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RESUMO  

 
DA SILVA FERREIRA, Marcus Vinicius. Construção De Um Nariz Eletronico (E-Nose) De 
Baixo Custo Para Uso No Controle De Qualidade De Produtos Agrícolas”.2023. 147p. Tese 
(Programa de Pós-graduação em Ciência e Tecnologia de Alimentos). Instituto de Tecnologia, 
Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2023. 

 
O nariz eletrônico (e-nose) é um dispositivo cujo intuito é otimizar o sistema olfativo das 

células dos mamíferos e é projetado para identificar odores. Esse equipamento é baseado na 
capacidade dos sensores em detectar a presença de odores (compostos voláteis) nos alimentos 
e transformá-los em sinal elétrico (tensão). Na indústria de alimentos, o nariz eletrônico tem sido 
amplamente utilizado para avaliação de produtos agrícolas, especialmente em frutas e 
commodities vegetais, onde seu uso aumentou nos últimos anos. Outras técnicas baseadas em 
sensores, como os óticos tais como infra vermelho próximo (NIR) e imagem RGB (dentro da 
visão computacional) também são técnicas empregadas em análises de alimentos no intuito de 
se obter informação química. O funcionamento do NIR envolve a interação da radiação 
luminosa com uma amostra, onde suas propriedades físicas e químicas são refletidas nos 
espectros NIR resultantes. Já o sistema de sensors RGB é uma tecnologia que usa computadores 
para extrair dados úteis de entradas visuais (ex., imagens), uma vez que os métodos para 
determinação de fitoquímicos (ex., compostos fenolicos) nessas culturas são onerosas e 
demoradas, como cromatografia gasosa (CG-MS), além desse método requerr a destruição do 
analito. O objetivo do trabalho foi investigar o efeito de parâmetros do nariz eletrônico de baixo 
custo (NEBC) (ex., temperatura dos sensores, espaço da câmara, fluxo de ar e tempo de 
aquisição) aplicando analise multivariada, prinicipal componetent analysis PCA, partial least square 
regression PLSR, PLS-DA partial least square discriminant Analysis para avaliação de produtos 
agrícolas, além de investigar a performance do nariz eletrônico de baixo custo frente a outras 
tecnologias (NIR e camera RGB dentro do conceito de computer vision). O NEBC mostrou-se 
uma poderosa ferramenta analítica na classificação de estágios de maturação na pitaya além de 
potencial de predição de parâmetros como acidez e sólidos solúveis RPD>2 para acidez titulável 
e pH. Também de chás preto com base na origem (Brasil, Índia e Estados Unidos). Desempenho 
este compatível com outros sensores opticos, como o infravermelho próximo (NIR) (para pitaya 
e chá) e Imagem RGB comparada à análise da pitaya. A otimização do tempo de aquisição da 
amostra em 2 minutos tanto para a pitaya quanto para os chás foram suficientes para obtenção 
dos dados bem como a implementação das condições de temperatura e umidade em 25 ◦C e 40% 
respectivamente foram bem sucedidas. O nariz eletrônico de baixo custo se mostrou como uma 
alternativa para a indústria de alimentos e pode ser considerado para o controle de qualidade, 
como vida de prateleira em frutas e autenticação em chá preto. 

 
Palavras-chave: Sensores olfativos. sensores ópticos. Machine learning. produtos agrícola 

v 



   

ABSTRACT 

 
DA SILVA FERREIRA, Marcus Vinicius. Construction of a Low-Cost Electronic Nose (E-
Nose) for Use in the Quality Control of Agricultural Products. 2023. 147p. Thesis (PhD in 
Food Science and Technology). Instituto de Tecnologia, Universidade Federal Rural do Rio de 
Janeiro, Seropédica, RJ, 2023. 

 

The electronic nose (e-nose) is a device designed to optimize the olfactory system of mammalian 
cells and is intended to identify odors. This equipment is based on the ability of sensors to detect the 
presence of odors (volatile compounds) in food and convert them into an electrical signal (voltage). 
In the food industry, the electronic nose has been widely used for the evaluation of agricultural 
products, especially in fruits and vegetable commodities, where its use has increased in recent years. 
Other sensor-based techniques, such as optical ones like near-infrared (NIR) and RGB imaging (inside 
o f computer vision), are also employed in food analysis to obtain chemical information. The operation 
of NIR involves the interaction of light radiation with a sample, where its physical and chemical 
properties are reflected in the resulting NIR spectra. On the other hand, the RGB sensor system is a 
technology that uses computers to extract useful data from visual inputs (e.g., images), as methods for 
determining phytochemicals (e.g., phenolic compounds) in these crops are costly and time-
consuming, such as gas chromatography (GC-MS), and this method requires the destruction of the 
analyte. The aim of the study was to investigate the effect of low-cost electronic nose parameters 
(LCEC) (e.g., sensor temperature, chamber space, air flow, and acquisition time) by applying 
multivariate analysis such as principal component analysis (PCA), partial least square regression 
(PLSR), and PLS-DA (partial least square discriminant analysis) for the evaluation of agricultural 
products. Additionally, the study aimed to investigate the performance of the low-cost electronic nose 
compared to other technologies (NIR and RGB camera within the concept of computer vision). The 
LCEC proved to be a powerful analytical tool in the classification of ripening stages in pitaya, as well 
as the prediction potential of parameters such as acidity and soluble solids with RPD>2 for titratable 
acidity and pH. It also demonstrated effectiveness in distinguishing black teas based on origin (Brazil, 
India, and the United States). This performance was comparable to other optical sensors, such as near-
infrared (NIR) (for pitaya and tea) and RGB imaging compared to pitaya analysis. Optimizing the 
sample acquisition time to 2 minutes for both pitaya and teas was sufficient for obtaining data, as well 
as successfully implementing temperature and humidity conditions at 25°C and 40%, respectively. 
The low-cost electronic nose proves to be an alternative for the food industry and can be considered 
for quality control, shelf-life assessment in fruits, and authentication in black tea. 

 
Keywords: Olfactive sensors. optical sensors. agricultural products. machine learning. 
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1 

 

ESTRUTURA DA TESE 

 
A tese está estruturada em capítulos, contendo a introdução geral, objetivos, justificativa 

e um capítulo dedicado a elucidar técnicas que não foram abordadas no artigo de revisão, além 
dos seguintes capítulos: 

 
No capítulo I, apresenta-se uma revisão da literatura onde são discutidos os mais 

recentes trabalhos envolvendo o uso de narizes eletrônicos de baixo custo para classificação dos 
mesmos materiais do capítulo I. 

 
No capítulo II, o nariz eletrônico adaptado a frutas é utilizado para classificar pitayas 

em diferentes estágios de maturação e predizer alguns parâmetros de interesse no fruto (sólidos 
totais, acidez, compostos fenólicos e umidade). Também é utilizado o sensor ótico 
infravermelho próximo (NIR) para testar o potencial classificatório da tecnologia de baixo 
custo. 

 
No capítulo III, é proposta outra comparação de desempenho, desta vez utilizando 

melhorias na aquisição de dados em relação ao controle de umidade e temperatura. O chá preto 
é utilizado para representar o grupo das commodities agrícolas, finalizando a ideia inicial da 
tese em propor um nariz de baixo custo para frutas e commodities agrícolas estudadas (chá, café 
e cacau). Para testar a validação dos dados, modelos de classificação (LDA e PLS-DA) são 
propostos. Da mesma forma, dois dispositivos NIR são utilizados para comparação (portátil e 
de bancada) com o nariz eletrônico. 

 
Por fim, as considerações finais são expostas, e são apresentadas sugestões para estudos 

futuros. Cada capítulo está apresentado na forma de artigo e segue com formatação própria para 
cada revista à qual foi submetido. Em anexo, apresento um quarto artigo no qual a mesma fruta 
utilizada no capítulo II (pitaya) é empregada com outro sensor ótico RGB (visão computacional) 
para também testar o potencial do nariz frente à capacidade de gerar resultados reprodutíveis 
diante de outros sensores de baixo custo. Foi utilizado inteligência artificial em imagens digitais 
(RGB) do fruto com as mesmas divisões de classes propostas anteriormente (capítulo II). Para 
performance F1 scores utilizando ResNet e Vit transformer como feature extraction das regiões 
de interesse da imagem. 
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1 INTRODUÇÃO GERAL 

O Brasil é o maior produtor de frutas tropicais do mundo e está na lista dos grandes 
produtores de chá preto (PINTO; JACOMINO, 2013). Pitaya (Selenicereus undatus) é uma 
fruta cujo consumo tem sido destacado no mercado brasileiro (ATTAR et al., 2022). A Pitaya 
tem sido consumida em larga escala devido à presença de antocianinas, que apresentam 
propriedades antioxidantes e também pelo potencial da fruta em controlar o crescimento dos 
microrganismos em alimentos (conservantes) (CHEAH et al., 2016). Já o chá preto é 
caracterizado como chá (oxidadas, fermentadas e secas, usado para infusão), e seus constituintes 
mais prevalentes são polifenóis, cafeína, aminoácidos e flavonoides. Esses componentes 
também têm propriedades e benefícios significativos para a saúde humana, incluindo um 
mecanismo anti-inflamatório que reduz o risco de doenças cardiovasculares e previne o câncer 
(XIAO et al., 2022). Depois da água, é a bebida mais popular em todo o mundo e muito embora, 
no Brasil, a produção e consumo de chá preto ainda seja pequena se comparada a outros países, 
esta vem crescendo ao longo dos últimos anos e se mostra uma área promissora (XIAO et al., 
2022). 

O pós-colheita e processamento de frutas, bem como commodities agrícolas (chá preto), 
exigem produtos seguros e de alta qualidade, necessitando de medidas de controle de qualidade 
completas. A economia global tem visto um crescimento significativo na indústria de frutas e 
commodities agrícolas (CHOPRA; KRISHNAKUMAR; PETER, 2016).  

A escolha adequadade sensores (óticos e olfativos) é crítica na detecção de pequenas 
mudanças na concentração de gases odoríferos relacionados a transformações de alimentos 
durante seu armazenamento ou processamento. Tyagi et al. (2023) associaram a identificação 
de compostos voláteis VOCs aos estágios de maturação da fruta e commodities agrícolas e 
condições de armazenamento no pós-colheita. Além disso, sensores no infravermelho, luz 
visível e nariz eletrônico são valiosos para classificar frutas em estágios de maturação e 
determinar origem de commodities agrícolas como chá, café e cacau, em função das perdas 
anuais alarmantes de US$ 10 bilhões devido a fraudes na indústria global de alimentos (TSENG 
et al., 2021). 

No âmbito de sensores óticos, a espectroscopia de infravermelho próximo (NIR) é uma 
poderosa técnica analítica utilizada na faixa de comprimento de onda de 780 a 2500 nm, 
enquadrada na categoria de espectroscopia vibracional de alta energia. Este método não 
destrutivo envolve a interação da radiação eletromagnetica com uma amostra, em que suas 
propriedades físicas e químicas são refletidas nos espectros NIR resultantes (FAN et al., 2016; 
OLIVEIRA et al., 2014). As interações químicas leves ocorrem com grupos moleculares 
associados a ligações químicas C–H, O–H e N–H. A maioria das bandas de absorção NIR 
associadas a esses grupos são harmônicos ou combinações de bandas de absorção fundamental 
na região do infravermelho, que por sua vez são devidas a transições vibracionais e rotacionais 
(NICOLAI et al., 2007). Quando a radiação NIR penetra em um produto, suas características 
espectrais mudam por meio de processos de absorção e espalhamento dependentes do 
comprimento de onda. Essas mudanças espectrais são influenciadas por variações na 
composição química interna do produto (por exemplo, teor de umidade) e pelas propriedades 
de dispersão de luz (por exemplo, tamanho de partícula). NIR tem sido muito utilizado para 
estágios de maturação em frutas e commodities agrícolas (chá, café e cacau) (PANDISELVAM 
et al., 2022; SHAH et al., 2020) e chá (DING et al., 2022). 

Ainda sobre sensores ópticos métodos baseados na análise de imagens digitais, 
geralmente conhecidos como métodos de visão computacional (CV), é uma ferramenta potente 
que usa computadores para extrair dados úteis de entradas visuais, como imagens ou videos. 
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Este campo inclui uma variedade de técnicas para coletar dados de sensores de imagem, como 
câmeras digitais. A CV permite a extração, análise e compreensão rápida e automática de 
informações importantes de imagens únicas ou coleções de imagens. O método procura 
identificar, rastrear ou descobrir informações reconhecendo características externas. A imagem 
digital tem sido usada na preparação de alimentos para rastrear variáveis de qualidade externa, 
como tamanho e mudanças na estrutura da superfície, mudanças de cor causadas pelo 
processamento e mudanças no tamanho e na estrutura da superfície (XIAO et al., 2022). A 
tecnologia de imagem digital também tem sido empregada e na avaliação do grau da maturação 
em fruto (JIANG et al., 2022; SALUNKHE; PATIL, 2015) como também grau de fermentação 
em chá (DONG et al., 2018). Tanto NIR e CV possuem um grande potencial para testar 
qualidade de alimentos e têm sido amplamente empregados, porém esses dispositivos não 
conseguem gerar uma leitura direta dos compostos voláteis que são liberados por alimentos, 
exemplo, frutas e commodities agrícolas. 

A importância de detectar VOCs em alimentos em geral está em entender como eles se 
relacionam com alterações fisicoquímicas e sensoriais nesses produtos, o que é de extrema 
importância para a indústria de alimentos (BROOKS et al., 2021). Nos últimos anos, o uso de 
narizes eletrônicos teve um crescimento significativo, principalmente devido à natureza onerosa 
e demorada dos métodos convencionais de avaliação de qualidade para essas culturas. Entre os 
métodos atuais para determinar os VOCs nesses frutos estão a espectroscopia e os métodos 
cromatográficos (VIEIRA et al., 2017), que demandam mais tempo como a cromatografia 
gasosa (CG-EM), cromatografia líquida de alto de desempenho (HPLC) (Hammel Sobreira, Da 
Silva Ferreira, and Kamruzzaman 2023), a espectroscopia de infravermelho com transformada 
de Fourier (FT-IR). Contudo, estes métodos requerem a aquisição de equipamentos mais caros, 
uso de produtos químicos e a destruição das amostras em sua grande maioria (BURATTI ET AL. 
2011; JIN ET AL. 2021). 

Portanto, a adoção de narizes eletrônicos oferece uma alternativa mais rápida e não 
destrutiva para avaliação de qualidade. Em contraste, os dispositivos de nariz eletrônico 
experimentaram um aumento nas aplicações nos últimos anos. Eles oferecem uma alternativa 
não destrutiva e eficiente para avaliar a qualidade das culturas, tornando-os altamente valiosos 
na indústria. Ao eliminar a necessidade de métodos complexos e com uso intensivo de recursos, 
os narizes eletrônicos fornecem uma solução mais rápida e econômica para garantir a segurança, 
qualidade e autenticidade de frutas e commodities agricolas (BURATTI et al., 2011; 
SANAEIFAR et al., 2017; VIEIRA et al., 2017; WILSON, 2018; WILSON, 2018). 

Os sistemas de e-nose têm sido aplicados em muitos produtos agrícolas, como por 
exemplo em produtos à base de carne, cereais e grãos, frutas, sementes e vegetais. O equipamento 
tem sido usado para identificar amostras fraudulentas e prever adulteração, bem como outros 
atributos agrícolas como contaminação de trigo (LIPPOLIS et al., 2014), envelhecimento do 
arroz (RAHIMZADEH et al., 2019), detectando odores em bananas, limão e lichia (PAN; 
HSIEH; TANG, 2013; TANG et al., 2010), amadurecimento em uvas (ALEIXANDRE et al., 
2015), aroma em café (GONZALEZ VIEJO et al., 2020), sólidos solúveis em caqui e laranjas 
(XU et al., 2019; ZHANG et al., 2016). Também em produtos de origem animal como frescor, 
qualidade sensorial e microbiológica da carne vermelha (LI et al., 2014; PAPADOPOULOU et 
al., 2013; TIMSORN et al., 2014), frescor da carne, frango e peixe (LIU et al., 2020), compostos 
voláteis em leite desnatado (CHI et al., 2021), identificação de deterioração em produtos lácteos 
(PHUKKAPHAN et al., 2021). 

Muitos autores têm proposto novos aparatos físicos para o e-nose (CHEN et al., 2021; 
CHENG et al., 2021; CHILO et al., 2016; GONZALEZ VIEJO; FUENTES, 2020; MACÍAS et 
al., 2013; SPINELLE et al., 2017). Na maioria desses trabalhos, o desenvolvimento da câmara e 
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na escolha de sensores são descritos como um desafio (JULIAN et al., 2020; WOJNOWSKI et 
al., 2017). No geral, o projeto proposto para um sistema de nariz eletrônico é geralmente 
retangular e composto por muitas câmaras e dispositivos para bombear o ar para a câmara de 
reação (microcontrolador, microbombas e câmara de sensores) (MACÍAS et al., 2013). O 
sistema e-nose é composto ba sicamente por um conjunto de sensores, uma placa-me para 
aquisição de dados e um software para traduzir os dados. Um nariz eletrônico detecta os VOCs 
da amostras em questão através de uma matriz de sensores monitorados por software e sistemas 
de reconhecimento de padrões. 

Dentre os aparatos físicos disponíveis, como os sensores  de polímero condutor (CP) 
(CHOWDHURY et al., 2019), eletroquímico (EC) (HARUN; COVINGTON; GARDNER, 2009), 
Microbalança de cristal de quartzo (QCM), onda acústica superficial (SAW) (MATATAGUI et 
al., 2019), óptica (THEPUDOM; SRICHAROENCHAI; KERDCHAROEN, 2013) e óxido de 
metal (MOS) (CHARUMPORN et al., 2006; NAKE et al., 2005), este último é conhecido por sua 
tecnologia consolidada de baixo custo, circuito de hardware simples e boa durabilidade, além de 
possuir sensibilidade em um amplo espectro (CHENG et al., 2021). Muitos pesquisadores têm 
usado MOS para compor seus sistemas de nariz eletrônico, e eles os têm usado para estudar muitos 
produtos agrícolas como: farinha, arroz, frango e suco de tomate (LI et al., 2014; LIPPOLIS et 
al., 2014; RAHIMZADEH et al., 2019; TIMSORN et al., 2014). Dentre as opções acima, os 
sensores mais comumente encontrados em e-noses são os sensores EC (eletroquímicos), que são 
especialistas em detectar gases ou compostos químicos específicos por meio de eletrodos. 
Notavelmente, os sensores EC são frequentemente empregados para detectar gases como CO2, H2S 
e NH3. Por outro lado, os sensores MOS (Metal Oxide Semicondutor) representam outro tipo de 
sensor ainda mais usado em narizes eletrônicos devido ao preço reduzido. Esses sensores detectam 
mudanças nas características elétricas dentro de um revestimento de óxido de metal colocado em 
um substrato semicondutor (EMERSON, 2019; TAN; XU, 2020).  

Para compreender melhor o funcionamento, as vantagens e a disponibilidade desses dois 
tipos de sensores, foi realizada uma investigação sobre narizes eletrônicos baseados em EC e MOS 
no contexto de frutas e commodities agrícolas (chá, café e cacau). Os sensores de detecção de gás 
semicondutores são uma boa escolha ao construir um dispositivo portátil e acessível. Os sensores 
contém um eletrodo do sensor de gás MOS a camada de dióxido de estanho, bem como o fluxo do 
circuito elétrico. No eletrodo, enquanto em modo IDLE, o O2 presente no ar liga os elétrons na 
camada de dióxido de estanho que bloqueia a passagem de corrente no sistema. Posteriormente, 
quando os gases redutores interagem com o revestimento de óxido metálico e a característica 
elétrica do filme muda, a corrente é desbloqueada gerando o sinal do equipamento (EMERSON, 
2019; TAN; XU, 2020). A placa mãe de um dispositivo de nariz eletrônico é baseada no “AD 
Board”, que é uma controladora que serve de interface entre o dispositivo e o PC para aquisição 
de dados. Vários modelos têm sido usados em sistemas olfativos, como placa microcontroladora 
baseada em Arduino, como o Uno Rev3 ATmega 328P (BINSON; SUBRAMONIAM, 2021), 
MCP3208 12bit AD (BOROWIK et al., 2021) 32F10 (CHEN et al., 2021) USB-6218 16 bits 
(CHILO et al., 2016), sendo as diferenças entre eles basicamente a robustez referente ao seu 
hardware (material) e também da capacidade de controlar periféricos (entradas) no sistema. Esta 
parte do equipamento é responsável por fornecer energia aos sensores, bem como para criar uma 
configuração de tensão do analógico para a unidade digital.  

A placa-mãe baseada em Arduino parece uma escolha confiável (BINSON; 
SUBRAMONIAM, 2021), e é uma plataforma de código aberto que usa hardware com 
configuração simples aos usuários. O equipamento permite entradas de leitura (resposta ao sensor) 
e se transformará em uma saída (sinal de tensão). O dispositivo faz isso usando a linguagem de 
programação Arduino baseada em miring e no software Arduino (IDE). O design do software é 
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apresentado em diversos formatos, alguns sãoescritos em linguagem C/C++ (MACÍAS et al., 
2013) e não precisam de recursos especiais. Outros programas são baseados em Arduino (CHENG 
et al., 2021), que geralmente é dividido em duas partes. A primeira parte é baseada no computador 
host (hospedeiro) que apre- senta a interface gráfica para traçar o gráfico de tensão gerado pela 
aquisição de dados (ou seja, resposta de sensores a gases).  

Além de outros componentes, como sensores, sistemas de aquisição de dados e métodos de 
reconhecimento de padrões, alguns parâmetros físicos são muito importantes para o perfeito 
funcionamento do e-nose. Os fatores físicos influenciam a análise e a qualidade dos dados obtidos. 
Portanto, existem algumas propostas na literatura nesse sentido para resolver esses problemas (YIN 
et al., 2016). Alguns parâmetros de aquisição de dados importantes para o sistema de nariz 
eletrônico incluem: headspace estático e dinâmico no qual afeta a maneira que os voláteis 
interagem com o sensor (JULIAN et al., 2020; RALISNAWATI et al., 2018; 
RODRÍGUEZMÉNDEZ et al., 2016), controle da temperatura, afeta o movimento dos elétrons pela 
mídia (sensor) (LI et al., 2015; ZHAO et al., 2016) e controle da umidade altera a afinidade dos 
sítios de ligação dos sensores (HOMER et al., 1999; LI et al., 2015; YAN et al., 2021; ZHAO et al., 
2016).  

Os pré-tratamentos são transformações importantes que dizem respeito as correções feitas 
aos sinais registrados por um determinado instrumento, levando-se em conta a contribuição 
determinística (sinal verdadeiro) e estocástica (variações indesejadas). Para o sistema do nariz 
eletrônico já foram testados transformações e pré-processamentos como a razão sinal/ruido que 
proporciona maior acurácia no tratamento de dados (LIU et al., 2019; YAN et al., 2015), 
autoescalamento (Steady-state response feature extraction optimization) tem se mostrado eficaz  
>94% a acurácia das análises no e-nose (AGUSTIKA et al., 2020). 

A análise exploratória ajuda a tomar um grande volume de dados, interpretá-los e representar 
suas informações químicas de uma forma que possam ser aplicadas técnicas como métodos de 
classificação e também para predizer amostras em questão. Entre esses métodos, os de 
reconhecimento de padrões análise de componentes principais (PCA) são os mais utilizados, onde 
se pode encontrar padrões e reconhecer tendências de agrupamento (JIMÉNEZ-CARVELO et al., 
2019). A Análise de Componentes Principais (PCA) é uma ferramenta estatística não 
supervisionada que reconhece padrões a partir de informações observáveis em um grupo amostral. 
Seu objetivo é manter o máximo de variação possível enquanto projeta os pontos de dados nos 
componentes principais. Para atingir esse fim, o método identifica as informações singulares 
presentes no conjunto de dados do grupo amostral. (AGUSTIKA et al., 2020; TANG; LIN; SHYU, 
2010). PCA é muito utilizado como analise exploratória em vários trabalhos envolvendo analise 
multivariada para tratar dados de e-noses em produtos alimentícios como por exemplo em frutas 
como as myricas (CHENG et al., 2015) e as nozes de cacau (TAN; KERR, 2018). Existem vários 
métodos de classificação sendo utilizados recentemente, no entanto, os mais utilizados são os 
vizinhos k-mais próximos (KNN), a partial lest square discriminatant regression (PLSD-DA) e 
o método soft independent modeling of class analogy (SIMCA). São métodos supervisionados 
(dados rotulados) para qualificação e classificação (JIMÉNEZ-CARVELO et al., 2019).  

A análise discriminatória opera estabelecendo limites entre classes distintas estabelecidas 
por objetos de treinamento (JIMÉNEZ-CARVELO et al., 2019). PLS-DA é um método de 
classificação supervisionado que utiliza uma base quantitativa. O método atribui um valor 
numérico usando um algoritmo de regressão multivariada, então esses valores são classificados em 
suas classes (JIMÉNEZ-CARVELO et al., 2019). Muitos estudos têm usado o PLS-DA como 
método de classificação para tratar dados de nariz eletrônico como por exemplo: classificar arroz 
(FENG et al., 2013) e chá (NI et al., 2018) de acordo com origem geográfica e autenticação no vinho 
(SPRINGER, 2019).  

O método de regressão por quadrados mínimos parciais PLS-R, que é um método de 
previsão também é usado para modelos de determinação de dados de nariz eletrônico. PLSR é um 
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método supervisionado que usa uma abordagem de quantificação e calibração, e é usado para 
construir modelos de previsão a partir da análise de referência e dos dados do sistema de nariz 
eletrônico. Muitos estudos têm usado PLS para tratar dados do e-nose (JIMÉNEZ-CARVELO et 
al., 2019; ZHANG et al., 2021). Algumas das análises de referência mais utilizadas incluem 
cromatografia gasosa  (CG) (Tan and Kerr 2018) e métodos físico-químicos padrão (WEI; WANG; 
ZHANG, 2015). 

Equipamentos de baixo custo têm sido utilizados para detecção de aroma em alimentos 
(MACÍAS et al., 2013; CANO MARCHAL et al., 2021), como qualidade da cerveja (GONZALEZ 
VI- EJO; FUENTES, 2020) e aroma de café (GONZALEZ VIEJO; TONGSON; FUENTES, 2021) 
porém ainda não existem muitos trabalhos com narizes de baixo custo nesta categoria (Low- cost-
e-nose) em frutas e commodities agrícolas (chá preto). Embora o e-nose de baixo custo tenha sido 
recentemente proposto (CHENG et al., 2021; JIA et al., 2019; ALI et al., 2020) a maioria das 
pesquisas ainda usam formatos comerciais caros (CHENG et al., 2015; JIA et al., 2019; LI et al., 
2014; LIPPOLIS et al., 2014; QIU; WANG; GAO, 2015; RUSSO et al., 2013; WEI; SHAO et al., 
2018; WEI; ZHANG et al., 2018; ZHANG et al., 2016), o que torna o processo inviável para 
muitas empresas. Assim essa possível lacuna viabiliza a proposta que vise melhorar a integração 
de componentes eletrônicos e processamento de dados, na construção de um e-nariz de baixo custo 
projetado para ser utilizado em produtos agrícolas. 
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2 OBJETIVOS 
 
2.1 Objetivo Geral 

Confecção de um nariz eletrônico de baixo custo (LC-e-nose) que seja capaz de identificar 
os compostos voláteis presentes nas amostras estudadas e que a partir destes compostos seja 
possível predi zer o estágio de maturação dos frutos analisados, e origem de chá, viabilizando 
seu uso na indústria de alimentos. Além de aprimorar a medição e a predição de parâmetros 
importantes no pós colheita de frutas e produção de chá preto entre outros possíveis produtos 
agropecuários na classe frutas e commodities agrícolas. 

 
2.2 Objetivos Específicos 

 

 Fornecer uma visão geral da função do sensor, comparando EC e MOS, e apresentar 
relatórios ao longo dos últimos 13 anos de dispositivos Low-cost-e-nose totalmente definidos 
com base em MOS aplicados em frutas, chá, cacau e café, incluindo seus designs, e-noses e 
tratamentos comuns de dados. Além dos métodos mais comuns para análise de dados também 
são discutidos.  

 Propor o uso de duas tecnicas (NIR e e-nose) para prever a vida útil da pitaya com bases 
no conteúdo total de sólidos solúveis, pH, acidez titulável, umidade e compostos fenólicos 
usando modelos PLSR, bem como para discriminar a fruta em 5 estágios (dias) usando modelos 
LDA e PLS-DA.  

 Investigar o uso de LC-e-nose e dois NIR de bancada (PNIR e BNIR) para classificar 
folhas de chá de três origens diferentes (Brasil, Estados Unidos e Índia) usando modelos LDA 
e PLS-DA. Além de fazer o uso da cromatografia gasosa como confirmacão. dos voláteis 
presents. 
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3. JUSTIFICATIVA DO TRABALHO 

O Brasil é o maior produtor de frutas tropicais do mundo e está na lista dos grandes 
produtores de chá preto (PINTO; JACOMINO, 2013). A pitaya (Selenicereus undatus) é uma 
fruta cujo consumo tem sido destacado no mercado brasileiro (ATTAR et al., 2022). Encontrar 
meios econômicos para monitoramento da produção e garantir parâmetros de qualidades para 
estes produtos é de grande importância. 

Existem várias explicações e benefícios para o uso de narizes eletrônicos de baixo custo 
(e-nose) e simples de se utilizar em países em desenvolvimento para detectar diferentes estágios 
de maturação de frutas e chás (CHENG et al., 2021; JIA et al., 2019; ALI et al., 2020). Os 
métodos tradicionais para determinar os estágios de maturação frequentemente exigem 
aparelhos de laboratório de custo elevado e trabalhadores qualificados, o que pode não ser 
prático em ambientes com poucos recursos (BURATTI et al., 2011; SANAEIFAR et al., 2017; 
VIEIRA et al., 2017; WILSON, 2018). Narizes eletrônicos de baixo custo podem oferecer uma 
opção mais econômica, sendo ferramentas de teste não destrutivas, portanto, não danificam as 
frutas ou as folhas de chá durante a análise. Ao utilizarem a tecnologia, os agricultores podem 
acompanhar as fases de amadurecimento sem abrir mão de uma parte de sua colheita, o que 
ajuda a reduzir o desperdício e maximizar a produtividade (XU et al., 2019; ZHANG et al., 
2016). Outra vantagem é o monitoramento em tempo real, visto que o nariz eletrônico pode 
oferecer dados sobre a maturidade de frutas e folhas de chá em tempo real e como resultado, a 
qualidade do produto aumenta e as perdas por amadurecimento excessivo ou insuficiente são 
reduzidas. Isso permite que agricultores e produtores tomem decisões oportunas sobre colher ou 
processar as safras (LIPPOLIS et al., 2014; WEI; SHAO et al., 2018; WEI; ZHANG et al., 
2018). Além disso, esses dispositivos favorecem a portabilidade e alcance a vários ambientes, 
pois geralmente têm designs portáteis e fáceis de usar. Eles podem ser levados direto para o 
campo, permitindo que os agricultores avaliem os vários estágios de amadurecimento sem ter 
que enviar amostras para um laboratório distante. Agricultores de pequena escala como a grande 
maioria das pequenas propriedades familiares, que muitas vezes são a base do setor agrícola em 
países subdesenvolvidos, não têm acesso a tecnologias mais avançadas. Ao fornecer a esses 
agricultores uma ferramenta para ajudá-los a tomar melhores decisões e serem mais produtivos 
em geral, a introdução de narizes eletrônicos de baixo custo pode fortalecê-los. O uso de narizes 
eletrônicos de baixo custo em nações subdesenvolvidas também pode produzir informações úteis 
sobre variações regionais, padrões de amadurecimento de safras e outros detalhes pertinentes. 
Esta informação pode ser utilizada para gerar soluções focadas para melhorar a agricultura e 
para pesquisas futuras e desenvolvimentos de políticas públicas que agreguem a economia 
circular frente a demandas da agricultura 5.0. 

E por último, o projeto justifica-se por aprimorar o processo de amadurecimento, os 
produtores podem diminuir sua dependência de agentes químicos de amadurecimento ou 
conservantes, resultando em uma prática agrícola mais ecológica e sustentável, além de tornar 
possível identificação de origem auxiliando na autenticidade de produtos agrícolas (ex. chás) 
Embora os narizes eletrônicos de baixo custo tenham muitos benefícios, é importante levar em 
conta coisas como calibração para variedades de culturas regionais e dar aos agricultores e 
produtores o treinamento para aproveitá-los ao máximo. No entanto, o uso dessa tecnologia 
tem o potencial de melhorar os métodos agrícolas e apoiar o crescimento econômico das nações 
subdesenvolvidas. 
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1.1  Abstract 

An electronic nose (e-nose) is a device designed to recognize and classify odors by 
mimicking the olfactive cells of humans. The equipment is built around a series of sensors that 
detect the presence of odors, especially volatile compounds (VOCs), and generate an electric 
signal (voltage), known as e-nose data, which contains chemical information. In the food 
business, the use of e-noses for analyses and quality control of fruits and plantation crops has 
increased in recent years. Their use is particularly relevant due to the lack of non-invasive and 
inexpensive methods to detect VOCs in these crops. However, the majority of reports in the 
literature involve commercial e-noses, with only a few studies addressing low-cost e-nose (LC-
e-nose) devices or providing a data-designed orientated description to assist researchers decide 
their setup and appropriate statistical methods to analyze these crops’ data. Therefore, the 
objective of this study is to discuss the hardware of the two most common e-nose sensors: 
(Electrochemical EC and Metal oxide Sensors - MOS) as well as a critical review of the 
literature reporting MOS based low-cost e-nose devices used for investigating of plantation and 
fruit crops, including and main features of such devices. Miniaturization of equipment from lab-
scale to portable and convenient gear, allowing producers to take it to the field, as shown in many 
appraised systems, is one of the future advancements in this area. By utilizing the low-cost 
designs provided in this review, researchers can develop their own devices based on practical 
demands such as quality control and compare results with devices reported in the literature. 
Overall, this review thoroughly discusses the applications of low-cost e-noses based on MOS 
for fruits, tea, and coffee, as well as the key features of their equipment (i.e., advantages and 
disadvantages) based on their technical parameters (i.e., electronic and physical parts). As a final 
remark, LC-e-nose technology deserves significant attention at it has the potential to be a 
valuable quality control tool for emerging countries. 

Keywords: multi-sensor devices. chemometrics. quality control. Machine learning. 
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1.2 Introduction 

E-nose is a multi-sensor device designed to identify volatile compounds similar to the 
olfactive sense of humans and then classify the material based on variation in its aroma. The 
equipment is based on a set of sensors capable of detecting the presence of odors from samples 
(volatile compounds) and transforming them into an electric signal (voltage, e-nose data) (PE- 
ARCE et al., 2003). This signal can be compared to chemical data used or categorical variables 
as a reference to assess sample quality, composition, or any other variations. 

E-noses are applied in agriculture, cosmetics and pharmaceutical, environmental, 
military, and food analyses (CARON et al., 2016; CHENG et al., 2021; FANG; ZHANG; WEI, 
2014; GOBBI et al., 2015; HERRERO et al., 2016; PENG et al., 2015; PERIS; 
ESCUDERGILABERT, 2009; RODRIGUEZ-LUJAN et al., 2014). In the food industry, e-nose 
has been used for beer aroma evaluation (GONZALEZ VIEJO; FUENTES, 2020), sensory 
attributes of food (ZHONG, 2019), rice aging (RAHIMZADEH et al., 2019), freshness in 
chicken (TIM- SORN et al., 2014), drying of cocoa (TAN; KERR, 2018) among other 
agricultural products, especially in fruits and plantation crops. 

Fruits post-harvesting and processing require safe and high-quality products, thus 
demanding thorough quality control (TYLEWICZ et al., 2019), as well as the plantation crops 
industry (e.g., cocoa, tea, and coffee) that have recently grown in a global economy (CHOPRA; 
KRISHNAKUMAR; PETER, 2016). E-noses are applied to these crops targeting VOCs such as 
bromodichloromethane ethyl benzene, butyl benzene, and n- ethylene dichloride (FLEMING-
JONES; SMITH, 2003), related to ripening and other chemical changes of interest. In these 
products, each sensor choice is crucial to detect the small changes in concentration of odor gases 
related to some of these food transformations due to storage or processing. Identification of 
VOCs has been related to fruit ripeness stage and post-harvest storage condition (TYAGI et al., 
2023) and determination of origin for plantation crops such as tea, coffee, and cocoa, where 
fraud alone accounts for more than USD 10 billion loss per year in the global food industry 
(TSENG et al., 2021). Detecting VOCs in these products is crucial to understand how they are 
related to the alteration within these crops, which is in demand in the growing food industry 
(BROOKS et al., 2021). 

Applications of e-nose devices have grown over the past few years since the methods 
for quality evaluation of these crops are onerous and time-consuming. Some of these methods 
include gas or liquid chromatography (CG) and Fourier-transform Infrared Spectroscopy (FT- 
IR) spectroscopy; which require expensive equipment or the use of chemicals, in addition to 
the destruction of the sample being analyzed (BURATTI et al., 2011; SANAEIFAR et al., 2017; 
VIEIRA et al., 2017; WILSON, 2018). 

Some e-nose devices have been developed in the laboratory (DAI et al., 2019; TIAN; 
CAI; ZHANG, 2012; WEI et al., 2018), and even though lab setups have been established, there 
is still a threshold that needs to be overcome to disseminate the use of e-nose systems (CUI 
et al., 2017; ZHANG; LIU; DENG, 2017). Additionally, e-nose systems have been evaluated 
by many studies focusing on the improvement of sensors and data acquisition (FONOLLOSA 
et al., 2016; YIN et al., 2019; ZHANG et al., 2016), as well as sensor types such as metal oxide 
and electrochemical in which the former outnumber the latter. Other improvements focus on the 
overall stability within the system (LOUTFI et al., 2015; WILSON, 2018), since some 
parameters are crucial for the industries when working with odors sensors, such as variation in 
temperature and humidity (KIANI; MINAEI; GHASEMI-VARNAMKHASTI, 2016; LOUTFI 
et al., 2015). 
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The current demand and trend of e-nose development have grown over the past few 
years with new design concepts and set-ups to fulfill the demand. Many applications in quality 
inspection of food can be performed to solve issues in the supply chain due to quality inspection 
deficiency being a serious matter in the food industry. Likewise, reducing common electronic 
components, such as analog-digital converter (ADC), as well as reducing other part sizes such as 
pumps, are investigated to achieve smaller devices (ALI et al., 2020; CHENG et al., 2021; JIA 
et al., 2019). Even though compact e-noses in food have been recently attested for portability 
as the main focus of their design while improving real-time performance (CHENG et al., 2021), 
LC-e-nose built to assess fruits and plantation crops have not yet been compiled. 

LC-device is defined as a piece of equipment whose cost is below the typical cost for a 
category, which for e-noses would price far behind the average (25,000 dollars). However, in 
the literature, many authors have used more expensive commercial formats (CHENG et al., 
2015; WEI et al., 2018; ZAKARIA et al., 2012; ZHANG et al., 2016). The price will be mainly 
derived from the structure of the proposed devices, such as the motherboard and sensors, rather 
than other peripherals. However, the sensor array is decisive in determining the final price of the 
e-nose system. For that, the most common ones used for low-cost equipment are electrochemical 
(EC) and metal oxide sensors (MOS) (CHENG et al., 2021); others, such as colorimetric are 
not easily described in papers as low cost and only a few can be found in the literature using 
this terminology (KIM et al., 2022), therefore for the scope of this review only EC and MOS 
due to their similarity will be carried out in the investigation as best options to mount LC-e- 
nose devices. Another major research focus is algorithms to treat the acquired data, e.g. data 
processing and pattern recognition (JIANG et al., 2017; JING et al., 2016; LIU et al., 2019; QU; 
CHAI; YANG, 2009; RODRIGUEZ-LUJAN et al., 2014; TANG; LIN; SHYU, 2010; YAN et 
al., 2015; ZHANG; ZHANG, 2014; ZHANG et al., 2014; ZHAO et al., 2016). Multivariate data 
analysis has been applied to interpret the signal from e-noses, which may allow the combination 
of several sensors with a vast amount of data from samples. Some of the main statistical methods 
include principal components analysis (PCA) and hierarchical clustering analysis (HCA), along 
with supervised regression methods, such as partial least square (PLS), and classification (i.e., 
partial least square discriminant analysis (PLS-DA) and soft independent modeling by class 
analogy (SIMCA)). Machine learning (ML) methods have also been used to explore e-nose 
data, including support vector machine (SVM) and artificial neural network (ANN) with extreme 
learning machine (ELM) (VOSS; AYUB; STEVAN, 2020). 

However, most studies found in the literature cover commercial e-noses and there is no 
compilation focused on Low-cost-e-nose devices (LC-e-nose). Additionally, only a few studies 
use electrical chemical on fruit and plantation crops. Therefore, the aim of this review is to 
provide an overview of sensor function, comparing EC and MOS, and present reports over the 
past 13 years of fully defined Low-cost-e-nose devices based on MOS applied in fruits, tea, 
cocoa and coffee, their designs, e-nose, and common data treatments. Furthermore, the most 
common methods for data analysis are also discussed. 

 
1.3 Most common of LC-e-nose sensors used for fruit and plantation crops 

E-nose is often utilized in e-noses is the MOS sensor, in which changes in the electrical 
characteristics of a metal oxide coating placed on a semiconductor substrate are detected by 
these sensors (EMERSON, 2019; TAN; XU, 2020). To understand the function, advantages 
and availability of these two sensors, the investigation of EC and MOS based e-noses in fruits 
and plantation crops was conducted as a brief comparison between these two sensors. 
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1.3.1 LC-e-noses based on electrochemical (EC) sensors 

Many authors used Low-cost-e-nose systems to investigate plantation crops and fruits, 
more specifically to determine the ripeness stage of fruits (QIAO et al., 2022; TYAGI et al., 
2023). The device described by MA et al. (2016) will be used to demonstrate an EC e-nose 
system. The device consisted of a single sensor for ethylene (Figure 1.1a) attached to a simple 
motherboard mounted on an LCD (a1), circuit board (a2), micropump (a3), sample chamber 
(a4), smart EC sensor (a5), gas chamber (a6), triple valve (a7). Regarding the sensing unit (b1), 
it includes a gas diffusion layer (b2), a hydrophobic membrane-upper gas diffusion layer (3), a 
gas sensing layer (b4), a sensing electrode (b5), electrolyte and counter electrolyte (b6). The 
electrical circuit and respective electrons flow is shown in Figure 1.1b (b7- b9). The 
concentration range that the device was able to measure ranged from 0 to 10 ppm. During the 
application to ripeness detection on apples, kiwi, and pears, 0.413 ppm was obtained as the 
detection limit of ethylene, which is reasonably good for trace detection to help fruit harvesting 
and marketing. The chemical reaction that happens in the sensor is described below in the 
reference electrode (Equations 4.1-4.3). 

C2H4 + 4 H2O → 2 CO2 + 12 H+ + 12 e− (4.1) 

While the counter electrode is the reaction that promotes the equilibrium by transforming 
the oxygen in the air into water 

 
O2 + 4 H+ + 4 e− → 2 H2O (4.2) 

The functioning of the sensor follows Butler-Volmer Equation. 

 
 

					 
  

		𝐼𝑙𝑖𝑚 =
(".$.%.&&2𝐻4	

)
(        (4.3)

 

 
Where Ilim stands for limiting current density; n is the number of transferred electrons; F 

is Faraday’s constant; D the diffusion coefficient for C2H4; CC2H4 stands for the concentration 
of C2H4 gas in the dimension of the electrolyte and the δ represents the thickness of the diffusive 
layer. The result is that the current within the sensor would be proportional to the C2H4 gas in 
concentration. EC has been used either for portable devices, as demonstrated by WOJNOWSKI 
et al. (2017). They proposed what, 2023; SILVA FERREIRA et al., 2023). Yet competitive 
MOS can still beat EC in price in most applications (EMERSON, 2019). 
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(a) (b) 

Figure 1.1: Electrochemical equipment set up and sensor, adapted from Ma et al. (2016).  
 

1.3.2 LC-e-noses based on MOS sensors 

Semiconductor gas detection sensors are then a good choice when building a portable 
and affordable device (Figure 1.1). The common setup comprises an air pump (a1), valve (a2), 
sensor array (a3), escape valve (a4), sample chamber (a5), motherboard (a6), and MOS 
connection in (a7). Figure 1.2b shows the gas sensor itself (b1), the MOS gas sensor electrode 
(b2) the tin dioxide layer (b4-b6) as well as the electric circuit flow (b7- b9). In the electrode, 
while in IDLE mode, the O2 present in the air binds electrons in the tin dioxide layer and blocks 
the passage of current in the system. Later, when reducing gases interact with the metal oxide 
coating and the electrical characteristic of the film changes, the current is unblocked 
(EMERSON, 2019; TAN; XU, 2020). 

A piece of low-cost equipment has recently been compared to mass-spectroscopy 
chromatography and succeeded in identifying 45 compounds e.g., 3-Methylfuran, Methyl 
furfuryl disulfide, and 3-Furaldehyde for coffee intensity (GONZALEZ VIEJO; TONGSON; 
FUEN- TES, 2021). Prediction models for these same compounds had high calibration, 
validation, and prediction accuracy, showing a correlation coefficient of 0.99, 0.98, and 0.99, 
respectively, and a low mean square error (MSE) (~10−10). The evaluated MOS sensors were 
MQ (3 - ethanol, 4 - methane (CH4), 7 - carbon monoxide (CO), 8 - hydrogen (H), 135 - 
ammonia/alcohol/benzene, 136 - hydrogen sulfide (H2S), 137 - ammonia (NH3), 138 - benzene 
alcohol and ammonia and 811 - carbon dioxide (CO2)). 
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(a) (b) 

Figure 1.2: MOS sensor setup and circuit connections, adapted from Ma et al. (2016). 
* (1) Least-squares support-vector machines - LS-SVM; (2) Extreme Learning Machine (ELM); (3) K-
nearest neighbors (KNN); (4) Support vector machine (SVM); (5) Random Forest (RF); (6) Con- vulational 
Neural Network (CNN); Linear Discriminant Analysis (LDA); (7) Principal component analysis with 
support vector machine (PSMVM); (8) Nearest neighbor (NN); (9) Probabilistic neural network (PNN); (10) 
K-nearest neighbor (KNN); (11) Principal component analysis with K-nearest neighbor (PKNN); (12) 
Quadratic discriminant analysis (QDA); metal oxide sensors (MOS). 

 
Another study on coffee regarding alcohol. MICS from SGX (Sensor-tech, China) were 

also used to compose this device: MICS 5524 can sense carbon monoxide, ethanol, hydrogen, 
ammonia, and methane. The analog-digital converter (ADC), which is an electronic circuit to 
measure signal values and data acquisition time of one minute to complete the acquisition, is 
one of the features of this lab-made device. 

 
MOS sensors have been used to determine ripening stages in fruits using some previous 

sensors (e.g., MQ - 135, 2, 3, 4) added MQ-5, which accounts for natural gas alcohol and hydro- 
gen. They showed the differences between the measurement circuit of both sensors type TGS 
26-xxxx (Figaro, Osaka, Japan– 50– 5,000 ppm DR, 3.3V) and MQ-xxx (Winsen, Zhengzhou, 
China– 300 – 10,000 ppm DR, 5V). Other manufacture models such as WSP-xxxx Metal oxide 
type sensor – Winsen, Zhengzhou, China– 1 – 50 ppm DR, 5V, MP-xxx Metal oxide type sensor 
– Winsen, Zhengzhou, China– 10 – 1,000 ppm DR, 5V and MS-xxxx Metal oxide type sensor 
– Ogam, Jeollanamdo, Korea – 10 – 1,000 ppm DR, 5V are also seen in a few LC-e-nose 
applications for soil-based gases (SHI et al., 2022). Even the combination of them sometimes 
may improve equipment performance (VOSS; AYUB; STEVAN, 2020). 
 

Even though there are similarities between EC and MOS sensors, such as the possibility 
of low-cost devices (GONZALEZ VIEJO; FUENTES, 2020;  KOSCINSKI, 2016), some 
advantages of the MOS are available in the market, and the fact that they do not present some 
irreversibly inhibit sensitivity with some silicon vapors and alkaline metal. MOS sensors’ 
longevity is over 10 years, and their sensitivity is 50-5000 ppm average, which gives this type 
of sensor the greatest life expectancy out of the other technologies available (EMERSON, 2019). 
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Overall, both sensors (EC and MOS) offer include the temperature range, which is 
limited for EC devices, for example, and affected by alkaline metals, which might be the reason 
why the use of MOS for agricultural products (e.g., fruits and plantation crops) 
(RAHIMZADEH et al., 2019) outnumbers EC devices. Therefore, all LC-e-nose setups 
presented will then follow MOS-based equipment. 

 
1.4 Application of LC-e-nose in fruits 

Fruits are abundant sources of fiber, phytochemicals, and micronutrients (vitamins, 
minerals) that, either alone or in combination, are beneficial to human health (YAHIA; 
GARCÍA- SOLÍS; CELIS, 2019). The demand for high-quality foods that preserve their flavors 
and tastes devoid of additives and preservatives has increased among consumers in recent years. 
The difficulty for the fruit sector is to create such goods while considering consumer acceptance 
based on quality control and safety (TYLEWICZ et al., 2019). In this regard, LC-e-noses have 
been used in fruits to guarantee food quality control and safety (ANTICUANDO; DIRECTO; 
PADILLA, 2022). They are usually divided into two groups where fruits are categorized: 
climacteric or non-climacteric. The difference is that for the former, the fruit reaches a ripening 
stage and once attaining that stage, continues to develop to full physiological maturity, even when 
harvested. On the other hand, non-climacteric fruit needs to stay on the plant to reach full 
physiological maturity since when harvested, the ripening process stops, and the fruit no longer 
gains flavor or sugar, having its highest eating quality at harvest (FAN et al., 2022). 

Climacteric fruit such as peaches, plums, cantaloupe, bananas, pears, and tomatoes 
continue to gain flavor and get sweeter by changing starch into sugar after being harvested. E-
nose systems have been widely applied to detect odors in bananas, lemons, and lychee (PAN; 
HSIEH; TANG, 2013; TANG et al., 2010) as well as other fruits. Also, many studies used fruit 
odors and correlated them with ripening in grapes (ALEIXANDRE et al., 2015), coffee aroma 
profile (GONZALEZ VIEJO et al., 2020), solids content in persimmon fruit (ZHANG et al., 
2016) and decay in peach fruit (WEI et al., 2018). All these approaches have been conducted to 
climacteric fruit that can be left at room temperature until consumed or mature and then stored at 
refrigerated condition. Since many climacteric fruits soften as they ripen, they are harvested 
crisp and physiologically immature to reduce damage during transportation and increase shelf 
life. However, if the fruit is left at ambient temperature for a few days, it develops more taste 
and sweetness, which is how sensors detect alteration within the fruit based on ethylene 
production (GOLDY, 2019). 

Non-climacteric fruits are less investigated in LC-e-nose systems due to not changing 
drastically after harvesting. However, systems have been developed for this fruit category and 
some examples of LC-e-nose devices being used for fruits are shown in Table 1.1, which shows 
systems for climacteric and non-climacteric and the most common chemicals senses are 
presented in Table 1.2. Some examples of non-climacteric fruits presented are cherries, grapes, 
oranges, and raspberries. Some investigation with non-climacteric fruit using e-nose includes 
the evaluation of odor sensing (SRIVASTAVA; SADISATP, 2016) and total soluble solid content 
in oranges (XU et al., 2019). 
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Table 1.1: Low-cost-e-noses used to evaluate fruits. 
Ripeness Type Application Data Treatment (*) e-nose name / 

sensors 
Lab-developed 

 

 
References 

Fruit ripening 
(Apples) 

 
 

Peaches 

Kinetic 
models 

 
PLSR (1) 

LSSVM (2) 

Ethylene gas 
sensor / 

Electrochemical 
Self-developed 

(e-nose I) / 
MOS (TGS-xxxx) 
Self-developed / 

Ma et al. (2016) 
 

 
Wei et al. (2018) 

Banana fruit ANN MOS (TGS-xxxx/ 
MQ-xxx) 

Hendrick et al. (2022) 

Peach 
growrth 

monitorting 

 
Ripening 

ELM (2) 

KNN (3) 

SVM (4) 

PCA 
LDA 

Self-developed / Voss, Ayub e Stevan (2020) MOS (TGS/MQ) 
 

Self-developed - 
Lab scale / 

 
 
 
 

Climateric 

Cab Apples 
 
 

Oil Palm 
fresh fruits 

Tomato 
( Lycopersicum 
esculentum L.) 

Fruit odor 

PLSR 
SVM (4) 

RF (5) 

Trapezoidal 
intregration 

method 
SVM (4) 

CNN (6) 

LDA (7) 

MOS(TGS-xxxx/ 
MP-xxx/MS-xxx) 

Self-developed - 
Lab Scale / 

MOS (MQ-xxx) 
TOMATO 

designed enose / 
MOS (MQ-xxx) 
Lab-developed 

Qiao et al. (2022) 
 
 
 

Husein et al. (2022) 
 
 

Anticuando, Directo e Padilla (2022) 

(Bananas, Lemons 
and Lychees) 

 
Fruit odor 

ANN (6) 

 
SVM (4) 

PPSMVM (7) 

MLPNN chip Pan, Hsieh e Tang (2013) 

 
 

Self-developed - 

( Banana, Lemon, 
Litchi and Longan) 

 
Climateric / 

NN (8) 

PNN (9) 

KNN (10) 

PKNN (11) 

Lab Scale / 
MOS (TGS-xxxx) 

Tang, Lin e Shyu (2010) 

Non-climateric Apples, bananas, 
oranges, grapes 

and pomegranates 
Maturation 

stages of 
Dragon Fruit 
(Hylocereus 
polyrhizus) 

 
Non-climateric  Ripeness 

of oranges 

 
ANN (6) 

 
 
 

PCA 
LDA (7) 

PLSR 

 
LDA (7) 

QDA (12) 

KNN (3) 

Self-developed / 
MOS (TGS-xxxx- 

MQ-xxx 
 

Self-Developed 
e-nose / 

MOS (MQ-xxx) 
 

Low-cost 
optimized 
handheld 

(TGS-xxxx) 

 
Tyagi et al. (2023) 

 
 
 

Silva Ferreira et al. (2023) 
 
 

 
Srivastava e Sadisatp (2016) 

 

* (1) Least-squares support-vector machines - LS-SVM; (2) Extreme Learning Machine (ELM); (3) 
K-nearest neighbors (KNN); (4) Support vector machine (SVM); (5) Random Forest (RF); (6) Con- 
vulational Neural Network (CNN); Linear Discriminant Analysis (LDA); (7) Principal component 
analysis with support vector machine (PSMVM); (8) Nearest neighbor (NN); (9) Probabilistic neural 
network (PNN); (10) K-nearest neighbor (KNN); (11) Principal component analysis with K-nearest 
neighbor (PKNN); (12) Quadratic discriminant analysis (QDA); metal oxide sensors (MOS). 
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1.4.1 LC-e- in climacteric fruits 
 

 LC-e-nose labeled as lab-made devices have been usefully employed to analyze peaches 
in a cold environment, where classification and prediction models reached 95% accuracy and 
residual prediction deviation (RPD) of 9.30 (WEI et al., 2018). It is important to highlight that 
RPD values higher than 3.00 are considered excellent for attribute prediction (SAEYS; 
MOUAZEN; RAMON, 2005). 

Low-cost-e- sensors (B) mounted and attached to the chamber (C) and computer (E) for 
data treatment (F). It used a sensor-paired array with a microcontroller, and data obtained were 
used as predictors for deep learning, convolutional neural network (CNN) models. The results 
achieved 86% accuracy for their classification models of tomatoes’ ripening stages with their 
device. One of the problems reported includes data acquisition since multiple factors may affect 
the system, such as sensor sensitivity and other equipment features, as a drawback of low-cost 
devices when compared with well-established e-nose brands in the market (BERNAL; MELO; 
DÍAZ MORENO, 2014). 

Despite some equipment issues previously mentioned, such as data acquisition, another 
e-lab-made e-nose system (Figure 1.3c) was used to detect banana ripeness levels using Artificial 
Neural Network (ANN) (HENDRICK et al., 2022). The equipment was composed of a separate 
sample chamber (A), an air pump (B), a set of sensors (C) that was specially designed in a 
relatively large format, a motherboard (D), and a computer for data treatment (E and F). Since 
e-noses rely on temperature and humidity control, the number of sensors may impact the ability 
to control the dissipated heat which may lead to overheating that may affect measurements. The 
lab-made device consisted of thirteen sensors and had an accuracy of 100% using thirteen inputs 
nodes (i.e., the transfer function of weighted input connection), one hidden layer (i.e., artificial 
neurons take in a set of weighted inputs and produce an output through) and three outputs and the 
training process was set to two thousand epochs (i.e., iterations) for their classification model for 
ripeness levels (HENDRICK et al., 2022). In this work, it was developed user-friendly software 
to screen the fruit condition and their respective prediction with three possible outcomes to be 
displayed on the screen (unripe, ripe, and rotten) (Figure 1.3c). 

The ripeness stages of apples, bananas, oranges, grapes, and pomegranates were also 
analyzed with a simple device composed of six MOS sensors (Figure 1.3e) compared to sensory 
analysis of ripeness Tyagi et al. (2023). The equipment was composed of a compressor (A), a 
sensor chamber (B), which was literally a hard plastic container with a sealed lid, a computer 
for data acquisition (C), and a motherboard (E). The results demonstrated that it was possible to 
classify the fruits according to their ripeness stages (unripe, ripe, overripe non-fruit) designated 
by human assessment, with an F- score that the device cost USD 65 and the prototype has been 
validated in the lab, therefore being classified as level 4 according to technology readiness level 
(4 - technology validated in lab, 5 - technology validated in a relevant environment-, 6-
technology demonstrated in a relevant environment, and 7 - system model or prototype 
demonstration in an operational environment). An interesting observation is that some MQ-xxx 
sensors presented the same response as TGS-xxxx ones, considering that sensor choice is a 
challenging part of an e-nose project, thus being useful to have different options with 
comparative performance. 

The equipment shown in Figure 1.3g was composed of an air circulation system (A), and 
signal conditioning (B), which is used to used either concentrate as well as standardize the input 
gases, the set of sensors (TGS-26xx models and 9 from MQ-xxx (C), an analog data multiplex 
(i.e., combines multiple signals into one), a microcontroller (i.e., an integrated circuit designed to 
command a specific operation), in this case, control the response of the sensor) and transmit the 
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signal to the SD card (F) and computer (G). Peaches were divided according to each blooming 
class and correlated the samples with the most abundant volatiles identified, such as alcohols, 
esters, ketones and aldehydes, terpenoids, and lactones. A classifier and data reducer LDA-RF 
was able to reduce the number of sensors used from thirteen to six. The data acquisition graph 
is shown in Figure 1.3h, and it is composed of data from the two sensor types used, and it is 
clear to observe the difference in voltage operation baseline, that phenomenon can be explained 
not only due to the different sensor construction but also by their sensitivity (VOSS; AYUB; 
STEVAN, 2020). Overall, their equipment showed good sensitivity for detecting VOCs released 
by peaches in the agriculture field. However, minor improvements and compensations can be 
made using drift correction so they can match as described in previous studies (DI CARLO; 
FALASCONI, 2012). 

Table 1.2: Commonly compounds in fruits detected by LC-e-noses. 
Application Class Compound Reference 

 

Hexanal 
 

 
Peach growth 
monitoring 

Aldehydes 
 
 

Alcohols 

Benzaldehyde 
(E)-2-Hexenal 
(E)-2-Hexenol 
(Z)-3-Hezenol 

Hexanol 

 

 
Voss, Ayub e Stevan (2020) 

Esters  Hexyl acetate 
(E)-2-Hexenyl 

Ketones Acetoin 

Terpenoids µ-terpinene 
g-terpinene 

g-lactone 

Lactones derived compounds 
d-lactone 

derived compounds 
 

 
 

 

Ripeness stages of 
dragon fruit 
({Hylocereus} 
{polyr

 
Hydroxyl acid Malic Acid 

Other organic compounds 

 
 

Silva Ferreira et al. (2023) 

* All compounds are based most common volatiles present in fruits. 
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A different e-nose design (Figure 1.3i ) was applied to detect three odors related to 

ripening stages in bananas, lemon, and lychee (TANG et al., 2010). The system had an accurate 
gas pump (A), four neck bottle chamber for separate gas injection (B), and logic parts such as 
a hub for connectivity (C), a logic board, and a display (D-E). Despite the unusual assembly 
and design, the system achieved an accuracy of over 70% for identifying ripeness in bananas, in 
which the authors demonstrated that the equipment was suitable for odor discrimination in that 
fruit. 

 
1.4.2 LC-e-nose used for non-climacteric fruits 

The previously described equipment used for climacteric fruits (Figure 1.3i) was used for longan, a 
non-climacteric fruit. The idea was to validate the LC-e-nose for its functionality for one class 
(climacteric fruits) and then further analysis so that further analysis could be conducted using the 
other class. Results demonstrated that the equipment could be used for non-climacteric fruits again 
to distinguish between their distinctive odors variation through ripeness stages, and the possibility 
of application of this type of sensor for other odors aside from ethylene was considered in other 
studies with non-climacteric fruit (SILVA FERREIRA et al., 2023; SRIVASTAVA; SADISATP, 
2016). 

An LC-enose device (the description, that price or cost was not mentioned in the work. 
Apart from the computer (A), another interesting aspect of this device is the sensor array, which, 
instead of multiple individual units (single unit or printed circuit board (PCB) - mounted sensors), 
consisted of four thin nanocrystalline tin oxide layers (Figure 1.3) deposited over a micro 
mechanized silicon hot plate (B), in which temperature ranged from 200 ◦C to 350 ◦C (C) 
controlled by a Peltier cooler in which the sample was placed (D). The system among other 
components has a digital Loire Valley in France (ALEIXANDRE et al.)

  
(a) Anticuando, Directo e Padilla (2022) (b) 

(c)  Hendrick et al. (2022) (d) 
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(e) Tyagi et al. (2023) (f) 
 

  

(g) Voss, Ayub e Stevan (2020) (h) 

(i) Tang et al. (2010) (j) 
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(k)  Aleixandre et al. (2015) (l) 

 

  
(m)  Srivastava e Sadisatp (2016) (n) 

(o)  Silva Ferreira et al. (2023) (p) 
Figure 1.3: Most common e-nose design for evaluation of fruits (a)-(p). 

* In alphabetical order, each letter represents a part of the equipment immediately followed by each 
signal acquisition / data treatment. NA* indicates the signal was not provided by the Author. All set 
up were redesigned following the same principle as the original. 

 
Oranges were also classified R2 of 94 ± 0.5 when comparing this two equipment for 

harvesting dates. The set-up is composed of Figure 1.3m computer (A), a processing unit, to 
connect sensors followed by the data processing unit, to process the input data (C), a sensing 
chamber (D), and a headspace module €. The headspace chamber was a crucial part where the 
authors selectively tested some TGS-xx series to be used in the equipment to develop models 
for humidity and temperature correction to finally propose the 4 sensors that were used to sort 
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their samples. Their response graph in kilohm (KΩ) is shown in Figure 1.3n. The authors claim 
that their system is easily adjustable to other types of fruits, such as mango and grapes, with 
minor modifications, such as data training and temperature compensation, to accommodate new 
material (SRIVASTAVA; SADISATP, 2016). 

A portable lab-made e-nose device, Figure 1.3o, was proposed to assess the maturity 
stages of pitaya (dragon fruit). The equipment was composed of a power supply (A), e-nose 
system (B), sample chamber (C), motherboard, and computer (D-E). Pitaya is rich in fiber and 
vitamins, and its quality is often related to attributes such as total soluble solids (TSS), moisture 
content, and titratable acidity (TA). Due to the lack of ethylene variation, the classification was 
proposed based on a shelf-life index (SLI), being the ratio between TSS and TA, which assigned 
fruits to 4 different stages, namely SLI30 (day 0), SLI 50 (day 7), SLI 80 (days 14 and 21) and 
SLI 100 (day 25) (SILVA FERREIRA et al., 2023). 
 
Sample acquisition can be seen in Figure 1.3p, where the responses for each one of the 8 MOS 
sensors were plotted as voltage (V) versus time (s) and each digital data converter (ADC) (0-7) 
corresponds to MQ-2, MQ-3, MQ-4, MQ-6, MQ-8, MQ-9, MQ-135 and MQ-138. 
From the data, all sensors responded to the VOCs released during sample measurement. The 
results reported accuracy over 95% for PLS-DA models that classified samples according to 
the SLI and could rightfully be used to distinguish between early storage days and late stages. 
Also, PLSR models achieved good prediction of the parameters: pH (root mean square error of 
prediction (RMSEP) = 0.22, R2 = 0.86) and TA (RMSEP = 0.04, R2 = 0.85). The cost of 
assembling the device was lower than USD 200. 

 
1.5 Application of LC-e-nose to evaluate plantation crops 

Plantation crops are valued commercial crops which play an important role in the 
agricultural economy and export trade of several developing and developed countries including 
China, India, Brazil, and the US. As the World Trade Organization (WTO) emphasizes 
agriculture more, the commercial aspects of cultivating and growing these crops gather 
remarkable economic significance. Some of the most important crops on a plantation scale 
include cardamom, cashew, cocoa, coconut, coffee, oil palm, rubber, and tea (CHOPRA; 
KRISHNAKUMAR; PE- TER, 2016; HUSEIN et al., 2022). This review will focus on the use 
of LC-e-noses on the three most relevant plantation crops accessed by e-noses: tea, coffee, and 
cocoa. 

 
1.5.1 LC-e-nose applications for tea 

In the final production of tea, six steps are considered such as harvesting, 1- withering, 
2- leaf distortion/rolling, 3-fermentation, 4-firing, 5-grading, and lastly 6-sorting (TURGUT; 
KÜÇÜKÖNER; KARACABEY, 2021). Fermentation level is related to catechins oxidation 
(flavan-3-ols), as in black tea, for example, is labeled as oxidized or fully-fermented; oolong tea 
is semi or fully fermented as well as puerh (a variety of fermented tea traditionally produced in 
Yunnan Province). Bioactive compounds such as flavonoid glycosides are compounds of major 
importance in tea (HU et al., 2021). Tea also has four epimers that come from major catechins 
(around 80% in black tea) that include catechin (C), catechin gallate (CG), gallocatechin (GC), 
and gallocatechin gallate (GCG) being abundant in epicatechin (EC), epicatechin gallate (ECG), 
epigallocatechin (EGC), and epigallocatechin gallate (EGCG), that are greatly affected during 
tea fermentation (LIU et al., 2022). 
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Lab-made -noses have been used to detect several aspects of tea (Table 1.4), such as the 
aroma of locally flavored green tea (Camellia sinensis) (RALISNAWATI et al., 2018). The 
prototype e-nose used specific (G2 Delphi) software to control the inputs and other peripherals, 
as well as analog data from the sensor that will be converted to digital data using an ADC. The 
sensor response and the maximum value are represented in Figure 1.4. The sensors used were 
from TGS-26xx model. From the eight sensors used, TGS 826 and 2600 had a signal amplitude 
of over 350mV on ginger and lime leaves (427 and 392 mV), respectively. All sensors had a weak 
response to lemongrass (average 157 mV), which suggested that ginger-flavored tea samples 
had a stronger aroma when compared to other varieties of tea. Overall, ginger, lemongrass, and 
lime flavor can be detected by the device with a percentage of variation of 99.6, 99.3, and 99.4% 
respectively (RALISNAWATI et al., 2018). Other attempts to discriminate green tea against 
black tea using commercial systems had very similar outcomes, which suggest lab-made devices 
are reliable. 

Table 1.3: Low-cost-e-noses used to evaluate tea. 
Application Data Treatment (*) e-nose name / sensors Reference 

 
Tea - ginger 

Lemongrass flavor 

 
Black Tea (Singbulli) 

PCA 
PLS-DA 

PLSR 

Wavelet energy Feature 

Laboratory of Material 
Physics and Instrumentation 
Universitas Gadjah Mada/ 

MOS (TGS-xxxx) 
Self-develped – e-nose Set-up/ 

 
Ralisnawati et al. (2018) 

classification 

 
Black Tea Classification 

Dunn Index 
KNN(1) PLS-DA 

PCA 
BP-MLP (3) RBF(4) 

PNN (5) 

MOS (TGS-xxxx) Banerjee et al. (2019) 

 
Customized e-nose for tea/ Bhattacharyya et al. (2008) MOS Sensors (TGS-xxx) 

Fermentation 
of Black Tea 
Green Tea 

Reccurrent Elman network Customized e-nose for tea/ 
MOS Sensors (TGS-xxxx) 
Customized e-nose for tea/ 

Ghosh et al. (2019) 

Quality level RF(6) MLP(7) SVM 

 
Oolong tea leaves LDA 

Fermentation 

MOS Sensors 
(TGS-xxxx, MQ-xxx) 

Gs-sensing system 
(Lab-made equipment) 

MOS (TGS-xxxx) 
Lu et al. (2019) 

 
 

Tseng et al. (2021

* (1) K-nearest neighbors (KNN); (2) Support vector machine (SVM); (3) Black propagation- 
multilayer perception (BP-MLP); (4) Radial basis function (RBF); (5) Probabilistic neural 
network (PNN); 6) Random Forest (RF); (7) multi-Layer perception (MLP); metal oxide sensors 
(MOS). 
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Figure 1.4: Sensors response for LC-e-nose sensors adapted from Ralisnawati et al. (2018). 

Black tea from different origins and grades (Singbulli, MinFTGFOP, Sungama, and Cha- 
mong) have also been identified by e-nose devices. Four hundred samples were divided into each 
class and evaluated with five sensors TGS-26xx and 832, sensitive to some chemicals, such as 
Terpeniol, and Geraniol and other compounds (Table 5) that are present in tea, with sixty-six 
data points (acquired data) along time obtained by each sensor. A KNN classifier achieved an 
accuracy of 84.25%, which showed a good potential for grade classification power when 
compared to other traditional feature extraction methods (BANERJEE et al., 2019). 
Another customized LC-e-nose using MOS TGs-xx sensors was also used to detect volatiles in 
black tea during fermentation stages (GHOSH et al., 2019). The variation observed in the 
emanated volatile concentration was interpreted from the impedance of the semiconductor 
material (Figure 1.5a). It used heating from lamps driven by an air pump (A) to accelerate the 
release of the volatile compounds, and multiple valves (B) secured the air sent to the right 
compartment as well as the sensors chamber (D by monitoring the variation in volatile 
concentration emitted from black tea samples. The voltage (V) was acquired along the Time (s) 
(Figure 1.5b). 

 
Another design (Figure 1.5c) was proposed using TGS26-xxxx and MQ-xxx sensor array 

to evaluate West Lake Longjing green tea (LU et al., 2019). The system was composed of the 
sample chamber (A), electromagnetic directional valve (B) used to switch the air channels (clean 
and sample) enhanced by air pumps (C), with data processing unit Arduino (D). Drying pipes 
were used, composed of the desiccant system connected to two air pumps where the moisture 
could be removed from the air guarantying humidity control. This feature makes the equipment 
looks bigger than it should, however, it is a well-designed device that was able to accurately 
spot different brands of green tea (> 95%), with application to the tea industry. The system’s 
data interface (data acquisition graph) specific for tea is shown in Figure 1.5d. 

Oolong tea fermentation was evaluated using another lab-made equipment mixing TGS- 
26xx sensors with SB-xx-xx (Japanese– 20 – 150 ppm DR, 5V) ones. It was developed a DAQ 
system mounted to an electric circuit that sends data to a computer so it can be seen the 
fermentation process (changes) that accounts for many transformations in tea composition and 
therefore altering the VOCs profile. Shaking rounds before firing (fixation) improves chemical 
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variation, which represents changes in volatile organic compounds (VOCs) for each shaking 
cycle. E- nose was then proposed for detecting grassy smell during each shaking step out of 
four cycles. Figure 1.5e shows the set-up where the tea samples would be fermented in a 
chamber (A) and directed by valves (B) and pumps (C) to the 14 sensors chamber (D), where 
adsorbent was used for cleaning purposes (E). Their signal is plotted in voltage (V) vs time (h) 
Figure 1.5f shows the drift in the shaking process for all sensors used, where each red arrow 
represents one of four shake processes. The results showed strong similarity with the response 
obtained by perception practitioners in the capability of sensing the grassy smell characteristic 
for this type of tea, as well as its feasibility of using a lab-made device in an online experiment 
to replace human sensory perception that has been currently used in the tea industry (TSENG 
et al., 2021). 

 
1.5.2 LC-e-nose applied for coffee 

Coffee is made from ground-roasted beans, which grants a unique aroma and taste. These 
characteristics make it one of the most famous drinks in the world. Some studies have shown 
that coffee’s volatile concentrations are very complex due to huge diverse sensory characteristics 
and one of the most important attributes for consumers’ choice (SENINDE; CHAMBERS IV, 
2020). E-nose has been used to evaluate coffee aroma in different applications, mostly to 
eliminate the need for empirical observation by well-trained operators. The vast use of brand-
name equipment using embedded MOS sensors has been used to analyze the roasting process 
of coffee in automated systems to boost system performance for coffee bean quality 
characterization (ROMANI et al., 2012). Table 1.5 shows the LC-e-nose papers used to evaluate 
coffee during most common practices in the industry. 

 

 

  

(a)  Ghosh et al. (2019) (b) 
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(c)  Lu et al. (2019) (d) 
 

(e) Tseng et al. (2021) (f) 
      Figure 1.5: Most common LC-e-nose designs for the evaluation of tea (a)-(f). 
 

* In alphabetical order, each subsequential letter represents the equipment immediately followed by 
each signal acquisition / data treatment. All the setup was redesigned following the same principle 
as the original ones. 

 
Fermentation is a crucial step in the processing of coffee beans, and it can have a significant impact 

on the final quality of the coffee. During wet fermentation, the coffee cherries are soaked in water, and the 
fruit pulp surrounding the beans is broken down by natural microorganisms, such as bacteria and yeast, 
which can significantly influence the flavor and aroma of coffee. Wet fermentation can help to remove any 
undesirable flavors or odors from the coffee, while also enhancing the desirable ones, like bringing out fruity 
or floral notes in coffee (SEESAARD; WONGCHOOSUK, 2022) that come from coffee’s VOCs. This 
aspect was investigated using electronic noses for quality control of Colombian coffee (RODRÍGUEZ; 
DURÁN; REYES, 2010). It was developed a system of ST-xxxx and TGS-xxxx sensors (Fig. 5a and b), 
that included the e-nose (A), a concentration chamber (B) to collect and concentrate VOCs, and the 
computer (C). Results demonstrate that PCA and neural networks allowed the classification of the samples, 
 separating defective coffee from regular ones.   
 

Table 1.4: LC-e-noses used to evaluate coffee. 
Application Data Treatment (*) e-nose name / sensors Reference 

 

e-nose  

Coffee aroma ANN (1) 
Food and Wine 
Group from The 

University of Melbourne 
(DAFW; UoM) / 
MOS (MQ-xxx) 

Gonzalez Viejo, Tongson e 
Fuentes (2021) 

Civet and 
Non-Civet 

Coffee 

Recognition 
of Coffee 

Coffee 

Logistic regression 
SVM (2) 
DTC (3) 

Naïve Bayes. 
PCA 

SVM(2) 

 
Self-developed / 
MOS (MQ-xxx) 

 
Lab-designed sensor 

array (TGS-xxxx) 
A-nose - Lab-designed 

 
Wakhid et al. (2020) 

 
Brudzewski, Osowski e 
Dwulit (2012) 
Thepudom, Sricharoen- 

classification PCA Enose System/ 
(TGS-xxx) chai e Kerdcharoen (2013) 
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Coffee 
Quality control 

“cup test” 

PCA 
MLP (4) 

A-nose - Lab-designed 
e-nose / MOS 

(TGS-xxxx,SP-xx) 

Rodrı́guez, Durán e Reyes (2010) 

 
 

* (1) Artificial Neural Network (ANN); (2) Support vector machine (SVM); (3) Decision tree classi- 
fier (DTC); (4) multi-Layer perception (MLP); (5) kernel discrimination models (KDM); metal oxide 
sensors (MOS). 
 

Results demonstrate that PCA and neural networks allowed the classification of the 
samples, separating defective coffee from regular ones. Regarding taste, Arabica beans have a 
more complex and nuanced flavor profile with notes of fruit, berries, and chocolate. Robusta 
beans have a stronger, more bitter taste with notes of earthy and woody flavors. As per price, 
Arabica beans are generally more expensive than Robusta beans due to their higher quality, 
more complex flavor, and the fact that they are difficult to grow. However, there is a market for 
both types of beans depending on the intended use and desired taste. 

A differential e-nose based on MOS sensors (6c) was used to recognize two types of 
coffee (Arabica and Robusta) by using a special procedure for their signal acquisition 
(BRUDZEWSKI; OSOWSKI; DWULIT, 2012). After ambient air (A) is pumped into the 
chamber (B), they used the differential signals of all pairs of sensors (C) as a function of time. 
The work included a mixture of varieties Arabica and Robusta from 10 - 90%. Two sensors 
array were used for data acquisition so that the differential nose system could account for 
interferents in the environment during data analysis (6d). PCA was used to explore data and 
signal pre-treatment (e.g., the ratio of signal and air) removed the baseline calibration, which is 
a common practice in e-nose devices (MAREK et al., 2020). 

Similar equipment using TGS-xxx sensors was applied to identify variations in bran 
brewing temperatures and concentration (THEPUDOM; SRICHAROENCHAI; KERDCHA- 
ROEN, 2013). To promote a more homogenized flow direction of gas (A) in the way the gas 
was injected (B), a centrifuge was designed so that the gas would go straight to the sensors (C) 
in a cylindric chamber (D), then to the data analog (D) (6e). PCA provided five clusters from five 
different brands and their results also showed that concentration and temperatures may affect 
coffee bean quality. The signals for each of the 6 sensors are presented in 6f. 
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(a) Rodrı́guez, Durán e Reyes (2010) (b) 

 

(c) Brudzewski, Osowski e Dwulit (2012) (d) 

  
 

(e) Thepudom (2013)  

 (f) 
 

Figure 1.6: Most common LC-e-nose designs for the evaluation of coffee (a)-(j). 
* In alphabetical order, each letter represents the equipment immediately followed by each signal 
acquisition / data treatment. All the setup was redesigned following the same principle as the original 
ones. 
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(g) Wakhid et al. (2020) (h) 

(i) Gonzalez Viejo, Tongson e Fuentes (2021) (j) 
Figure 1.6: Most common LC-e-nose designs for the evaluation of coffee (a)-(j). 

* In alphabetical order, each letter represents the equipment immediately followed by each signal 
acquisition / data treatment. All the setup was redesigned following the same principle as the original 
ones. 
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An experiment was carried out for each batch of from different countries (Costa Rica, 

Ethiopia, Brazil, Peru, and Guatemala). The results demonstrated that the degree of roasting 
used did not change every single aromatic property of the tested coffees, concluding that VOCs 
were specific to each coffee, related to growth, harvesting, and storage. 

A simple LC-e-nose using reusable food glass as a chamber was used to identify coffee 
with civet and non-civet aromas. These two classes of coffee have different authentic scents 
and are the beans separated manually by trained people. The equipment used is a practical setup 
(Figure 1.6g), with a power supply (A) and computer (B) connected to the mounted five sensors 
(C) to measure the targeted volatiles. The cheap recycled glass-made setup and chamber (D) 
proposed by this group were ready for sensors for carbon dioxide, methane, propane, LPG, I- 
butane, alcohol, H2, smoke CO, benzene, hexane, and natural gas with airflow controlled by a 
fan on the bottle (E), the VOCs used were typical gases targets found in MQ-xxx sensors in the 
market. The results Data were collected 50 times for each type of coffee and temperature data 
collection was carried out at room temperature (between 20 ◦C and 25 ◦C). Each measurement 
was carried out for 15 minutes and 15 grams of coffee, and the model achieved an accuracy of 
96% for six classes or 100% when having two classes only for civet and non-civet coffee. It was 
observed a variation in the baseline for voltages for each sensor (6h), which suggests further 
investigation would be necessary to check if the increment of coffee from two types from different 
regions would have an impact on the models’ response (WAKHID et al., 2020) 
 

Coffee intensity and aroma using a wireless LC-e-nose (Figure .6i) and machine 
learning. The design is very simple and mainly comprises three compartments: (A) sample 
chamber (B) sensors, and (C) data processing unit. The results were compared with GC/MS 
output that was used as a reference. The data extraction from the e-nose can be seen in 6j where 
the initial and final signals were automatically divided into 10 signal intervals so that 10 
averages could be obtained. This approach reduces noise and increases the input number for 
machine learning models. The correlations indicated that the phenols, aldehydes, furans, and 
pyrroles (Table 5) were identified by MQ-3, MQ-135, 136, 137, and 138 sensors. Adding this 
device to coffee machines during the brewing process would allow coffee producers to diminish 
problems with unwanted variables such as temperature, water quality, and other problems 
during the brewing process (GONZALEZ VIEJO; TONGSON; FUENTES, 2021). 

 
1.5.3 LC-e-nose applied for cocoa 

Cocoa is a commonly used ingredient in the food industry, and, similar to coffee, has a 
complex aroma profile that can be challenging to determine using traditional tools and sensory 
methods. E-nose emerges as a powerful solution in this scenario (GIACOMETTI; JOLIĆ; JO- 
SIĆ, 2015). Several studies have explored the use of low-cost electronic noses for cocoa aroma 
analysis (OLUNLOYO; IBIDAPO; DINRIFO, 2011; TAN et al., 2019; TAN; KERR, 2019) 
(Table 5). A multi-chamber piece of equipment based on a TGS 26XX metal oxide sensor 
array, with an artificial neural network (ANN) to assess data obtained by the electronic nose to 
assess the aroma of cocoa beans (OLUNLOYO; IBIDAPO; DINRIFO, 2011). The equipment 
set-up (Figure 1.7a) presented multiple compartments to refine and quantitatively inject the 
sample gases to be measured by sensors. Their system contains a computer (A), a data logger 
(B), and a vacuum pump (C) connected by solenoid valves (D and F) and finally, the sensors 
array (E) that is then connected to the sample chamber (G) that has a heater (H) on its base to serve 
the purpose of the work of heating the beans. They found that the electronic nose was able to 



 
39 

 

distinguish between two classes unacceptable (moldy or showing insect infestation) or 
acceptable (well fermented, good chocolate flavor), based on their aroma profiles, and the 
results showed 95% of the classification score when choosing between these two classes. 
 

Table 1.5: Commonly compounds (VOCs) in coffee detected by LC-e-noses. 
Application Class Compound Reference 

 

3 – Methylruran 
2,5 - Dimethylfuran 

2- Vinylfuran  
Furans 2-Butylfuran 

2-Propanoyl furan 
2-Acetyl-5-methylfuran 

 
 
 
 
 

 
Coffee 
aroma 

 
 

 
Pyrazines 

 
 
 

Aldehydes 

Linalool oxide 
2- methylpyrazine 
2-Ethylpyrazine 

Nutty pyrazine 
Pyrazine, 2,3-diethyl-5-methyl- 

Pyrazine, 2-ethyl-6-methyl- 
3-Aldehydes 
Benzaldehyde 

Benzeneacetaldehyde 

 
 
 
 

Gonzalez Viejo, 
Tongson e Fuentes 
(2021)

  
1- Furfuryl pyrrole 

Terpenes / 
Alcohol 

 
 

1-Methyl-2-pyrrole carboxaldehyde

Others  Furfuryl acetate 
Methyl salicylate 

* All compounds are based most common volatiles present in coffee. 

Table 1.6: LC-e-noses used to evaluate cocoa. 
Cocoa beans  PCA 

ANN (1) 
Cocoa beans 

Lab-made e-nose / 
MOS(TGS-xxxx) 
Lab-made e-nose 

Olunloyo, Ibidapo e Dinrifo (2011) 

fermentation 
and roasting 

ANN Software / 
MOS(TGS-xxxx) 

Tan e Kerr (2019) 

Cocoa refining  KDM (5)  Lab-made e-nose / 
MOS(TGS-xxxx) 

Tan et al. (2019) 

Cocoa beans ANN (1) roasting 

Lab-made e-nose 
Software / 

MOS(TGS-xxxx) 

 
Tan e Kerr (2018) 
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(a) 

 

 

 

(b) 

 

 

Olunloyo

, Ibidapo, 

and 

Dinrifo 

(2011) 

 

 

 

 

(c) 

  

 

 

 

(d) 

  

 

 

Tan et al. 

(2019) 

 

 

 

(e) 

 

 

 

 

(f) 

  

 

 

 

Tan and 

Kerr 

(2018) 
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(g) 

 

 

 

(h) 

  

 

 

 

Tan 

(2019) 

Figure 1.7: Most common LC-e-nose designs for the evaluation of cocoa (a)-(h). 

In alphabetical order, each subsequential letter represents the equipment immediately followed by each signal 

acquisition / data treatment. All the setup was redesigned following the same principle as the original ones. 

 
Another study investigated the use of a low-cost electronic nose to assess the VOCs 

fingerprint of cocoa bean shells (CBS) (BARBOSA-PEREIRA et al., 2019). Cocoa shells from 
two different continents (America and Africa) and 18 Countries (Brazil, Cameroon, Colom- 
bia, Congo, Dominican Republic, Ecuador, Ghana, Ivory Coast, Jamaica, Madagascar, Mexico, 
Peru, São Tomé, Togo, Uganda, Venezuela) were analyzed. To test their hypothesis of being 
able to determine the fingerprint in CBS, they used solid-phase microextraction coupled with 
gas chromatography-mass spectrometry (HS-SPME/GC-MS) methodology analysis and chemo- 
metrics to data treatment PCA and Pairwise Sperman’s non-parametric-correlation that was used 
to explain the relationship between variables (sensors responses) and their acquisition (VOCs 
concentration). The authors established for the first-time strong evidence for the fingerprint in 
CBS and were even able to spot aroma markers such as 2-methyl propanal, 3-methyl bu- tanal, 
phenylacetaldehyde, dimethyl trisulfide, 2-phenyl ethyl acetate, 2,3,5-trimethylpyrazine, 2-
ethyl-3,5-dimethyl pyrazine, 2-heptanol, 2-phenyl ethanol, 2-methyl propanoic acid, and 3- 
methyl butanoic acid changes within CBS. 

 
Fermentation is the process where cocoa beans are transformed by the action of 

microorganisms and some metabolites are due to chemical changes in the bean (GIA-COMETTI; 
JOLIĆ; JOSIĆ, 2015), thus monitoring this process may help achieve high-quality beans. A new 
way of sensing the degree of fermentation of cocoa (Theobroma cacao L) using an LC-e-nose 
(Figure 1.7c) was used to compared six different machine learning models for sam- ple 
classification: bootstrap forest, boosted tree, decision tree, artificial neural network (ANN), 
Naïve Bayes and K-nearest neighbors (KNN). An interesting part of the device is a chamber 
(A) to accommodate the cocoa beans for controlled fermentation. The sensors used were from 
TGS26xx and TG8xx series, and others for most common VOCs, such as hydrogen, ammonia, 
ethanol, propane, and organic solvents, followed by a valve (B) to direct the flow of volatile 
compounds, an air pump (C), a computer (D), and data acquisition card (DAQ) to the sensor 
array (E). Sensors that presented the highest sensitivity were TG822, 23, 26, and TG2610 and 
20 for the first 4 days of fermentation. One drawback of the experiment is that the temperature 
varied between 28 and 50 0C during this long period; therefore, air pumped to the sensor chamber 
should be controlled. Although it is mentioned some factors that might have influenced results 
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including environmental temperature fluctuation, the machine learning models granted good 
results where only 9.4% of misclassification was observed by the bootstrap model. The results 
demonstrated that the e-nose device rightfully classified cocoa beans based on the roasting stage, 
being competitive when compared to GC-MS for identification of the sample’s VOCs (TAN et 
al., 2019).  

The fermentation process is followed by drying and roasting, which grants cocoa its final 
aroma for chocolate production. In this process, the beans are heated from 250 ◦F (120 ◦C) to 300 
◦F (150 ◦C), approximately, to eliminate the undesirable odor and taste. The volatile acids present 
in the beans promote the final product’s bitterness and total acidity (TAN; KERR, 2018). E-noses 
can then be easily applicable to this type of process at an industry level. 

A lab-made equipment (Figure 1.7e) was used to adapt an injection system that used a 
syringe pump since it needed to identify a refined aroma profile characterized by the roasting 
step. It used 600 seconds of e-nose evaluation Figure 1.7f, and the sensors that most responded 
were TGS26xx and TGS8xx, which account for organic volatiles (e.g., alcohol, methane, and 
propane) (TAN et al., 2019), which are presented in Table 5. 

Refining is also an important step in chocolate production. It involves grinding the roasted 
cocoa nibs (i.e., the inner part of the f cocoa bean) into chocolate liquor. The refining process helps 
to break down the cocoa solids into tiny particles, which makes the chocolate smoother, in 
addition to removing any residual compounds from the chocolate (TAN;KERR, 2019). 
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Table 1.7: Commonly compounds (VOCs) in cocoa detected by LC-e-noses. 
 

Application Class Compound Reference 
 
 
 
 
 
 
 
 
 

Fruits  

 
 

Aldehydes  

Hexanal  
Benzaldehyde 
(E)-2-Hexenal 

 
 
 
 
 
 
 
 
 
 

Voss, Ayub, and Stevan 
(2020) 

Alcohols  (E)-2-Hexenol 
(Z)-3-Hezenol 

Hexanol 
 

Esters 
 

Hexyl acetate 
(E)-2-Hexenyl 

 
 

Ketones  
 
 

 
         Acetoin 

 
Terpenoids 

µ-terpinene 
g-terpinene 

 
 

Lactones 
g-lactone derived 

compounds 
d-lactone derived 

compounds 
 

 
Hydroxyl acid  

 
Malic Acid  

Other organic 
compounds  

 

Da Silva Ferreira et al. 
(2023) 

Application Class Compound * Reference 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Furans 

 
3 – Methylruran 
2,5 - Dimethylfuran 
2- Vinylfuran 
3-Furanmethanol 
2-Butylfuran 
2-Propanoyl furan 
2-Acetyl-5-
methylfuran 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Pyrazines 

 
2- methylpyrazine 
2-Ethylpyrazine 
Nutty pyrazine 
Pyrazine, 2,3-diethyl-
5-methyl- 
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Plantation Crops 
(Cocoa and Coffee) 

 

Pyrazine, 2-ethyl-6-
methyl- 
 

 
Viejo et al (2021); 

Tan and Kerr (2018) 
 

 
Aldehydes  

 
3-Aldehydes 
Benzaldehyde 
Benzeneacetaldehyde 
 

 
Pyrroles 

 

 
1-Methyl-2-pyrrole 
carboxaldehyde 
1-Furfuryl pyrrole 
 

 
Organic Acids 

 

 
Acetic acid 
Octanoic acid 
 

 
Others 

 

Furfuryl acetate 
Methyl salicylate 
 

* All compounds are based most common volatiles present in fruits and plantation crops (coffee and cocoa).  
 
 
 

In a follow-up from previous research, Tan e Kerr (2019) adapted a melanger (Figure 1.7g), 
which is a grinder used to grind cocoa bean nibs into chocolate liquor, that mounted with an e- 
nose to characterize the cocoa refining process. Since the process takes a very long time, data 
acquisition was performed for 15 hours (Figure 1.7h). The research concluded that their low- 
cost device would be able to continuously monitor VOCs emanating from cocoa powder and 
liquor during the refining step. 

Conching is a process that follows refining and involves mixing and kneading the 
chocolate liquor with other ingredients (e.g., sugar, milk powder, and cocoa butter), which may 
involve several hours. This process accounts for chocolate flavor and aroma and improves its 
texture and mouthfeel, reducing bitterness or astringency by breaking down tannins in cocoa 
solids (GIACOMETTI; JOLIĆ; JOSIĆ, 2015). 

 
1.6 Common data treatment methods used with LC-e-nose systems in plantation and 

fruits crops 

E-nose response data is complex, involving many variables that carry some chemical 
information. Hence, choosing the best methods to work with this specific data is challenging, 
and either chemometrics or machine learning (ML) can be extremely helpful when dealing with e-
nose datasets. Chemometrics is useful when dealing with complex chemical data sets that have a 
large number of variables, while machine learning, on the other hand, is applied especially when 
the relationship within a variable is non-linear. A combination of both techniques has also been 
investigated (NICOLAS; ROMAIN; MATERNOVA, 2001). 
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1.6.1 Data treatment used for LC-e-nose based on chemometrics 
 

The most common methods in plantation and fruit crops include principal component 
analysis (PCA), linear discriminant analysis (LDA), and partial least square discriminant analysis 
(PLS-DA). From the chemometrics perspective, PCA is explored useful tool to explore the 
information of samples contained in the e-nose data as a first screening performance (QIAO et al., 
2022; TSENG et al., 2021). Further analysis using supervised classification LDA, has been used 
for fruits (QIAO et al., 2022) and plantation crops (TSENG et al., 2021), achieving reasonable 
results. However, many studies propose regression models using PLSR models, which are useful 
for e-nose applications, measuring the relationship between the sensor readings (predictor 
variables) and the concentration of the gas being detected (response variable). PLSR is 
particularly well-suited for e-nose data analysis since it can handle the high-dimensional data 
generated by these devices and can identify the most important features (i.e., sensors) that 
contribute to odor or gas detection (RALISNAWATI et al., 2018; SILVA FERREIRA et al., 
2023). Despite chemometrics being suitable for most LC-e-nose purposes, many authors take 
advantage of ML due to its ability to handle non-linear relationships. ML algorithms can capture 
non-linear relationships between variables and can be then used when traditional chemometric 
techniques do not achieve satisfactory results. 

 
1.6.2 Data treatment used for LC-e-nose based on machine learning 

Support vector machines (SVM), and artificial neural networks (ANN) are the most 
common methods employed for e-nose systems. SVM is a supervised method that finds the 
best boundary to separate two or more classes, and it can also be used for regression. It has 
been used in several LC-e-nose studies (GONZALEZ VIEJO; TONGSON; FUENTES, 2021; 
HEN- DRICK et al., 2022; TYAGI et al., 2023). 

SVM has been used for sensing the aroma of Longgjing green tea. Results reported 
nearly 95% accuracy and can be used to standardize Longgjing tea in the market (LU et al., 
2019). 

A probabilistic neural network (PNN) is a group of artificial neural networks that 
includes probabilistic concepts and techniques for modeling uncertainty and producing 
predictions that have been applied for classification and pattern recognition applications 
(MOHEBALI et al., 2020). PNN model was applied for black tea classification 
(BHATTACHARYYA et al., 2008), achieving 90% accuracy. PNN performance sometimes 
stands out, since it uses probability, and any unsigned data is evaluated based on previous data, 
this approach reduces variation when having reduced data set. This feature grants the model a 
better performance over others, such as backpropagation multilayered perception (BP-MLP). 

Reinforcement learning systems can now be fueled by BP-powered neural networks that 
effectively compute the gradients of the weights and biases concerning the loss function. The 
backpropagation method employs many computational iterations by taking the gradient of 
weight. MLP continuously learns to produce increasingly accurate predictions by repeatedly 
modifying the weights depending on the computed gradients (KUBO; CHALMERS; LUCZAK, 
2022). BP-MLP has aslo achieved 81% accuracy for their prediction model for four tasters’ 
parameters (leaf quality, infusion, liquor, and aroma) used for their black tea samples to correlate 
with sensory analysis responses, which was lower than the 90% obtained with PNN (BHATTA- 
CHARYYA et al., 2008). According to the authors, greater PNN values might be linked to their 
dataset size and also the idea that PNN is derived from a probability base that uses a previous 
sample to move forward the model output, which depending on the variations in your sample 
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size favors more accurate values. 
 
ANN is based on a neural network that mimics the human brain and therefore is used 

for more complex models (i.e., data) (GONZALEZ VIEJO; TONGSON; FUENTES, 2021; 
GURESEN; KAYAKUTLU, 2011; TAN; KERR, 2018; TYAGI et al., 2023). 

Another study (GONZALEZ VIEJO; TONGSON; FUENTES, 2021) used ANN to 
assess coffee aroma profile and obtained 100 and 94% accuracy for training and testing models, 
respectively, from e-nose data. Also used ANN to train the model using a back-propagation 
algorithm and was able to spot differences in fruit and nonfruit odors with 100% accuracy. 
SImilarly, it was possible to differentiate overripe fruits from other ripeness stages with slightly 
lower accuracy (> 90%). 

Alternatively, other methods have been used such as extreme learning machine (ELM), 
which is an ML algorithm method derived from neural networks. The primary principle 
underlying ELM is to assign weights across the input and hidden layers randomly and then solve 
the output weights in a single step. ELM has several advantages over traditional neural networks, 
including fast training times, good generalization ability, and the potential to handle large da- 
tasets. ELM was used by Voss, Ayub e Stevan (2020) to monitor the maturation of peaches in 
their natural habitat, their pre-processing stages accounted for the application of the average 
filter, compensation gas sensor, data normalization and feature selection finalizing in the 
dimensionality reduction. Results obtained for the ELM model reached 88.90% (R2 = 0.852) and 
90.38% (R2 = 0.872) accuracy for their validation models. 

 
Another neural network approach used with LC-e-nose while using recurrent Elman 

network (REN) for the tea fermentation process, which is a type of artificial neural network for 
prediction. The network’s architecture is straightforward, with an input layer, a hidden layer, 
and an output layer. The hidden layer has a feedback connection to itself in an Elman network; 
thus, the prior state of the hidden layer is fed back into the network as an additional input for 
the current time step. This feedback connection enables the network to retain previous time step 
information and use it to anticipate the current one. The Authors applied REN to their 
fermentation time models and were able to predict the oxidation process using their electronic 
nose to record variations in VOCs. The novelty of their work came from this used model and its 
identification of a suitable method for treating data from the tea fermentation process (GHOSH 
et al., 2019). 

 
1.7 Conclusion and future trends 

LC-e-nose systems are reliable equipment that can be employed for multiple agricultural 
products, including the assessment of the quality and freshness of products in plantation crops 
such as tea, coffee, and fruits. Each work reported in this review was meticulously designed for 
a specific purpose. Therefore, all physical parameters, such as headspace, chamber size, shape, 
temperature, and humidity involving thermodynamics and fluid mechanics when transporting 
gases as well as chemistry in all the chemicals have peculiar attention for each food group. 
Additionally, the chemical characteristic of each sample within those groups are vital variables 
that must be included in an e-nose project. 

Data acquisition and treatment, as well as the design, are essential to a successful project; 
many aspects have to be carefully analyzed for retrieving data from e-nose devices from a sensor 
perspective, such as acquisition time, signal type, from a computer interface (i.e., code and data 
logger). The noise generated in these steps can be a pitfall and, therefore, must be considered 
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when building this type of device, where integrated systems and the right motherboard, PCB, and 
other microcontrollers play an important role. Data treatment approach must be included in the 
project when thinking about LC-e- board PCBs have evolved and helps many users at a lower price, 
still choosing the correct data treatment method will save time and money. Overall, fruits, tea, and 
coffee have been extensively covered, and most aspects of their equipment (i.e., pros and cons) 
were exposed. LC-e-noses offer many advantages over other devices. Future trends in this field 
include miniaturization, with equipment evolving from labscale to portable and practical gear, 
allowing manufacturers to take it to the field, as seen in many evaluated systems. Along with 
customization, the use of specific sensors will enable th equipment to be accurate while being 
affordable. 

 
Internet of Things, which is the connectivity of the Internet of PCs in every piece of equipment 

leading to automation, is also a future development to be studied. Low-cost, portable, wi-fi 
integrated solutions were mentioned (LEE et al., 2023). Agroindustry has been employing 
integrated odor sensors to identify fluctuations in volatiles before harvest, as well as provide 
strong insights into the resources that they have used, such as water and fertilizer. So far, e-nose 
sensors were reported for monitoring the quality of fruits and plantation crops (i.e., freshness), 
allowing growers to determine their pricing and profitability, and further applications in this area 
are in the near future. Low-cost devices may be used as useful and accessible quality control 
tools for small producers and food processors. 
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1.1 Abstract 

Pitaya (Hylocereus polyrhizus), also known as dragon fruit, is an exotic and highly valued fruit 
with a high amount of fiber and vitamins, and its quality is often related to attributes such as 
soluble solids, moisture content, and acidity. Traditional analytical techniques (e.g., gas 
chromatograph-mass spectrometry – GC-MS) for physicochemical quantification are costly and not 
environmentally friendly. This work proposes a quick and non-destructive evaluation of pitaya 
quality using low-cost Near-Infrared Spectroscopy (NIRS) and electronic nose (e-nose) devices. 
Classification models for either NIR spectra or e-nose data as predictors presented accuracy higher 
than 90% when classifying samples according to their shelf-life index stage (SLI30, 50, 80, and 
100). Total titratable acidity (TA) and pH could be predicted using partial least squares regression 
(PLSR) and NIR spectra as predictors with coefficients of determination (R2p) of 0.89 and 0.83, 
respectively, and root means square error (RMSEP) of 0.03 and 0.23, respectively. Similarly, 
PLSR models for the prediction of TA and pH using e-nose data achieved R2p of 0.85 and 0.86, and 
RMSEP of 0.04 and 0.22 respectively. RPD and RER values for NIRS show that all predictors can 
be used to at least distinguish between low and high values. The results demonstrate that 
inexpensive devices based on NIRS, and a novel Low-cost-e-nose could be used in combination 
for the prediction of TSS, pH, TA, moisture, and phenolics, as well as to classify pitaya according 
to their shelf-life stages. 

 
Keywords: chemometrics. optic sensors. MOS sensors. dragon fruit. pitahaya. 

 
1.2 Introduction 

Food production in Brazil stands out among the agricultural products commercialized in the 
Country, where Brazil is the biggest producer of tropical fruits globally (PINTO; JACO- MINO, 
2013). Pitaya (Hylocereus polyrhizus) is a fruit, which consumption has been increased in the 
Brazilian market. This fruit, known as dragon fruit in the American market, is consumed on a large 
scale due to anthocyanins, which are molecules that show antioxidant properties. Besides that, the 
fruit has the potential of controlling the growth of microorganisms in food (acting as a preservative) 
(CHEAH et al., 2016). Among the current methods to determine the phytochemicals in these fruits 
are the chromatographic methods (VIEIRA et al., 2017), which are time-consuming and costly 
and sometimes require the fruit’s violation. This equipment includes gas chromatography (GC-
MS) and high-performance liquid chromatography (HPLC) (BU-RATTI et al., 2011; SANAEIFAR 
et al., 2017; WILSON, 2018; WILSON, 2018). However, the fruit’s short shelf life is a common 
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problem that restricts its use (WU et al., 2019). Therefore, finding methods to evaluate shelf life 
and target compounds present in these fruits is extremely important. However, among the common 
methods today, are chromatography and physical-chemical analysis, which most of the time is 
laborious and may require an invasive approach. NIR spectroscopy is a non-invasive technique that 
in combination with chemometrics tools (predictive models) can show great potential for the food 
industry in measuring agricultural features, such as total solids (TSS) acidity (TTA), moisture, and 
phenolic compounds. Some of the equipment used includes Hyperspectral imaging (HIS-HIR) and 
Near-Infrared Spectroscopy (NIR). where the latter presents a lower price. Allow a predictive 
model to be transferred to another device and yet correct differences in the spectrum by that 
equipment is difficult in modeling. 

Electronic nose (e-nose) is a piece of equipment that mimics the olfactive cells of mammals, 
and it was projected to identify and classify odors (PEARCE et al., 2003). Following the same 
trend of non-destructive techniques. Near-Infrared Spectroscopy – NIRS is based on the 
vibrational forces of organic chemical molecules and their interaction with the radiation of the 
infrared spectrum (BASANTIA; NOLLET; KAMRUZZAMAN, 2018). Both analyses have been 
shown to substitute consolidated techniques in the industry. such as gas chromatography- mass 
spectroscopy (GC-MS) and titratable acidity (LOUTFI et al., 2015). These custom analytical 
techniques used to determine physicochemical properties related to the ripening of fruits are 
onerous and need the use of chemicals (Alander et al.. 2013). Therefore. these two techniques (NIR 
and e-nose) have been proposed to predict the shelf-life of pitaya based on total soluble so- lids 
content (TSS), pH and titratable acidity (TTA) moisture and phenolics using PLSR models as well 
as discriminate the fruit for 5 stages (days) using LDA and PLS-DA models. 

 
1.3 Materials and Methods 

   
1.3.1 Acquisition of the fruits 

A total of 140 pitayas (red-fleshed variety) were obtained immediately after harvest from a 
local producer and 30 samples were analyzed for total phenolic compounds, total soluble solids 
(TSS), pH, titratable acidity (TA), and moisture content. Also, NIR spectra and e-nose data were 
acquired. The remaining samples were stored at two temperatures (15 oC and 25 oC), and the 
same analyses were performed after 7, 14, 21, and 25 days of storage.  

 
1.3.2 Reference Analysis 

Total Phenolics was performed using the Folin-Ciocalteu method proposed by Ferreira et al. 
(2019). Total soluble solids content (TSS), pH and titratable acidity (TTA) moisture and phenolics 
were analyzed. The content of total soluble solids was determined using a manual refractometer 
model (KASVI, K52-032), on a scale from 0 to 32%, and calibrated with distilled water AOAC 
932.12. The moisture content of the samples was obtained by the gravimetric method after drying 
4 g of sample in a vacuum oven at 60 ◦C until constant weight (AOAC, 2006). The pH was 
determined using a pH meter (model MB-10; Marte, São Paulo, Brazil), titratable acidity was 
measured from the juice of the fruit (NIELSEN et al., 2003) as well as phenolics according to 
Ferreira et al. (2019). 
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1.3.3 Data acquisition using NIR spectra 

The range used for NIR measurements was 902 – 1700 nm using a 4 nm interval applied 
around the entire fruit using absorbance mode. The measuring was performed straight to fruit 
(peel) using a portable device (DLPR NIRscanTM Nano, Texas Instruments, USA), equipped 
with a 10 W halogen lamp and the Software NIRscanTM. As per the replicates, for each sample, 
60 scans were taken for each analyzed part of the fruit so that it could statistically represent the 
samples. 

 
1.3.4 E-nose set up and fruit acquisition 

The e-nose system is described as shown in Figure 1.1 and it is composed of the sample 
chamber and the computer for data acquisition. The e-nose has a set of 8 sensors: MQ2, MQ3, 
MQ4, MQ6, MQ8, MQ9, MQ135 and MQ138 (Zhengzhou Winsen Electronics Technology, 
China). Each of them is responsible for propane, alcohol, methane (CH4), propane, inflammable 
gases, carbon monoxide (CO), ammonium (NH4+), toluene (C7H8), and hydrogen and volatile 
compounds, respectively. The equipment also presents two controlling sensors, one for 
temperature and another one for humidity. 

 

Figure 1.1: NIR and e-nose set up. 
 

Each fruit was placed in the sensors chamber, where the volatiles was driven to each one 
of them. The time of each measurement was 2 min. Between each class, clean air was used to 
wash the volatiles compounds out as well as 2 min air is performed within each class so that the 
ratio signal(sample)/air was obtained. 

 
1.3.5 Multivariate analysis 

 
1.3.5.1 NIR (Spectra) and e-nose data pre-processing 

The data used for the classification model (PLS-DA) and prediction model (PLSR) were 
randomly divided into a subset composed of 70% for the calibration and 30% for the prediction 
model respectively. For NIR system the data sets were calibration (99) and prediction (41), 
whereas for the e-nose system the data was calibration (67) and prediction (32). For NIR spectra, 
mean center was used (MC), and then pre-processing approaches were applied such as first (1st) 
and second (2nd) derivatives to correct the baseline; the derivatives were calculated using the 
Savitzky-Golay algorithm, with window size (w) of 9 to 11. The standard normal variate (SNV) 



 
58 

 

were applied to correct the effects of light scattering (BARNES; DHANOA; LISTER, 1989; 
MARTENS; GELADI, 1983). As per the e-nose, the voltage matrix data was pre-processed 
using only autoscaling (AS). For both NIR and e-nose the cross-validation method used was 
venetian blinds with 10 splits and blind thickness of 1. 

 
1.3.5.2 Principal Component Analysis (PCA) 

To simplify the size of data and obtain an overview of the variation between samples 
principal component analysis (PCA) was used as an unsupervised method. In addition, the 
information was used to identify whether or not the sensors were sensitive to pitaya’s shelf life. 
This chemometric technique relies on linear transformation from the original variables, that were 
once initially correlated to each other in a smaller group of non-correlated variable nominated 
principal components (PCs). PCA models were designed with the complete data range, using the 
singular value decomposition algorithm (SVD) (95% confidence level) for the computation of 
the eigen generic sequence and a further cluster of the data. For the construction of the models, 
outliers (anomalous measuring) were identified and excluded using the amount of Q residuals 
and Hotelling T2 plots. 

 
1.3.5.3 Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis was applied as a supervised method for data feature 
extraction and variable selection. For that, the mean covariance accounting for Gaussian 
distribution is calculated for each class while performing classification training. The model was 
developed by using the loadings from PCA of the most responsive peaks (1010, 1130, 1320, 
1400, 1480, and 1660 nm) from the 140 samples used as predictors, divided into 5 storage days 
previously displayed. The software used to treat the data was MINITAB® Release 14.12.0 
(SANAEIFAR et al., 2014). 

 
1.3.5.4 Partial Least Square Discriminant Analysis (PLS-DA) 

Partial least squares discriminant analysis was used to classify pitaya’s fruit to its shelf- 
life stage within 5 studied categories (days 0, 7, 14, 21, and 25). The choice of the number of the 
latent variables (LVs) that should be included in the PLS-DA models was calculated based on 
the lowest root mean squared error for cross-validation (RMSECV) (BARBIN et al., 2013). The 
performance of the classification models was evaluated by sensitivity (Eq. 6.1) and Specificity 
(Eq. 6.2), which can be related to the model’s ability to correctly classify positive and negative 
samples. respectively. The error rate (Eq. 6.3) and accuracy (Eq. 6.4) account for the error and 
the global value of the model’s performance respectively. 

 
 

											Sensitivity	(	%	) = 	 )*
()*+$,)

× 100      (6.1) 

 

Accuracy	(	%	) = 	 ()*+),)
)-)./

× 100    (6.2) 
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													Specificity	(	%	) = 	 ),
(),+$*)

× 100.	   (6.3) 

  

Error	rate	(	%	) = 	 ($*+$,)
)-)./

× 100     (6.4) 

 
Where, TP = true positive; FN = false negative; TN = true negative; and FP = false 

positive. 
 

1.3.5.5 Partial Least Square Regression (PLSR) 

Partial Least-squares Regression (PLSR) was applied using both NIR spectra and e-nose 
dataset as predictors for each characteristic analyzed. The spectral region from 902 – 10701 nm 
was used for NIR, while for e-nose the entire dataset was used. The performance of the 
regression models was assessed by the coefficient of determination (R2), the number of latent 
variables (LV), and root mean squared error (RMSE) for calibration (RMSEC), cross-validation 
(RMSECV), and prediction (RMSEP) (SKIBSTED et al., 2004), residual predictive deviation 
(RPD) and the range error ratio (RER) (BARBIN et al., 2015). Where RPD tell how model is 
(unusable) RPD < 1.5, (able to distinguish between high and low values) 1.5 < RPD < 2.0, 
(quantitative prediction) 2.0 < RPD < 2.5, (indication of a good prediction) 2.5 < RPD < 3.0 
and (excellent prediction) RPD > 3 (SAEYS; MOUAZEN; RAMON, 2005). While, RER ≥ 4 
means that the model is qualified for screening calibration, RER ≥ 10 the model is acceptable for 
quality control and RER ≥ 15 the model is very good for quantification (RAMBO; AMORIM; 
FERREIRA, 2013). 
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1.4 Result and Discussion 

 
1.4.1 Reference Analysis 

 
 Results for physical and chemical analysis of pitaya (Table 1.1), and Pearson correlation 
(Table 1.2) among features, demonstrated that changes in TSS, pH, TA, and phenolic compounds 
occurred during storage. Moisture did not have significant variation within the tested days (p < 
0.05). A recent study suggested that TSS content does not change significantly within the maturity 
stages. On the other hand, TA decreased during maturation (shelf-life) (Freitas and Mitcham 
2013). However, it was observed that TSS decreased continuously until the latest stage SLI100 
10.54 ± 1.26. 

Acidity decreased during storage, and pH values increased, which may explain the spoilage 
in some fruits after two weeks. This degradation might be linked to the oxidation process that 
consumes some of the organic acids present in the fruit. As a result, an increase in SLI (TSS/TA) 
occurred during the period. Previous work reported an abrupt increase in pH after three weeks of 
storage, although in a different variety of pitaya (Franco, Esguerra, Tababa, & Castro, 2022). In 
this work, it was also observed a decrease in total phenolics in the late shelf-life stages, which is 
following previous studies (Angonese et al., 2021; Franco et al., 2022).  

 
Table 1.1. Physicochemical parameters for pitaya during different shelf-life indexes 

Analyzes 

SLI30 (0) SLI50 (7) SLI80 (14 and 21) SLI100 (25) 

Min - Max Mean ± SD Min - Max Mean ± SD Min - Max Mean ± SD Min - Max Mean ± SD 

TSS 10.10 - 12.95 11.74A ± 0.72 8.95 - 13.20 11.29AB ± 1.32 8.45 - 14.70 10.97B ± 1.209 8.50 - 12.80 10.54B ± 1.26 

pH 3.62 - 4.37 3.96D ± 0.20 3.88 - 4.79 4.44C ± 0.21 4.77 - 5.60 5.10B ± 0.17 5.17- 5.57 5.35A ± 0.13 

TA 0.24 – 0.47 0.35A ± 0.06 0.15 – 0.32 0.22B ± 0.04 0.20 – 0.82 0.15C ± 0.02 0.09 - 0.14 0.11D ± 0.02 

Moisture 78.61 - 89.24 86.64A ± 1.43 84.16 - 92.65 87.31A ± 1.78 78.93 - 90.01 86.58A ± 2.23 84.15 – 90.42 86.81A ± 1.56 

Phenolics 0.57 - 0.87 0.70B ± 0.08 0.64 – 0.84 0.73AB ± 0.05 0.59 - 0.87 0.75A ± 0.08 0.49 - 0.71 0.62C ± 0.07 

TSS/TA 
 

33.43 D ± 2.9 
 

50.25 C ± 4.54 
 

81.73 B ± 4.74  104.32 A ± 9.22 

         
* The data correspond to the mean ± SE of two repetitions. Different letters for the same parameter analyzed 

indicate significant differences. between the storage days. by ANOVA (P < 0.05). (TSS) content of total 

soluble solids. (TA) titratable acidity. (SLI ,30,50, 80 and 100) shelf-life index for pitaya fruit for each day 

group 0, 7, 14 and 21, 25, respectively. 
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Table 1.2. Pearson correlation for physicochemical parameters of pitaya. 

*Values in modulus are equal to 0.5, **values in modulus are  > 0.5 

1.4.2 Principal Components Analysis (PCA) 

For the e-nose system, PCA was performed using data from the whole data set for all 8 
sensors. Figure 1.2 shows the PCA scores plot on the PC1 vs PC2 for the e-nose device and 
PC1 vs PC2 for portable NIR. 

 
Figure 1.2: PCA (a) scores and (b) loadings for NIR spectra absorbance mode; PCA (c) 

scores and (d) loadings for e-nose data. 
 

PC1 and PC2 explain more than 80% of the total variance (Figure 1.2a). It is also possible 
to observe a trend to split samples stored for long periods (SLI 100) on the negative side of PC1, to 

  TSS pH  Moisture  Phenolics  TA  
TSS 1.00     
pH -0.39 1.00    

Moisture -0.46 0.35 1.00   
Phenolics -0.24 0.49* 0.28 1.00  

TA 0.31 -0.90** -0.28 -0.38 1.00 
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fresher samples (SLI 50, 70) on the positive side of PC1. The loadings (Figure 1.2b) show that the 
wavelengths 905, 1010, 1130, 1320, 1400, 1480, and 1660 are responsible for the variation in the 
PC1. The wavelengths at 905, 1010, and 1130 nm are related to hydrogen and oxygen (H-O) 
(Osborne, 1986), and carbon and hydrogen interaction, second and first vibration of O-H related to 
aromatic compounds (Magwaza et al., 2012); 1320 and 1400 nm might be related to organic acids 
(Weyer & Lo, 2006). From those, 1010 and 1400 nm overlap with water which is correlated to the 
moisture present in the fruit. The peaks at 1480 and 1660 nm are associated with glucose (Osborne, 
1986), and some authors have reported this wavelength to be related to lignin, starch, and cellulose 
(Ertlen, Schwartz, Trautmann, Webster, & Brunet, 2010). The variations observed during the 
storage period of the fruit as well as the response for phenolic compounds may be attributed to acid 
compound degradation, such as ascorbic acid, gallic acid, and malic acid (Cheah et al., 2016). The 
region responsible for the picks in the spectra at 1000 and 1440 nm could be related to organic 
acids, which for pitaya is represented by malic acid (C4H6O5) since it is the major component in 
the fruit (Angonese et al., 2021). 
 

For the e-nose system, it is possible to observe that samples from SLI 30 were on the positive 
side for PC1 scores (Figure 1.2c) while SLI 50, 70, and 100 were on the negative side. PC1, PC2, 
and PC3 together, explained 66.64% of the total variation. It can be seen in Figure 1.2c that the e-
nose system can differentiate the storage days of pitaya in the aforementioned groups. The loadings 
for the PCA with e-nose data (Figure 2d) show the contribution of each sensor to the separation of 
the fruits. All sensors identified some type of compounds; however, the biggest peaks were 
presented by sensors MQ138 and MQ3, which are responsible for the volatile compounds present 
in fruit and alcohols derived molecules, respectively. Some of the compounds previously reported 
in pitayas include alcohols, 1-hexadecanol, and 2-ethyl-hexanol, aldehydes - octenal and octanal, 
and ketones – diphenyl-1- (2-furanyl)-ethanone (Attar et al., 2022), related to most of the volatile 
compounds. While MQ3 sensitivity to alcohol may explain the sensor’s selectivity towards the 
molecule of malic acid and other organic acids due to its OH group, others, such as MQ8 did not 
respond considerably well to pitaya, yet it still might be relevant to PCA separation. A reason for 
that may be linked to hydrogen sulfide (H2S) in the fruit respiration process in the postharvest (Hu 
et al., 2012). Previous work has demonstrated a correlation between the presence of this gas and the 
delay in senescence of the fruit, which helps to prolong the fruit’s shelf-life (Hu et al., 2012). 
Likewise, carbon monoxide (CO) plays a role in fruit respiration (Young, Romani, & Biale, 1962) 
and are related to food quality (Krupa & Tomala, 2021), therefore MQ9 was an important sensor to 
monitor this gas level that increases over time during storage. MQ4 and MQ6 responses for methane 
and propane might be related to the release of these gases during storage since they are related to 
the rotten process in fruit waste (Gunaseelan, 2004). Even though pitaya is classified as non-
climacteric fruit, the mechanisms involving ethylene production in fruits are still unknown (Aizat, 
Able, Stangoulis, & Able, 2013), and perhaps small variations in this hormone levels may be enough 
to obtain a response in MQ138 and MQ4 sensors.   

 
1.4.3 Classification model using LDA 

 
LDA classification of pitaya according to SLI using NIR spectra provided good results, 

using a few selected wavelengths. The wavelengths of 930, 950, 1010, 1020, 1140, 1190, 1320, 
1400, 1480, 1660, 1670 nm were used in the models. Mainly, misclassification of samples 
observed for neighboring classes (Table 1.3). FT-NIR in combination with LDA has been 
successfully used to detect variation in morphological and chemical properties of lemon 
(Ruggiero, Amalfitano, Di Vaio, & Adamo, 2022), where the major component was attributed to 
polysaccharide content. This finding could be related to sugar and phenolic compounds since 
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Jamila et al. (2020) also obtained a perfect classification rate using NIR spectroscopy and 
chemometrics for garcinia fruit. 

The LDA results for e-nose showed lower overall accuracy (95%) when compared to 
portable NIR spectrometer (97%). These results could be related to the transformations of volatile 
compounds compared to other chemical changes related to water and solid contents since NIR 
spectra are influenced by vibrational bonds in molecules related to major components such as 
water content, which may lead to a better classification, whereas the generated volatiles might not 
be sufficiently sensitive to MOS sensors in e-nose. From that, all classes had misclassified samples, 
where SLI100 presented the highest accuracy (99%). The SLI50 accuracy (91%) for e-nose was 
the lowest among classes, similar to the result obtained using NIR spectra (94%). All parameters 
sensitivity, selectivity, accuracy, and error rate are presented in Table 1.4. 

 
Table 1.3: Confusion matrix for LDA and PLS-DA classification of pitaya using NIR spectra and e-nose 

data. 

Classification 
method 

Equipment 
  SLI30 SLI50 SLI80 SLI100 

LDA 

NIR  
spectrometer 

SLI30 25 2 0 0 
SLI50 2 21 3 0 
SLI70 0 1 58 0 
SLI100 0 0 1 27 

e-nose 

SLI30 26 3 0 0 
SLI50 2 18 0 0 
SLI70 0 4 37 1 
SLI100 0 0 1 10 

PLS-DA 

NIR 
spectrometer 

SLI30 10 2 0 0 
SLI50 0 8 5 0 
SLI70 0 1 9 1 
SLI100 0 0 0 7 

e-nose 

SLI30 11 0 0 0 
SLI50 0 6 0 0 
SLI70 0 1 8 0 
SLI100 0 0 3 4 
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Table 1.4. Sensitivity, specificity, accuracy, and error rate values for classification of pitaya according to 

shelf-life index by using NIR spectra and e-nose. 

Statistical 
method 

Equipment Shelf-life 
index Sensitivity Specificity Accuracy Error rate 

LDA 

NIR 
spectrometer 

SLI30 0.93 0.98 0.97 0.02 
SLI50 0.88 0.96 0.94 0.06 
SLI70 0.94 0.99 0.96 0.04 
SLI100 1 0.99 0.99 0.01 

e-nose 

SLI30 0.93 0.96 0.95 0.05 
SLI50 0.72 0.97 0.91 0.09 
SLI70 0.97 0.92 0.94 0.06 
SLI100 0.91 0.99 0.98 0.02 

PLS-DA 

NIR 
spectrometer 

SLI30 1.00 0.94 0.95 0.05 
SLI50 0.73 0.84 0.81 0.19 
SLI70 0.64 0.93 0.84 0.16 
SLI100 0.88 1.00 0.98 0.02 

e-nose 

SLI30 1.00 1.00 1.00 0.00 
SLI50 0.86 1.00 0.97 0.03 
SLI70 0.73 0.95 0.88 0.12 
SLI100 1.00 0.90 0.91 0.09 

 

LDA has been used together with a low-cost electronic nose to classify oranges in different 
ripening stages, shelf life, and storage time as well as, early stages of contamination (Srivastava & 
Sadisatp, 2016). Other authors tested multiple e-nose systems for recognition of different odors 
(i.e., C7H8 C6H6 NH3 CO, NO2 and CH2O) with LDA and obtained an average accuracy of 70.06% 
(Zhang, Liu and Deng 2017). Some of these components are equal to the ones attested in the 
equipment presented in this work, explaining the high classification rate found for pitaya. This 
gain in performance may be associated with the equipment robustness, sensor choice, and 
meticulous data treatment, despite the fact that the device used in this work is a low-cost one. 

 
1.4.4 Classification model using PLS-DA 

 
The confusion matrix of PLS-DA models for pitaya using NIR spectra is shown in Table 

3, while sensitivity, selectivity, accuracy, and error rate are presented in Table 6 4. The four classes 
(SLI30, 50, 70, and 100) represent the storage indexes and the numbers on the diagonal of the 
matrix represent the samples correctly classified according to their respective classes, on the other 
hand, values that do not fall in that position are misplaced values. The transformations performed 
in the data were mean center, smoothing S-G order (o) 0, (w) 11 in combination with 1st S-G 
derivative (o 2, w 9), since they showed the best results. Regarding the best model for PLS-DA 
using NIR spectra, it showed 95%, 81%, 84%, and 98% for SLI30, 50, 70, and 100, respectively, 
where the overall accuracy for the prediction model was 90%.  
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NIR has been used to discriminate nectarine’s shelf-life over 21 days using different irrigation 

strategies. They build models varying from 57 to 84% of accuracy (Pérez-Marín et al. 2011), it should be 
pointed out that the spectra acquisition was performed using different equipment. A similar approach was 
performed for kiwi, this time using NIR-HSI used PLS-DA for the classification of ripeness evaluation 
reached good accuracy, classifying the fruit during ripening with a sensitivity of over 73.3% (Benelli et al. 
2021). Therefore, the results found in this work are promising compared to the ones found in the literature, 
considering the low-cost device that was used. 
 

E-nose results (Table 1.3) showed better classification performance when compared to NIR. The 
overall accuracy was > 94% whereas the accuracy for SLI30 and SLI50 were 100 and 97%, respectively. 
Sensitivity, selectivity, accuracy, and error rate are presented in Table 1.4. The accuracy of the calibration 
model for each equipment was similar to those of the prediction model, which attests to the absence of over 
and underfitting.  The data suggest e-nose equipment is suitable for the classification of pitaya in the 
presented shelf-life indexes with excellent accuracy (>93%), higher than (91.7%) found by Zhang (2019) 
when discriminating the content of aspergillus carbonarius in grapes based on their volatile compounds. Both 
NIR and e-nose presented accuracy over (91%). The results found in this research are promising for the 
classification of fruits according to the shelf-life stages.  
 

1.4.5 Prediction of reference analyzes using PLSR 
 

Partial Least Squares Regression (PLSR) was used to model the relationship for each of 
the analyses (NIR and E-nose) with the physicochemical features TSS, pH, TA, moisture, and total 
phenolics of pitaya. RMSEC and RMSEP as well as the coefficient of determination (R2) for both 
techniques are presented in Figure 1.3 and Figure 1.4. The spectral region from 900 to 1700 nm 
was used for the NIR spectra acquisition and various pre-treatments were tested, where mean 
center, smoothing (o) 0 (w) 9, and SNV presented the best results, while, for e-nose, autoscaling 
was used for all models. 

Regarding the PLSR models using NIR spectra (Table 5), pH and TA presented higher 
values of R2 for calibration and prediction models compared to moisture and phenolics. Xu et al. 
(2019) found good models for TSS in oranges. They used NIR and e-nose in a fusion system to 
improve the prediction of the total sugar content. In the postharvest of fruits using NIR the 
prediction of direct correlation (e.g., TSS and water absorption) and secondary ones (e.g., TA and 
pH), where the latter are predicted indirectly from maturity stages or a compound such as 
chlorophyll, can be made to the stages of the fruit, as long as, the relationship is robust based on 
the variation that they may have (e.g., environmental and seasonal). The drawback is to assure the 
robustness of the correlation between these measured variables and the compound of interest in 
the fruit or vegetable (i.e., TA with chlorophyll content) to make such assumptions (Walsh, 
McGlone, & Han, 2020). This challenge reinforces the difficulty in obtaining a good correlation 
between the analyzed features (i.e., TSS, TA, pH, moisture, and phenolics) for pitaya as observed 
in the Pearson correlation table (Table 6..2). The good responses for pH and TA rely on the fact 
that pitaya presents many organic acids, whereas malic acid (451 mg/100g) is the main one in the 
red-fleshed variety (Angonese et al., 2021), therefore O-H bonds that are absorbed on the overtone 
by NIR in some wavelengths (i.e., 970 and 990 nm) is present in the structure of this molecule.  

For the PLSR models using the full spectra, NIR models for TSS and moisture showed 
RPD values of 1.73 and 1.98, which fell into the 1.5 < RPD < 2 range suggesting that TSS and 
moisture models can distinguish between high and low values (Saeys et al., 2005). pH and TA 
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showed RPD 2.40, 2.78, falling into 2.0 < RPD < 2.5 and 2.5 < RPD <3.0, respectively, which 
suggests a model for quantitative predictions (Saeys et al., 2005). On the other hand, phenolics 
presented 1.55 for RPD which is the threshold for the group that includes TSS and moisture. Even 
though it shows a moderate correlation with pH (Table 2), it did not present good prediction 
values, at least using the total phenolics method, as proposed in this work. A study on phenolics 
in red wine grapes found models with an RPD of 1.2 (Rouxinol, Martins, Murta, Barroso, & Rato, 
2022), which may indicate the difficulty of working with these compounds. A reason for that lies 
on the complexity of the molecules that also have a hydroxyl functional group (-OH) since they 
are a group of aromatic carbon compounds derived from alcohols. As per RER for NIR 
equipment, TSS, pH, and moisture presented values 8.94, 8.81, and 8.82 making them fall into 
the RER ≥ 8 thresholds, which means they are qualified for screening calibration. While TA RER 
was 11.57, which attests that the model is acceptable for quality control. 
 

  
(a) (b) 

 

(c) (d) 
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(e) 
Figure 1.3: PLSR models with the best performance for the total of soluble solids (TSS), pH. 

total titratable acidity (TTA), moisture and total phenolics from NIR data. 

 
 

  

(a) (b) 
 

(c) (d) 
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(e) 
Figure 1.4: PLSR models with the best performance for total titratable acidity (TTA), total of 

soluble solids (TSS), pH, moisture, and total phenolics from e-nose system data. 

 

As per e-nose, PLSR models for e-nose (Table 1.5 – Supementary material) presented similar 
results. However, models for pH and TA generated high R2 for calibration and prediction models. A 
possible reason for that may be linked to the presence of organic acids (Angonese et al., 2021; Balois-
Morales, Peña-Valdivia, & Arroyo-Peña, 2013) and its degradation during the evaluated time 
confirmed by the increase in pH. TSS and moisture presented low R2 values since it was not possible 
to build good models for those parameters, as these parameters are not related to any feature that 
would be captured by MOS sensors; therefore, it is not a surprise these two models did not present a 
good fit. Although the models for phenolics presented an R2 of 0.78 for calibration, the prediction 
models were not so good, thus not suitable for prediction in the current work. The poor correlation 
may rely on the fact that the measurements were performed in the non-violated fruit; therefore, the 
volatile compounds that were being released from the peel might not be enough to be captured by the 
sensors. The evaluation of odor in fruit peel using e-nose is usually performed by grinding the peel 
and resuspending in solvent (Li et al., 2022), which was not the scope of this paper.  

E-nose RPD values for TSS, moisture, and phenolics were below 1.5 which indicates an 
unusable model; however, pH fell into 2.5 < RPD <3.0, which indicates a good prediction model, and 
TA RPD > 2 indicates a model for quantitative predictions. Regarding RER for e-nose models, only 
TA and pH fell into the RER ≥ 8 thresholds, which means they are qualified for screening calibration. 
Some of the unsatisfactory prediction models obtained could be because measurements were 
performed again with intact fruits. Pitaya has a thick peel that obstructs the penetration of the light 
from NIRS sensors, thus affecting the model for attributes such as TSS and moisture content, for 
example.  

There are only a few studies on pitaya regarding fruit quality, yet volatile compounds and primary 
metabolites (e.g., sugar) appears as urgent indicators of fruit quality and flavor that will ensure the acceptability 
by consumers (García-Cruz, Dueñas, Santos-Buelgas, Valle-Guadarrama, & Salinas-Moreno, 2017; Walsh et 
al., 2020). However, variability within them can affect prediction models regarding their robustness when using 
NIR sensors (Walsh et al., 2020). Likewise, moisture and TSS, for example, affect fruits (e.g., strawberries) 
abruptly, in which small variation in intracellular structure may lead to an interference in model performance 
when using NIR spectroscopy (Xie, Liu, & Guo, 2021). Similarly, even though e-nose MOS sensors are well-
established in determining and identifying a vast number of gases, such as ethanol, toluene, and benzene, 
allowing them to be used with LDA and PLS models, a drawback in this technology is the difficulty of the 
sensor to detect small concentrations (i.e., ppb) (Spinelle, Gerboles, Kok, Persijn, & Sauerwald, 2017). The 
fact that the release of phenolic compounds from the peel might be low combined with the high detection limit 
(100-1000 ppm) by the sensors may explain the poor response for e-nose TPC PLS mode.  
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1.5 Conclusions 

Delivering high-quality fruits is essential to please consumers and has always been a 
concern in food safety and health. Likewise, agriculture 5.0 is around the corner determining a 
new resolution to consumers and producers in how they perceive food. This scenario facilitates 
the use of clean and smart technologies, such as smart sensors systems to assure good quality 
food for the growing population. When evaluating NIR and e-nose as possible equipment to 
evaluate pitaya shelf-life, LDA showed excellent classification for both NIR and e-nose, even 
though the former presented lower accuracy (> 85%) compared to the latter (> 98%). PLS-DA 
showed excellent accuracy in classifying pitaya in the 5 classes (days) in combined temperatures 
(15 and 25 ◦C) 92% and 96%, respectively. The analyzed PLS regression methods for the NIR 
system showed good prediction models with reasonable R2p and RMSEP for TSS and phenolics 
and good ones for TTA and pH. These two predictors showed RPD 2.40, and 2.18 RPD > 2, 
which suggests a model for quantitative predictions. For e-nose, TTA and pH showed good R2p 
and RMSEP. In addition, the pH model fell into 2.5 < RPD < 3.0 indicates a good prediction 
model while TTA showed RPD > 3, which indicates an excellent model, therefore, both 
techniques could be used to predict the shelf-life stages of pitaya fruit for TTA, pH for both e-
nose and NIR with a good prediction model and distinguishing between high and low values for 
TSS, moisture and phenolics for NIR. Yet, e-nose and NIR systems presented as good equipment 
for the prediction and classification of pitaya. The major chemical constituent for classification 
and prediction may be the volatile compounds associated with malic acid. The use of NIR and 
e- nose system combined with chemometrics can be used in the industry to distinguish the different 
stages of pitaya, which would facilitate the selection of these fruits for specific use and products. 
which includes their sorting for the marketplace as well as processed products such as ice cream 
jelly, and juice. 
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Table 1.5: Tukey test ANOVA for combined temperatures for of Pitaya fruit using NIR. 

Storage Days 

Analyzes 0 7 14 21 25 

 
 
 
 
 
 

* The data correspond to the mean ± SE of two repetitions. Different letters for the same parameter analyzed indicate significant differences. between the 
storage days. by ANOVA (P < 0.05). (TSS) content of total soluble solids. (TTA) titratable acidity. 

 
 

Table 1.6: Tukey test ANOVA for combined temperatures for of Pitaya fruit using e-nose. 
Storage Days 

Analyzes 0 7 14 21 25 

 
 
 
 
 
 

* The data correspond to the mean ± SE of two repetitions. Different letters for the same parameter analysed indicate significant differences. between the 
storage days. by ANOVA (P < 0.05). (TSS) content of total soluble solids. (TTA) titratable acidity. 

 Min - Max Mean ± SD Min - Max Mean ± SD Min - Max Mean ± SD Min - Max Mean ± SD Min - Max Mean ± SD 
TSS 10.10 - 12.95 11.74A ± 0.72 8.95 - 13.20 11.29AB ± 1.32 8.45 - 14.70 10.92B ± 138 9.25 - 12.45 11.08AB ± 0.78 8.50 - 12.80 10.54B ± 1.26 
pH 3.62 - 4.37 3.96D ± 0.20 3.88 - 4.79 4.44C ± 0.21 4.77 - 5.60 5.13B ± 0.19 4.86 - 5.37 5.05B ± 0.11 5.17- 5.57 5.35A ± 0.13 

TTA 0.24 – 0.47 0.35A ± 0.06 0.15 – 0.32 0.22B ± 0.04 0.20 – 0.11 0.15C ± 0.02 0.64 - 0.82 0.15C ± 0.02 0.09 - 0.14 0.11D ± 0.01 
Moisture 78.61 - 89.24 86.46A ± 2.12 84.16 - 92.65 87.31A ± 1.78 78.93 - 90.01 86.55A ± 2.62 84.39 – 88.42 86.63A ± 1.31 84.15 – 90.42 86.81A ± 1.56 
Phenolics 0.57 - 0.87 0.70B ± 0.08 0.64 – 0.84 0.73AB ± 0.05 0.59 - 0.87 0.75A ± 0.08 0.64 - 0.82 0.75AB ± 0.06 0.49 - 0.71 0.62C ± 0.07 

 

 Min - Max Mean ± SD Min - Max Mean ± SD Min - Max Mean ± SD Min - Max Mean ± SD Min - Max Mean ± SD 
TSS 10.10-12.95 11.77A ± 0.67 8.95-13.20 11.32AB ± 1.33 8.85 -14.45 11.02AB ± 1.43 10.75 - 12.45 11.35AB ± 0.53 8.50 - 12.80 10.4B ± 1.54 
pH 3.62 - 4.37 3.97D ± 0.20 3.88 – 5.39 4.44C ± 0.29 4.77 - 5.50 5.09B ± 0.18 4.91 - 5.55 5.05B ± 0.08 5.17- 5.57 5.37A ± 0.14 

TTA 0.19 - 0.47 0.36A ± 0.06 0.127 - 0.320 0.20B ± 0.05 0.12 - 0.204 0.15C ± 0.02 0.09 - 0.15 0.14CD ± 0.01 0.09 - 0.14 0.11D ± 0.01 
Moisture 78.61 - 89.78 85.48B ± 2.80 84.95 - 92.65 87.73A ± 2.68 83.76 - 90.01 87.57A ± 1.86 84.40 - 88.41 86.87AB ± 1.23 83.40 - 91.27 86.73AB ± 2.35 
Phenolics 0.19 - 0.47 0.70B ± 0.08 0.63 - 0.83 0.73AB ± 0.05 0.63 - 0.89 0.73AB ± 0.08 0.54 - 0.84 0.78A ± 0.05 0.49 - 0.70 0.61C ± 0.07 
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Table 1.7: Parameters for the calibration and prediction sets for reference analysis in Pitaya using portable NIR and e-nose with PLSR. 

 
Reference 
Analyzes 

Equipment  Pre- Processing  Model  Variable 
number 

LV  R2C  RMSEC  R2Cv  RMSECV R2P RMSEP  RPD RER 

 
 

TSS 

 
NIR 

MC. SM S-G 
(o) 0 (w) 11. 
1st S-G (o)2. 
(w) 9. SNV 

 
 

full 

 
228 

 
9 

 
0.55 

 
0.693 

 
0.345 

 
0.863 

 
0.501 

 
0.699 

 
1.73 

 
8.94 

e-nose Autoscaling 928 4 0.55 0.83 0.037 1.48 0.00 1.23 0.98 5.04 
  MC. SM S-G            

  (o) 0 (w) 11.            

pH NIR 1st S-G (o)2. 
(w) 9 2nd (o) 2 

(w) 9.SNV 

full 228 6 0.83 0.220  0.249 0.825 0.224 2.40 8.81 

e-nose 
Autoscaling. 
smoothing 

S-G o (0) (w) 9 

 
928 7 0.89 0.19 0.808 0.25 0.862 0.224 2.50 8.71 

 

 
TTA 

 
 

NIR 

MC. SM S-G 
(o) 0 (w) 11. 
1st S-G (o)2. 

(w) 9 2nd (o)2. 
(w) 9.SNV 

 
 

full 

 
 

228 

 
 

5 

 
 

0.84 

 
 

0.040 

 
 
0.763 

 
 

0.005 

 
 

0.852 

 
 

0.04 

 
 

2.18 

 
 

9.09 

e-nose 
AS. 

SM S-G 
(o) 0 (w) 9 

 
928 7 0.88 0.03 0.844 0.034 0.888 0.033 3.11 11.57 

 

 
Moisture 

 
 

NIR 

MC. SM S-G 
(o) 0 (w) 11. 
1st S-G (o)2. 

(w) 9 2nd (o)2. 

 

 
full 

 
 

228 

 
 

8 

 
 

0.58 

 
 

0.958 

  
 

1.14 

  
 
0.352 

 
 

1.98 

 
 

8.82 

  (w) 9.SNV            
 e-nose Autoscaling  928 5 0.37 2.06 0.190 2.46 0.00 2.46 0.96 5.86 
  MC. SM S-G            

  (o) 0 (w) 11.            

Phenolics NIR 1st S-G (o)2. 
(w) 9 2nd (o)2. full 228 9 0.60 0.05 0.425 0.065 0.407 0.05 1,55 7,41 

  (w) 9.SNV            
 

e-nose 
Autoscaling 
smoothing 

S-G (o) 0 (w) 9 

 
928 20 0.78 0.20 0.810 0.24 0.699 0.334 1.02 5.86 
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1.1 Abstract 

 
Black tea adulteration is a widespread practice, involving the mixing or substituting leaves 

from lower quality in place of high-quality samples. The authentication of black tea regarding its 
composition and origin is crucial to ensure its quality and consumer trust. However, usual methods 
for tea analysis are expensive, demand chemicals and generate waste. To address this gap, this 
study proposes an investigation of two NIR instruments (portable (PNIR) and a benchtop (BNIR)), 
and a low-cost multi-sensor device (electronic nose (LCe-nose)), for characterization and 
classification of tea leaves from three different origins (Brazil, United States, and India). The 
methods employed in this study including data analyses were performed by Principal Component 
Analysis (PCA), Linear Discriminant Analysis (LDA), and Partial Least Squares Discriminant 
Analysis (PLS-DA). Results for the e-nose exhibited F1 scores above 99% for all models, 
indicating its potential alternative to NIR spectroscopy for investigation of tea quality and origin. 
Overall, this research demonstrates the potential of using NIR spectroscopy and LC-e-nose as 
reliable tools for tea quality assessment, which could significantly contribute to guaranteeing the 
quality and authenticity of tea in the market. 
 
Keywords: adulteration, black tea, machine learning, beverage, Infra-red spectroscopy. 

 
1.2 Introduction 

Black tea is the most consumed beverage in the world, after water and is characterized as 
oxidized tea (LIN; SUN, 2020) where (REN et al., 2023), which suggests the use of more feasible 
procedures and different options for tea analysis. Near infrared (NIR) is a non-destructive analysis 
used in many types of food. The different chemical bonds present in a given food can emit or absorb 
spectra, providing vibrations that give information on the composition of the product (POREP; 
KAMMERER; CARLE, 2015). The equipment used for spectrometry analysis is presented as 
benchtop or portable equipment. The former generally has better resolutions yet is more 
expensive. On the other hand, the latter as a portable device is a more affordable option, however 
with lower spectral resolution. Electronic nose (e-nose), a tool designed to recognize and 
categorize volatile substances, is a way of trying to improve olfactory cells found in animals 
(PEARCE et al., 2003). At a reduced cost and without the use of chemicals, e-nose and NIRS 
analyses have both been employed to replace established approaches in the industry. These 

mailto:dfbarbin@unicamp.br


77 
 

specialized analytical methods have been utilized to identify physicochemical characteristics 
associated with fruit ripening (LOUTFI et al., 2015). NIR spectroscopy and e-nose stands out as 
a better alternative than laborious and expensive methods mentioned above, both are found in a 
wide range of price where portable NIR vary from two thousand to twenty-five thousand USD. 

 
E-noses on the other hand, since are still filling the market range from eleven thousand to 

a hundred and fifty thousand USD, that is why more research should be conducted offering Low-
cost-e-nose option to evaluate food stuff (i.e., tea). Together with NIR and e-nose analysis, 
chemometrics and multivariate analysis enhance equipment performance, in which both 
techniques are used to treat device’s chemical data such as linear discriminant analysis (LDA) 
and Partial least square discriminant analysis (PLS-DA) (VISCARRA ROSSEL, 2008). It is 
generally used with equipment that does not result in direct data, obtaining mathematically and 
statistically important chemical information from the studied material. In this regard there is no 
research evaluating tea checking the performance of tea classification using NIR and e-nose. Thus, 
this work proposed an investigation in the use of LC-e-nose and two benchtop NIR (PNIR and 
BNIR) to classify tea leaves from three different origins (Brazil, United States and India). 

 
1.3 Materials and Methods 

 
1.3.1 Sample acquisition and preparation 

Approximately 120 tea samples from Brazil (BR), United States (USA) and India (IND) 
were used totaling 360 samples all divided in two variety (broken orange pekoe - BOP and 
Flower broken Orange Pekoe - FBOP) of teas (Table 7.1). The two different NIR spectrometers 
used for data acquisition were a portable (PNIR) and a benchtop (BNIR) device and LC-e-nose. 

 

1.3.2 Extraction 

Tea extract was performed as described by the International Organization for 
Standardization (ISO) 14502-1. An amount of 0.20 grams of each sample was weighed and taken 
in a volumetric flask. Then, 5 mL of 70% methanol at 70 °C was added and the extract was mixed 
and heated using a vortex at 70 °C for 10 minutes followed by cooling at room temperature. The 
extract was centrifuged at 200 g for 10 minutes and the supernatant was collected in a centrifuge 
tube. The extraction step was repeated twice and both extracts were combined to fill a 10 mL flask 
(Sanches et al., 2022). 

 
1.3.3 HPLC 

The High-performance liquid chromatography (HPLC) analysis for the caffeine content 
will be performed as described by (Sanches et al., 2022) with slight modifications. The 
modifications consisted in replacing the phase A & B with 1% formic acid and acetonitrile 
respectively. The gradient variation was as follows: 97% to 94% A (3 minutes), 94% to 90% A (3 
minutes), 90% to 87% A (8 minutes), 87% to 85% A (2 minutes), 85% to 80% A (2 minutes), 80% 
to 75% A (1 minute), 75% to 70% A (2 minutes), 70% to 50% A (5 minutes), 50% to 70% A (3 
minutes), 70% to 97% A (4 minutes) at a flow rate of 1 mL/min. Before each injection, the system 
will be re-equilibrated for 2 minutes (97% A). The column oven temperature was set to 29° C. The 
selected chromatograms for the analysis will be 350 nm, 325 nm and 260 nm. The experiment will 
be performed in duplicates. Caffeine will be predominantly absorbed in UV at 260 nm, which is 
considered a common wavelength for that compound. 
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1.3.4 NIR spectra acquisition 
 

Two different Near-Infrared (NIR) spectrometers were used for data acquisition: a 
portable NIR spectrometer (PNIRS) (NIRscan™ Nano Digital Light Processing (DLPR), Texas 
Instrument, USA), and a benchtop NIR spectrometer (BNIRS) (Bruker Tango FT-NIR, Bruker 
Optik, Germany). 

The BNIRS collected one spectrum for each sample by rotating cups, and each spectrum 
was an average of sixty-four (64) scans taken from 867-2535 nm with a resolution of 2 nm. The 
PNIRS collected one spectrum for each sample, as the average of ten (10) spectra, in the 
wavelength range of 900–1700 nm with intervals of 4 nm, using a 10 W halogen bulb as a light 
source and an InGaAs detector. The acquired spectra for both devices were set as reflectance 
mode, corrected using white/dark references, and later transformed into absorbance units through 
logarithmic transformation to allow for direct evaluation between the equipment. 

 
Table 1.1: Selected spectra intervals found in tea PCA loadings data, adapted from Chen et al. 

(2018). 
 
Elements Wavelengths (nm) Bonds 
Theaflavins 926 - 956 Water absorption 
Total catechins 1099 - 1172 C – H second overtone 
Theaflavin-3 gallate 1173 - 1256 C – H = second overtone 

Free amino acids 1256 - 1352 
First overtone of C – H 
combinations 

Caffeine 1353 - 1464 N – H first overtone 
Water extracts 1465 - 1597 C – H first overtone 

Total catechins 1598 - 1756 C – H first overtone and 
S – H first overtone 

Catechins 1904 – 2500 
C=O streching second overtones, C-
H and C-H combinations 

Adapted from (Chen et al. 2018) 
 

 
 

1.3.5 Olfactive Sensors 
 

A low-cost prototype, e-nose type multi-sensor device (LC- e-nose) was used assembled (Figure 
1). For each sample, information from ten (10) replicates were acquired during a 2 min period, with fresh 
air puffed into the sample chamber to clean the sensors after each acquisition. The e-nose device has a set 
of 6 metal oxidative semiconductor (MOS) sensors, with respective codes and sensitiveness: MQ2 (smoke 
and propane), MQ3 (alcohol), MQ4 (methane (CH4)), MQ5 (propane), MQ8 (inflammable gasses 
(Hydrogen gas) and MQ135 (volatile compounds such as NH3, NOx, alcohol, Benzene, smoke, CO2). 
(Bonatech Electronics Technology, China and Zhengzhou Winsen Electronics Technology, China). The 
equipment also presented one sensor (DHT11) for temperature and another sensor for humidity 
measurements. 

 
\ 
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1.3.6 Multivariate analysis 

 
1.3.6.1 Data labeling 

 
 Tea samples were classified based on their origin (Brazil, India and US) and processing 
class (BOP and FBOP). Also, BOP and FBOP samples were mixed for each origin to create 
variation for classification purposes. 

 
1.3.6.2 Data  

 

NIR spectra were pre-processed using mean center (MC), smoothing Savitzky-Golay 
algorithm (S-G), with window size (w) of 9 to 13 by polynomial regression order (o) 0 and first 
(1st) and second (2nd) derivatives using S-G, with window size (w) of 9 to 1, where a window 
size of (9) was chose since showed the best performance. Standard normal variate (SNV) was 
applied to correct the effects of light scattering (Barnes, Dhanoa, and Lister 1989; Martens and 
Geladi 1983). Voltage matrix data obtained by the e-nose device were pre-processed using only 
autoscaling (AS). For both NIR and e-nose data, Venetian blinds with 10 splits and blind 
thickness of 1 were used for cross-validation. For the classification model (PLS-DA) samples 
were randomly divided into a subset composed of 70% of samples for calibration and 30% for 
validation (external test set). For LDA cross-validation and discriminant function was used using 
the same dataset used for PLSDA. 

 

 
Figure 1.1: Low-cost-e-nose. 

* (A) computer, (B) motherboard + sensors, (C) air pump, (D) sensor chamber, (E) fan for air con- 
vection, (F and G) sample chamber, (H) sensors chamber. 
 

1.3.6.3 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is an exploratory analysis that works by projecting 
the data points onto principal components and simultaneously keeping the most variation as 
possible. This method was used as an unsupervised screening method for an overview of the 
variation between samples, and to identify the most important wavelengths for NIR spectra and 
the importance of each e-nose sensor to tea volatiles variation. PCA plots were designed with the 
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complete data range using the singular value decomposition algorithm (SVD) (95% confidence 
level) for the computation of the eigen generic sequence and a further cluster of the data. To 
build a PCA plot, outliers (anomalous measuring) were identified and excluded using the amount 
of Q residuals and Hotelling T2 plots. 

 
1.3.6.4 Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis is a method derived from Fisher’s linear discriminant 
analysis and operates by finding linear combinations from sample’s features that will further 
characterize and classify them into different classes. LDA was applied as a supervised 
classification method using the most important wavelengths identified in the loadings from PCA 
using MINITAB® (Release 14.12.0). The performance of the classification models was 
evaluated by sensitivity (Eq. 8.1) and specificity (Eq. 8.2), accuracy (Eq. 8.3), F1 score (Eq. 7.4) 
and error rate (Eq. 7.5). 

 
Sensitivity	(	%	) = 	 )*

()*+$,)
× 100     (8.1) 

 
Specificity	(	%	) = 	 ),

(),+$*)
× 100     (8.2) 

 
Accuracy	(	%	) = 	 ()*+),)

)-)./
× 100     (8.3) 

 
F1	score		(	%	) = 	 ()*+),)

)-)./
× 100     (8.4) 

 
Error	rate	(	%	) = 	 ($*+$,)

)-)./
× 100.	     (8.5) 

 
Where, TP = true positive; FN = false negative; TN = true negative; and FP = false positive. 

 
1.4 Results and Discussion 

 
1.4.1 Principal Components Analysis (PCA) 

 
1.4.1.1 Raw for NIR systems 

Raw spectra for bow BNIR and PNIR equipment, for three tea origins (Brazil - red, India 
- green and US - blue) is presented in Figure 1.2 a and b respectively.  For both device's the whole 
spectra was used for the purpose of the study which was discriminate the origin of black tea. As 
well as the average spectra that is presented in Figure 1.3 a and b, respectively.  

It is possible to effectively assign the spectral stretching and bending of chemical bonds 
(O-H, N-H, and C-H) between 700 and 2505 nm utilizing different NIR equipment measurement 
modes. Therefore, the precise absorption of organic molecules in the NIR range can offer useful 
information on their chemical composition. Since NIR absorption bands frequently overlap, they 
reduce the sensitivity of conventional spectroscopy. For tea most of the absorption are related to 
polyphenols and caffeine for example in the range of 1100 - 1450 while from 1900 - 2500 catechins 
play an important role in tea chemical composition (Wang et al. 2018). 
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The removal of noise, variability, uncertainties, and undetected features using pattern 
recognition techniques is frequently used to accurately evaluate the original spectral data of NIR 
spectroscopy. NIR spectroscopy allows direct absorption of highly scattering substances, without 
the need for lengthy pre-treatments (Ni et al. 2018; Zhu et al. 2019). On the spectra data in this 
research, we used a 9-window first and second derivative approach. This method enabled us to 
improve the spectral characteristics and extract useful data for future investigation and 
interpretation. 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Raw Spectra for BNIR (a) and PNIR (b) for each type of sample (red, green, blue, 

insert which sample they are). 

 

 

 

 

 

 

 

 

 

Figure 1.3 Average Spectra for BNIR (a) and PNIR (b). Red, Brazil, green, India, Blue, USA. 
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1.4.1.2 PNIR results 

 
For PNIR, PC1 and PC2 explain more than 90.3% of the total variance (Figure 1.4). 

United States samples are positioned in negative scores for PC2, while India samples are mainly 
positioned in positive scores of PC2, with samples from Brazil in between them. The loadings 
(Figure 1.4b) show that the wavelengths 980 1204, 1302; 1400, 1450 and 1660 are responsible 
for the variation in both PC1 and PC2, as PC2 was mostly responsible for sample discrimination 
according to their origin. The wavelength at 980 nm is related to hydrogen and oxygen (H-O) 
(Osborne 1986) which is also related to total catechins (Chen et al. 2018), and carbon and 
hydrogen interaction related to aromatic compounds (Magwaza et al. 2012). Wavelengths 1302 
and 1400 nm might be related to organic acids (Weyer and Lo 2006) and free amino acids (Chen 
et al. 2018). From those, 1400 nm overlap with water which is correlated to the moisture present 
in the leaves. The peaks at 1400 and 1700 nm are associated with caffeine and catechins 
respectively (Chen et al. 2018; Osborne 1986). 

 

 

(a) 

 

(b) 

Figure 1.4. PCA (a) scores and (b) loadings for NIR spectra for PNIR 

 
1.4.1.3 BNIR results 

  

As per BNIR, PC1 and PC2 explain more than 85.35% of the total variance (Figure 1.5), 
where from PC1, Brazil and India samples fall in positive and negative values, respectively 
showing an excellent separation. PC2 shows a separation between USA samples, which are on 
positive scores, and Brazil and India samples, located in the negative scores. The loadings (Figure 
1.5b) show, in addition to the wavelengths for BNIR PCA, the wavelengths 1900, 2000, 2101, 
2200 and 2404 nm. The absorption peak observed at 1920–1940 nm might correspond to the 
combination of stretching and bending of the O-H bond of water and 1940-2404 nm to total 
catechins C - H first overtone and S - H first overtone and catechins that involves C=O stretching 
second overtones, C-H and C-H combinations (Chen et al. 2018). The separation in the PCA 
scores plot, in addition to the peaks in the PCA loadings, demonstrates the importance of the 
wavelength range between 1700nm and 2500nm to differentiate the tea samples. 
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(a) (b) 
Figure 1.5: PCA (a) scores and (b) loadings for BNIR spectra reflectance mode for BNIR 

 
1.4.2 PCA for LC-e-nose system 

 
The general signal response collected for 2 minutes is shown in (Figure 1.5) for the 

concentration versus time for the six MQ sensors. Humidity and temperature were kept constant 
at 40±2 % and 25±2oC for the same period. The variables for PCA plot were accounted as the 
sensors (MQ2, MQ3, MQ4, MQ5, MQ8 and MQ135), where each value corresponded to each 
sensor and was assigned for that specific sensor. 

 

 

(a) (b) 

Figure 1.6: LC-e-nose Acquisition data (a) and temperature and humidity reading (b). 
 

PCA was performed using data from the whole data set for all 6 sensors used in the e-nose 
(Figure 7.8) shows the PCA scores (PC1vs PC2), where USA samples were on the negative side 
for both PC1 and PC2 scores, while India samples were in the positive side of PC2. Samples from 
Brazil were located in between samples from USA and India. It can be observed that India and 
Brazil samples were divided in two clusters within each origin; these two groups might be due to 
the BOP and FBOP varieties used in the assay. Together, PC1 and PC2 explained 85.83% of the 
total variation, demonstrating that LC-e-nose can differentiate samples according to their origin.  
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(a) (b) 

  
Figure 1.7: PCA (a) scores and (b) loadings for LC-e-nose 

 
The loadings Figure 7.9 shows the most responsive sensors were MQ3, MQ4, MQ8 and MQ135. 

Black tea is rich in four epimers derived from major catechins (comprising approximately 80% of 
black tea), which include epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), 
and epigallocatechin gallate (EGCG). It is noteworthy that approximately 80% of these epimers 
may undergo changes during the fermentation process and can be identified in VOCs profile (Liu 
et al., 2022). These volatile organic compounds (Figure 1.8), such as catechins caffeine and 
theaflavins structure, are identified by MQ3 (alcohol), MQ135 (volatile compounds such as NH3, 
NOx, alcohol, Benzene, smoke, CO2), MQ4 (methane (CH4), MQ8 (inflammable gasses 
(Hydrogen gas), that account for these and other VOCs (Ghosh et al. 2019; Tseng et al. 2021). 
 

(a)  Catechins (b) Caffeine (c) Theaflavin 
 
Figure 1.8: The major VOCs structure in black tea: Catechins (a), Caffeine (b) and Theaflavin 

(c).  
 

Theaflavin, caffeine, and catechins are not normally gaseous substances in and of 
themselves. Nevertheless, they might be parts of chemicals that, in some circumstances, result in 
gaseous byproducts. For instance, volatile organic compounds (VOCs) can be released during the 
heat breakdown of organic materials containing these substances and can be catch by MOS 
sensors. One example is the following compounds: benzeneacetaldehyde, (Z)-3-hexenol,1,3-

MQ2 MQ3 MQ4 MQ5 MQ135 MQ8 
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dimethyl-benzene, dimethyl sulfide, (Z)-3-hexenyl butyrate, ethylbenzene, 1-penten-3-ol, (E) - 
4,8-dimethylnona-1,3,7-triene, 3 - heptanone, (Z)-3-hexenyl-α-methylbutyrate, 2-decanone, and 
2-butylfuran which are produced through the Strecker degradation reaction of phenylalanine and 
has a distinct rose-like aroma as well as  Additionally, dimethyl sulfide, known for its cabbage like 
odor is considered a beneficial component contributing to the aroma of oolong tea (Xue et al. 
2022). 

 
1.4.3 HPLC Analysis  

Data for GC-MS is shown in figure 7.11. The peak for caffeine (the most relevant for aroma in tea) 
are shown in the chromatogram. Peaks 1.40 has been attributed to caffeine in all three oringins variants 
while other registered peaks 1.39, 143 and 1.52 different were observed USA samples. Similiarity has been 
found for brazilian and Indian samples, which can explain their proximity in PCA plot. Other studies 
evaluating caffeine as major VOCs in tea that contributes to aroma corresponding to 3-5 % measured using 
HPLS, which is a versatile and efficient technique that can greatly improve the separation of caffeine from 
other substances such as tannic acid and caffeic acid. The development of specialized techniques suited to 
the separation of these particular substances is made possible by the optimization of chromatographic 
conditions, including the selection of stationary and mobile phases (Shrestha 2016). Teas derived from 
Camellia sinensis exhibit higher caffeine levels compared to mate tea, with notable variations observed 
among different types of tea, brands, and batches. An intriguing aspect of the study reveals that a significant 
portion of caffeine present in tea leaves is transferred to the infusion during the preparation process. The 
research, as outlined in Table 2, highlights the average daily intake of 263 mL of tea contributing to a 
potential ingestion of up to 47.6 mg day-1 of caffeine HPLC data identified caffeine content in many tea 
samples including black (TFOUNI, 2018). Since caffeine forms are almost important as tea VOCs, the 
identification and classification of tea might rely on this compound. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 HPLC chromatogram for Caffeine in the tree tested tea origins (BR, IND and USA) 

USA 

IND 

BR 

STANDARD 

Full cromatogram  
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1.4.4 Classification model using LDA 
 
1.4.4.1 LDA for NIR Systems 

 
 LDA were performed using only few selected wavelengths for PNIR (1103, 1204,1302, 
1400, 1450 and 1660) and BNIR (1100,1400, 1701, 1900, 2000, 2101, 2201, 2404). Results for 
LDA using spectra acquired by PNIR showed one misclassifications of sample from Brazil 
(classified as USA) and six samples for USA (classified as Brazil) (Figure.11a); while for BNIR 
there was Brazil sample misclassified as USA (Figure 11b). Both PNIR and BNIR models 
showed overall F1-scores over 99%. All values for F1-scores, sensitivity, specificity, accuracy 
and error rate are presented in Table 2.  

A previous study reported the discrimination of black tea samples using LDA applied to 
NIR spectra to find the linear combination of variables that optimally separate tea classes 
according to the fermentation, tea polyphenols and catechins that are oxidized and polymerized 
by polyphenol oxidase, in which unique flavor compounds of black tea are formed. The interval 
tested was from 950 to 2400 (1140–1160, 1430–1450 and 1920–1940 nm), and the classification 
rate (%) ranged from 58.33 using Competitive adaptive reweighted sampling (CARS), to 75% 
using PCA (Zhang et al. 2023). Tea types dark, black, green, white, oolong, yellow from different 
countries (China, India, Japan, Kenya and Taiwan) were classified using LDA (Egger and Yu 
2022) Similar problem in performance was also spot when discriminating eleven Sri Lankan tea 
using spectroscopy methods (e.g., Raman) that present a sharp focused signal when compared to 
NIR (Seetohul et al. 2013), which is the problem with high collinearity issues (Egger and Yu 
2022). 

 
Statistical 
Methods Equipment Origin Sensitivity Specificity Accuracy F1-score Error rate 

LDA 

PNIR 
BR 0,997 0,989 0,992 0,988 0,008 
USD 1,000 1,000 1,000 1,000 0,000 
USA 0,979 0,998 0,992 0,987 0,008 

BNIR 

      
BR 0,997 1,000 0,999 0,998 0,001 
USD 1,000 1,000 1,000 1,000 0,000 
USA 1,000 0,998 0,999 0,998 0,001 

LC-e-
enose 

      
BR 0,993 0,995 0,994 0,993 0,006 
USD 1,000 1,000 1,000 1,000 0,000 
USA 0,985 0,996 0,994 0,985 0,006 

                

PLSDA 

PNIR 
BR 0,989 0,994 0,992 0,989 0,080 
USD 1,000 1,000 1,000 1,000 0,000 
USA 0,988 0,994 0,992 0,988 0,008 

BNIR 

      
BR 1,000 1,000 1,000 1,000 0,000 
USD 1,000 1,000 1,000 1,000 0,000 
USA 1,000 1,000 1,000 1,000 0,000 

LC-e-
enose 

    `  
BR 1,000 0,982 0,990 0,989 0,010 
USD 1,000 1,000 1,000 1,000 0,000 
USA 0,947 1,000 0,990 0,973 0,010 
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Table 1.2 Sensitivity, specificity, accuracy, and error rate values for classification of tea 

origin 
   

(a)       (b)    (c) 
 
Figure 1.10: Confusion matrix of LDA (A) PNIR (B) BNIR and (C) LC-e-nose. 

 
1.4.4.2 LDA for LC-enose 

The LDA results for e-nose showed lower overall F1 score (> 99%) (Figure 1.10). There 
was one misclassification for both American and Brazilian tea samples. These results could be 
related to collinearity issues (EGGER; YU, 2022), however the lower misclassification level 
might be related to the type of data. When compared to a high correlated spectra e-nose data tend 
to be less evident when performing LDA models. All parameters sensitivity, selectivity, 
accuracy, and error rate are presented in Table 1.2. For e-nose systems LDA has been used to 
discriminate smell and monitor fermentation during the manufacture of oolong tea leaves. They 
used their e-nose to ran an online experiment at a tea factory to evaluate the e-nose’s capabilities 
further. Monitoring the changes in scent that take place during the fermentation process was the 
main objective for real-time scent monitoring in industrial settings, particularly where the 
strength of particular aromas may vary dramatically. The grassy smell they observed that comes 
from freshly cut grass is a common odor caused by green leaf volatiles (TSENG et al., 2021). 
This grassy smell comes from green leaf volatiles Z-3-hexenal into its isomer, E-2-hexenal Z-3-
hexenal and E-2-hexenal, Z-3-hexenol may also have contributed to the discrimination of black 
tea towards e-nose sensors specially MQ3 and MQ135. It has been shown that LDA performs 
well for e-nose systems. The most impressive and consistent classification performance over 
time was achieved by utilizing Linear Discrimination Analysis (LDA) on the normalized 
conductance data from the sensing layer of the MOS gas sensors. Through this supervised LDA 
analysis, we successfully mitigated the impact of sensor drift during a three-month evaluation 
period. This improved robustness can be attributed to the adoption of independent Gaussian 
mixture models, which effectively characterized the two clusters of calibration data. As a result, 
our approach demonstrates the potential for reliable and stable gas sensor classification in long-
term monitoring applications, ensuring accurate and consistent results even in the face of sensor 
drift (PALACÍN; RUBIES; CLOTET, 2022). 

 
1.4.5 Classification model using PLS-DA 

 
1.4.5.1 PLSDA for NIR Systems 

The confusion matrix of PLS-DA models for tea samples for both PNIR and BNIR 
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spectra is shown in Figure 7.12, while sensitivity, selectivity, accuracy, F1-scores and error rate 
are presented in Table 2. The transformations performed in the data were mean center, with 1st 
S-G derivative (o 2, w 9), since they showed the best results. The best model for PLS-DA using 
PNIR spectra, showed overall F1-score >99%.  

Compared to LDA, PLS-DA can handle multicollinearity better. By taking into account 
latent variables that account for the variance in both the predictor and response variables, PLS-
DA can still function well in scenarios where there are highly linked predictor variables 
(features). On the other hand, because LDA makes the assumption that the predictors are 
independent, it may be vulnerable to multicollinearity. When the predictors and class labels 
have a moderate association, PLS-DA frequently offers superior prediction accuracy. It takes 
into account the relationship between predictors and response variables' covariance structure, 
improving discrimination (Lasalvia, Capozzi, and Perna 2022).  

Application of PLS-DA models for black tea dianhong variety for tea quality has been 
reported and their achieved prediction ability was based on multiple manipulation of latent 
variables (LV) and pre-treatments algorithm. The authors also mention the corresponding 
chemical bonds of the above four feature wavelengths (1169, 1211, 1260, and 1482 nm) (Ren, 
Ning, and Zhang 2021), where CH-CH second overtone, C–H first overtone, the first overtone 
of C–H combinations, and C–H first overtone respectively, and their nutrients related to these 
chemical bonds were free amino acids and tea polyphenol (Chen et al. 2018). These 
wavelengths are similar to the ones found for black tea in this work and show the importance 
of understanding the overtones and differences in absorption bands from other datasets and tea 
varieties to obtain a holistic understanding of the present findings.  Discrimination of the 
geographical origin of Oolong tea using NIR-infrared spectroscopy. Standard normal variate 
(SNV) was applied to raw data spectra, so that PLS-DA models were created. The training set 
was randomly split into a secondary training set (50%) and a secondary predicting set (50%) 
for 20 times in order to estimate the number of PLS-DA latent variables. The minimum 
misclassification rate was calculated using the number of latent variables that was chosen. The 
sensitivity and specificity of the PLS-DA model were therefore calculated using the items in 
the prediction class.  The specificity and sensitivity reached was100% and 93% respectively 
(Yan et al. 2014). The device presented in this paper was able to overcome this for BNIR and 
LC-enose in both parameters. 

 

(a) (b) (c) 
Figure 1.11: Confusion matrix of PLS-DA (a) PNIR (b) BNIR and (c) LC-e-nose. 

* For PLS-DA calibration (70% cal) set and validation (30% test). 
 

1.4.5.2 PLS-DA for LC-enose 

The confusion matrix of PLS-DA models for tea samples for LC-e-nose is shown in (Figure 
1.12), while sensitivity, selectivity, accuracy, F1-scores and error rate are presented in Table 2. 
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The transformations performed in the data were autoscaling. Regarding the best model for PLS-
DA using PNIR spectra, showed overall F1-score >99%. The only misclassification was spot for 
USA samples. Similar good results were also demonstrated in previous use of e-nose for black tea 
classification and according to the findings, combined sensor response may categorize tea samples 
more accurately (classification rate of 99.75%). The suggested method is better suitable for 
discriminating between different tea quality levels when the performance of the extracted features 
is compared to that of various established techniques, two simple explanations for these include 
the ability of PLS-DA to deal with small dataset and reduce multicollinearity (Banerjee et al. 
2019). Green Tea has been evaluated using PLS-DA models this time to analyze the aroma 
characteristics during drying process. The most important compounds found were Octanal, 5-
Methyl-5-hepten-2-one, Benzene acetaldehyde, (Z)-3-hexen-1-ol, Pentan-1-ol, 3-Methylbutanal, 
Isopropyl alcohol. Additionally, PLS-DA scores of tea samples were 93.7 % (Yang et al. 2022) 
following the average performance found in the literature for e-nose devices (Chen et al. 2018; 
Yan et al. 2014; Yang et al. 2022). The performance of the model found in this work excel the 
ones found in the literature for both black and green tea. 

 
1.5 Conclusions 

The application of smart sensors technologies (e.g, NIR and e-nose) is indispensable in 
ensuring the production of high-quality food to meet the demands of a growing population. Our 
study focused on the test of Near-Infrared Spectroscopy (NIRS) using both portable and benchtop 
equipment, along with the innovative LC-e-Nose, and its power to identify black tea samples from 
different countries and processing methods. From the perspective of NIR spectroscopy, both PNIR 
and BNIR exhibited outstanding response when classifying tea based on its origin. Given the 
complexity of tea composition, which involves crucial components such as theaflavins, catechins, 
and caffeine, our study acknowledges the significant challenge posed to the tested equipment. The 
primary aim of this research was to demonstrate the feasibility of utilizing the LC-e-Nose device 
(at a cost of USD 200-300) for identification of tea origin. Therefore, our study establishes that 
low-cost NIR spectroscopy, in combination with novel and affordable customized LC-e-nose 
devices, can significantly contribute to the food industry's efforts in authenticating tea origin from 
different countries (Brazil, India, and USA). Embracing these cost-effective smart technologies, 
integrated with chemometrics, holds great promise for advancing tea quality control and ensuring 
consumer satisfaction in an increasingly dynamic and competitive market. 
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CONCLUSÕES GERAIS 
 

Ambos os equipamentos low-cost-e-nose mostraram ser uma ferramenta confiável para 
testar a qualidade em alimentos, o primeiro desenvolvido no Brasil foi capaz de classificar 
corretamente a pitaya com precisão superior a 90% e apresentou bons modelos de predição para 
TA e pH com os mesmos padrões como sensores NIR. Este último apresentou  grande capacidade 
de classificar e predizer a pitaya para controle de qualidade.apresentando excelente poder de 
classificação e predição para o índice de vida de prateleira proposto para LDA, PLS-DA e PLSR.  

O segundo Low-cost-e-nose também foi aplicado de forma eficiente, desta vez para o chá preto 
mostrando novamente excelentes resultados, onde desta vez alguns recursos como limitação de 
headspace, fatores de convecção e controle de umidade e temperatura foram abordados. O poder 
de classificação do LC-e-nose foi semelhante. aos dois sensores ópticos comparados PNIR e 
BNIR mostrando classificação de 99% para F1-scores para equipamentos LC-e-nose. No geral, 
os dois dispositivos LC-e-nose foram capazes de serem usados para controle de qualidade de 
frutas e comodities vegetais (chá preto), portanto, podem ser usados em nível industrial para 
aprimorar o monitoramento como uma técnica de detecção inteligente semelhante às tarefas já 
atribuídas aos sensores NIR. Para estudos futuros alguns recursos devem ser realizados, como 
seleção de sensores e sensibilidade, o uso de uma variedade de tipos de sensores para aumentar a 
sensibilidade e seletividade. Diferentes sensores podem ser mais adequados para detectar tipos 
específicos de odores. Também, como a combinação de várias tecnologias de sensores (por 
exemplo, polímeros condutores, sensores de óxido metálico, microbalanças de cristal de quartzo) 
que podem melhorar o desempenho geral do sistema. Para calibração e processamento de dados, 
desenvolvemos técnicas de calibração robustas para levar em consideração o desvio do sensor, o 
envelhecimento e as mudanças ambientais. Algoritmos avançados de processamento de dados, 
como aprendizado de máquina e inteligência artificial, podem ajudar no reconhecimento de 
padrões e na melhor identificação de odores. 
 

 
PERSPECTIVAS FUTURAS 

 
Com base nos resultados apresentados nesta tese, as perspectivas futuras para o 

desenvolvimento e aprimoramento de dispositivos LC-e-nose são promissoras. Para estudos 
subsequentes, é crucial explorar a seleção criteriosa de sensores e sensibilidades, incorporando 
uma variedade de tipos de sensores para potencializar a sensibilidade e seletividade do sistema. 
A avaliação de diferentes sensores, como polímeros condutores, sensores de óxido metálico e 
microbalanças de cristal de quartzo, pode oferecer uma abordagem mais refinada na detecção de 
odores específicos. Além disso, a combinação sinérgica de diversas tecnologias de sensores pode 
elevar o desempenho global do sistema LC-e-nose. A calibração e o processamento de dados 
demandarão atenção contínua, com o desenvolvimento de técnicas robustas para lidar com 
desvios de sensores, envelhecimento e variações ambientais. A aplicação de algoritmos 
avançados de processamento de dados, incluindo aprendizado de máquina e inteligência 
artificial, surge como uma área promissora para otimizar o reconhecimento de padrões e a 
identificação precisa de odores, consolidando assim a LC-e-nose como uma ferramenta 
inteligente e eficaz para o monitoramento e controle de qualidade de alimentos em ambientes 
industriais. 
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Table 1.10: Sensitivity, specificity, accuracy, and error rate values for LDA classification for 
two temperatures 15 ◦C and 25 ◦C for of Pitaya fruit using NIR. 

15 ◦C 25 ◦C 
% % 

 Sensitivity Specificity Accuracy Error rate Sensitivity Specificity Accuracy Error rate 
Day 0 0.97 1.00 0.99 0.01 0.97 1.00 0.99 0.01 
Day 7 0.60 0.98 0.92 0.08 0.93 0.91 0.91 0.09 
Day 14 0.73 0.89 0.86 0.14 0.83 0.98 0.93 0.07 
Day 21 0.75 0.93 0.74 0.11 - - - - 
Day 25 0.75 0.97 0.77 0.08 - - - - 

* (-) No data. 

 
Table 1.11: Sensitivity, specificity, accuracy, and error rate values for LDA classification for 

combined temperatures for Pitaya fruit using NIR. 
15 ◦C and 25 ◦C using NIR 

% 
 Sensitivity Specificity Accuracy Error rate 

Day 0 0.93 1.00 0.80 0.01 
Day 7 0.66 0.94 0.88 0.12 
Day 14 0.68 0.88 0.82 0.18 
Day 21 0.75 0.93 0.79 0.10 
Day 25 0.80 0.95 0.81 0.07 

 
Table 1.12: Sensitivity, specificity, accuracy, and error rate values for LDA classification for 

two temperatures 15 ◦C and 25 ◦C for of Pitaya fruit using e-nose system. 
15 ◦C 25 ◦C 

% % 
 Sensitivity Specificity Accuracy Error rate Sensitivity Specificity Accuracy Error rate 

Day 0 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 
Day 7 1.00 0.97 0.97 0.02 1.00 1.00 1.00 0.00 
Day 14 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 
Day 21 1.00 1.00 1.00 0.00 - - - - 
Day 25 1.00 0.97 0.97 0.03 - - - - 

* (-) No data. 

 
Table 1.13: Sensitivity, specificity, accuracy, and error rate values for LDA classification for 

combined temperatures for of Pitaya fruit using e-nose system. 
15 ◦C and 25 ◦C using e-nose 

% 
 Sensitivity Specificity Accuracy Error rate 

Day 0 1.00 0.98 0.98 0.01 
Day 7 0.90 0.91 0.90 0.09 
Day 14 0.91 0.94 0.93 0.06 
Day 21 1.00 1.00 1.00 0.00 
Day 25 0.89 0.99 0.98 0.02 



 

 
 
Table 1.14 Parameters for the calibration and prediction sets for reference analysis in pitaya using portable NIR and e-nose with PLSR. 

Reference 
Analyses  Equipment  Pre- 

Processing  LV  R2C RMSEC  R2Cv RMSECV  R2P RMSEP RPD  RER 

TSS 
NIR  

spectrometer 

MC. SM S-G 
(o) 0 (w) 11. 
1st S-G (o)2. 
(w) 9. SNV 

9 0.55 0.69 0.35 0.86 0.50 0.70 1.73 8.94 

e-nose autoscaling  4 0.55 0.83 0.04 1.48 0.00 1.23 0.98 5.04 

pH 

NIR  
spectrometer 

MC. SM S-G 
(o) 0 (w) 11. 
1st S-G (o)2. 
(w) 9 2nd (o) 2  
(w) 9.SNV 

6 0.83 0.22 0.79 0.25 0.83 0.23 2.40 8.81 

e-nose 

autoscaling. 

7 0.89 0.19 0.81 0.25 0.86 0.22 2.50 8.71 smoothing S-G 
o (0) 
(w) 9  

TA 
NIR 

spectrometer  

MC. SM S-G 
(o) 0 (w) 11. 
1st S-G (o)2. 
(w) 9 2nd (o)2. 
(w) 9.SNV 

5 0.88 0.04 0.84 0.03 0.89 0.03 2.78 11.57 

e-nose AS. 7 0.84 0.04 0.76 0.04 0.85 0.04 2.6 9.54 



 

SM S-G (o) 0 
(w) 9   

Moisture 
NIR  

MC. SM S-G 
(o) 0 (w) 11. 
1st S-G (o)2. 
(w) 9 2nd (o)2. 
(w) 9.SNV 

8 0.58 0.96 0.49 1.14 0.35 0.98 1.98 8.82 

e-nose autoscaling  5 0.37 2.06 0.19 2.46 0.00 2.46 0.96 5.86 

Phenolics  

NIR  

MC. SM S-G 
(o) 0 (w) 11. 
1st S-G (o)2. 
(w) 9 2nd (o)2. 
(w) 9.SNV 

9 0.60 0.05 0.43 0.07 0.41 0.05 1.55 7.41 

e-nose  

autoscaling  

20 0.78 0.04 0.04 0.14 0.37 0.07 1.02 5.86 smoothing S-G 
(o) 0 (w) 9   

*All models were built using full spectra and maximum variable number NIR (228) and e-nose (928). 

 
 
 
 
 
 
 



101  

APÊNDICE 3: Metodologias detalhadas utilizadas no Capítulo III 
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3.3. Procedimento HPLC 
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3.3. Procedimento  Curva padrão HPLC  
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APÊNDICE  4: Fotos de equipamento utilizados nos capítulos II e  III 
 

 

 
 

E-nose 1 Camara dos sensores  E-nose 1 Computador e Placa mãe 
(controladora) 

 
 
 

 
E-nose 1 - Sistema de sucçao  com suporte duplo (1) amostra (2) headspace de sucçao. 
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E-nose 1 Camara de sensores para amostras 
maoires (exemplo melão) 

E-nose 1 Camara de sensores para amostras 
maoires (exemplo melão) com a tampa 
contendo os sensores  
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4.2. Prototipo e-nose 2 
 

 

Esquema do Prototipo E-nose 2  
 

 
Sistema de hardware E-nose 2 e sistema de aquisação de dados   
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E-nose 2 – Prototipo Panela de pressao usada para camara 
hermeticamente fechada 

Camara para amostra 
desenvolvida para chás.  
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E-nose 2 camara de sensores  E-nose 2 camara de sensores – vista lateral 

 
 
 

 

 
 

E-nose 2 camara da amostra para diferent 
produtos  

E-nose 2 camara da amostra para produtos em 
pó/grãos   
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1.5 Abstract 

Dragon fruit (Selenicereus undatus) is a fruit that has gained popularity in the Brazilian market, 
evaluating its quality presents a significant challenge to the industry due to its unique 
morphological features. Image analysis, combined with Deep Learning (DL) techniques, offers 
a promising solution for visually discriminating dragon fruit. However, DL architecture such as 
ResNet and ViT transformer are challenging to train especially for new objects, such as exotic 
fruit. In this work, we compare two Deep Learning Computer Vision System (DCVS) 
architecture Res- Net and ViT transformer in the direction of Explainable Artificial Intelligence 
(XAI) support for understanding of black-box models operations such as Grad-CAM method 
that enhance co- arse regions in the image boosting classification outcome. This paper 
comprises substantial information on the computer vision field employing machine learning for 
the classification of dragon fruit in 4 shelf-life stages (SLI: 30, 50, 80, and 100). DCVS showed 
a good predictive model with ResNet and ViT as the literature suggests. DCVS map reveals 
the potential to use the morphological aspects of dragon fruit and predict its respective classes. 
ViT Small outperformed the other models (ViT Tiny and ResNet 18 and 50), achieving an 
overall accuracy of 91.00%, with an accuracy of up to 97.00% for SLI30 classification. This 
approach has promising potential for directing dragon fruit to the right product segment in the 
fruit industry and could be further implemented for other agricultural products. 

Keywords: Artificial Intelligence. Machine Learning. pitaya. pitahaya. RGB imagery. shelf- 
life. 
1.6 Introduction 

Brazil is the largest producer of tropical fruit in the world (PINTO; JACOMINO, 2013). 
Dragon fruit (Selenicereus undatus) is one of the fruit whose consumption has increased in the 
Brazilian market (LOUREIRO et al., 2020). This fruit, also known as pitaya or pitahaya, has 
been consumed on a large scale due to the presence of anthocyanins, which have antioxidant 
properties that have been proven to minimize the oxidation process in the human body, and also 
because of the fruit’s potential to control the growth of microorganisms in food (preservatives), 
making it a good alternative to artificial bactericides (JIMENEZ-GARCIA et al., 2022). 

mailto:sylvio.barbonjunior@units.it


112  

Evaluating the ripeness of fruit can be a challenging task as it often relies on subjective 
human assessments, involving senses such as smell, vision, and touch (ISMAIL; MALIK, 2022). 
Dragon fruit presents its best harvest period of around 35 d and it is commercialized in this 
period. However, after this time the fruit continues to ripe and after 40 d there is a loss in physical 
quality with the degradation of pigments and the limp of the spikes, although it may still be 
suitable for consumption (MAGALHES et al., 2019). Since quality control is an important step 
in the food industry, having an automated system to correctly determine the right shelf-life index 
(SLI) stages would significantly benefit fruit producers not relying on subjective techniques 
(VILLAMIEL; MNDEZ-ALBIANA, 2022). Therefore, finding alternative techniques such as 
Computer vision (RGB imagery) to identify the stages in the post-harvest is crucial to guarantee 
accuracy in the destination of the fruit. 

Recently several methods have been used to evaluate freshness, ripening or shelf-life 
stage and other quality aspects in fruit such as vis-NIR spectroscopy, hyperspectral imaging, 
Raman spectroscopy, and RGB imaging (PATHMANABAN; GNANAVEL; ANANDAN, 
2019; TRIEU; THINH, 2022). Except for NIR spectroscopy (NIRS) and RGB imaging, the other 
techniques are still expensive to be purchased by local farmers and small producers. RGB 
imaging stands out as an affordable technique compared to the others that are costly and 
laborious. This equipment in tandem with object detection is a common and widely used 
technique available in computer vision (CV) that is used as an excellent method to interpret 
images and videos. However, this approach is one of the biggest challenges in the CV field 
(OKSUZ et al., 2021), which sparked the development of machine learning algorithms to help 
improving some of these drawbacks, such as misclassification. 

Computer vision techniques were used to spot defects in fruit that are related to the 
ripening process in melon (VIJAYAKUMAR; R., 2020) palm fruit (WONG; CHEW; PHANG, 
2020) and dragon fruit (PATIL et al., 2021). There are some emerging methods for image 
analysis, such as very convolutional network (VGGNet), You Only Look Once (YOLO), 
Residual Neural Network (Resnet) (YUE; FU; LIANG, 2018; LOPES et al., 2022) and Vision 
Transformer (ViT) (XAVIER et al., 2022). A VGGNet is a type of convolutional neural network 
(CNN) that has achieved great success in image classification and recognition tasks. YOLO is 
another CNN, very useful for object detection in images and videos in real-time. Unlike 
traditional object detection algorithms, YOLO performs object detection and classification in a 
single stage, making it much faster and more efficient. Resnet is a deep learning architecture that 
introduces skip connections, or shortcuts, allowing the network to bypass one or more layers. 
These skip connections help to address the vanishing gradient problem, which can occur in very 
deep neural networks and make it difficult for the network to learn effectively. ViT uses the 
same principles as the Transformer model, which was initially proposed for natural language 
processing by replacing the convolutional layers used in traditional image recognition models 
with a series of self-attention layers. This allows the model to attend to different parts of the 
image to extract features, without relying on convolutional kernels. 

Therefore, the main contribution of this paper is to be able to classify dragon fruit into 4 
classes according to its SLI using visual information from image analysis and artificial vision. 
The implementation of image visualisation with the use of explainable AI (XAI) might shed a 
light to help new classification strategies to the ones that have already been used (WU, 2022; 
SHINDE; SHAH, 2018). Since previous studies using AI and machine learning to classify 
dragon fruit did not use the architecture proposed in this work nor the 4 stages of classification 
(TRIEU; THINH, 2022; PATIL et al., 2021), this work proposes the visualisation of dragon 
fruit and the comparison of two versions of vision architectures (ResNet 18 and  
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50 and the state-of-the-art ViT small and tiny transformers) to understand of the performance 
of these methods in action while classifying fruit samples. Likewise, our dragon fruit database 
will provide relevant information on the use of DL for classification to assist the industry in the 
decision of dragon fruit destinations. Comparing GradCAM from ResNet and Attention Maps 
from ViT can provide insights into the differences in the way these two architectures perform 
visual recognition. ResNet uses residual blocks to learn more complex features and deeper 
representations, while ViT employs self-attention mechanisms to extract contextual information 
from the image. By comparing the visualisation generated by GradCAM and Attention Maps, 
we can understand which regions of the image are being attended to by each model and how 
they differ in their focus. This comparison can help us understand the strengths and weaknesses 
of each architecture and provide guidance for future improvements. The following objectives 
were pursued in this research: 

• Proposing a Deep Learning Computer Vision System (DCVS) to classify dragon fruit 
according to their SLI stages. 

• Designing a solution based on Explainable Artificial Intelligence (XAI) principles to fa- 
cilitate interpretation and gain insights into classification outcomes. 

• Providing a comprehensive comparison between two key visualisation techniques, Grad- 
CAM and Attention Maps. 

This work has been structured as follows: Section 2 - Material and Methods, Back- 
ground of the Techniques used, Section 3 Results and discussion, and finally Section 4 with the 
conclusion. 

 
1.7 Material and Methods 

 
1.7.1 Deep Computer Vision System 

Deep Computer Vision System (DCVS) is a recent denomination used to designate Deep 
Learning models embedded in Computer Vision Systems, that has been applied for food quality 
evaluation (LOPES et al., 2022). In particular, the agricultural sector has increased the 
application of DL solutions to improve product inspection by avoiding some data processing steps, 
such as image pre-processing and feature extraction, traditionally part of computer vision 
systems. Additionally, DCVS solutions surpass the predictive accuracy of traditional methods in 
addition to reducing data processing steps (OLIVEIRA et al., 2021). 

Deep learning methods used to induce classification models aim at learning feature 
hierarchies from different levels of details formed by the composition of lower-level features, 
emphasizing the visual information from pixel colours to complex image structures (GLOROT; 
BENGIO, 2010). Among the several methods available, Residual Network (ResNet) presents 
important advantages regarding its training, particularly in reducing the computational effort 
and addressing vanishing gradients (HANIF; BILAL, 2020). We can represent a ResNet block 
as in Figure 7.1, in which the output of the function F(x) is added with x, where F(x) can be any 
function such as z(l) = a(W (l)x(l) + b(l)). Using identity mapping to skip some connections, the 
ResNet architecture allows the network to ignore an entire convolutional layer when necessary, 
making the network reuse useful abstract representations (WIGHTMAN; TOUVRON; JGOU, 
2021). To predict the outcome as a multinomial probability distribution, the softmax function is 
used as the activation function in the output layer for classification problems. 
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Figure 7.1: Residual Network (ResNet) scheme overview 

 
More recently, Visual Transformers (ViT), introduced by (DOSOVITSKIY et al., 2020), 

have been used in multiple works with comparable or even superior results in comparison to 
ResNet architecture or traditional Convolutional Neural Networks (CNN) (ROSSO et al., 2023). 
ViT replaces the convolutional layers used in traditional image recognition models with a series 
of self-attention layers by splitting an image into patches towards creating an embedding used as 
an input to a Transformer Encoder (TE). TE were proposed by (VASWANI et al., 2017) for ma- 
chine translation and have since become the state-of-the-art method for many natural language 
process tasks. As shown in Figure 7.2 , an image is converted to flattened regions of the same 
size. The number of regions is a hyperparameter that fixed the size, D, of patch embedding, 
preserving their sequence and positional information. The encoded vector elements, called 
tokens, are combined with the image class (i.e., image label) to be used as the input of Transformer 
Encoders. Transformer Encoders are organised as layers, using constant latent vectors of D size 
to map D linear projections as the patch embeddings. Multiheaded self-attention and multilayer 
perception blocks alternate in the TE, towards delivering a final encoded vector used in the final 
predictor, a multilayer perception that outcomes the final classification. 

 

Figure 7.2: Vision Transform (ViT) overview 
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1.7.2 Explainable Deep Computer Vision 

DCVS has increased the complexity of its models in a sense of allowing better predictive 
models, precisely, using deep learning it is possible to reach highly accurate predictions (LOPES 
et al., 2022). Although researchers and practitioners have rapidly adopted the usage of these 
complex models, understanding the intricate rationale of learning models could contribute to 
model improvement, validation, and even phenomena interpretation. 

Explainable Artificial Intelligence (XAI) techniques allow to comprehend the black-box 
model operations, how they provide decisions, the presence of bias, and other shortcomings in 
data-sets and model performance. In which the term Explainability refers to the notion of 
explanation as an interface between humans and decision-makers that is both accurate and easily 
understandable (KAKOGEORGIOU; KARANTZALOS, 2021). DCVS models that use RGB 
images may include an explanation of pixel maps that contribute to their output, emphasizing 
the most important regions in the original image (LOPES et al., 2022). A heat map or coloured 
regions projected over the RGB sample can represent the most significant image area used by 
the models. These important regions could be computed or obtained during the training step or 
in the final trained model, e.g., using the average gradient of each layer of the model to highlight 
coarse regions of the image that have a positive contribution in the final classification. 

ResNet and ViT have been used (KUMAR; SHIVANI, 2022), to address the problem of 
image classification with potential XAI contribution based on visual mechanisms that represent 
the contribution in the classification. The obtained classification can be explained by ResNet 
using a Grad-CAM method. 

The Grad-CAM method (SELVARAJU et al., 2017) obtains the gradients of the output 
named feature map activation of a given layer. At that point, the gradients are averaged for each 
layer to obtain the importance weights. Therefore, the average gradients for each channel are 
multiplied by layer activation, and the results are summed. Grad-CAM output is upscaled using 
bilinear interpolation and then a Rectified Linear Unit (ReLU) is applied, returning only non-
negative attributions. Grad-CAM emphasises coarse regions in the image that contribute 
positively to the result. 

In ViT, an encoder is built using a self-attention map mechanism. Unlike ResNet, ViT 
does not involve any convolutional layer. Instead, input images are split into patches and fed into 
the network. Through the encoded global information, the self-attention structure mechanism 
can capture interactions between image patches. In the context of vision transformers, the cls 
token refers to a special token that is added to the input sequence of the transformer, representing 
the image as a whole, and is typically used to obtain a global representation of the image. In 
addition, the transformer can also attend to other tokens in the input sequence that correspond to 
specific regions of the image, allowing the model to focus on particular areas of the image that 
are most relevant for a given classification task. The final attention map, organised in patches, 
could be visualised and projected over the original image. 



116
98
98 

 

In our work, we aim to identify the morphological aspects that purposes. The common 
aspects to be evaluated in fruit comprise the change in colour and the presence of mould or other 
indications of spoilage and fruit senescence. Dealing with dragon fruit is difficult due to the 
variability presented in the crop from a morphological and colour perspective. Previous work 
with this tropical fruit focused on scaly spikes and tail Figure 1.3, as these morphological aspects 
contribute to the classification of the fruit into three commercial destinations (level 1, 2, and 3) 
as they are associated with defects present in it(MINH TRIEU; THINH, 2021). Some 
morphological quality parameters suggested for dragon fruit include bracts length, soluble solid 
content (Brix), seed size, and fruit colour (BETANCUR G; MURIEL R; GONZÁ- LEZ J, 2020). 
The proposed SLI represents the Brix and ultimately color, which is correlated to acidity 
changes within the fruit and therefore can be a good predictive measure to rightfully select the 
fruit into desired classes. Thus, the proposed morphological ROI was set as the spikes senescence 
and the deformation (damage) to dragon fruit’s red skin colour Figure 7.3. 

 

(a) SLI30 (b) SLI50 

  
(c) SLI80 (d) SLI100 

Figure 7.3: Different SLI indexes (A) 30, (B) 50, (C) 80 and (D) 100. 
 
1.7.3 Fruit acquisition and RGB imaging setup 

A total of 150 dragon fruit (red-fleshed variety) were obtained immediately after harvest 
from a local producer. The images were acquired using a camera (f/1.2/1X optical zoom) with a 
resolution of 12 megapixels (4096 x 3072 pixels/cm). Thirty photos (one for each sample) were 
immediately taken on day 0. The remaining samples were stored at two temperatures (15 ◦C 
and 25 ◦C), and additional photos were taken on days 7, 14, 21, and 25 of storage (approx. 60/d). 
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Then, the days were classified into a proposed shelf-life index (SLI) (WU, 2022) based on the 
ratio between total soluble solids (TSS) and titratable acid (TA) to identify the sample 
conditions regardless of the storage temperature. The fruit were then labeled as SLI 30 (day 0), 
50 (day 7), 80 (days 14 and 21), and 100 (day 25), respectively and SLI indexes were carried 
out throughout the work. The apparatus used to capture the photos based on RGB imaging is 
shown in Figure 7.4. The images were taken from 3 angles so that information about the quality 
of the whole fruit was obtained. Many images were part of the data set, and each one of them 
had different size ratios. 

 

Figure 7.4: RGB imaging chamber set up showing the chamber (A) and the position for the 
acquisition of each fruit and (B) the focused features in dragon fruit. 

 
We resized the fruit images to 256 × 256 and cropped the centre to 224 × 224 to fit the 

pretrained deep learning models. Moreover, a training and validation sub-samples were 
randomly generated, in which the training was augmented twice by using a horizontal flip. 

 
1.7.4 Deep Learning and Explainable Methods 

In our experiments, we compared the performance of four classifiers: ResNet 18, ResNet 
50, ViT Tiny, and ViT Small using transfer learning. Grad-Cam was used for visualising the 
regions of an image that are important for a neural network’s classification decision. The ResNet 
models have 18 and 50 layers, while ViT Tiny and Small have different embedding sizes of 192 
and 384, respectively. These models were chosen for their balance between parameters (i.e., 
size) and performance, and have been successfully used to classify the quality of food such as 
beet, parsley, and spinach (REEDHA et al., 2022). We used pre-trained ResNet and ViT models 
from the Pytorch torch-vision library 1 and experimented with various hyperparameters as shown 
in Table 7.1. 

We opted to use small deep learning methods over larger ones, such as ResNet 128 with 
128 layers, as our data did not contain much abstract information. ViT Tiny and ResNet 18 had 
similar sizes, as did ViT Small and ResNet 50 in terms of the number of neurons used in the 
learning process. We observed that ResNet 18 performed better than ResNet 50, possibly due to 
the relatively easy nature of the classification task, which involved only four classes. Not having 
to deal with a large number of classes or continuous parameters may have favored ResNet 18 
over 50. (ZHAN; CAO, 2019) 

 

1 https://pytorch.org/vision 
 
 

https://pytorch.org/vision
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Table 7.1: Hyperparameters evaluated for training the DCVS models 
Hyperparameter Values 

learning rate [2e-4, 3e-4, 4e-4,] 
weight decay [1e-3, 1e-4, 1e-5, 1e-6] 
optimiser [Adam, Adam(W)] 
batch size [32, 64, 128] 
epochs [50, 100, 120, 150] 

 

 
It is worth noting that the best classification results were achieved using Adam(W) 

optimizer, with a batch size of 64 and 120 epochs. The values reported in the results section were 
obtained with these fixed hyperparameters. However, the learning rate and weight decay were 
discussed separately. 

All models were designed to classify input images into one of four categories, using a 
fully connected layer for multi-class classification. A linear layer with a Softmax activation 
function was used to generate output predictions for the four categories. 

We compared the visualisation of each DCVS using the Grad-CAM method and the 
attention map. Grad-CAM was implemented and projected as an additional layer that shows a heat 
map on top of the original input image using pytorch − grad − cam package (GILDENBLAT, 
2021). Colours on the heat map indicate (from blue to red) the most important regions for 
classifying a given sample. To visualise the ViT attention map, it was implemented the rollout-
based attention visualisation method using the ViT-pytorch github repository 2. 

 
1.7.5 Model Performance Criteria 

For the DCVS performances (ResNet 18, 50, ViT Small and Tiny) comparison the 
training set was randomly divided as (x: y) for calibration and test respectively. The comparison 
was derived from the predictive performance by using a confusion matrix Figure 7.6 that allows 
models to be compared into pre-defined parameters, such as precision and F1 ,which is the 
weighted precision and recall value (Equations (1), (2), and (3), respectively). 

 

Precision 
= 

 
Recall = 

TP 
TP + 
FP 

TP 

(6.1) 

 
(6.2) 

 
 

F 1 = 

TP + FN 

Precision × Recall 
Precision + 
Recal

 
          (6.3) 

 



119
98
98 

 

 
1.8 Results and Discussion 

 
1.8.1 Overall accuracy 

Overall, the DCVS method performed well for the four classifiers (ResNet 18, ResNet 
50, ViT Tiny, and ViT Small) using transfer learning, as evidenced by the results obtained with 
the Adam(W) optimiser, batch size, and epochs set as described in Table 1.1. The boxplot 
(Figure 1.4) provides descriptive statistics for the accuracy of the four models and shows the 
distribution of the results and their iterations, which relates to the learning capability. Dragon 
fruit presents interesting features, such as signs of dehydration and brownish color in their 
spike’s areas, similar to pineapple fruit, which Sirichaoen et al. (SIRICHAROEN; 
YOMSATIEAN- KUL; BUNSRI, 2023) evaluated using a variety of model architectures to 
assess the stage of sweetness and sourness. This similarity suggests that deep learning models 
may identify and deal with morphological characteristics in a similar way. For dragon fruit, the 
proposed SLI index measured these features in the fruit and was related to TSS and TA. Further 
investigation could explore the relationship between the different regions of the fruit and their 
sweet and sour characteristics. 

Regarding the performance of the two architecture models, they showed similar results 
with some differences in terms of computational efficiency, as the ViT models were faster. 
However, a challenge arises from this, which is the gradient descent algorithm used in deep 
learning optimisation. This algorithm is a first-order iterative optimisation technique used to find 
a local minimum of a differentiable function. In addition, transformers, which are a type of deep 
learning model, have been used to identify kiwifruit diseases in complex natural environments. 
The results of this study showed that ViT outperformed ResNet by 10.00% by reducing the number 
of parameters and increasing accuracy by 4.50%. However, a convolution block had to be used 
to account for inaccurately located regions in the fruit. In the case of dragon fruit, ViT also 
performed slightly better, but the ROIs, which included spikes similar to kiwi leaves, suffered 
from darkened dehydration colour, making it a more complex training process according to Li 
et al. (2022). 

The intention is to iterate in several steps assuming the inverted position of the function at 
a current point for this direction by minimising a general nonlinear function (BUHRMESTER; 
MNCH; ARENS, 2021). Therefore, there is a need to find the minimum error, though if the 
learning rate is too high there might be misleading information (YOU et al., 2019). Finding the 
perfect combination of learning rates to optimise the final solution without compromising the 
result is a challenge. The variables that were modified were learning rate (2e-4, 3e-4, and 4e-
4) and weight decay (1e-3, 1e-4, 1e-5, and 1e-6) for the binary search had a variation of 3.00- 
4.00%, which may be considered a little big. However, from the literature, common learning 
rates are from 1e-3 order (MACALUSO; SHIH, 2018). Therefore, the values used in this work 
were lower compared to the literature. The weight decay works as a factor to avoid over fitting. 
It is used to check the direction of the learning method and consequently, reduce the possibility 
of overfit. Taking two variables will only have a correlation with the learning method in the 
exact place where the error is being reduced. So, what happens is an error reduction attempt. 

Overall, the median accuracy of the models were similar, with ViT Tiny and ResNet 18 
showing slightly lower standard deviation. However, both methods have an outlier that could 
explain the difference. Although ViT transformers performed slightly better than ResNet, 
statistically speaking, there is no significant difference, indicating that the only distinguishing 
factor is the learning process. This finding favours ViT Tiny over other models since they are 
easier to train. As a result, choosing between ViT Tiny and Small would have little impact as you 
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only need to train the model once. 
The confusion matrix for the four models using one selected model previously assigned 

having weight decay of 1e-4 and rate of 4e-05 is presented in Figure 1.6. Augmentation was used 
to reduce the unbalanced data as well as to better train the model. The results showed that from 
the 4 models, SLI80 had the highest number of samples since based on this SLI, days 14 and 21 
were merged. This approach is a good indication that the data was not overfit as the performance 
for this class does not differ much from the other SLI indexes Table 1.2. It can also be seen from 
Table 1.2 that F1, Precision, and Recall show that overall ViT small had the best values for all the 
indexes. F1 was chosen over accuracy to balance out the unbalanced data issue, however, it is 
evaluated by classes, in which each class has its performance. It gives a better measure of the 
incorrectly classified cases than the accuracy metric. SLI100 contributed to diminishing the 
performance of ResNet 50. ResNet 18, which uses a convolutional neural network of 18 layers 
based on a pre-trained network, classified better than the 50 layers deep. 

 
92% 
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ViT small ViT tiny Resnet18 Resnet50 
Model 

Figure 7.5: Boxplot of deep learning methods sorted by average F1 after 10 repetitions of each 
combination with different learning rate (2e-4, 3e-4, and 4e-4) and weight decay (1e-3, 
1e-4, 1e-5, and 1e-6). 

 
This evidence may be due to the classes being easily distinguishable, which represents 

their easy identification. That makes ResNet 18 faster, smaller to process, and therefore, much 
more suitable with better F1 scores compared to the 50-layer model. The results may also 
indicate that these models are prone to overfitting and can be challenging to train. Notably, SLI30 
and SLI80, which had more samples in the dataset, outperformed SLI50 and SLI100, which had 
fewer images, making this observation quite intuitive. In a previous study on deep learning for 
shiitake mushroom sorting, ViT models were found to be superior to CNN, leading to 
recommendations for their use in crop classification in the industry (DENG; LIU; XIAO, 2022). 
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Figure 7.4: Confusion Matrix of deep learning model using weight decay of 1e-4 and learning 
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rate of 4e-05 
 
            Both ViT transformers showed to deliver the same outcome achieving similar F1 average 
scores of 90.50, 94.25, and 89.25% for ViT small compared to 89.50, 89.75, and 90.50% for the 
Tiny model. Some authors have found a better efficacy of  86.5% of ViT Tiny with 21M 
parameters over the tested ViT ones that scored approximately 78.00% in random data (WU et 
al., 2022). However, the data set size may have influenced the poor difference in the model scale-
down, which tends to have a better transfer ability over other models in many downstream 
assignments. Optimised small and medium-sized ViTs creating more efficient ViT systems has 
already been proposed by (GRAHAM et al., 2021). Other conducted essays using dragon fruit 
and CNN to identify characteristics in the fruit (i.e., scaly spikes and tail) managed to obtain 
97.38% accuracy (MINH TRIEU; THINH, 2021). The unbalanced data of the models is a good 
indication that the performance of each class architecture can increase. Yet the proposed 
classification model has not mistaken more than one degree of classification, therefore showing 
good efficacy. 
 

ViT Small ViT Tiny ResNet 18 ResNet 50 
 F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec 

SLI30 0.97 0.95 1.00 0.95 1.00 0.91 0.95 0.91 1.00 0.95 0.95 0.95 
SLI50 0.88 1.00 0.80 0.82 0.80 0.86 0.76 0.91 0.67 0.87 0.93 0.82 
SLI80 0.93 0.90 0.98 0.93 0.93 0.93 0.89 0.84 0.96 0.92 0.96 0.90 
SLI100 0.84 0.92 0.79 0.88 0.86 0.92 0.75 0.90 0.64 0.78 0.64 1.00 

Table 7.2: Predictive performance (F1, Precision, and Recall) of all deep learning models (ViT 
Small, Vit Tiny, ResNet18, and ResNet50) with fixed hyperparameters across all classes 
(SLI30, SLI50, SLI80, and SLI100) 

 

 
1.8.2 Visualisation methods performance 

The Grad-CAM method showed its power in the identification of important features 
from relevant regions of the dragon fruit images, thus classifying the original image. The data 
(sample images) were taken from the previously shown confusion matrix Figure 7.4. As can be 
seen from Figure 7.5 from g to l, SLI30 dragon fruit with tiny and small classification and their 
respective Grad-CAM view. Predominantly, the points of importance from the sample images 
were the tail and scaly spikes represented from blue (less important) to red (very important) as 
reported by other computer vision work that also dealt with dragon fruit (MINH TRIEU; THINH, 
2021). Post-harvest of dragon fruit has been proposed by a state-of-the-art computer-based 
robot embedded in AI, to select the ripened fruit from the dragon fruit tree with an accuracy of 
95.00% using YOLO V3-Tiny. The challenge they faced was to distinguish the immature green 
fruit from the rest of the plant due to the colour similarity (HUANG et al., 2022). YOLO was 
intended to leverage ViT models, however, it has been seen from our findings the performance 
for object detection was as good as YOLO’s while classifying dragon fruit based on colour and 
other morphological characteristics (spikes and tail changes). The transformer’s images from m 
to r focus the attention maps on the absence of pixels to make its decision. Therefore, the borders 
are the ROI for the SLI30 class, since it looks for spikes in the dragon fruit images (yellow and 
orange pixels), rather than centred.  
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Figure 7.6 exposes the SLI50 that represents the fruit after 7 days and the spikes and tail 

remain as the main point of importance, which has driven the heat map to a more centred-oriented 
configuration. ViT uses CNN with self-attention when splitting the image in patches through a 
transformer encoder using a self-attention map for further classification. The former basically 
split the image into visual tokens instead of a pixels array as the latter. ViT differs from ResNet 
by not relying on convolutional layers (ZHOU et al., 2021). All the encoded global information 
as well as the self-attention structure and the iterations that visualised and project the patches 
into the original image enhance the features of the fruit images and grant categorically to the 
classification methods. This class is a transition to a centred-focused heat g to l and attention 
maps from m to r Figure 7.6 The attention mechanism is a fundamental component and a 
prominent area in the field of deep learning. Essentially, it allows networks to selectively focus 
on relevant information (features) within a specific context. For instance, the morphology of 
dragon fruit fruit changes over time during storage, and so does the high attention frequency, 
or “redness” (MINH TRIEU; THINH, 2021). Similarly, deep learning techniques applied to 
apples in orchard environments have shown impressive efficiency, accuracy, and robustness in 
detecting green fruit in complex settings. This accomplishment suggests that such 
implementation can avoid the need for complex and slow state-of-the-art segmentation 
algorithms (JIA et al., 2021). 
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(a) Sample 1 (b) Sample 8 (c) Sample 12 (d) Sample 13 (e) Sample 18 (f) Sample 20 

(g) Sample 1 (h) Sample 8 (i) Sample 12 (j) Sample 13 (k) Sample 18 (l) Sample 20 

      
(m) Sample 1 (n) Sample 8 (o) Sample 12 (p) Sample 13 (q) Sample 18 (r) Sample 20 

Figure 7.5: SLI30 image samples. 
* From A to F the RGB images after background removal. From G to L GradCAM layer over the former images. From M to R the over the images of the 
first row: A, B, C, D, E, and F, respectively. 
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(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 7 (e) Sample 9 (f) Sample 11 

(g) Sample 1 (h) Sample 2 (i) Sample 3 (j) Sample 7 (k) Sample 9 (l) Sample 11 

      
(m) Sample 1 (n) Sample 2 (o) Sample 3 (p) Sample 7 (q) Sample 9 (r) Sample 11 

Figure 7.6: SLI50 image samples. 
* From A to F the RGB images after background removal. From G to L GradCAM layer over the former images. From M to R the over the images of the 
first row: A, B, C, D, E, and F, respectively. 
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Figure 7.7 shows SLI80 class, which showed the same trend of centering the region of 
interest (ROI). This index combines two days of storage days 14 and 20 that started showing 
either severe dehydration or contamination by a fungus, which is commonly seen in dragon fruit 
at the latest maturation stages (DY et al., 2022), and may explain the center-oriented ROI 
observed in the attention maps. These centered-neurons weights were also observed in Figure 
7.7 from g to l. However, this time some edges were selected as ROI since the dehydration and 
injuries started being prominent in the borders and scaly spikes as well. One of the reasons why 
sample 23 did not have the darkened and injured skin was due to this pattern being a standard for 
other SLI classes, which makes the algorithm avoid the same weighted neuron regions. Another 
research group in computer vision used an image segmentation based on the algorithms that use 
the maximum inter-class variance method to identify dragon fruit diseases, where they claimed 
to enhance the accuracy compared to other image segmentation methods even though no values 
but images were shown to validate their statement (DONG; XIA; LIU, 2020). The transformers 
models for this class are now more centred-distributed as well as diffused within the samples. 
When the spikes are not present, there is a comprehensive mapping trying to find these image 
features (spikes and tails), making increase the ROI in these regions to correctly classify the 
images, and sometimes end up making wrong assumptions. Also, when the image is filled with 
the information the attention points decrease significantly, which shows this pattern of the 
algorithm in finding these areas, once they do not find them, only a few attention points are 
needed to classify such as a darkened area or injury. 
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(a) Sample 23 (b) Sample 34 (c) Sample 41 (d) Sample 43 (e) Sample 44 (f) Sample 45 

(g) Sample 23 (h) Sample 34 (i) Sample 41 (j) Sample 43 (k) Sample 44 (l) Sample 45 

      
(m) Sample 23 (n) Sample 34 (o) Sample 41 (p) Sample 43 (q) Sample 44 (r) Sample 45 

Figure 7.7 SLI80 image samples. 
* From A to F the RGB images after background removal. From G to L GradCAM layer over the former images. From M to R the over the images of the 
first row: A, B, C, D, E, and F, respectively. 
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1.8.3 Approach Limitations 

Some misleading samples, as shown in Figure 7.7 were in general driving the class to 
their neighbors, in which a to d SLI 100, SLI50, SLI50, and SLI80 assigned as SLI80, SLI30, 
SLI80, and SLI50 respectively. They were sample 11(f), 3(c), 7(d) 34 (b) from Figures 6.7 6.8 
6.9 6.10 . This fact suggests the efficacy of the model in classifying extreme classes such as 
SLI30 from SLI100. Even though the unbalanced data may have benefited SLI80 over other 
classes due to the fusion of day 14 and 21 data. The data set augmentation that was used in 
dragon fruit images has shown very efficient in reducing over-fitting, in which the model works 
well on the training set as opposed to the test set (JOSEPH; KUMAR; MATHEW, 2021). 

 
1.8.4 Explainability remarks 

The grad-CAM method made possible to identify the important regions so that the 
classification of dragon fruit is achievable. These regions were spotted using attention maps 
which led to an extensive interpretation of important features in the fruit. The use of 
explainability enhanced the data interpretation, and therefore increased the reliability of the 
presented data. This result can then be shared to help and add to other computer vision dragon 
fruit’s research database (DONG; XIA; LIU, 2020) (HUANG et al., 2022) and other ongoing 
investigations, as well as to dragon fruit and general fruit industry. Even though it is a natural 
product with low cost and wide availability, without proper treatment, it may oppose great loss 
to the industry. When taking into consideration the fruit industry the robustness and 
maintainability and computational efficiency from the end customer perspective it is quite 
difficult to handle the black box paradigm. There is why XAI is an extremely important 
alternative to overcome these limitations (ROFFILLI, 2021). From this research, it was able to 
spot the importance of spikes as main ROIs and the relevance of the TSS and TA in the features 
captured by the RGB camera. Deeply understanding the morphological aspects of dragon fruit 
is a big challenge since it presents many variations (colour transformation) that were somehow 
diminished by the physical characteristics (i.e., scaly spikes) that shrank and darkened over 
time. Having this variability depicted in a complex system is not an easy job to accomplish. 
Since colour was not relevant to classify dragon fruit, having multiple phases where colour can 
be assigned as not the only indicator, XAI can be helpful and well applied to benefit this hard 
yet common scenario when classifying these fruit (EL-ASSADY et al., 2019). 
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(a) Sample 4 (b) Sample 5 (c) Sample 7 (d) Sample 9 (e) Sample 10 (f) Sample 11 

(g) Sample 4 (h) Sample 5 (i) Sample 7 (j) Sample 9 (k) Sample 10 (l) Sample 11 

      
(m) Sample 4 (n) Sample 5 (o) Sample 7 (p) Sample 9 (q) Sample 10 (r) Sample 11 

Figure 7.8: SLI100 image samples. 
* From A to F the RGB images after background removal. From G to L GradCAM layer over the former images. From M to R the over the images of the 
first row: A, B, C, D, E, and F, respectively. 
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(a) SLI100 as SLI80 (b) SLI50 as SLI30 (c) SLI50 as SLI80 (d) SLI80 as SLI50 

Figure 7.11: Example of misclassified samples by ViT Small model. 
* (A) is a SLI100 sample predicted as SLI80, (B) is a SLI50 predicted as SLI30, (C) is a SLI50 
predicted as SLI80 and (D) is a SLI80 predicted as SLI50. 

 
1.9 Conclusion 

The DCVS method has demonstrated a strong predictive model for dragon fruit 
classification using ResNet and ViT architectures, in line with the literature. Among the models 
tested, ViT Small showed the best performance, with an overall accuracy of 91.00% and up to 
97.00% for SLI 30 classification. The heat map and attention maps generated by the model 
showed a tendency to move from the edges to the centre of the fruit, taking into account the 
presence of spikes and tails, which contributed strongly to the classification process. The 
methods propo-sed in this work have the potential to benefit the food industry and fruit 
producers by enabling accurate and efficient classification of fruit, which is much faster than 
traditional observational methods. This could enhance productivity and aid in the accurate 
selection of fruit for a pre-determined production line. 
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