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RESUMO 

OLIVEIRA, Vitória Côrtes da Silva Souza de. Modelos univariados e multivariados para 

estimativa de características do crescimento e produtividade do tifton85 utilizando aeronave 

remotamente pilotada, 2024. 77p Dissertação (Mestrado em Engenharia Agrícola e Ambiental). 

Instituto de Tecnologia, Departamento de Engenharia, Universidade Federal Rural do Rio de 

Janeiro, Seropédica, RJ, 2024.  

 

Com avanço tecnológico e a necessidade de aumentar a eficiência do processo produtivo, a 

agricultura de precisão surge como uma alternativa para melhor planejamento e manejo da 

produção, pois, fornece infinitos benefícios com boa produtividade, sustentabilidade e 

desenvolvimento econômico. Neste sentido, técnicas de sensoriamento remoto têm sido 

amplamente utilizadas de forma instantânea e baixo custo desempenhando importante papel em 

diagnósticos como a estimativa da produtividade e atributos da cultura. O objetivo desta pesquisa 

foi avaliar as respostas espectrais do Tifton85 em diferentes estágios de crescimento e gerar 

modelos capazes de estimar atributos da forrageira a partir de técnicas de sensoriamento remoto. 

O experimento ocorreu em um intervalo de 48 dias contados a partir do corte de uniformização da 

cultura, com coletas rotineiras totalizando 5 épocas de avaliação (EA). Em cada EA foram 

coletados em 39 pontos georreferenciados os seguintes atributos: índice de área foliar (IAF), altura 

e clorofila da planra. Concomitantemente foram obtidas imagens com uma aeronave remotamente 

pilotada DJI Phantom 4 Advanced com um sensor multiespectral a bordo e calculados os índices 

de vegetação (IVs) para cada ponto em cada EA. Ao final do período deste experimento foi coletada 

a biomassa da cultura em cada ponto. De forma univariada, os atributos da cultura foram 

relacionados aos graus-dias acumulados ao longo dos dias do experimento por meio de modelos de 

regressão. O coeficiente de Pearson foi utilizado para avaliar a correlação entre os IVs e atributo 

da cultura. Os IVs que apresentaram maior correlação foram selecionados para gerar modelos 

lineares de estimativa dos atributos da cultura. A biomassa final foi correlacionada com os IVs, 

obtidos em cada EA possibilitando avaliar a qualidade de modelos de estimativa da produtividade 

do Tifton85 antes da colheita. A biomassa final da cultura apresentou maior relação com o índice 

GNVI obtido aos 33 dias (3EA) de avaliação da cultura, demonstrando ser possível estimar a 

produtividade da cultura em períodos antes a colheita em campo. A partir da análise multivariada 

dos componentes principais foi avaliada a porcentagem explicativa de cada componente principal 

(CP) e a correlação dos índices espectrais com cada CP relevante com seus respectivos coeficientes. 

Os coeficientes associados aos CPs relevantes foram utilizados para compor um índice de 

crescimento da cultura que foi utilizado gerar modelos lineares de estimativa dos atributos da 

cultura. Os resultados demonstraram que de forma univariada, os modelos apresentaram melhor 

desempenho quando associados ao índice VARI para estimativa da clorofila (R² =0,7202), índice 

GNDVI para estimativa da altura (R² = 0,5744), índice NDVI para estimativa do IAF (R² = 0,7539) 

e índice GNDVI (R² = 0,5744). Ao avaliar de forma multivariada, foi possível reduzir o 

comportamento dos IVs em um único componente CP1 (poder explicativo de 99,94%). O índice 

de crescimento da cultura proposto e gerado a partir dos coeficientes associados ao CP1 

demonstrou grande aplicabilidade, especialmente em lavouras onde devido à grande variabilidade 

os modelos univariados gerados pelos IVs apresentam baixa relação com os atributos da cultura.  

 

Palavras-chave: Sensoriamento remoto, culturas forrageiras, índice de vegetação.  

 



 

ABSTRACT 
OLIVEIRA, Vitória Côrtes da Silva Souza de. Univariate and multivariate models for estimating 

growth and productivity characteristics of tifton85 using remotely piloted aircraft, 2024. 77p 

Dissertation (Master in Agricultural and Environmental Engineering). Institute of Technology, 

Department of Engineering, Federal Rural University of Rio de Janeiro, Seropédica, RJ, 2024. 

 

 

With technological advancement and the need to increase the efficiency of the production process, 

precision agriculture emerges as an alternative for better planning and management of production, 

as it provides infinite benefits with good productivity, sustainability and economic development. 

In this sense, remote sensing techniques have been widely used instantly and at low cost, playing 

an important role in diagnostics such as estimating productivity and crop attributes. The objective 

of this research was to evaluate the spectral responses of Tifton85 at different growth stages and 

generate models capable of estimating forage attributes from remote sensing techniques. The 

experiment took place over a 48-day interval counted from the crop standardization cut, with 

routine collections totaling 5 evaluation times (EA). In each EA, the following attributes were 

collected at 39 georeferenced points: leaf area index (LAI), height and chlorophyll of the planra. 

Concomitantly, images were obtained with a DJI Phantom 4 Advanced remotely piloted aircraft 

with a multispectral sensor on board and vegetation indices (VIs) were calculated for each point in 

each EA. At the end of the experiment period, crop biomass was collected at each point. In a 

univariate manner, crop attributes were related to the degree days accumulated over the days of the 

experiment through regression models. Pearson's coefficient was used to evaluate the correlation 

between IVs and crop attributes. The IVs that presented the highest correlation were selected to 

generate linear models to estimate crop attributes. The final biomass was correlated with the IVs 

obtained in each EA, allowing the evaluation of the quality of models to estimate Tifton 85 

productivity before harvest. The final crop biomass showed a greater relationship with the GNVI 

index obtained at 33 days (3EA) of crop evaluation, demonstrating that it is possible to estimate 

crop productivity in periods before harvest in the field. From the multivariate analysis of the 

principal components, the explanatory percentage of each principal component (PC) and the 

correlation of the spectral indices with each relevant PC and their respective coefficients were 

evaluated. The coefficients associated with the relevant PCs were used to compose a crop growth 

index that was used to generate linear models to estimate the crop attributes. The results 

demonstrated that in a univariate manner, the models presented better performance when associated 

with the VARI index to estimate chlorophyll (R² = 0.7202), GNDVI index to estimate height (R² 

= 0.5744), NDVI index to estimate LAI (R² = 0.7539) and GNDVI index (R² = 0.5744). When 

evaluating in a multivariate manner, it was possible to reduce the behavior of the IVs in a single 

component PC1 (explanatory power of 99.94%). The proposed crop growth index generated from 

the coefficients associated with CP1 demonstrated great applicability, especially in crops where, 

due to the great variability, the univariate models generated by IVs present a low relationship with 

the crop attributes. 

 

Keywords: Remote sensing, forage crops, vegetation index. 
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1. INTRODUÇÃO 

 

 A agropecuária é um dos pilares da economia brasileira como fonte de renda de diversos 

agricultores e pecuaristas na produção dos alimentos. Em constante crescente neste setor, em 2023 

o Brasil alcançou recorde na exportação de carne bovina com 2,26 milhões de toneladas vendidas, 

superando 2021 em 22,6%, o tornando o maior exportador mundial. Diversos fatores influenciaram 

neste sucesso, incluindo a alta produção (cerca de 10,79 milhões de toneladas), a qualidade da 

carne brasileira com preços competitivos aliados a dificuldades sanitárias e climáticas em alguns 

países produtores tornam a carne brasileira mais atrativa no mercado (ABIEC, 2023). 

 Além disso, com o segundo maior rebanho bovino do mundo, o Brasil é um importante 

produtor de leite (FAO, 2023), garantindo o sustento e alimento de milhares de pessoas que 

dependem da pecuária. O país possui cerca de 18,72% da área nacional dedicada a pastagens 

utilizadas para produção animal e se mantém como grande produtor e exportador mundial de carne 

bovina demonstrando a relevância do setor para a economia e o desenvolvimento do país 

(EMBRAPA, 2021).  

 No Brasil, a sazonalidade da produção de forragem é uma das razões pelas quais a maioria 

dos sistemas pecuários depende de planejamento (PINHEIRO et al., 2021; İLERI, 2022; CUNHA, 

2020). Como a alimentação dos animais tem que ser rica em nutrientes e bem controlada ao longo 

de todo ano, a conservação de forrageiras por meio da ensilagem ou fenação, é uma alternativa 

utilizada para manter altos índices nutricionais da forragem produzida e minimizar os problemas 

causados pela deficiência alimentar em época de indisponibilidade de material diretamente no 

campo, onde é fundamental a utilização de técnicas capazes de garantir o aproveitamento de toda 

a (DE CASTRO et al., 2020). 

 Uma das principais culturas forrageiras usadas e conservadas como feno é o capim Tifton85 

(Cynodon spp.) pois tem fácil adaptação em relação as condições climáticas, boa produtividade, 

bom valor nutritivo, alto teor proteico, ótima palatabilidade, facilidade de desidratação, além de 

elevado grau de resposta à adubação nitrogenada. A adubação nitrogenada é capaz de proporcionar 

maior produção através do maior desenvolvimento dos constituintes morfológicos e estruturais da 

planta (ANDRADE, 2017; MOMESSO et al., 2022). 

 Dada a necessidade de melhorar o controle e gerenciamento desse cultivo, o manejo via 

agricultura de precisão tem sido uma opção para ganhos de produtividade, sustentabilidade e 

desenvolvimento econômico. Esta forma de manejo, é vista como alternativa eficaz para melhorar 
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o controle e planejamento da produção de culturas, sendo capaz de gerar informações sobre a 

variabilidade de atributos do solo e da planta em campo, que servem de apoio para tomadas de 

decisão no manejo das pastagens (BASSOI et al., 2019).  

 Neste sentido, técnicas de sensoriamento remoto têm sido amplamente utilizadas como 

ferramentas de monitoramento de lavouras, fornecendo informações de forma instantânea, com 

menor custo e desempenhando importante papel em diagnósticos agrícolas como a estimativa da 

produtividade (TONG et al., 2019), detecção de pragas e doenças (BARROS et al., 2021) e 

avaliação nutricional (NAJI, 2018). 

 O avanço das tecnologias de agricultura de precisão em pastagem ocorre, dentre outros 

fatores, devido à integração de informações fornecidas por sensores de monitoramento de planta, 

com sensores de monitoramento de solo e o entendimento da dinâmica do pastejo (MURPHY et 

al., 2021). Estas medidas, aliadas a métodos tradicionais, permite que o produtor tenha uma 

compreensão melhor do sistema pecuário e possa formular uma estratégia de manejo mais 

adequada (BERNARDI & PEREZ, 2014).  

 Com as informações espectrais obtidas por aeronave remotamente pilotada (ARP) diversos 

Índices de Vegetação (IVs) podem ser calculados e utilizados para relação com parâmetros 

associados ao desenvolvimento de culturas (DE SOUZA, 2021; FILIPPI, 2020). Esses IVs são 

relacionados com as avaliações diretas de interesse, como formas de avaliar a produtividade 

(SPERANZA, 2018), biomassa de forragem (MESHESHA et al., 2020), teor de nitrogênio 

(SILVA, 2020), altura da cultura e índice de área foliar (FONSECA E GONZÁLEZ, 2022). 

 Conforme discutido em THÉAU et al. (2021), o uso de ARPs oferece uma combinação de 

alta resolução espacial, flexibilidade operacional e precisão nos dados, sendo uma ferramenta 

poderosa para estimar biomassa de forrageiras. Em seu trabalho, foi realizado o processamento de 

imagens adquiridas por uma ARP (Inspire 1 Pro da DJI¸equipado com um sensor multiespectral 

visível-infravermelho da Parrot, modelo Sequoia) e calculados os índices de vegetação GNDVI, 

Datt1, NDVI, RVI, RDVI, OSAVI, MSAVI, SAVI e NDR a fim de estimar a biomassa e cobertura 

vegetal da pastagem. Foram calculadas regressões não-lineares entre esses índices e a biomassa 

coletada, tendo os IVs GNDVI e Datt1 apresentando os coeficientes de determinação mais altos 

(acima de 0,7), enquanto o NDVI, teve um coeficiente próximo de 0,5.  

 Diante do cenário descrito, estudos envolvendo a análise das relação entre IVs e atributos 

de culturas forrageiras (principalmente biomassa, níveis de clorofila, altura e índice de área foliar) 
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podem ajudar os produtores a gerenciarem suas pastagens com rapidez e precisão, além de auxiliar 

na avaliação do momento ideal para colheita da forragem, ajustar para disponibilidade de forragem 

através das taxas de lotação e melhor ajuste de composição do suplemento com base nas mudanças 

no valor nutricional da forragem ao longo do ano. 

 

2. OBJETIVOS 

2.1. Objetivo geral 

 O objetivo deste trabalho foi avaliar as respostas espectrais da forrageira Tifton85 

(Cynodon spp.)  em diferentes estágios de crescimento a partir de técnicas de sensoriamento remoto 

e gerar modelos capazes de estimar os atributos clorofila, altura e índice de área foliar da cultura.  

 

2.2. Objetivo específico 

• Obter índices de vegetação por meio de ARP para o Tifton85 visando caracterizar a cultura 

em diferentes épocas de crescimento; 

• Mensurar os atributos do Tifton85 em diferentes épocas de crescimento da cultura; 

• Obter índices de vegetação por meio de ARP e gerar modelos para estimar os atributos a 

partir de características espectrais. 

• Gerar modelos de predição que possibilitem estimar a biomassa final por meio dos índices 

de vegetação obtidos em diferentes épocas de desenvolvimento da cultura. 

 

3. REVISÃO BIBLIOGRÁFICA 

3.1. A cultura Tifton85 

 A Agropecuária brasileira é uma importante fonte de renda para diversos agricultores e 

pecuaristas, sendo essencial para a economia nacional como também para a subsistência humana, 

com insumos que servem de base para alimentação mundial (DE FIGUEIREDO, 2019). 

 Como uma das fontes mais econômica para nutrição animal, o uso de pastagens está 

diretamente ligado à quantidade ingerida e aos nutrientes contidos na planta ofertada. Dentre as 

diversas cultivares com esta finalidade, destacam-se as forrageiras do gênero Cynodon, originadas 

da África Tropical. Este gênero tem como características elevado potencial produtivo e adaptação 

as regiões tropicais e subtropicais do Brasil (FIGUEIREDO et al., 2020). 
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 Dentre as gramíneas do gênero Cynodon, a Tifton85 foi desenvolvida com o objetivo de 

obtenção de alta produtividade e qualidade da forrageira, sendo uma boa alternativa para pastejo e 

produção de feno. Por sua versatilidade, ela pode ser plantada tanto em climas tropicais ou 

subtropicais quanto regiões frias ou quentes. Esta cultura também pode ser cultivada em solos 

arenosos, mistos e argilosos, devidamente corrigidos e adubados, não suportando apenas terrenos 

encharcados e ambientes sombreados (DA SILVA et al., 2020).  

 O Tifton85 se destaca entre as forrageiras para alimentação animal por apresentar melhor 

digestibilidade, maior teor de proteína bruta, elevada produção de massa seca e elevado valor 

nutritivo, aumentando assim o desempenho animal reduzindo a necessidade de alimentação 

suplementar e consequentemente melhorando o custo de produção (SOUZA et. al., 2020). 

 Segundo TAIZ et al. (2017), o nitrogênio (N) é um dos elementos que mais influência no 

crescimento e desenvolvimento das plantas, representando de 20 a 40 g.kg-1 da massa seca dos 

tecidos vegetais. A adubação nitrogenada indica o ritmo de crescimento, a qualidade da forragem 

e a produtividade do pasto, principalmente quando a forrageira tem boa resposta à aplicação desse 

nutriente (NUNES & NUNES, 2018). 

 O trabalho de SOUZA (2024) apresentou efeito positivo entre a adubação nitrogenada e o 

acúmulo de biomassa do capim Tifton85. Nas parcelas onde não houve adubação, foi observado 

os piores desempenhos em termos de produtividade do capim, em todas as épocas de coleta. Em 

contrapartida, dentre as doses usadas (100 kg. ha-1, 200 kg. ha-1 e 300 kg. ha-1) a que apresentou 

melhor desempenho foi a de 300 kg. ha-1), tendo o pico máximo de produção em 42 dias de 

experimento. Em OLIVO et al. (2019) foi avaliado a relação de doses de nitrogênio entre 100 e 

200 kg. ha-1 à forrageira Tifton85 sob condições de pastejo, onde obtiveram produções de forragem 

entre 11 e 14 t de matéria seca por hectare, com concentração de proteína próxima a 14 % e 17%, 

respectivamente, em ciclo de 29 dias. 

  A produção agrícola depende diretamente do estado nutricional das plantas e como o 

nitrogênio é um dos nutrientes mais exigidos pelas plantas, sua deficiência reduz o crescimento e 

produtividade das culturas, em contrapartida, a aplicação excessiva pode ter um impacto negativo 

tanto no ambiente natural quanto nas finanças agrícolas. O monitoramento frequente de N de 

campo é impraticável devido ao tempo e custo necessários para análises laboratoriais. Com isso, 

dados de sensoriamento remoto surge como alternativa para avaliar e monitorar o estado nutricional 

das culturas ao longo da estação de crescimento (PEREIRA et al., 2022). 
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O ciclo do Tifton85 dura em média de 30 a 60 dias a depender do clima, manejo e altura de 

corte. Regiões com maior calor e umidade, o ciclo tende a ser mais rápido, plantio com irrigação 

e/ou adubação nitrogenada pode acelerar o crescimento, além de que se pode cortar o capim em 

alturas mais baixas resultando assim, ciclos mais curtos (CASAGRANDE, 2021). Com 

rendimentos de matéria seca, em sistemas não-irrigados, entre 20.000 e 30.000 kg ha-1 ano-1 com 

bom valor nutritivo, a cultura atinge entre 11% e 13% de proteína bruta (PB) e 58% a 65% de 

digestibilidade (ROSA, 2023; LIMA, 2023). 

Estudos têm explorado a relação entre o intervalo de corte e a produtividade do Tifton85. 

Em sua pesquisa, VIÇOSI et al. (2020) examinaram como o capim responde a diferentes níveis de 

adubação nitrogenada e a cortes realizados a cada 30 dias. Foi observado que à medida que o 

número de cortes aumenta, a proporção de folhas para colmos cresce, enquanto a massa seca por 

perfilho diminui. Entretanto, a produtividade do Tifton85 tende a diminuir conforme o número de 

cortes aumenta, devido ao seu rápido crescimento, que favorece cortes mais frequentes.  

 

3.2. Sensoriamento remoto aplicado ao monitoramento de lavouras 

Desde a década de 1970, o Sensoriamento Remoto vem sendo estudado para aplicações na 

agricultura para identificação de produtividade da mesma (FORMAGGIO & SANCHES, 2017). 

Ele é caracterizado pelo conjunto de atividades como: detecção, aquisição e análise da energia 

eletromagnética emitida ou refletida pelos objetos terrestres e registradas por sensores remotos que 

permitem a obtenção de informações de um objeto sem contato físico direto com o mesmo e 

geralmente, a longas distâncias. 

A quantidade e qualidade da energia eletromagnética refletida e emitida pelos objetos terrestres 

resulta das interações entre eles e a energia eletromagnética. Cada objeto tem sua curva singular de 

energia no espectro eletromagnético, chamada assinatura espectral.  Essas interações podem ser 

identificadas nos dados obtidos por sensores remotos. A energia eletromagnética refletida e emitida 

pelos objetos é a base de dados para todo o processo de sua identificação, pois ela permite 

quantificar a energia espectral refletida e/ou emitida por estes, e assim avaliar suas principais 

características (BARROS, et al., 2021). 

 Casos de objetos como vegetação, água e solo refletem, absorvem e transmitem radiação 

eletromagnética com proporções que variam com o comprimento de onda e possuem singularidades 

próprias, de acordo com suas características biofísicas e químicas. Essas curvas espectrais (Erro! 
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Fonte de referência não encontrada.) permitem distinguir os objetos da superfície terrestre nas 

imagens obtidas por sensores remotos (HERNÁNDEZ, 2021).  

 

Figura 1. Assinatura espectral da vegetação, água e solo. 

Fonte: FLORENZANO (2011) 

 

Estudos como HOTT et al. (2019); ALMEIDA (2022); ROCHA et al. (2022); MAGALHÃES 

(2022) mostram como o uso de técnicas de sensoriamento remoto tem sido comumente utilizada 

para relacionar atributos e índices de vegetação para modelos de estimativas com metodologias 

precisas e capazes de identificar a variabilidade dos campos de produção. 

 

3.3. Aeronaves Remotamente Pilotadas e o processamento de imagens 

 A necessidade agilidade no monitoramento dos cultivos fez com que uso de aeronaves 

remotamente pilotadas seja cada vez mais frequente na agricultura visto que a rapidez, eficiência e 

precisão na geração de dados permitem a execução de trabalhos de campo com excelente qualidade 

a um custo relativamente baixo, facilitando detectar diversos aspectos biofísicos da planta com 

periodicidade nessas coletas a escolha do produtor e de acordo com o ciclo fenológico 

(SOBRINHO et al., 2018). 
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Aeronaves remotamente pilotadas (ARPs) são equipamentos conduzidos de forma remota 

por um usuário à distância com auxílio de controle ou de maneira autônoma (através de um plano 

de voo, previamente elaborado em um aplicativo específico para esta finalidade).  

 O uso do ARP na agricultura tem sido amplamente utilizado para controle do cultivo (DOS 

SANTOS et al., 2018), de pragas (FERREIRA et al., 2017) e estimativa de produção (PRESTES 

et. al., 2020). Com sensores embarcados no equipamento, as câmeras podem abranger a região do 

espectro do visível ou até mesmo no infravermelho próximo baseado na espectroscopia de 

reflectância, ou seja, medidas de reflexão da radiação eletromagnética após interação com 

diferentes superfícies em diferentes comprimentos de onda (CLERCQ et al., 2018). 

 Ao sobrevoar a área de interesse, os sensores abordo das ARPs vão capturando as imagens 

com sobreposição definida pelo usuário para que haja pontos homólogos entre as cenas. Após todas 

as imagens capturadas, é realizado o processamento das imagens em softwares específicos, onde 

as fotos sobrepostas são alinhadas e unidas, formando um único mosaico, chamado ortomosaico.  

Diversos estudos sobre cultura, têm-se utilizado índices de vegetação calculados a partir de 

dados obtidos por RPAs em suas análises (SANTOS et al., 2022; DE SOUZA et al., 2021; AHMAD 

et al., 2020). Neste caso, técnicas de correção radiométrica se faz necessário, visto que essa 

correção atua como um calibrador para que os dados coletados representem fielmente a reflectância 

real da superfície terrestre, garantindo que os valores de pixel sejam consistentes e comparáveis 

entre diferentes imagens.  

 De acordo com RADOČAJ, et al (2023), levando em consideração o número de artigos 

científicas no Web of Science Core Collection (WoSCC) desde o ano 2000, o Índice de Vegetação 

por Diferença Normalizada (NDVI) foi identificado como o mais utilizado, com um total de 2.200 

estudos registrados, representando o histórico mais longo de aplicação dentre os IVs. Ainda se 

destacou os cinco principais índices de vegetação que mais têm sido empregados desde o ano 2000 

como: NDVI, Índice de Vegetação Excessiva (EVI), Índice de Vegetação Normalizado por 

Diferença Verde-NIR (GNDVI), Índice de Vegetação do Solo Ajustado (SAVI) e Índice de 

Vegetação Vermelha (RVI). 

 De forma análoga, no que diz respeito aos principais índices de vegetação baseados em 

sensores RGB, o Índice Normalizado de Diferença Verde-Vermelho (NGRDI) emergiu como o 

índice predominantemente empregado durante a última década. Dentre os cinco principais índices 

RGB incluem NGRDI, Excesso de Índice Verde (ExG), Excesso de Índice Vermelho (ExR), Vari 
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e MGRVI (Índice de Vegetação Verde-Vermelho Modificado). 

Em GIOVOS et al. (2021) foi investigado 97 índices de vegetação com aplicações em várias 

escalas, seja regional ou local. O estudo ressaltou a variabilidade espacial observada nos índices de 

vegetação, com o uso de imagens de ARPs, demonstrando como esses índices são sensíveis a 

diversas características das plantas, como clorofila, pigmentos, biomassa e teor de água nas folhas. 

Além disso, foi enfatizado que o Índice de Vegetação por Diferença Normalizada (NDVI) é o 

índice mais frequentemente aplicado. 

No trabalho de FERREIRA et al. (2023), foi analisado a variabilidade espacial e de 

produtividade em vinhedos utilizando índices de vegetação calculados a partir de imagens obtidas 

por um ARP.  Os índices MPRI e RED/GREEN apresentaram correlações moderadas com 

produtividade, 0,67 e -0,66 (p<0,05) respectivamente. 

Já no estudo de MORGAN et al. (2021), os autores utilizaram um ARP com câmera RGB 

para estimar a produtividade e biomassa da vegetação pantanosa de maré através de índices de 

vegetação na região do visível, tendo os modelos de estimativa de biomassa com melhor 

desempenho os que relacionaram os índices TGI (R2 = 0,39) e ExG (R2= 0,376). 

  

3.4. Sensores ópticos proximais para mensurações em campo dos atributos da cultura 

 A estimativa de atributos pode ser realizada através de dois métodos: direto (destrutivo) e 

indireto (não destrutivo). Os métodos diretos geralmente são demorados, sendo necessário o corte 

de folhas ou biomassa da cultura para sua determinação, limitando sua aplicação devido a 

morosidade e efeito deletério no cultivo. Já os métodos indiretos inferem características a partir de 

medições ou observações relacionadas. Estes podem ser realizados em poucos minutos, oferecendo 

facilidade de determinação, sem necessidade de envio de amostras para laboratório, economia de 

tempo e dinheiro, sendo possível coletar amostras de acordo com a necessidade sem implicar na 

destruição das folhas (ALBUQUERQUE et al.,2020). 

 Dentre diversos equipamentos são utilizados para monitoramento por método indireto, 

destaca-se os sensores de princípios ópticos que realizam a medida indireta da radiação solar 

interceptada pelo dossel das plantas caso do ceptômetro para a determinação do índice de área 

foliar ou da diferença de atenuação da luz entre 650nm e 940 nm, caso do clorofilômetro para 

obtenção da clorofila (ALI et al., 2024). 
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3.4.1. Ceptômetro  

 A radiação solar é de grande relevância para os seres vivos considerando o processo de 

transferência de energia por meio da fotossíntese. Conforme DA PONTE et al. (2017), a faixa 

espectral da radiação solar entre 400 e 710 nm é utilizada pelas plantas no seu processo 

fotossintético, denominada de Radiação Fotossinteticamente Ativa (PAR). 

 O aproveitamento da radiação solar pelas plantas é de grande importância para obtenção de 

um bom resultado em seu desenvolvimento. Um parâmetro comumente utilizado na agricultura 

para representar a eficiência fotossintética da planta é o índice de área foliar (IAF), onde este 

representa a relação entre a área foliar e a área de solo ocupada pelo cultivo. Este índice pode ser 

utilizado para análise do crescimento e, também, como fator condicionante da produtividade, pois 

através do IAF, é definida a capacidade do dossel em interceptar a radiação solar, converter em 

matéria seca através da fotossíntese, e determinar o potencial produtivo da cultura 

(TAGLIAPIETRA et al., 2018). 

 Dentre os métodos de obtenção do IAF, têm-se o ceptômetro, onde de forma indireta (não 

destrutiva) o aparelho possui sensores que medem a radiação fotossintética do dossel e calcula 

precisamente o IAF (Equação 1 e 2) em tempo real, utilizando a diferença na incidência luminosa 

entre os sensores o equipamento calculando a interceptação luminosa e assim estimando o IAF 

(SOUZA et al., 2019).  

 Para a coleta do IAF com um ceptômetro deve-se primeiramente configurá-lo com a data, 

hora e local. Em seguida, deve-se posicionar a haste do aparelho acima da copa e realizar a leitura 

para medir a incidência acima do dossel e posteriormente repetir o processo abaixo da copa da 

cultura. Há a possibilidade de acoplar um sensor PAR externo que pode ser usado para fazer 

medições PAR simultâneas acima e abaixo da copa como referência para luz interceptada em 

condições de céu claro, parcialmente nublado ou mesmo nublado. Vale ressaltar, que em ambas as 

situações deve-se atentar para a direção do sol a fim de não fazer sombra no dossel na hora da 

coleta dos dados. 

 

𝑳 =  
[(𝟏−

𝟏

𝟐𝑲
)  ƒ𝒃−𝟏]𝒍𝒏 𝝉

𝑨 (𝟏−𝟎,𝟒𝟕ƒ𝒃)
        (1) 

    

𝑲 =
√𝝌𝟐+𝒕𝒂𝒏𝜽

𝝌+𝟏,𝟕𝟒𝟒 (𝝌+𝟏,𝟏𝟖𝟐)−𝟎,𝟕𝟑𝟑   (2) 
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onde: τ é a proporção de PAR transmitido e incidente e é calculada usando medições de PAR 

transmitido próximo à superfície do solo e PAR incidente acima do dossel 

θ é a elevação angular do sol no céu em relação ao zênite, ou o ponto diretamente acima de sua 

cabeça e é calculado automaticamente usando informações de hora local, data, latitude e longitude;  

ƒb é a fração do feixe e é calculado automaticamente comparando os valores medidos do PAR 

incidente com a constante solar, que é um valor conhecido da energia luminosa do sol (assumindo 

condições de céu claro) em qualquer momento e local na superfície da Terra;  

χ é a distribuição do ângulo da folha, onde possui o valor de 1 como padrão;  

K é o coeficiente de extinção que descreve quanta radiação é absorvida pelo dossel em um 

determinado ângulo zenital solar e distribuição do ângulo foliar do dossel. 

  No trabalho de BEZERRA (2022), um ceptômetro AccuPAR LP-80 foi empregado para 

medir o IAF do capim-zuri e, juntamente com informações sobre temperatura, radiação solar, 

precipitação e balanço hídrico, objetivou-se validar um modelo agrometeorológico proposto e 

analisar os efeitos dos diferentes regimes de manejo nutricional sobre a produtividade da biomassa 

do capim-zuri. Concluiu-se que o modelo foi capaz de predizer a produção do capim-zuri de forma 

eficiente com erro médio de -437,90, -370,72 e -353,14 para manejo nutricional de 500 kg de N.ha-

1 .ano-1, 250 kg de N.ha-1 .ano-1e 100 kg de N.ha-1 .ano-1, respectivamente.  

 

3.4.2. Clorofilômetro 

 Um dos fatores ligados à eficiência fotossintética de plantas e consequentemente ao 

crescimento e adaptabilidade a diversos ambientes é a clorofila. A clorofila é um pigmento com 

maior presença na natureza e seu principal papel é converter a absorção da luz solar em energia 

química durante a fotossíntese (NETO et al., 2021).  

 O teor de clorofila indica a saúde geral da vegetação, e alterações no conteúdo do pigmento 

foliar podem ter uma relação direta com mudanças na resposta espectral da folha (DELL’ORTO et 

al., 2019). Os clorofilômetros são instrumentos que aferem de forma indireta e não destrutiva, os 

teores de clorofila com base nas propriedades óticas das folhas (SILVA et al., 2019). 

 A concentração de clorofila varia com o crescimento da vegetação. Estimativas de clorofila 

para o cultivo em diferentes estágios de crescimento pode fornecer ao agricultor informações 
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críticas sobre a área, servindo de auxílio na tomada de decisões ao monitorar plantações e gerenciar 

atividades agrícolas para atingir a produção máxima. 

 O manejo da adubação nitrogenada é fundamental onde há diminuição da concentração dos 

pigmentos clorofilado, (ocasionada pela carência em N) levando a planta ao estresse nutricional. 

Essa diminuição interfere na reflectância espectral na região do espectro visível, sendo facilmente 

identificado através de dados obtidos por um clorofilômetro (COELHO et al., 2018). 

 Em VENDRUSCULO et al. (2019), por meio de imagens de ARP (RGB) foi calculado o 

índice MPRI e o correlacionado com as clorofilas A e B de folhas em arvores de citrus obtidas pelo 

clorofilômetro Clorofilog da Falker. Neste estudo, os autores encontraram similaridade nos valores 

médios de clorofila A e B (0,62) e valor médio de MPRI de 0,37, porém obtiveram fraca correlação 

entre as variáveis estudadas. 

 

3.5. Estimativa de atributos por meio de índices de vegetação 

 Dentre diversas aplicações do SR, das principais contribuições na agricultura destacam-se 

aquelas relacionadas com o monitoramento e a estimativa de atributos das culturas agrícolas. Os 

Índices de vegetação podem ser definidos como funções matemáticas entre duas ou mais bandas 

espectrais, obtidos por sensores remotos, selecionadas com o objetivo de melhorar a relação desses 

dados com características da vegetação representando com fidedignidade variações da planta e são 

considerados base do sensoriamento remoto na análise agrícola da vegetação (FORMAGGIO E 

SANCHES, 2017). 

 Alguns índices de vegetação foram desenvolvidos com o intuito de encontrar relação entre 

atributos como biomassa, a quantidade de vegetação e o solo. Pesquisadores como GUO et al. 

(2021); LIANG et al. (2022); MAIMAITIJIANG, et al. (2019); SAMPAIO (2020) mostram que 

estimativa de atributos com índices de vegetação tem sido comumente utilizados e tendo modelos 

de tendência com bons desempenhos. 

 Em SHAFIAN et al. (2018) foi mostrado que as relações de índices de vegetação com os 

parâmetros biofísicos das culturas são úteis para prever as características de crescimento do plantio. 

Quatro índices de vegetação foram calculados usando as imagens de ARPs e dentre esses índices, 

o índice de vegetação de diferença normalizada (NDVI) mostrou a maior correlação com IAF, 

fração de cobertura e produtividade com R2 de 0,91, 0,89 e 0,58, respectivamente. 

No trabalho de PEZZOPANE et al. (2019) o objetivo era estimar a massa de forragem do 
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capim-piatã por meio de índices de vegetação obtidos com um sensor de refletância terrestre. 

Foram realizadas análises de regressão linear entre índices de vegetação e massa total de forragem. 

As equações geradas por essas análises foram utilizadas para estimar essas variáveis da pastagem. 

As melhores estimativas foram obtidas pelo índice SRI (R2 entre 0,55 e 0,84) para os sistemas a 

pleno sol, MSR (R2 de 0,67 a 0,93) para os sistemas sombreados e NDVI (R2 entre 0,65 e 0,91). 

 Em HUNT et al. (2005), foi usado o Normalized Green-Red Difference Index (NGRDI) 

para estimar as condições de nutrientes do milho, biomassa da cultura de milho, alfafa e soja. Neste 

trabalho os autores verificaram que o NGRDI seria sensível à biomassa antes do fechamento do 

dossel e que as variações na concentração de clorofila nas folhas não seriam detectáveis. 

 No estudo de ZHOU et al. (2021) o VDVI (índice de vegetação de diferença de luz visível) 

desempenha um papel melhor e tem melhor aplicabilidade na extração de informações de 

vegetação de imagem de ARPs apenas na banda visível, para estimar a taxa de cobertura da 

vegetação do deserto. 

  

4. MATERIAL E MÉTODOS 

4.1. Caracterização da área e disposição experimental 

 O experimento foi conduzido na fazenda FenoRio em uma área de produção comercial de 

capim Tifton85 (Cynodon spp.) localizada na Universidade Federal Rural do Rio de Janeiro, em 

Seropédica-RJ, Brasil (22° 47’ 05” S e 43° 40’ 44” W), com solo predominante classificado como 

argissolo vermelho-amarelo distrófico típico (SANTOS et. al., 2018) e clima segundo a 

classificação de Köppen (1948), é do tipo Aw, caracterizado por um clima tropical com estação 

chuvosa no verão e estação seca no inverno.  

 A área experimental possuiu 0,7 hectares (Figura 2) e o experimento ocorreu em um 

período de 48 dias a partir do corte de uniformização da forrageira, entre os meses de maio e junho 

(outono) com coletas em 5 épocas de avaliação. No interior da área experimental foram demarcados 

39 pontos georreferenciados com o auxílio do receptor GNSS (Global Navigation Satellite System) 

de alta precisão Topcon GNSS Hiper e materializados em formas de piquetes com numeração 

(Figura 3). O aparelho possui 226 canais com precisão horizontal de 5mm + 0,5ppm e vertical de 

10mm + 0,8ppm. 
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Figura 2. Localização da área de experimental – Fazenda FenoRio/UFRRJ 

 

Figura 3. Demarcação dos pontos com RTK. 



 

14 

 Para padronizar o crescimento da cultura foi realizado um corte para uniformização do 

Tifton 85 já cultivado na área, a 0,05 m do solo utilizando uma máquina roçadora Maqtron acoplada 

ao sistema de levante hidráulico e a tomada de potência (540rpm) do trator John Deere modelo 

5403 e potência 65CV. A adubação foi realizada em uma única etapa, 5 dias após o corte de 

uniformização com 100kg.ha-1 de ureia fórmula 46-00-00 (NPK) com máquina distribuidora de 

calcário Pinheiro modelo DCP600 light com discos rotativos acoplada a um trator Massey 

Ferguson modelo 4275 e potência 75CV.  

 

4.2. Caracterização do plano de voo e obtenção dos índices espectrais  

 As imagens foram coletadas em 5 épocas de avaliação, sendo o primeiro voo realizado ao 

décimo dia após o corte de uniformização. Os voos seguintes foram realizados em intervalos 

conforme as datas apresentadas na Tabela 1. Os intervalos foram definidos de modo que as coletas 

ocorressem em instantes onde houvesse evidente alterações físicas na cultura (altura e volume de 

biomassa). 

 

Tabela 1. Datas de realização da avaliação da cultura por meio do uso de ARPS e monitoramento 

dos atributos 

Época de avaliação 

(EA) 

Dias após o corte de 

uniformização 

Intervalos entre épocas 

de avaliação 

Data da 

avaliação 

1ª EA 10 dias --- 15/05/2023 

2ª EA 17 dias 7 dias 22/05/2023 

3ª EA 33 dias 16 dias 07/06/2023 

4ª EA 40 dias 7 dias 14/06/2023 

5 ª EA 48 dias 8 dias 22/06/2023 

 

 Para a coleta das imagens, foi utilizado um ARP modelo DJI Phantom 4 Advanced (Figura 

4) que possuiu uma câmera multiespectral de 20 Mp acoplada no interior do equipamento nas 

seguintes bandas: Banda 1 – Azul (450nm ±16nm), Banda 2 – Verde (560nm ±16nm), Banda 3 – 

Vermelho (650nm ±16nm), Banda 4 – Borda do Vermelho (730 ±16nm) e Banda 5 – Infravermelho 

Próximo (840nm ±16nm). Este aparelho possui sensor solar espectral integrado no topo da 
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aeronave para captura de radiação solar, o que possibilitou a correção radiométrica dos dados.  

 

Figura 4. ARP utilizada para aquisição das imagens. 

 

 Com auxílio do aplicativo Drone Deploy, foi realizado o planejamento de voo e as 

configurações da porcentagem de sobreposição entre as faixas longitudinais de 80% e laterais de 

70%, altura de 90 metros e sendo obtidas 305 imagens (61 imagens em cada banda) com resolução 

espacial de 4,8 cm/pixel em 5 minutos de voo. 

 Após todas as imagens capturadas, foi realizado a ortorretificação, aerotriangulação e a 

correção radiométrica com as configurações padrões do software Metashape Agisoft®, para 

montagem do mosaico de fotos para cada dia de voo.  

 Os ortomosaicos foram inseridos no software QGis, onde foram calculados os índices de 

vegetação conforme a Tabela 2 utilizando a ferramenta “raster calculator”. Após o cálculo dos 

índices de vegetação, com a ferramenta “buffer”, foi criado uma zona de interesse de raio de 1 

metro em torno de 39 pontos georreferenciados demarcados previamente. Em seguida, obteve-se o 

valor médio dos índices de vegetação para cada zona de interesse utilizando a ferramenta “statistic 

zonal”.   

 

Tabela 2. Índices de vegetação calculados utilizando dados espectrais obtidos por ARP. 

Índice Fórmula Autor 
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Green Normalized 

Difference Vegetation 

𝐺𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝐺)

(𝑁𝐼𝑅 + 𝐺)
 

 

GITELSON et. 

al. (1996) 

Normalized Difference 

Vegetation Index  

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 

 

ROUSE JR et al. 

(1973) 

Normalized Green-Red 

Difference Index  

𝑁𝐺𝑅𝐷𝐼 =  
(𝐺 − 𝑅)

(𝐺 + 𝑅)
 

 

HUNT et al. 

(2005) 

Ratio Vegetation Index 𝑅𝑉𝐼 =  
(𝑁𝐼𝑅)

(𝑅)
 JORDAN (1969) 

Soil-Ajusted Vegetation  

Index 
𝑆𝐴𝑉𝐼 =  

(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅 + 𝐿) ∗ (1 + 𝐿)
 HUETE (1988) 

Visible atmospherically 

resistant index 
𝑉𝐴𝑅𝐼 =  

(𝐺 − 𝑅)

(𝐺 + 𝑅 − 𝐵)
 

GITELSON et 

al. (2002) 

Visible Difference 

Vegetation Index 

𝑉𝐷𝑉𝐼 =  
(2 ∗ 𝐺 − 𝑅 − 𝐵)

(2 ∗ 𝐺 + 𝑅 + 𝐵)
 

 

XIAOQIN et al. 

(2015) 

Onde: R é a reflectância proveniente do canal vermelho da região do visível; G é a reflectância proveniente do canal 

verde da região do visível; B é a reflectância proveniente do canal azul da região do visível; NIR é a reflectância 

proveniente do canal do infravermelho próximo da região do infravermelho próximo; L é uma constante com o objetivo 

de minimizar o efeito do solo, seus valores variam de 0 a 1, sendo 1 para baixas densidades de vegetação, 0.5 para 

médias densidades e 0.25 altas densidades. Neste estudo foi escolhido L=1, já que pastagens possuem baixas 

densidades (DE ALMEIDA et al., 2019). 

 

4.3. Obtenção dos atributos da cultura 

 As mensurações dos atributos altura da planta, índice de área foliar (IAF) e clorofila foram 

realizadas nos 39 pontos georreferenciados. As medidas ocorreram nas 5 épocas de avaliação, em 

conjunto com a obtenção das imagens pelo ARP, totalizando um universo amostral de 195 

mensurações para cada atributo biofísico nos 48 dias de experimento.  

 Para a mensuração da altura da planta foram realizadas 5 aferições (leitura visual de uma 

régua graduada com precisão milimétrica) em torno de cada ponto georreferenciado, sendo obtido 

o valor médio, o qual representou a mensuração associada a cada ponto, conforme Figura 5. 
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Figura 5. Aferição da altura do Tifton85. 

 

 Para a coleta do IAF, foi utilizado o ceptômetro AccuPAR LP-80 (Figura 6), para 

determinação do crescimento do dossel e a sua interceptação de luz. A técnica combina medidas 

tomadas com o sensor acima do dossel com medidas tomadas sob o dossel próximas ao nível do 

solo. Este aparelho possui uma barra de 80cm com 80 sensores PAR (Radiação Fotossinteticamente 

Ativa) linearmente espaçados e um sensor PAR externo.  
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Figura 6. Ceptômetro utilizado na medição do IAF na cultura. 

 

 Inicialmente foi configurado a data, hora e local do experimento em cada dia de coleta. 

Em seguida, posicionou-se a barra do aparelho rente ao solo, abaixo do dossel e simultaneamente 

posicionado o sensor PAR externo acima do dossel para a realização de uma medição (Figura 7). 

Repetiu-se 5 vezes em cada ponto, alternando as posições do ceptômetro, onde cada amostra 

representa a média de 5 medições em torno do mesmo ponto. Vale ressaltar, que se atentou para a 

direção do sol, não fazendo sombra no dossel na hora da coleta dos dados. 
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Figura 7. Aferição do IAF com o ceptômetro. 

 

   A clorofila presentes nas folhas do Tifton85 foi mensurada utilizando um clorofilômetro 

Falker modelo clorofiLOG CFL1030 (Figura 8). Para esta aferição, utilizou-se as leituras 

associadas a Clorofila B, a qual possui picos de absorção em torno de 453 nm (azul) e 642 nm 

(alaranjado). Cada ponto representou a média de 5 medições em torno de cada ponto 

georreferenciado. Cada medição correspondeu à média de 5 leituras na mesma folha.  
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Figura 8. Clorofilômetro utilizado para mensuração de clorofila. 

 

 Ao final dos 48 dias de experimento, foi realizado o corte (colheita) da cultura nos 39 

pontos georreferenciados para cálculo da biomassa. Para a coleta da massa vegetal fresca em 

campo, foi utilizado um gabarito quadrado de 0,0625 m² (Figura 9). A vegetação contida no interior 

do gabarito foi cortada rente ao solo com auxílio de uma tesoura. As amostras foram armazenadas 

em sacos de papel vedados e identificados, levadas ao Laboratório de Pesquisa Multiusuários do 

Grupo de Energias Renováveis e Alternativas Rurais (LabGERAR) onde passaram pelo processo 

de secagem na estufa (Figura 10), a uma temperatura forçada a 65ºC por 72 horas. Posteriormente 

as amostras foram pesadas na balança semi analítica Marte AD200 (Figura 11), resultando na 

quantificação da matéria seca de forragem (biomassa) para cada ponto. 
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Figura 9. Gabarito utilizado e coleta de massa fresca do Tifton85. 

 

Figura 10. Estufa utilizada para secagem da massa fresca. 
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Figura 11. Balança utilizada para medição da biomassa. 

 

4.4. Caracterização do ambiente e obtenção dos graus-dias 

 O crescimento e desenvolvimento dos cultivos estão diretamente relacionados com a 

temperatura do meio ambiente. O monitoramento do plantio com graus-dia é uma ferramenta muito 

utilizada para o planejamento agrícola pois possibilita o acompanhamento em tempo real/térmico 

do desenvolvimento das culturas, sendo mais confiável que o tempo cronológico, o tempo 

necessário que cada cultura exige para atingir determinada fase fenológica em qualquer localidade.  

 Durante o período de realização do experimento, os dados de temperatura do ar e umidade 

relativa do ar (UR) foram monitorados pela estação meteorológica automática de superfície do 

Instituto Nacional de Meteorologia (INMET), localizada em Seropédica (22°45’13” S e 43°40’23” 

W).  

 Para o cálculo de graus-dia foi utilizado o método do menor desvio padrão, proposto por 

ARNOLD (1959), também conhecido como método Residual (Equação 3). Para a obtenção dos 

graus-dias foram utilizadas as temperaturas máximas e mínimas do dia da aquisição das imagens 

pelo ARP.  

              

𝐺𝐷 =  ∑ [(
𝑇𝑚á𝑥𝑖+𝑇𝑚í𝑛𝑖

2
 ) − 𝑇𝑏𝑎𝑠𝑒]𝑛

𝑖                   (3) 
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Onde: 

GD - Graus-dia (°C); 

Tmáx - temperatura máxima diária do ar (ºC);  

Tmín - temperatura mínima diária do ar (ºC); 

Tbase - temperatura base (°C).  

 

 Nos trabalhos de CARLI (2009), MALLMANN (2007) e SILVA (2014) considerou-se a 

temperatura base para o crescimento do Tifton85 de 10°C. Portanto, esse foi o valor considerado 

para o acúmulo de graus-dia nesta pesquisa. 

 

4.5. Análise dos dados 

4.5.1. Resposta dos atributos do Tifton85 em função dos graus-dias 

 Os dados meteorológicos de temperatura e umidade relativa do ar foram organizados e 

tabulados em planilha eletrônica e plotados em função das datas de avaliação (climograma).  

 Em seguida, utilizando os dados de temperatura máxima e mínima, foi elaborada uma 

tabela para melhor compreensão do comportamento dos graus-dias ao longo dos dias do 

experimento. A data de início coincidiu com o dia de corte de uniformização da área (dia 0).  

 Os graus-dia foram calculados para cada intervalo, possibilitando obter a quantidade de 

calor acumulado durante esse período. Os graus-dia acumulados foram então determinados, 

somando os graus-dia de cada intervalo anterior. A proporção dos graus-dia acumulados em relação 

ao total previsto para o período inteiro foi calculada. 

 A partir da tendência de dispersão dos atributos da cultura, foi realizada análises de 

regressão simples para cada atributo em função dos graus-dias, associados a cada época de 

avaliação. Os valores de índice de área foliar, clorofila e altura foram as variáveis dependentes do 

modelo, e os graus-dias foram as variáveis independentes.  

 

4.5.2. Avaliação da resposta dos índices de vegetação utilizando componentes 

principais 

 

 Neste item, utilizou-se o software R Studio 4.3.3 para aplicar a análise de componentes 

principais (ACP).  Os dados foram organizados em uma matriz de 195 observações (leituras por 

ponto georreferenciado) e 7 variáveis (IVs). A ACP foi executada para investigar a estrutura dos 
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dados e identificar padrões subjacentes, com objetivo de reduzir o conjunto de informações e obter 

os índices mais relevantes. 

 Inicialmente foi avaliada a porcentagem explicativa e porcentagem explicativa acumulada 

de cada componente principal. O conjunto de CPs com poder explicativo acumulado maior que 

70% da variância dos dados foi considerada o relevante para a redução do dimensionamento de 

variável. Ressalta-se que os dados não foram normalizados, uma vez que as combinações lineares 

geradas pela ACP foram obtidas pela matriz de correlação das variáveis originais.   

 A correlação dos índices espectrais com cada CP relevante e seus respectivos coeficientes 

(loadings) também foram avaliados. Os coeficientes associados aos CP relevantes foram utilizados 

para compor um índice de crescimento da cultura (ICC).  

 

4.5.3. Estimativa dos atributos do Tifton85 em função dos índices de vegetação e 

geração dos mapas de estimativa 

 Devido à grande a variabilidade das amostras observada, os dados obtidos foram dispostos 

em classes tendo como referência o erro de precisão do ceptômetro (erro=0,1) utilizado para 

mensurar a área foliar. Os demais atributos foram alocados de acordo com a classe do IAF. Desta 

forma, os 195 pontos amostrais coletados ao longo do experimento foram redistribuídos em 15 

classes (novos pontos amostrais), as quais foram representadas pelos valores médios dos atributos, 

e dos índices de vegetação alocados em cada classe.  

 Em planilha eletrônica, foi calculado a correlação de Pearson dos índices de vegetação 

com os atributos e selecionou-se o IVs que apresentaram a maior correlação com cada atributo 

biofísico para geração dos modelos de estimativa. Os modelos de estimativa univariados foram 

gerados por meio de uma regressão linear simples associando cada IV com cada atributo da cultura. 

Também foi gerado um modelo multivariado para estimativa dos atributos da cultura com base na 

relação linear entre atributos e o ICC gerado pela ACP. 

 Após a definição de cada equação de estimativa para os atributos, utilizando a ferramenta 

“raster calculator”, as equações foram importadas e aplicadas para a elaboração dos mapas de 

estimativa dos atributos em função dos índices de vegetação. O mesmo processo foi realizado para 

a elaboração dos mapas de estimativa dos atributos em função do índice multivariado ICC.  

 

4.6. Predição da biomassa em função dos índices de vegetação 
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 Devido a grande variabilidade observada, os dados foram agrupados para realizar a análise 

da relação entre a biomassa seca e os índices de vegetação (IVs) ao longo do experimento. 

Inicialmente, em planilha eletrônica, os dados de biomassa seca final foram dispostos em classes 

em intervalos de 10 unidades, gerando assim 8 pontos (média dos valores dispostos em cada 

classe). Os IVs foram agrupados de acordo com os pontos previamente definidos pela biomassa e 

separados por épocas de avaliação.  

 Em seguida, foi feito a correlação entre os IVs e a biomassa final para cada EA, permitindo 

assim, um estudo sobre qual época de avaliação apresentava a correlação mais forte com a biomassa 

final. Para a predição de biomassa, foi feita a regressão polinomial de grau 2 entre os valores de 

biomassa e o índice de vegetação que obteve maior correlação com a biomassa dentre todas as 

épocas de avaliação. Por fim, foi gerado o mapa de predição da biomassa final no software QGis 

utilizando a ferramenta “raster calculator” com a equação de regressão obtida.  

 

5. RESULTADOS E DISCUSSÃO 

5.1.  Resposta dos atributos em função dos graus-dias 

  Conforme observado na Figura 12, ao longo do período do experimento (05/05/2023 à 

22/06/2023) a temperatura do ar média diária observada na estação meteorológica automática do 

INMET foi de 21 °C, com temperaturas mínima e máxima absolutas de 17,5 °C (20/06/2023 - 

próximo a 5EA) e 25 °C (06/05/2023 - próximo a 1EA). A umidade relativa do ar média (UR 

média) registrada pela estação meteorológica ao longo do período do experimento variou entre 64 

e 90%. A menor UR média observada (64%) ocorreu no dia 10/06/2023 (próximo a 3EA).  
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Figura 12.  Climograma das médias das variáveis meteorológicas registradas durante o período de 

condução do experimento. 

 

 Durante o experimento, constatou-se que os dias com os níveis mais altos de umidade 

relativa estavam associados a períodos de chuva. Especificamente no dia 30/05/2023 onde obteve-

se a umidade relativa mais elevada 89,25% e registrou-se um total de 22 mm de precipitação. Um 

período contínuo de chuvas foi observado entre os dias 25 de maio e 02 de junho (entre a 2EA e 

3EA). O excesso de umidade pode afetar tanto a produtividade quanto a qualidade das culturas 

agrícolas.  

 A umidade relativa do ar e a temperatura são dois dos principais fatores climáticos que 

influenciam a produtividade das forrageiras.  Em CRUZ et. al. (2021) os autores alertaram que a 

temperatura exerce influência sobre diversas atividades metabólicas das plantas, destacando que 

variações nesse fator ambiental têm impacto direto no processo de desenvolvimento. Além disso, 

os autores enfatizam que a amplitude térmica presente no ecossistema de pastagem desencadeia 

efeitos na produção de biomassa do dossel forrageiro, resultando em modificações na dinâmica de 

acúmulo de forragem e em diversos atributos. 

 Na Tabela 3, os resultados apresentados revelam um panorama detalhado do acumulado 

térmico ao longo do experimento. Observou-se um acúmulo gradativo de graus-dias ao longo do 

período de coleta, culminando em um valor acumulado de 548,692 ºC.dia. Destaca-se, o pico de 

graus-dias alcançado em 06/05/2023, logo no início do experimento (entre o corte e a 1EA), quando 

registrou-se o valor de 14,508 ºC.dia. Além disso, é relevante salientar a identificação da época de 

maior acúmulo, evidenciada pela proporção de 32,233% na 3EA, indicando o período de maior 
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ganho proporcional de graus-dias durante o experimento.  

 

Tabela 3. Acúmulo de graus-dias ao longo do experimento 

Período Corte 1 EA 2 EA 3 EA 4 EA 5 EA 

Número de dias 0 10 17 33 40 48 

GDD 13,863 10,879 10,917 9,746 12,858 10,258 

GDD ac 13,863 136,544 205,031 381,892 465,479 548,692 

Proporção (%) 2,526 22,359 12,482 32,233 15,234 15,166 

Proporção ac (%) 2,526 24,885 37,367 69,600 84,834 100,000 

GDD: Graus dias; GDDac: Graus-dias acumulado; Propac: Proporção acumulada. 

 

 O conceito de graus-dia considera que para completar uma determinada fase fenológica 

ou seu ciclo total, a planta necessita acumular um determinado somatório térmico, a partir de uma 

temperatura base favorável ao desenvolvimento sendo esta variável com cada planta (SANCHES, 

2018). Para entender o desenvolvimento dos atributos estudados em relação aos graus-dias, foi 

gerado um modelo de regressão polinomial de grau 2 para os atributos Clorofila (Figura 13a) e IAF 

(Figura 13c). A parábola que representa a linha de tendência tem a concavidade voltada para baixo, 

expressando que o coeficiente da função é negativo (a < 0), ou seja, há uma crescente nas medidas 

dos atributos até aproximadamente 350 ºC.dias e após isso há queda nas medidas. No caso da altura 

(Figura 13b), a parábola apresenta concavidade voltada para cima (coeficiente positivo, a > 0) 

demonstrando que há uma pequena queda até próximo a 250 ºC.dias, mas que a partir de 300ºC.dias 

há um crescimento em relação ao aumento do acúmulo de graus dias. 
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Figura 13. a) Relação entre clorofila e graus-dias acumulados no crescimento do Tifton85. b) 

Relação entre altura e graus-dias acumulados no crescimento do Tifton85. c) Relação entre IAF e 

graus-dias acumulados no crescimento do Tifton85. 

  

 Em seu estudo, BEZERRA (2022) encontrou uma relação linear entre o acúmulo de graus-

dia (°C) e o Índice de Área Foliar (IAF) para diferentes manejos nutricionais de cultura forrageira. 
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Os parâmetros do modelo agroclimático indicaram essa relação, com valores de 0,0061; 0,0045 e 

0,003 para os manejos nutricionais alto, médio e baixo, respectivamente. Enquanto o estudo de 

Bezerra destaca uma relação direta, sugerindo que a cada grau acumulado, haverá um acréscimo 

constante no IAF, o presente trabalho explora essa relação não linear. Em todas as funções obteve-

se R² acima de 0,6, indicando que os modelos gerados possuem um poder razoável de explicação, 

sendo significativos a um nível de 5%. O atributo que teve maior poder explicativo foi a altura (R² 

= 0,95) e o de menor poder explicativo foi o IAF (R²=0,64). 

  O crescimento de forrageiras ao longo de 181 dias sob diferentes níveis de sombreamento 

durante o outono e inverno foi verificado por BORGES (2020) que obteve uma variação nos graus 

dias acumulados para cada nível de sombreamento nas plantas. O autor concluiu que para a 

condição do experimento, a produção de massa seca da forrageira estudada não revelou influência 

significativa do sombreamento e que as plantas cultivadas sob sombreamento exibiram uma altura 

de corte superior em comparação com as cultivadas a pleno sol. 

 

5.2. Avaliação da resposta dos índices de vegetação utilizando componentes principais 

 

A partir da análise exploratória (Tabela 4) dentre os índices avaliados, os índices NGRDI, 

VARI e VDVI foram os que apresentaram a menor diferença entre média e mediana (diferença 

menor que 0,01), demonstrando que esses índices possuem distribuição próxima de um valor 

central e que, no geral, todos obtiveram valores bem próximos, sugerindo uma distribuição dos 

dados em torno do centro sem grandes desvios.  
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Tabela 4. Análise descritiva dos dados dos índices de vegetação calculados 

  GNDVI NDVI NGRDI RVI SAVI VARI VDVI 

N° de amostras 195 195 195 195 195 195 195 

Média 0,4843 0,5822 0,1458 4,1178 0,8732 0,1110 0,2177 

Mediana 0,4970 0,6012 0,1539 4,1381 0,9016 0,1175 0,2243 

Mínimo 0,3122 0,3060 -0,0065 1,9142 0,4589 -0,0056 0,1107 

Máximo 0,5886 0,7679 0,3279 7,6858 1,1516 0,2519 0,3513 

Amplitude 0,2764 0,4619 0,3344 5,7716 0,6927 0,2574 0,2406 

Desvio padrão 0,0568 0,0912 0,0627 1,0540 0,1367 0,0479 0,0442 

Normalidade 0,000018 0,0000036 0,00396 0,2375 0,0000037 0,0342 0,0173 

Curtose 0,1539 0,2415 -0,2345 -0,0399 0,2414 -0,2058 -0,2734 

Assimetria -0,7211 -0,7912 -0,2431 0,1957 -0,7911 -0,2416 -0,1696 

Soma 94,4341 113,5298 28,4327 802,9715 170,2661 21,6496 42,4420 

CV (%) 0,1173 0,1566 0,4300 0,2560 0,1566 0,4315 0,2030 

 

Em relação ao coeficiente de curtose, três índices apresentaram distribuição leptocúrtica 

com picos e caudas alongados e p-valor baixíssimo: O GNDVI, NDVI e SAVI. Essa combinação 

indica que os dados não são normalmente distribuídos. Os índices NGRDI, VARI e VDVI 

apresentaram distribuição platicúrtica, indicando uma curva achatada e valores de p-valor próximos 

a 0, o que sugere a não distribuição normal dos dados. Com valor de curtose de 0,0399, o índice 

RVI apresenta uma distribuição mesocúrtica e maior p-valor dos dados observados (0,2375), o que 

indica que este índice possui a distribuição dos dados mais próxima ao da distribuição normal. 

Sobre a assimetria dos dados, somente o índice RVI possui distribuição assimétrica à direita 

(Ass. > 0), enquanto os índices GNDVI, NDVI, NGRDI, SAVI, VARI e VDVI apresentaram 

distribuição assimétrica à esquerda (Ass. <0). A análise do coeficiente de variação mostrou que, 

com base na classificação proposta por WARRICK & NIELSEN (1980), os índices NDVI, 

NGRDI, RVI, SAVI, VARI e VDVI apresentaram variação média (12% < CV < 60%), enquanto 

o GNDVI apresentou variação baixa (CV < 12%). 

Os índices de vegetação são fundamentais na agricultura e fornecem uma avaliação direta 

e confiável das condições dos cultivos. Dependendo do IV, informações sobre vários aspectos do 

crescimento e desenvolvimento das plantas podem ser monitorados, como teor de clorofila, índice 
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de área foliar, altura, entre outros. Estudos com IVs tem sido amplamente utilizado para diversas 

finalidades (OLIVEIRA, 2024; DE MELLO et al., 2020).  

 No trabalho de KOBAYASHI et al. (2020) foram analisados 91 índices espectrais para 

classificação de culturas a partir de imagens do satélite Sentinel-2. O uso de índices espectrais 

melhorou a precisão da classificação dessas culturas atingindo precisão global de 93,0%. 

 Em LISBOA (2020) o objetivo foi determinar e testar possíveis correlações entre Índices 

de Vegetação (Ivs) e massa de forragem, altura e proteína bruta do capim-braquiária. Os resultados 

indicaram o potencial dos IVs para serem utilizados em modelos preditivos desses parâmetros. 

 Em alguns casos a utilização de uma grande quantidade de dados pode ser desafiadora, 

exigindo recursos computacionais robustos e podendo até inviabilizar a análise univariada devido 

à sua complexidade (STELLACCI, et al., 2021). 

  A utilização de uma grande quantidade de dados pode ser desafiadora. Dados coletados 

em campo estão sujeitos a influências externas, podendo afetar a variabilidade desses e tornar a 

análise univariada mais complexa ou até mesmo inviável. 

 A coleta de dados em campo está suscetível a influências externas que afetam a 

variabilidade dos dados. Essas influências incluem condições climáticas variáveis e fatores 

ambientais imprevisíveis como por exemplo, tempestades, secas, deslizamentos, alta variação de 

temperatura, ventos fortes, entre outros. Essa complexidade na variabilidade dos dados pode tornar 

a análise univariada desafiadora, já que cada variável é considerada isoladamente, sem levar em 

conta interações e correlações entre múltiplas variáveis.  

 Nesse contexto, a análise multivariada emerge como uma ferramenta poderosa na 

compreensão das complexas interações dentro de sistemas agrícolas, como os relacionados aos 

índices de vegetação. Ao estudar simultaneamente várias variáveis, essa abordagem revela padrões 

e relações que não seriam perceptíveis em análises univariadas, proporcionando ganhos 

significativos de informação, permitindo uma compreensão mais abrangente dos processos que 

influenciam o crescimento das plantas e a produtividade das colheitas. 

 Utilizou-se a análise de componentes principais para entender o comportamento dos IVs 

e posteriormente obter um modelo de estimativa dos atributos em relação aos índices de vegetação 

com menor número de variáveis. Ao analisar os percentuais explicativos (Tabela 5), destaca-se a 

primeira componente principal (CP1) onde constitui 99,94% da variação dos índices espectrais. 

Este resultado sugere que todas as informações geradas nos IVs podem ser representadas de forma 
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abrangente apenas por essa variável. Além disso, essa possui autovalor acima de 1 o que reforça a 

capacidade da CP1 em representar todos os dados. 

 

Tabela 5. Autovalores (Autov), Percentual explicativo (PE) e percentual explicativo acumulado 

(PEAc) associada aos componentes principais gerados 

CP CP1 CP2 CP3 CP4 CP5 CP6 CP7 

Autov 6,795 0,155 0,041 0,007 0,0001 ~ 0,00 ~ 0,00 

PE (%) 99,944 0,052 ~ 0,00 ~ 0,00 ~ 0,00 ~ 0,00 ~ 0,00 

PEAc (%) 99,944 99,996 ~ 100 ~ 100 ~ 100 ~ 100 ~ 100 

 

 Na Tabela 6, são apresentados os dados de correlação entre os IVs e CP1 e os coeficientes 

de cada índice (loadings) com a CP1. Os resultados reforçam que todos os atributos apresentaram 

alta correlação com o CP1, e indicam que são correlacionáveis entre si e, portanto, podem ser 

substituídos pela CP1. 

 

Tabela 6. Correlação e coeficientes entre os índices espectrais (IVs) e Componente Principal 1 

 GNDVI NDVI NGRDI RVI SAVI VARI VDVI 

Correlação 0,969 0,993 0,992 0,983 0,993 0,991 0,974 

Coeficientes 0,372 0,381 0,380 0,377 0,381 0,380 0,374 

 

 Todos os IVs analisados apresentaram pesos semelhantes, refletido nos valores dos 

coeficientes em patamares aproximados. Os coeficientes indicaram a contribuição de cada variável 

original em cada componente principal e os valores positivos indicaram uma relação positiva com 

o CP1. Essa similaridade nos pesos indica que cada índice contribuiu de maneira similar para a 

avaliação do desenvolvimento do Tifton85.  

 Como o CP1 apresentou um poder explicativo de 99,94%, este componente principal pode 

ser usado para gerar um modelo global que possibilite monitorar a cultura. Sendo assim, neste 

estudo é proposto um novo índice denominado Índice de Crescimento da Cultura (ICC) construído 

a partir da componente principal 1. Os coeficientes associados a cada índice espectral compõem o 

ICC (Equação 3) que expressa o crescimento da cultura, sendo que quanto maior o índice, mais a 

cultura está desenvolvida.  



 

33 

𝐈𝐂𝐂 = 𝐂𝟏. 𝐆𝐍𝐃𝐕𝐈 + 𝐂𝟐. 𝐍𝐃𝐕𝐈 + 𝐂𝟑. 𝐍𝐆𝐑𝐃𝐈 + 𝐂𝟒. 𝐑𝐕𝐈 + 𝐂𝟓. 𝐒𝐀𝐕𝐈 + 𝐂𝟔. 𝐕𝐀𝐑𝐈 +

𝐂𝟕. 𝐕𝐃𝐕𝐈                                                                                                                                                          (3) 

 

onde Cx são os coeficientes associados a cada variável original que compõe a componente principal 

1.  

  Na Figura 14 têm-se a dispersão dos pontos amostrados em um plano bidimensional 

formado pelos componentes principais CP1 e CP2 (componentes mais relevantes). Observa-se um 

aumento nos valores de CP1 e CP2 da 1EA para a 3EA o que revela um padrão de crescimento ao 

longo das épocas de avalição. A partir da 3EA, ocorre uma mudança no comportamento no qual as 

amostras (3EA, 4EA e 5EA) se agrupam mais próximas, o que sugere menor distinção entre os 

valores a partir da 3EA. Isso indica que após a 3EA esses valores se estabilizaram, sugerindo que 

a partir dessa época (após 33 dias de experimento) os índices espectrais apresentem mais 

dificuldades em se relacionar com os atributos da planta. 

  

 

Figura 14. Dispersão no plano bidimensional dos scores do primeiro e segundo componente 

principal (CP1 e CP2) do grupo de dados. 

  

 Analisando o índice proposto, pode-se definir quanto maior o ICC, maior é o estágio de 

crescimento da cultura. Em alguns instantes há períodos de transição onde o ICC pode representar 

mais de um estágio de crescimento. Em geral, valores abaixo de 2,00 remetem predominantemente 

o crescimento da cultura até a 10 dias (1EA). ICC entre 2,00 e 2,50 remete predominantemente a 
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cultura com crescimento até a 2 EA (17 dias). Valores de ICC acima de 2,50 remetem 

predominantemente a cultura com crescimento superior a 3EA (33 dias).  

 É importante destacar que o ICC é calculado a partir da resposta de diversos índices 

espectrais o que lhe atribui uma característica robusta e ampla do ponto de vista das informações 

que compõe esses índices. Como se nota na Figura 14, o ICC apresenta grande potencial para o 

acompanhamento do crescimento da cultura, sendo um índice alternativo e inovador para 

monitoramento de lavouras a partir das características espectrais. Além do mais, o ICC tem 

potencial de aplicação em lavouras com grande nível de variabilidade onde muitas vezes a análise 

a partir de um único IV tenha dificuldade em monitorar algum atributo da cultura. 

 

5.3. Estimativa dos atributos em função dos índices de vegetação 

 A dependência entre as variáveis foi avaliada pelo cálculo do coeficiente de correlação 

linear de Pearson (r). Conforme FERREIRA FILHO et al. (2020), as correlações são classificadas 

em cinco intervalos: correlação muito fraca (0 < r < 0,19); fraca (0,20 < r < 0,39); moderada (0,40 

< r < 0,69); forte (0,70 < r < 0,89); muito forte (0,90 < r < 1). 

 A Tabela 7 mostra a correlação entre os atributos e os índices de vegetação. O índice 

VARI foi o que apresentou a maior correlação com a clorofila, com r = 0,848. Para a altura, o IV 

com maior correlação foi o GNDVI, r = 0,719. Por fim, na análise em questão, o NDVI foi o índice 

de vegetação que apresentou maior correlação com o IAF (r = 0,869). Em todos os casos, foram 

obtidas correlações fortes positivas onde o crescimento de uma variável é diretamente proporcional 

a outra.  

 

 

 

 

 

 

 

 

 



 

35 

Tabela 7. Correlação entre atributos da cultura e índices de vegetação 

  Clorofila Altura IAF GNDVI NDVI NGRDI RVI SAVI VARI VDVI 

Clorofila 1          

Altura 0,427 1 
        

IAF 0,885 0,509 1 
       

GNDVI 0,796 0,758 0,848 1 
      

NDVI 0,815 0,757 0,868 0,996 1 
     

NGRDI 0,846 0,739 0,845 0,977 0,987 1 
    

RVI 0,836 0,717 0,788 0,965 0,966 0,987 1 
   

SAVI 0,815 0,757 0,868 0,996 0,999 0,987 0,966 1 
  

VARI 0,848 0,742 0,842 0,974 0,985 0,999 0,987 0,985 1 
 

VDVI 0,830 0,738 0,835 0,970 0,983 0,998 0,983 0,983 0,997 1 

 

 Em seu trabalho, MONTANARO & ROSA (2022) objetivou correlacionar o índice de 

vegetação NDVI com índice de clorofila e produtividade da soja em diferentes dias após a 

semeadura (DAS). Na correlação da produtividade e NDVI, os melhores resultados foram com 117 

DAS (0,60), e 107 DAS (0,53), ambas classificadas como moderadas. Para as correlações entre 

clorofila e NDVI, os resultados apresentaram baixa correlação com maior valor para 0,46, com 

NDVI a 117 DAS.  

 Ao contrário de MONTARO & ROSA (2022), o presente estudo obteve correlações fortes 

em todos os atributos. Esses resultados sugerem que dentre os 7 IVs estudados, o VARI é o índice 

mais indicado para estimar o conteúdo de clorofila, o GNDVI é o índice mais indicado para estimar 

a altura e o NDVI é o índice mais indicado para estimar o índice de área foliar. Portanto, estes 

foram os índices escolhidos para a realização da regressão linear e geração do modelo de 

estimativa. 

 Ao realizar a regressão linear entre os atributos e os IVs escolhidos, o índice com maior 

coeficiente de determinação (R²) em relação ao respectivo atributo foi o NDVI com o IAF (Figura 

15c) com R²=0,7539. Esse valor indica que 75% da variação do IAF é explicada pelo índice. Para 

a clorofila e o VARI (Figura 15a), obteve-se o coeficiente de determinação de 0,7202, o que 

significa que 72% da variação da clorofila é explicada pelo índice VARI. No caso da altura e 

GNDVI (Figura 15b), obteve-se o menor R², de 0,5744, o que significa que apenas 57% da variação 
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da altura é explicada pelo índice GNDVI. Apesar de ser o menor R², ainda sim possui um bom 

poder explicativo. 
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Figura 15. Regressão entre Clorofila e VARI (a); Regressão entre Altura e GNDVI (b); Regressão 

entre IAF e NDVI (c). 
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 A utilização de modelos multivariados, como a Regressão por Componentes Principais, 

oferece diversas vantagens na análise da relação entre atributos da cultura e índices de vegetação 

(SOUZA et al., 2024). Em abordagens univariada, apenas um índice de vegetação é considerado 

de cada vez. Já os modelos multivariados permitem a integralização de informações de múltiplos 

IVs em uma única estrutura analítica, tornando a análise mais abrangente e podem capturar de 

forma mais precisa a variação nos dados e fornecer estimativas mais robustas dos atributos da 

cultura. 

 Neste estudo, em todos os atributos foram obtidas correlações fortes (0,70 < r < 0,89) e 

positivas com o ICC, assim como na análise realizada individualmente com todos os índices. Para 

o atributo Clorofila, obteve-se a maior correlação (0,83) seguido de 0,81 para IAF e 0,73 para 

altura. 

 Na elaboração da regressão para a clorofila (Figura 16a) e para altura (Figura 16b), foi 

observado que as equações empregando o ICC resultaram em valores de coeficiente de 

determinação similares as utilizando somente um índice de vegetação. No caso da clorofila, obteve-

se R² de 0,7009 e altura R² = 0,5336.  Esses valores indicam que 70% da variação da clorofila é 

explicada pelo ICC e que 53% da variação da altura é explicada pelo ICC.  No entanto, o modelo 

de regressão do IAF e ICC (Figura 16c), apresentou um coeficiente de determinação de 0,6582 

(65% da variação do IAF é explicada pelo ICC).  

  

 



 

39 

 

Figura 16. Regressão entre Clorofila e ICC (a); Regressão entre Altura e ICC (b); Regressão entre 

IAF e ICC (c). 
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 Embora os modelos da análise univariada tenha apresentado ajustes próximos ao obtidos 

pela ACP, para a análise univariada foi necessário realizar um pré-processamento alocando dados 

em intervalos próximos em classes visando minimizar o impacto da variabilidade da área na 

qualidade dos modelos gerados, em contrapartida, os modelos obtidos a partir da ACP foram 

gerados pelo conjunto total de dados coletados ao longo do experimento (195 dados) sem 

necessidade de um tratamento prévio. Este fato reforça a potencialidade do ICC em se relacionar 

com os atributos da cultura mesmo com nível de variabilidade que comprometam a análise a partir 

de um único índice de vegetação. 

 Com os modelos gerados foi possível elaborar mapas que proporcionam uma estimativa 

da distribuição espacial dos atributos na área de estudo ao longo do experimento. Neste estudo, 

foram elaborados os mapas de estimativa para a 1EA, 3 EA e 5 EA tanto da análise univariada 

como também os modelos utilizando ACP (ICC). Foi comparado as 3 épocas de avaliação para 

identificar padrões temporais e espaciais das respostas espectrais da vegetação em relação a cada 

atributo.  

 Ao analisar a evolução temporal da clorofila, utilizando o modelo gerado com o índice 

VARI, ao longo das épocas de avaliação, observou-se o crescimento dos atributos estimados na 5 

EA (Figura 17e e Figura 17f),  se comparado com a primeira EA (Figura 17a e Figura 17b). No 

entanto, esse aumento não foi observado entre a 3EA (Figura 17c e Figura 17d) para a 5EA, 

sugerindo até um possível decréscimo. Essa mudança de padrão possibilita questões importantes 

sobre os fatores que podem ter influenciado na geração do modelo. Dentre estas, pode-se salientar 

a não realização de adubações de cobertura e a alta incidência de plantas invasoras em competição 

com a forrageira, o que pode impactar direto no crescimento da cultura. 

 Já a evolução temporal da altura (modelo com o índice GNDVI) ao longo das épocas de 

avaliação, pode-se notar o aumento dos valores estimados da primeira EA (Figura 18a e Figura 

18b) para a última EA (Figura 18e e Figura 18f) analisada, embora o aumento mais significativo 

tenha sido entre a 1EA e a 3EA (Figura 18c e Figura 18d). Entre a 3EA e a 5EA apresentou um 

comportamento de estabilidade dos valores estimados. 

 Por fim, na análise da evolução temporal do IAF ao longo das épocas (NDVI), é notório 

o crescimento dos atributos da 1EA (Figura 19a e Figura 19b) para a 5EA (Figura 19e e Figura 

19f). Porém, esse aumento foi mais discreto do que o observado entre 1EA e 3EA ((Figura 19c e 

Figura 19d). Assim como na clorofila, esse padrão sugere possíveis influências no crescimento da 
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planta como também na geração do modelo. 

 

Figura 17. Imagem obtida pelo ARP na 1EA (a); Mapa de estimativa de Clorofila em função dos 

índices de vegetação VARI para 1EA (b); Imagem obtida pelo ARP na 3EA (c); Mapa de estimativa 

de Clorofila em função dos índices de vegetação VARI para 3EA (d); Imagem obtida pelo ARP na 
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5EA (e); Mapa de estimativa de Clorofila em função dos índices de vegetação VARI para 5EA (f). 

 

Figura 18. Imagem obtida pelo ARP na 1EA (a); Mapa de estimativa de Altura em função dos 

índices de vegetação GNDVI para 1EA (b); Imagem obtida pelo ARP na 3EA (c); Mapa de 

estimativa de Altura em função dos índices de vegetação GNDVI para 3EA (d); Imagem obtida 

pelo ARP na 5EA (e); Mapa de estimativa de Altura em função dos índices de vegetação GNDVI 
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para 5EA (f). 

 

Figura 19. Imagem obtida pelo ARP na 1EA (a); Mapa de estimativa de IAF em função dos índices 

de vegetação NDVI para 1EA (b); Imagem obtida pelo ARP na 3EA (c); Mapa de estimativa de 

IAF em função dos índices de vegetação NDVI para 3EA (d); Imagem obtida pelo ARP na 5EA 

(e); Mapa de estimativa de IAF em função dos índices de vegetação NDVI para 5EA (f). 
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 Ao analisar a evolução temporal da clorofila, utilizando o índice multivariado ICC, ao 

longo das épocas de avaliação, observou-se um aumento dos atributos estimados entre as épocas 

1EA (Figura 20a e Figura 20b), 3EA (Figura 20c e Figura 20d) e 5EA (Figura 20e e Figura 20f). 

Ainda apresentando um decréscimo entre a 3EA e 5EA, comportamento similar ao dos mapas de 

estimativa de clorofila gerados com o modelo utilizando somente o IV VARI. 

 Para a evolução temporal da estimativa de altura gerada com ICC ao longo das épocas de 

avaliação, pode-se notar o crescimento dos valores estimados da 1EA (Figura 21a e Figura 21b) 

para a 5EA (Figura 21e e Figura 21f) analisada, embora tendo aumento mais significativo entre a 

1EA e a 3EA (Figura 21c e Figura 21d). Entre a 3EA e a 5EA os mapas apresentaram estabilidade 

nos valores estimados. 

 Destaca-se que o ICC realçou a crescente das alturas ao longo do tempo. Em certas 

situações índices multivariados podem melhorar os mapas de estimativa de atributos da cultura por 

serem influenciados por características de múltiplos índices de vegetação simultaneamente. 

 Por fim, na evolução temporal do IAF gerado em relação ao ICC ao longo das épocas, foi 

observado o crescimento dos atributos da 1EA (Figura 22a e Figura 22b) para a 5EA (Figura 22e 

e Figura 22f). Notou-se que entre a 1EA e 3EA (Figura 22c e Figura 22d) aparenta possível 

decréscimo dos valores estimados. Vale ressaltar que houve uma superestimativa do modelo em 

algumas regiões do mapa, cuja legenda indica IAF próximo a 3,5 em tons verde escuro, onde nos 

dados de campo não se obteve valores de IAF maiores que 1,8.  Alguns fatores podem ter 

influenciado na geração do modelo e consequentemente na superestimativa dos valores. Dentre 

estas, pode-se salientar a falta de adubação adequada na área de estudo, o manejo não adequado e 

até mesmo a presença de plantas invasoras disputando espaço, o que pode impactar direto no 

crescimento da cultura. 
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Figura 20. Imagem obtida pelo ARP na 1EA (a); Mapa de estimativa de Clorofila em função do 

ICC para 1EA (b); Imagem obtida pelo ARP na 3EA (c); Mapa de estimativa de Clorofila em 

função do ICC para 3EA (d); Imagem obtida pelo ARP na 5EA (e); Mapa de estimativa de Clorofila 

em função do ICC para 5EA (f). 
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Figura 21. Imagem obtida pelo ARP na 1EA (a); Mapa de estimativa de Altura em função do ICC 

para 1EA (b); Imagem obtida pelo ARP na 3EA (c); Mapa de estimativa de Altura em função do 

ICC para 3EA (d); Imagem obtida pelo ARP na 5EA (e); Mapa de estimativa de Altura em função 
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do ICC para 5EA (f). 

 

Figura 22. Imagem obtida pelo ARP na 1EA (a); Mapa de estimativa de IAF em função do ICC 

para 1EA (b); Imagem obtida pelo ARP na 3EA (c); Mapa de estimativa de IAF em função do ICC 

para 3EA (d); Imagem obtida pelo ARP na 5EA (e); Mapa de estimativa de IAF em função do ICC 
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para 5EA (f). 

 A utilização de ARPs para estimativa de atributos de cultura demonstra ser uma 

ferramenta valiosa para os produtores. Essa tecnologia permite uma coleta de dados mais precisa, 

não destrutiva e fornece informações importantes sobre as culturas, sendo um facilitador e 

otimizador das práticas agrícolas, auxiliando em estratégias de manejo mais eficientes e assertivas. 

Além disso, a utilização de ARPs podem reduzir custos operacionais e o tempo necessário para 

monitorar extensas áreas de cultivo. 

A variabilidade na produção agrícola pode ser influenciada por práticas de manejo 

ineficientes, adubação inadequada, prejudicando o acompanhamento temporal das culturas. No 

entanto, o Índice de Crescimento da Cultura desenvolvido surge como alternativa para minimizar 

esses efeitos sendo eficaz na estimativa de atributos culturais, mesmo diante das variabilidades 

encontradas nos dados. Neste estudo, percebe-se que antes dos 33 dias de desenvolvimento da 

cultura o ICC apresenta estimativas mais precisas, com tendência de maior acurácia quanto mais 

precoce for a aplicação. Dessa forma, esse índice é uma ferramenta valiosa para a análise dos 

atributos e manejo agrícola da cultura. 

 

5.4. Predição da biomassa em função dos índices espectrais 

  Os resultados da análise de correlação entre os índices de vegetação (IVs) e a biomassa 

final são apresentados na Tabela 8. A análise dessas correlações permitiu identificar quais IVs estão 

mais fortemente associados à biomassa final. Dentre os índices de vegetação avaliados, o GNDVI 

foi o que apresentou maior correlação (r = -0,822) na 3EA, portanto esse valor indica que o GNDVI 

da 3EA é o que melhor explica a biomassa final dentre todas as épocas de avaliação analisadas. 

Essa correlação é forte e negativa, ou seja, o crescimento de uma variável é inversamente 

proporcional a outra. 

 

Tabela 8. Correlação entre a biomassa final e os índices de vegetação 

 Correlação  

1ª EA 

Correlação  

2ª EA 

Correlação 

3ª EA 

Correlação 

4ª EA 

Correlação 

5ª EA 

GNDVI -0,49504 -0,79269 -0,82298 -0,53915 -0,40365 

NDVI -0,49128 -0,77918 -0,82157 -0,58714 -0,40784 
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NGRDI -0,5256 -0,74056 -0,80351 -0,62587 -0,43157 

RVI -0,56502 -0,74976 -0,79525 -0,58762 -0,44581 

SAVI -0,49128 -0,77915 -0,82157 -0,58714 -0,40787 

VARI -0,52077 -0,73978 -0,80076 -0,62448 -0,42866 

VDVI -0,4759 -0,71891 -0,76279 -0,57211 -0,31645 

 Em RAMOS (2020) foi realizada a estimativa de biomassa florestal utilizando dados de 

20 anos de monitoramento da vegetação a partir de índices de vegetação. A autora analisou modelos 

exponencial, polinomial e linear com os índices SR, NDVI, EVI, NDWI e NDDI entre os anos de 

1996 e 2016. O modelo escolhido para a estimativa temporal foi o com maior coeficiente de 

determinação (R²=0,85) e utilizou as variáveis ano e os índices de vegetação: NDWI, NDDI e EVI. 

 Neste trabalho, utilizou-se um modelo polinomial de grau 2 para estimar a biomassa com 

um coeficiente de determinação de 0,8078, indicando uma forte correlação entre as variáveis 

conforme observado na Figura 23. Os dados obtidos em campo e utilizados para a construção do 

modelo situam-se na faixa de valores de GNDVI entre 0,5 e 0,6. Em seguida, apresenta-se uma 

comparação visual entre o ortomosaico na região espectral do visível da 5EA (Figura 24a) e o mapa 

de estimativa de biomassa (Figura 24b). 

 

Figura 23. Regressão polinomial entre GNDVI e Biomassa do Tifton obtida após 48 dias de 

experimento. 
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Figura 24. Comparativo entre (a) a imagem do ortomosaico aos 48 dias (5EA) e; (b) os valores de 

biomassa do Tifton85 estimados pelo modelo com base no GNDVI. 

 

Em geral, espera-se que valores maiores de GNDVI sejam associados a maiores valores de 

biomassa visto que esse índice mede a atividade fotossintética da cultura que normalmente é maior 

com a densidade da vegetação. Porém, conforme gráfico apresentado (Figura 23), valores menores 

de GNDVI estão associados a maiores valores de biomassa e à medida que o GNDVI aumenta, a 

relação com a biomassa diminui tendendo a se estabilizar.  

No ortomosaico obtido em 22/06/2023, é possível identificar a estrada e a área experimental 

com a cultura (Figura 24a). Na Figura 24b têm-se o mapa de estimativa de biomassa da cultura 

para a 5EA que visualmente está condizente com a realidade observada no ortomosaico. No 

entanto, percebe-se que o modelo tende a extrapolar em regiões onde o GNDVI se aproxima de 

zero, como em áreas com pouca vegetação ou solo exposto, indicando alto crescimento da cultura. 

Nessas situações, o modelo pode erroneamente indicar a presença de alta biomassa.  

Este comportamento do modelo pode ser atribuído ao intervalo de dados limitado utilizado 

para gerar o modelo, bem como pelas condições de manejo inadequado, deficiência de nutrientes 

no solo e controle de pragas na área do experimento. Vale ressaltar que para valores de GNDVI 

dentro do intervalo utilizado para a geração do modelo, a estimativa foi condizente e assertiva. 
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No trabalho de SCHWALBERT et al. (2020) foi avaliado quão cedo poderia predizer a 

produtividade de soja usando NDVI, EVI, temperatura da superfície terrestre e precipitação como 

variáveis independentes com diferentes algoritmos, dentre eles o da regressão linear múltipla. Os 

autores concluíram que a precisão do modelo diminuiu à medida que antecipava as datas anteriores 

das previsões. O melhor modelo indicou que a produtividade da soja pôde ser prevista com 70 dias 

antes da colheita.  

Neste estudo foi possível estimar a produtividade final em um momento precoce (3EA), 

antes da cultura atingir o momento da colheita de forma assertiva quando se tinha valores de 

GNDVI entre 0,48 e 0,62. É valido destacar a necessidade de futuros ajustes no modelo e 

elaboração de modelos com maior quantidade de dados ou em maiores intervalos. Entretanto, 

apesar da limitação, o modelo surge como uma ferramenta valiosa e se torna diferencial para o 

planejamento estratégico e tomada de decisões assertivas dos produtores. 

 

6. CONCLUSÃO 

 Este estudo demonstrou que técnicas de sensoriamento remoto são eficazes na avaliação 

das respostas espectrais da forrageira Tifton85 e que foi possível analisar isso em diferentes 

estágios de crescimento da cultura.  

 A utilização de ARPs para obtenção de dados espectrais são comumente utilizados no 

cálculo de índices de vegetação (IVs). Essa tecnologia permitiu a caracterização da área, 

fornecendo informações da cultura por um método não destrutivo e de rápida aquisição.  

 A mensuração dos atributos do Tifton85 foi obtida em diferentes épocas de avaliação e 

mostrou padrões significativos do crescimento da cultura, onde se observou um crescimento da 

cultura, principalmente entre a primeira época de avaliação e a terceira.  

 Neste estudo, foram obtidas correlações fortes e moderadas ao analisar os IVs e atributos 

do Tifton85. De forma univariada, os modelos de estimativas apresentaram melhor desempenho 

quando associado ao índice VARI para estimativa da clorofila (R² =0,7202), índice GNDVI para 

estimativa da altura (R² = 0,5744) e índice NDVI para estimativa do IAF (R² = 0,7539).  

 A análise multivariada, possibilitou reduzir a dimensionalidade das informações obtidas 

pelos IVs para um único componente principal (poder explicativo = 99,94%) e verificar de forma 

gráfica a relação entre a variância gerada pelos IVS e o crescimento da cultura, especialmente entre 

até a 3EA (33 dias de crescimento após o corte de uniformização). 
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 O índice multivariado proposto (índice de crescimento da cultura – ICC) demonstrou 

grande aplicabilidade, especialmente em lavouras onde devido à grande variabilidade os modelos 

univariados gerados pelos IVs apresentam baixa relação com os atributos da cultura. Os modelos 

gerados a partir do ICC apresentaram R² = 0,7009 para clorofila, R² = 0,5336 para altura e R² = 

0,6582 para o IAF possibilitando gerar mapas representativos da variabilidade destes atributos da 

cultura.  

 Para a estimativa de biomassa, o índice de maior correlação foi o GNDVI da 3EA (r = -

0,82298), sendo este utilizado para predizer a biomassa final da cultura, obtendo R² = 0,8078. 

 A geração de modelos capazes de estimar atributos da cultura a partir das características 

espectrais apresenta um potencial para otimizar a produção agrícola e promover melhorias nas 

tomadas de decisões sem necessitar de métodos destrutivos. 
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