proteína Tau na fisiopatologia da demência frontotemporal. *Revista de Psiquiatria Clinica*, 36(5), 212–217. https://doi.org/10.1590/S0101-60832009000500004

⁴⁴ CRAIG, Laura A.; HONG, Nancy S.; MCDONALD, Robert J. Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. Neuroscience & Biobehavioral Reviews, v. 35, n. 6, p. 1397-1409, 2011.

⁴⁵ HOLMES, C. Systemic inflammation and Alzheimer's disease. **Neuropathology and applied neurobiology**, v. 39, n. 1, p. 51-68, 2013.

⁴⁶ SU, Bo; WANG, Xu; NUNOMURA, Akihiko; MOREIRA, Paula; LEE, Gon; PERRY, George; SMITH, Adrian; ZHU, Xiangyuan. Oxidative stress signaling in Alzheimer's disease. **Current Alzheimer Research**, v. 5, n. 6, p. 525-532, 2008.

⁴⁷ GREENOUGH, Mark A.; CAMAKARIS, James; BUSH, Ashley I. Metal dyshomeostasis and oxidative stress in Alzheimer's disease. **Neurochemistry international**, v. 62, n. 5, p. 540-555, 2013.

⁴⁸Adaptado de <u>https://pt.dreamstime.com/ilustra%C3%A7%C3%A3o-stock</u> se%C3%A7%C3%A3o-transversal-do-c%C3%A9rebro-humano-c%C3%A9rebro saud%C3%A1vel-comparado-alzh-image85730258, acessado em 21/7/2020.

- ⁴⁹ Elliott, C., Rojo, A. I., Ribe, E., Broadstock, M., Xia, W., Morin, P., ... Killick, R. (2018). A role for APP in Wnt signalling links synapse loss with β-amyloid production. *Translational Psychiatry*, 8(1). https://doi.org/10.1038/s41398-018-0231-6
- ⁵⁰ Zainaghi, I. A. (2006). Fosfolipase A2, fluidez de membrana e proteína precursora do amilóide em plaquetas na Doença de Alzheimer e Comprometimento Cognitivo Leve. 1–78.

⁵¹ MCKHANN, Guy; DRACHMAN, David; FOLSTEIN, Marshall; KALTZMAN, Robert; PRICE, Donald; STADIAN, Emanuel. Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, v. 34, n. 7, p. 939-939, 1984. (4) Blennow, K.; De Leon, M. J.; Zetterberg, H. Lancet 2006, 368, 387.

⁵² JORM, Anthony F. Cross-national comparisons of the occurrence of Alzheimer's and vascular dementias. European archives of psychiatry and clinical neuroscience, v. 240, n. 4-5, p. 218-222, 1991.

⁵³ LEVY-LAHAD, Ephrat; WASCO, W.; POORKAJ, P; ROMANO, D. M.; OSHIMA, J.; PETTINGELL, W. H.; YU, C. E.; JONDRO, P. D.; SCHMIDT, S. D.; WANG, K. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science, v. 269, n. 5226, p. 973-977, 1995.

⁵⁴ Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature. 1995;375:754-60.

⁵⁵ Hutton M, Busfield F, Wragg M, Crook R, Perez-Tur J, Clark RF, et al. Complete analysis of the presenilin 1 gene in early onset Alzheimer's disease. Neuroreport. 1996,7:801-5

⁵⁶ Bird TD. Enfermedad de Alzheimer y otras demenciais. In: Fauce AS, Braunwald EI, Wilson JB, Martin JB, Kasper DL, Hanser SL, et al. Principios de Medicina Interna. 14.ed. Madrid: McGraw-Hill Interamericana, 1998.

⁵⁷ Selkoe DJ. Presenilin, Notch, and the genesis and treatment of Alzheimer's disease. Proc Natl Acad Sci USA. 2001;98:11039-41.

⁵⁸ Tamaoka A, Fraser PE, Ishii K, Sahara N, Ozawak K, Ikeda M, et al. Amyloidbetaprotein isoforms in brain of subjects with PS1-linked, beta APP-linked and sporadic Alzheimer disease. Brain Rev Mol Brain Res. 1998;56:178-85.

⁵⁹ Luiz Baltar. Revista Ciência Hoje, edição 243 (2007).

⁶⁰ Domise M, Didier S, Marinangeli C, Zhao H, Chandakkar P, Buée L, et al. AMPactivated protein kinase modulates tau phosphorylation and tau pathology in vivo. Sci Rep. 2016;

⁶¹ Sousa, B. M. (2017). Abordagem terapêutica na Doença de Alzheimer. Universudade Do Algarve, 60. Retrieved from https://sapientia.ualg.pt/handle/10400.1/10408

⁶² REITZ, Christiane; DEN HEIJER, T.; VAN DUJIN, C.; HOFMAN A.; BRETELER, M. M. B. Relation between smoking and risk of dementia and Alzheimer disease: the Rotterdam Study. **Neurology**, v. 69, n. 10, p. 998-1005, 2007.

⁶³ BARNES, Deborah E.; YAFFE, Kristine. The projected effect of risk factor reduction on Alzheimer's disease prevalence. **The Lancet Neurology**, v. 10, n. 9, p. 819-828, 2011.

⁶⁴ GUSTAFSON, Deborah; ROTHENBERG, Elisabeth; BLENNOW, Kaj; STEEN, Bertil; SKOOG, Ingmar. An 18-year follow-up of overweight and risk of Alzheimer disease. **Archives of internal medicine**, v. 163, n. 13, p. 1524-1528, 2003.

⁶⁵ WHITMER, Rachel; GUNDERSON, Erica; QUESENBERRY, Charles; ZHOU, Jufen; YAFFE, Kristine. Body mass index in midlife and risk of Alzheimer disease and vascular dementia. **Current Alzheimer Research**, v. 4, n. 2, p. 103-109, 2007.

⁶⁶ MAYEUX, Richard. Epidemiology of neurodegeneration. Annual review of neuroscience, v. 26, n. 1, p. 81-104, 2003.

⁶⁷ LAUNER, Lenore; ROSS, Webster; PETROVITCH, Helen; MASAKI, Kamal; FOLEY, Dan; WHITE, Lon; HAVLIK, Richard. Midlife blood pressure and dementia: the Honolulu–Asia aging study ★. **Neurobiology of aging**, v. 21, n. 1, p. 49-55, 2000.

⁶⁸ BARNES, Deborah E.; YAFFE, Kristine. The projected effect of risk factor reduction on Alzheimer's disease prevalence. **The Lancet Neurology**, v. 10, n. 9, p. 819-828, 2011.

⁶⁹ NOTKOLA, Irma-Leena; SULKAVA, R.; PEKKANEN, J.; ERKINJUNTTI, T.; EHNHOLM, C.; KIVINEN, P.; TUOMILEHTO, J.; NISSINEN, A. Serum total cholesterol, apolipoprotein E {FC12} e4 allele, and Alzheimer's disease. **Neuroepidemiology**, v. 17, n. 1, p. 14-20, 1998.

 70 IRIZARRY, M. C.; GUROL, M. E.; RAJU, S.; DIAZ-ARRASTIA, R.; LOCASCIO, J. J.; TENNIS M.; HYMAN, B. T.; GROWDON, J. H.; GREENBERG, S. M.; BOTTIGLIERI, T. Association of homocysteine with plasma amyloid β protein in aging and neurodegenerative disease. **Neurology**, v. 65, n. 9, p. 1402-1408, 2005.

⁷¹ MIU, A. C.; BENGA, O. J. Aluminum and Alzheimer's disease: A new lookAlzheimer's Dis. 2006, 10, 179. **Journal of Alzheimer's Disease**, v. 10, no. 2-3, pp. 179-201, 2006.

⁷² LOEF, Martin; MENDOZA, Luisa Fernanda; WALACH, Harald. Lead (Pb) and the risk of Alzheimer's disease or cognitive decline: a systematic review. Toxin Reviews, v. 30, n. 4, p. 103-114, 2011.

⁷³ MUTTER, Joachim; CURTH, Annika; NAUMANN, Johannes; DETH, Richard; WALACH, Harald. Does inorganic mercury play a role in Alzheimer's disease? A systematic review and 155 an integrated molecular mechanism. **Journal of Alzheimer's Disease**, v. 22, n. 2, p. 357-374, 2010.

⁷⁴ NERI, Luciano; HEWITT, David. Aluminium, Alzheimer's disease, and drinking water. **The Lancet**, v. 338, n. 8763, p. 390, 1991.

⁷⁵ TOMLJENOVIC, Lucija. Aluminum and Alzheimer's disease: after a century of controversy, is there a plausible link?. **Journal of Alzheimer's Disease**, v. 23, n. 4, p. 567-598, 2011.

⁷⁶ BONDY, Stephen C. The neurotoxicity of environmental aluminum is still an issue. **Neurotoxicology**, v. 31, n. 5, p. 575-581, 2010.

⁷⁷ LINDSAY, Joan; LAURIN, Danielle; VERREAULT, René; HÉBERT, Réjean; HELLIWELL, Barbara; HILL, Gerry; MCDOWELL, Ian. Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging. American journal of epidemiology, v. 156, n. 5, p. 445-453, 2002.

⁷⁸ VALENZUELA, M.; BRAYNE, C.; SACHDEV, P.; WILCOCK, G. Medical Research Council Cognitive Function and Ageing Study. Cognitive lifestyle and long-term risk of dementia and survival after diagnosis in a multicenter population-based cohort. Am J Epidemiol, v. 173, n. 9, p. 1004-12, 2011.

⁷⁹ MORRIS, M. C. The role of nutrition in Alzheimer's disease: epidemiological evidence. **European Journal of Neurology**, v. 16, p. 1-7, 2009.

⁸⁰ TAEPAVARAPRUK, Pornnarin; SONG, Cai. Reductions of acetylcholine release and nerve growth factor expression are correlated with memory impairment induced by interleukin-1 β administrations: effects of omega-3 fatty acid EPA treatment. Journal of neurochemistry, v. 112, n. 4, p. 1054-1064, 2010.

⁸¹ DEWEERDT, Sarah. Prevention: activity is the best medicine. Nature, v. 475, n. 7355, p. S16-S17, 2011.

⁸² Sousa, M. (2017). Abordagem Terapêutica na Doença de Alzheimer.

⁸³ RANG, R.; DALE, M. M.; RITTER, J. M.; FLOWER, R. J.; HENDERSON, G. **Farmacologia**. Elsevier Brasil, 2015.

⁸⁴ KÁSA, Peter; RAKONCZAY, Zoltan; GULYA, Karoly. The cholinergic system in Alzheimer's disease. **Progress in neurobiology**, v. 52, n. 6, p. 511-535, 1997.

⁸⁵ Adaptado de <u>https://ib.bioninja.com.au/standard-level/topic-6-human-physiology/65-neurons-and-synapses/neurotransmitters.html</u>, acessado em 09/6/2020.

⁸⁶ HARDY, John; ALLSOP, David. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. **Trends in pharmacological sciences**, v. 12, p. 383-388, 1991.

⁸⁷ HARDY, John; SELKOE, Dennis J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. **science**, v. 297, n. 5580, p. 353-356, 2002.

⁸⁸ RAJASEKHAR, K.; GOVINDARAJU, Thimmaiah. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer's disease. **RSC advances**, v. 8, n. 42, p. 23780-23804, 2018.

⁸⁹ Serenki A, Vital MB. A doença de Alzheimer: aspectos fisiopatológicos e farmacológicos. Rev Psiquiatr. Rio Gd. Sul [Internet]. 2008 Terapia antiamiloide na doença de Alzheimer Rev Soc Bras Clin Med. 2018 abr-jun;16(2):127-31 131

⁹⁰ Forlenza OV. Tratamento farmacológico da doença de Alzheimer. Rev Psiquiatr Clín [Internet]. 2005 [citado 2015 nov 02];32(3): 137-48. Disponível em: http://www.scielo.br/pdf/rpc/v32n3/ a06v32n3.pdf

⁹¹ Costa IP. Neurobiologia da doença de Alzheimer [conclusão de curso]. Rio Claro: Universidade Estadual Paulista, Instituto de Biociências de Rio Claro; 2013 [citado 2015 nov 02]. 38p. Disponível em: <u>http://hdl.handle.net/11449/118771</u>

⁹² LEVY, E.; CARMAN, M. D.; FERNANDEZ-MADRID, I.J.; POWER, M.D.; LIEBERBURG, I.; VAN DUINEN, S.G.; FRANGIONE, B. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. *Science*, 248(4959), p. 1124-1126, 1990.

⁹³ CHEIGNON, C.; TOMAS, M., BONNEFONT-ROUSSELOT, D.; FALLER, P.; HUREAU, C.; COLLIN, F. **Oxidative stress and the amyloid beta peptide in Alzheimer's Disease.** *Redox Biology*, 14, p. 450-464, 2017.

⁹⁴ SOREGHAN, B.; KOSMOSKI, J.; GLABE, C. Surfactant properties of Alzheimer's A beta peptides and the mechanism of amyloid aggregation. *Journal of Biological Chemistry*, 269(46), p. 28551-28554, 1994.

⁹⁵ SAIDO, T.; LEISSRING, M. A. **Proteolytic degradation of amyloid** β **-protein.** *Cold Spring Harbor Perspectives in Medicine*, 2(6), p. a006379, 2012.

⁹⁶ DANYSZ, W.; PARSONS, C.G. **Alzheimer's disease**, β-amyloid, glutamate, NMDA receptors and memantine–searching for the connections. *British journal of pharmacology*, 167(2), p. 324-352, 2012.

⁹⁷ YAMADA, M.; CHIBA, T.; SASABE, J., NAWA, M., TAJIMA, H., NIIKURA, T.; NISHIMOTO, I. **Implanted cannula-mediated repetitive administration of** $A\beta 25-35$

into the mouse cerebral ventricle effectively impairs spatial working memory. *Behavioural brain research*, 164(2), p. 139-146, 2005.

⁹⁸ HARDY, J.A.; HIGGINS, G.A. Alzheimer's disease: the amyloid cascade hypothesis. *Science*, 256(5054), p. 184, 1992.

⁹⁹ RAJASEKHAR, K.; GOVINDARAJU, T. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer's disease. **RSC** advances, v. 8, n. 42, p. 23780-23804, 2018.

¹⁰⁰ LUO, W.; RODINA, A.; CHIOSIS, G. Heat shock protein 90: translation from cancer to Alzheimer's disease treatment?. **BMC Neuroscience**, v. 9, n. 2, p. S7, 2008.

¹⁰¹ Adaptado de CITRON, Martin. Alzheimer's disease: strategies for disease modification. **Nature reviews Drug discovery**, v. 9, n. 5, p. 387, 2010.

¹⁰² LANSDALL, Claire J. An effective treatment for Alzheimer's disease must consider both amyloid and tau. **Bioscience Horizons: The International Journal of Student Research**, v. 7, 2014.

¹⁰³ SELKOE, Dennis J.; HARDY, John. The amyloid hypothesis of Alzheimer's disease at 25 years. **EMBO molecular medicine**, v. 8, n. 6, p. 595-608, 2016.

¹⁰⁴ BLOOM, George S. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. **JAMA neurology**, v. 71, n. 4, p. 505-508, 2014.

¹⁰⁵ FALLER, P.; HUREAU, C.; LA PENNA, G. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles. **Accounts of chemical research**, v. 47, n. 8, p. 2252-2259, 2014.

¹⁰⁶ LEE, S. J. C.; NAM, E.; LEE, H. J.; SAVELIEFF, M. G.; LIM, M. H. Towards an understanding of amyloid- β oligomers: characterization, toxicity mechanisms, and inhibitors. **Chemical Society Reviews**, v. 46, n. 2, p. 310-323, 2017.

¹⁰⁷ SAVELIEFF, M. G.; LEE, S.; LIU, Y.; LIM, M. H. Untangling amyloid-β, tau, and metals in Alzheimer's disease. **ACS chemical biology**, v. 8, n. 5, p. 856-865, 2013.

¹⁰⁸ ZHENG, Wei; MONNOT, Andrew D. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. **Pharmacology & therapeutics**, v. 133, n. 2, p. 177-188, 2012.

¹⁰⁹ JOMOVA, Klaudia; VONDRAKOVA, D.; LAWSON, M.; VALKO, M. Metals, oxidative stress and neurodegenerative disorders. **Molecular and cellular biochemistry**, v. 345, n. 1-2, p. 91-104, 2010.

¹¹⁰ PENDERGRASS, James C.; HALEY, Boyd E.; VIMY, Murray J. Tubulin in Rat Brain: Similarity to a Molecular Lesion in Alzheimer Diseased Brain. **Neurotoxicology**, v. 18, n. 2, p. 315-324, 1997.

¹¹¹BONDA, David J.; LEE, H. G.; BLAIR, J. A.; ZHU, X.; PERRY, G.; SMITH, M. A. Role of metal dyshomeostasis in Alzheimer's disease. **Metallomics**, v. 3, n. 3, p. 267-270, 2011.

¹¹² BARNHAM, Kevin J.; MASTERS, Colin L.; BUSH, Ashley I. Neurodegenerative diseases and oxidative stress. **Nature reviews Drug discovery**, v. 3, n. 3, p. 205-214, 2004.

¹¹³ UTTARA, B.; SINGH, A. V.; ZAMBONI, P.; MAHAJAN, R. T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. **Current neuropharmacology**, v. 7, n. 1, p. 65-74, 2009.

¹¹⁴ SIES, H. Oxidative stress: a concept in redox biology and medicine. **Redox biology**, v. 4, p. 180-183, 2015.

¹¹⁵ RANG, R.; DALE, M. M.; RITTER, J. M.; FLOWER, R. J.; HENDERSON, G. **Farmacologia**. Elsevier Brasil, 2015.

¹¹⁶ VALKO, Marian; LEIBTFRITZ, D.; MONCOL, J.; CRONIN, M. T.; MAZUR, M.; TELSER, J. Free radicals and antioxidants in normal physiological functions and human disease. **The international journal of biochemistry & cell biology**, v. 39, n. 1, p. 44-84, 2007.

¹¹⁷ NUNOMURA, Akihiko; CASTELLANI, R. J.; ZHU, X.; MOREIRA, P. I.; PERRY, G.; SMITH, M. A. Involvement of oxidative stress in Alzheimer disease. Journal of neuropathology & experimental neurology, v. 65, n. 7, p. 631-641, 2006.

¹¹⁸ BENEVENTO, Carlos Eduardo. Disfunção mitocondrial induzida por peptídeos betaamilóide. 2011.

¹¹⁹ Adaptado de Luque-contreras, D., Carvajal, K., Toral-rios, D., Franco-bocanegra, D., & Campos-peña, V. (2014). Oxidative Stress and Metabolic Syndrome: Cause or Consequence of Alzheimer 's Disease ? 2014.

¹²⁰ FISH, Paul V.; STEADMAN, David; BAYLE, Elliott; WHITING, Paul. New approaches for the treatment of Alzheimer's disease. **Bioorganic & medicinal chemistry letters**, v. 29, n. 2, p. 125-133, 2019.

¹²¹ SERENIKI, Adriana; VITAL, Maria Aparecida Barbato Frazão. A doença de Alzheimer: aspectos fisiopatológicos e farmacológicos. **Revista de psiquiatria do Rio Grande do Sul**, v. 30, n. 1, p. 0-0, 2008.

¹²² DINGLEDINE, R.; McBAIN, C. J.; & McNAMARA, J. O. Excitatory amino acid recepos in epilepsy. *TiPS* (Special Report) 49-53,1991.

¹²³ Meldrum BS. Excitotoxicity and epileptic brain damage. *Epilepsy Res.* 1991; 10: 55-61.

¹²⁴ Lipton SA, Rosemberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. *New Engl J Med* 1994; **330**:613-622.

¹²⁵ MARAGAKIS, N.J. & ROTHSTEIN, J.D. Glutamate transporters: animal models to neurologic disease. *Neurobiology of Disease*. 15:461-473, 2004.

¹²⁶ Tansey, E. M. Henry Dale and the discovery of acetylcholine. *Comptes Rendus Biologies* **2006**, 329, 419.

¹²⁷ Peters, B. H.; Levin, H. S. Effects of physostigmine and lecithin on memory in Alzheimer disease. *Annals of Neurology* **1979**, 6, 219.

¹²⁸ Kumar, V.; Becker, R. E. Clinical pharmacology of tetrahydroaminoacridine: a possible therapeutic agent for Alzheimer's disease. *International journal of clinical pharmacology, therapy, and toxicology* **1989**, 27, 478.

Review.

¹²⁹ Li, Q.; He, S.; Chen, Y.; Feng, F.; Qu, W.; Sun, H. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer's disease. *European Journal of Medicinal Chemistry* **2018**, 158, 463.

¹³⁰ Onor, M. L.; Trevisiol, M.; Aguglia, E. Rivastigmine in the treatment of Alzheimer's disease: an update. *Clinical Interventions in Aging* **2007**, 2, 17.

¹³¹ Razay, G.; Wilcock, G. K. Galantamine in Alzheimer's disease. *Expert Review of Neurotherapeutics* **2008**, 8, 9.

¹³² Pacheco, G.; Palacios-Esquivel, R.; Moss, D. E. Cholinesterase inhibitors proposed for treating dementia in Alzheimer's disease: selectivity toward human brain acetylcholinesterase compared with butyrylcholinesterase. *Journal of Pharmacology and Experimental Therapeutics* **1995**, 274, 767

¹³³ Summers, W. K.; Majovski, L. V.; Marsh, G. M.; Tachild, K.; Kling, A.; Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. *The New England journal of Medicine* **1986**, 315, 1241.

¹³⁴ Watkins, P. B.; Zimmerman, H. J.; Knapp, M. J.; Gracon, S. I.; Lewis, K. W. Hepatotoxic Effects of Tacrine Administration in Patients With Alzheimer's Disease. *Journal of the American Medical Association* **1994**, 271, 992.

¹³⁵ Crismon, M. l. Tacrine: First Drug Approved for Alzheimer's Disease. *The Annals of Pharmacotherapy* **1994**, 28, 744.

¹³⁶ Szeto, J. Y.; Lewis, S. J. Current Treatment Options for Alzheimer's Disease and Parkinson's Disease Dementia. *Current Neuropharmacology* **2016**, 14, 326.

¹³⁷ Blennow. K.; De Leon, M. J.; Zetterberg, H. Alzheimer's disease. *Lancet* **2006**, 368, 387.

¹³⁸ Weinstock, M. Selectivity of cholinesterase inhibition. *CNS drugs* **1999**, 12, 307.

¹³⁹ Jann, M. W.; Shirley, K. L.; Small, G. W. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. *Clinical pharmacokinetics* **2002**, 41, 719.

¹⁴⁰ Bores, G. M.; Kosley, R. W. Galanthamine derivatives for the treatment of Alzheimer's disease. *Drugs of the Future* **1996**, 21, 621.

¹⁴¹ Samochocki, M.; Höffle, A.; Fehrenbacher, A.; Jostock, R.; Ludwig, J.; Christner, C.; Radina, M.; Zerlin, M.; Ullmer, C.; Pereira, E. F. R.; Lübbert, H.; Albuquerque, E. X.; Maelicke, A. Galantamine is an allosterically potentiating ligand of neuronal nicotinic but not of muscarinic acetylcholine receptors. *Journal of Pharmacology and Experimental Therapeutics* **2003**, 305, 1024

¹⁴² MASSOULIÉ, Jean; PEZZEMENTI, Leo; SUZANNE, Bon, KREJCI, Eric; VALETTE, François-Marie. Molecular and cellular biology of cholinesterases. **Progress** in neurobiology, v. 41, n. 1, p. 31-91, 1993.

¹⁴³ NICOLET, Yvain; LOCKRIDGE, Oksana; MASSON, Patrick; FONTECILLA-CAMPS, Juan; NACHON, Florian. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. **Journal of Biological Chemistry**, v. 278, n. 42, p. 41141-41147, 2003.

¹⁴⁴ SHAFFERMAN, A.; KRONMAN C.; FLASHNER, Y.; LEITNER, M; GROSFELD, H.; ORDENTLICH, A; GOZES, Y; COHEN, S.; ARIEN, N; BARAK, D. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. **Journal of Biological Chemistry**, v. 267, n. 25, p. 17640-17648, 1992.

¹⁴⁵ BERGMANN, Felix; WILSON, Irwin B.; NACHMANSOHN, David. Acetylcholinesterase IX. Structural features determining the inhibition by amino acids and related compounds. **Journal of Biological Chemistry**, v. 186, n. 2, p. 693-703, 1950.

¹⁴⁶ WILSON, Irwin B.; BERGMANN, Felix. Acetylcholinesterase VIII. Dissociation constants of the active groups. **Journal of Biological Chemistry**, v. 186, n. 2, p. 683-692, 1950.

¹⁴⁷ WILSON, Irwin B.; BERGMANN, Felix; NACHMANSOHN, David. Acetylcholinesterase X. Mechanism of the catalysis of acylation reactions. **Journal of Biological Chemistry**, v. 186, n. 2, p. 781-790, 1950.

¹⁴⁸ Disponível em <u>https://www.rcsb.org/structure/4ey4</u>

¹⁴⁹ Disponível em https://www.rcsb.org/structure/1p0i

¹⁵⁰ Harel, M.; Quinn, D.; Nair, H.; Silman, I.; Sussman, J. The X-ray structure of a transition state analog complex reveals the molecular origins of the catalytic power and substrate specificity of acetylcholinesterase. *Journal of the American Chemical Society* **1996**, *118*, 2340.

¹⁵¹ Ferreira-Vieira, T.; Guimaraes, I.; Silva, F.; Ribeiro, F. Alzheimer's disease: Targeting the Cholinergic System. *Current Neuropharmacology* **2016**, *14*, 101.

¹⁵² Greenblatt, H.M., Kryger, G., Lewis, T., Silman, I., Sussman, J.L., 1999. Structure of acetylcholinesterase complexed with (-)-galanthamine at 2.3 A resolution. FEBS Lett. 463, 321–326.

¹⁵³ Bar-On, P., Millard, C.B., Harel, M., Dvir, H., Enz, A., Sussman, J.L., Silman, I., 2002a. Kinetic and Structural Studies on the Interaction of Cholinesterases with the AntiAlzheimer Drug Rivastigmine,. Biochemistry (Mosc.) 41, 3555–3564. doi:10.1021/bi020016x

¹⁵⁴ Greenblatt, H.M., Kryger, G., Lewis, T., Silman, I., Sussman, J.L., 1999. Structure of acetylcholinesterase complexed with (-)-galanthamine at 2.3 A resolution. FEBS Lett. 463, 321–326.

¹⁵⁵ Spencer, C.M., Noble, S., 1998. Rivastigmine. A review of its use in Alzheimer's

disease. Drugs Aging 13, 391–411.

¹⁵⁶ Cheung, J., Rudolph, M.J., Burshteyn, F., Cassidy, M.S., Gary, E.N., Love, J., Franklin,

M.C., Height, J.J., 2012a. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 55, 10282–10286. doi:10.1021/jm300871x

¹⁵⁷ MESULAM, M. M.; GUILLOZET, A.; SHAW, P.; LEVEY, A.; DUYSEN, E. G.; LOCKRIDGE, O. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. **Neuroscience**, *110*(4), p. 627-639, 2002.

¹⁵⁸ Chatonnet, A.; Lockridge, O. Comparison of butyrylcholinesterase and acetylcholinesterase. *Biochemical Journal* **1989**, 260, 625.

¹⁵⁹ Mack, A.; Robitzki, A. The key role of butyrylcholinesterase during neurogenesis and neural disorders: an antisense-5'butyrylcholinesterase-DNA study. *Progress in Neurobiology* **2000**, 60, 607.

¹⁶⁰ Mendel, B.; Rudney, H. Studies on cholinesterase: 1. Cholinesterase and pseudocholinesterase. Biochemical Journal 1943, 37, 59. [CrossRef] [PubMed]

¹⁶¹ Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. 2006:101–124. doi:10.1017/S1461145705005833.

¹⁶² Demencia: A Public Health Priority.; 2012:112. Available at: http://apps.who.int/iris/bitstream/10665/75263/1/9789241564458_eng.pdf. Accessed October 6, 2013.

¹⁶³ Mushtaq, F.; Greig, N. H.; Khan, J. A.; Kamal, M. A.; Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease and type 2 diabetes mellitus. *CNS & Neurological Disorders - Drug Targets* **2014**, 13, 1432.

¹⁶⁴ Greig, N. H.; Utsuki, T.; Yu, Q.; Zhu, X.; Holloway, H. W.; Perry, T.; Lee, B.; Ingram, D. K.; Lahiri, D. K. A new therapeutic target in Alzheimer's disease treatment: attention to butyrylcholinesterase. Current Medical Research and Opinion **2001**, 17, 159.

¹⁶⁵ STEPHENSON, J.; CZEPULKOWSKI, B.; HIRST, W.; MUFTI, G. J. Deletion of the acetylcholinesterase locus at 7q22 associated with myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). Leuk Res, v. 20, p. 235-241, 1996.

¹⁶⁶ DARVESH, S.; HOPKINS, D. A.; GEULA, C. Neurobiology of butyrylcholinesterase. Nat Rev Neurosci, v. 4, p. 131-138, 2003.

¹⁶⁷ M. Barbosa, O. Rios, M. Velásquez, J. Villalobos, J. Ehrmanns, Acetylcholinesterase and butyrylcholinesterase histochemical activities and tumor cell growth in several brain tumors, Surg. Neurol. 55 (2001) 106–112.

¹⁶⁸ M. Syed, C. Fenoglio-Preiser, K.A. Skau, G.F. Weber, Acetylcholinesterase supports anchorage independence in colon cancer., Clin. Exp. Metastasis. 25 (2008) 787–798.

¹⁶⁹ Benyamin B, Middelberg RP, Lind PA, Valle AM, Gordon S, Nyholt DR, et al. GWAS of butyrylcholinesterase activity identifies four novel loci, independent effects within BCHE and secondary associations with metabolic risk factors. Hum Mol Genet. 2011;20(22):4504-14.

¹⁷⁰ Furtado-Alle L, Andrade FA, Nunes K, Mikami LR, Souza RL, Chautard-Freire-Maia EA. Association of variants of the -116 site of the butyrylcholinesterase BCHE gene to enzyme activity and body mass index. Chem Biol Interact. 2008;175(1-3):115-8.

¹⁷¹ Boberg DR, Furtado-Alle L, Souza RL, Chautard-Freire-Maia EA. Molecular forms of butyrylcholinesterase and obesity. Genet Mol Biol. 2010;33(3):452-4

¹⁷² Arun K. Ghosh and Margherita Brindisi. *Journal of Medicinal Chemistry* **2015**, *58*, 2895.

¹⁷³ Colović, M. B.; Krstić, D. Z.; Lazarević-Pašti, T. D.; Bondžić, A. M.; Vasić, V. M. Acetylcholinesterase inhibitors: pharmacology and toxicology. *Current Neuropharmacology* **2013**, 11, 315.

¹⁷⁴ Darvesh, S.; Darvesh, K. V.; McDonald, R. S. Mataija, D.; Walsh, R.; Oksana Lockridgell, M.; Martin, E. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. *Journal of Medicinal Chemistry* **2008**, 51, 4200.

¹⁷⁵ Jones, M.; Wang, J.; Harmon, S.; Kling, B.; Heilmann, J.; Gilmer, J. F. Novel Selective Butyrylcholinesterase Inhibitors Incorporating Antioxidant Functionalities as Potential Bimodal Therapeutics for Alzheimer's Disease. *Molecules* **2016**, 21, 440.

¹⁷⁶ Garg, V.; Maurya, R. K.; Thanikachalam, P. V.; Bansal, G.; Monga, V. An insight into the medicinal perspective of synthetic analogs of indole: A review. *European Journal of Medicinal Chemistry* 2019, 180, 562.

¹⁷⁷ Purgatorio, R.; de Candia, M.; Catto, M.; Carrieri, L.; De Palma, A.; Toma, M.; Ivanova, O. A.; Voskressensky, L. G.; Altomarea, C. D. Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer's disease. *European Journal of Medicinal Chem*istry **2019**, 177, 414.

¹⁷⁸ Velík, J.; Baliharová, V.; Fink-Gremmels, J.; Bull, S.; Lamka, J.; Skálová, L. Benzimidazole drugs and modulation of biotransformation enzymes. *Research in Veterinary Science* **2004**, 76, 95.

¹⁷⁹ Ajani, O. O.; Aderohunmu, D. V.; Ikpo, C. O.; Adedapo, A. E.; Olanrewaju, I. O. Functionalized Benzimidazole Scaffolds: Privileged Heterocycle for Drug Design in Therapeutic Medicine. *Archiv der Pharmazie (Weinheim)* **2016**, 349, 475.

¹⁸⁰ Zhu J, Wu CF, Li X, et al. Synthesis, biological evaluation and molecular modeling of substituted 2-aminobenzimidazoles as novel inhibitors of acetylcholinesterase and butyrylcholinesterase. *Bioorg Med Chem.* 2013;21(14):4218-4224.

¹⁸¹ Gopi, C.; Dhanaraju, M. D. Recent Progress in Synthesis, Structure and Biological Activities of Phenothiazine Derivatives. *Review Journal of Chemistry* **2019**, 9, 95.

¹⁸² González-Muñoz, G. C.; Arce, M. P.; López, B.; Pérez, C.; Villarroy, M.; López, M. G.; García, A. G.; Conde, S.; Rodríguez-Franco, M. I. Old phenothiazine and dibenzothiadiazepine derivatives for tomorrow's neuroprotective therapies against neurodegenerative diseases. *European Journal of Medicinal Chemistry* **2010**, 45, 6152.

¹⁸³ González-Muñoz, G. C.; Arce, M. P.; López, B.; Pérez, C.; Romero, A.; del Barrio, L.; Martín-de-Saavedra, M. D.; Ejea, J.; Léon, R.; Villarroya, M.; López, M. G.; García, A. G.; Conde, S.; Rodríguez-Franco, M. I. *N*-acylaminophenothiazines: neuroprotective agents displaying multifunctional activities for a potential treatment of Alzheimer's disease. *European Journal of Medicinal Chem*istry **2011**, 46, 2224.

¹⁸⁴ Marella, A.; Tanwar, O. P.; Saha, R.; Ali, M. R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M. M. Quinoline: A versatile heterocyclic. *Saudi pharmaceutical journal* **2013**, 21, 1.

¹⁸⁵ Knez, D.; Brus, B.; Coquelle, N.; Sosič, I.; Šink, R.; Brazzolotto, X.; Mravljak, J.; Colletier, J. P.; Gobec. S. Structure-based development of nitroxoline derivatives as potential multifunctional anti-Alzheimer agents. *Bioorganic and Medicinal Chemistry* **2015**, 23, 4442.

¹⁸⁶ Kumar, V.; Becker, R. E. Clinical pharmacology of tetrahydroaminoacridine: a possible therapeutic agent for Alzheimer's disease. *International journal of clinical pharmacology, therapy, and toxicology* **1989**, 27, 478.

¹⁸⁷ Chen, Y.; Sun, J.; Huang, Z.; et al. NO-donating tacrine derivatives as potential butyrylcholinesterase inhibitors with vasorelaxation activity. *Bioorganic and Medicinal Chemistry Letters* **2013**, 23, 3162.

¹⁸⁸ Fang, L.; Kraus, B.; Lehmann, J.; Heilmann, J.; Zhang, Y.; Decker, M. Design and synthesis of tacrine-ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. *Bioorganic and Medicinal Chemistry Letters* **2008**, 18, 2905.

¹⁸⁹ Benchekroun, M.; Bartolini, M.; Egea, J.; et al. Novel tacrine-grafted Ugi adducts as multipotent anti-Alzheimer drugs: a synthetic renewal in tacrine-ferulic acid hybrids. *ChemMedChem*. 2015;10(3):523-539.

¹⁹⁰ Bozorov, K.; Zhao, J.; Aisa, H. A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. *Bioorganic and Medicinal Chemistry* **2019**, 27, 3511.

¹⁹¹ Xu, M.; Peng, Y.; Zhu, L.; Wang, S.; Ji, J.; Rakesh, K. P. Triazole derivatives as inhibitors of Alzheimer's disease: Current developments and structure-activity relationships. *European Journal of Medicinal Chemistry* **2019**, 180, 656.

¹⁹² Khan, I.; Bakht, S. M.; Ibrar, A.; Abbas, S.; Hameed, S.; White, J. M.; Rana, U. A.; Zaib, S.; Shahid, M.; Iqbal, J. Exploration of a library of triazolothiadiazole and triazolothiadiazine compounds as a highly potente and selective family of cholinesterase and monoamine oxidase inhibitors: design, synthesis, Xray diffraction analysis and molecular docking studies. *RSC Advances* **2015**, *5*, 21249.

¹⁹³ Santos, S. N.; Souza, G. A.; Pereira, T. M.; Franco, D. P.; Del Cistia, C. N.; Sant'Anna, C. M. R.; Lacerda, R. B.; Kummerle, A. E. Regioselective microwave synthesis and derivatization of 1,5-diaryl-3-amino-1,2,4-triazoles and a study of their cholinesterase inhibition properties. *RSC Advances* **2019**, 9, 20356

¹⁹⁴ Brazzolotto, X. (2019). *ChemComm.* 1, 3765–3768. https://doi.org/10.1039/c9cc01330j

¹⁹⁵ Hickey, S. M., Ashton, T. D., & Pfeffer, M. (n.d.). Asian journal yanmei.pdf.

¹⁹⁶ Costa, P. R. R.; Pilli, R. A.; Pinheiro, S.; Vasconcelos, M. L. A. A.; *Substâncias Carboniladas e seus Derivados*, Bookman: Porto Alegre, 2003.

¹⁹⁷ ELLMAN, G. L.; COURTNEY, K. D.; ANDRES JR, V.; FEATHERSTONE, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. **Biochemical pharmacology**, v. 7, n. 2, p. 88-95, 1961.

¹⁹⁸ Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. *Scientific Reports*, 7(October 2016), 1–13. https://doi.org/10.1038/srep42717

¹⁹⁹ Williams, A. D.; Lemke, T. L. Foye's Principles of Medicinal Chemistry, 5th ed.; Lippincott Williams & Wilkins: United States of America, 2002.

²⁰⁰ Leung, M. R., van Bezouwen, L. S., Schopfer, L. M., Sussman, J. L., Silman, I., Lockridge, O., & Zeev-Ben-Mordehai, T. (2018). Cryo-EM structure of the native butyrylcholinesterase tetramer reveals a dimer of dimers stabilized by a superhelical assembly. *Proceedings of the National Academy of Sciences of the United States of America*, 115(52), 13270–13275. https://doi.org/10.1073/pnas.1817009115

²⁰¹ <u>https://www.tandfonline.com/doi/full/10.1080/14756366.2019.1571270</u>

²⁰² <u>https://pubs.rsc.org/en/content/articlepdf/2019/ra/c9ra04105b</u>

²⁰³ <u>https://www.tandfonline.com/doi/full/10.1080/14756366.2019.1571270</u>

²⁰⁴ <u>https://pubs.rsc.org/en/content/articlepdf/2019/ra/c9ra04105b</u>

²⁰⁵ HICKEY, M. S. et al. An Optimised Synthesis of 2-[2,3-Bis(tertbutoxycarbonyl)guanidino]ethylamine. **Synlett**, v. 23, p. 1779-1782, 2012.

²⁰⁶ GUERRITZ, S. et al. Acyl Guanidine Inhibitors of β-Secretase (BACE-1): Optimization of a Micromolar Hit to a Nanomolar Lead via Iterative Solid- and Solution-Phase Library Synthesis. **Journal Of Medicinal Chemistry**, n. 55, p. 9208–9223, 2012. ²⁰⁷ WANG, M. et al. Design, synthesis and antifungal activities of novel pyrrole alkaloid analogs. **European Journal Of Medicinal Chemistry**, v. 46, n. 5, p. 1463-1472, 2011.

²⁰⁸ KONIG, B.; SPATH, A. Ditopic Crown Ethet-Guanidinium Ion Receptors for the Molecular Recognition of Amino Acids and Small Peptides. **Tetrahedron**, v. 66, p. 1859-1873, 2010.

²⁰⁹ Luo, S., Xu, S., Liu, J., Ma, F., & Zhu, Y. Z. (2020). Design and synthesis of novel SCM-198 analogs as cardioprotective agents: Structure-activity relationship studies and biological evaluations. *European Journal of Medicinal Chemistry*, 200, 112469. https://doi.org/10.1016/j.ejmech.2020.112469