Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10027
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDias, Anelise
dc.date.accessioned2023-12-21T18:56:06Z-
dc.date.available2023-12-21T18:56:06Z-
dc.date.issued2011-09-23
dc.identifier.citationDIAS, Anelise. Caracterização e seleção de bactérias fluorescentes promotoras do crescimento de couve. 2011. 155 f. Tese (Doutorado em Fitotecnia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2011.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10027-
dc.description.abstractUma coleção de 189 isolados bacterianos, provenientes de sistema orgânico de produção de hortaliças, foi caracterizada com vistas à seleção de estirpes promotoras do crescimento de couve. Os isolamentos foram realizados a partir da rizosfera de hortaliças e do solo após colheita das espécies cultivadas. A grande maioria das estirpes apresentou perfil bioquímico idêntico a Pseudomonas (grupo fluorescente). Enquanto perfis idênticos a Burkholderia, Acinetobacter e Stenotrophomonas constituíram outros grupos de representantes. A caracterização dos isolados levou em conta a capacidade de síntese de compostos possivelmente envolvidos em mecanismos de estímulo ao crescimento de plantas, a saber: biofilmes, sideróforos, acil-lactonas homoserinas (ALHs), ácido indol-3-acético (AIA) e compostos indólicos relacionados, além da solubilização de fosfato de cálcio. Um total de 94 isolados foi testado na casa de vegetação quanto à capacidade de promover o crescimento de couve (Brassica oleraceae var. acephala) em vasos contendo solo distrófico não esterilizado. Paralelamente, foram avaliados consórcios entre componentes da coleção e rizóbios para igual finalidade. Em adendo, foram comparados os efeitos da aplicação de determinados isolados produtores de AIA e da aplicação de AIA sintético sobre o crescimento da couve. Os experimentos de laboratório indicaram que, in vitro, 100% dos isolados formaram biofilme, 71% sintetizaram sideróforos, 31% produziram AHLs, 95% produziram AIA e 74% solubilizaram P. No entanto, os bioensaios na casa de vegetação evidenciaram que apenas 11% dos isolados bacterianos induziam respostas significativas de promoção do crescimento da couve. Desses, um subgrupo formado por 10 estirpes de rizobactérias conferiu incrementos nos parâmetros de crescimento, tanto da biomassa aérea quanto do sistema radicular da hortaliça. Biofilmes, sideróforos, AIA e solubilização do P foram características comuns do subgrupo. Não foi observado efeito sinérgico entre os isolados em consórcios, embora tenha sido verificado que as duas estirpes de rizóbios consorciadas promoveram o crescimento das plantas inoculadas. Os isolados R1132 e S311 foram superiores à aplicação do AIA sintético. Os resultados obtidos sinalizaram o potencial de 12 bactérias que promover o crescimento das plantas e incrementar a produção de couve.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectplant growth promoting, auxin, solubilization of calcium phosphateeng
dc.subjectpromoção do crescimento de plantas, auxina, solubilização de fosfato de cálcio.por
dc.titleCaracterização e seleção de bactérias fluorescentes promotoras do crescimento de couvepor
dc.typeTesepor
dc.description.abstractOtherA collection of 189 bacterial isolates, obtained from organic system of vegetable production, was characterized aiming to selection of cabbage growth promoting strains. Isolatings were performed from rhizosphere of vegetables and soil after harvest of cultivated species. The vast majority of the strains showed biochemical profiles identical to Pseudomonas (fluorescent group). While profiles identical to Burkholderia, Stenotrophomonas and Acinetobacter constituted other groups of representatives. Characterization of isolates took into account the capacity for synthesis of compounds possibly involved in mechanisms to stimulate plant growth, namely: biofilms, siderophores, acyl homoserine lactones (AHLs), indole-3-acetic acid (IAA) and indole related compounds, as well as solubilization of calcium phosphate. A total of 94 isolates were evaluated in the greenhouse for their ability to promote the growth of cabbage (Brassica oleracea var. acephala) in pots containing unsterilized loam soil. In addition, consortia were evaluated between components of the collection and rhizobia for the same purpose. In addition, it compared the effects of application of certain producing IAA isolates and the application of synthetic IAA on the growth of cabbage. Laboratory experiments showed that in vitro, 100% of the isolates formed biofilm, 71% synthesized siderophores, 31% produced AHLs, 95% produced IAA and 74% solubilized P. However, bioassays in the greenhouse showed that only 12% of the isolates induced significant responses to promote the growth of cabbage. Of these, a subgroup composed of 10 strains of rhizobacteria given increments in growth parameters of both the biomass and the root system of vegetables. Biofilms, siderophores, IAA and solubilization of P were common characteristics of the subgroup. No synergistic effect was observed among isolates in consortia, although it was found that the two strains of rhizobia consortium promoted the growth of inoculated plants. The isolates R1132 and S311 were higher than the application of synthetic IAA. The results suggested the potential of 12 bacteria to promote plant growth and increase production of cabbagepor
dc.contributor.advisor1Rumjanek, Norma Gouvêa
dc.contributor.advisor1ID345.536.817-49por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7961822026608333por
dc.contributor.advisor-co1Ribeiro, Raul de Lucena Duarte
dc.contributor.advisor-co1ID025.057.037-87por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8137954578668072por
dc.creator.ID036.796.986-66por
dc.creator.Latteshttp://lattes.cnpq.br/1541468600424364por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesADESEMOYE, A.O.; KLOEPPER, J.W. Plant microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology, v.85, p.1-12, 2009. AFZAL, I.; BASRA, S. IQBAL, A. The effect of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. Journal of Stress Physiology and Biochemistry, v.1, p.6 14, 2005. AGROFIT (2011) Sistema de Agrotóxicos Fitossanitários. Disponível em: http://agrofit.agricultura.gov.br/primeira_pagina /extranet /AGROFIT.html. Acesso em: 9 set. 2011. AHMED, N.; SHAHAB, S.Phosphate solubilization: Their mechanism genetics and application. The Internet Journal of Microbiology, v.9, 2011. ALABOUVETTE, C.; OLIVAIN, C.; STEINBERG, C. Biological control of plant diseases: the european situation. European Journal of Plant Pathology, v. 114, p. 329- 341, 2006. ALAMI, Y.; ACHOUAK, W.; MAROL, C.H.T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by exopolysaccharide producing Rhizobium sp. strain isolated from sunflower roots. Applied Environmental Microbiology, v.66, p.3393 3398, 2000. ALI, B.; SABRI, A.; HASNAIN, S. Rhizobacterial potential to alter auxin content and growth of Vigna radiata (L.). World Journal of Microbiology and Biotechnology, v. 26, p.1379-1384, 2010. ALTIERI, M. A. The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystem & Environment, v. 74, p.19-31, 1999. ANDERSEN, J. B.; KOCH, B.; NIELSEN, T. H.; SORENSEN, D.; HANSEN, M.; NYBROE, O; CHRISTOPHERSEN, C.; SORENSEN, J.; MOLIN, S.; GIVSKOV, M. Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Phytium ultimum. Microbiology, 149:37-46, 2003. 116 ANZAI, Y.; KIM, H.; PARK, J.Y.; WAKABAYASHI, H.; OYAIZU, H. Phylogenetic affiliation of the pseudomonads based on 16s rRNA sequence. Internation Journal of Systematic Evolution Microbiology, v.50, p.1563 1589, 2000. APS BIOLOGICAL CONTROL COMMITTEE. Commercial biocontrol products available in the U.S.A. for use against plant pathogens. Disponível em: http://www.oardc.ohio-state.edu/apsbcc/. Acesso em: 4 jan.2011. AREVALO-FERRO, C.; REIL, G.; GORG, A.; EBERL, L. Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics. Systematic and Applied Microbiology, v.28, p.87 114, 2005. ARORA, N.K.; EKTA, K.; HARE, J.H.O; SUN, C.K.; DINESH, K.M. Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World Journal of Microbiology and Biotechnology, 24:581-585, 2007 ARSHAD, M.; SALEEM, M.; HUSSAIN, S. Perspectives of bacterial ACC deaminase in phytoremediation. Trends in Biotechnology, v.25, p.356-362, 2007. BABALOLA, O. O. Beneficial bacteria of agricultural importance. Biotechnology Letters, v.32, p.1559-1570, 2010. BARROTI, G.; NAHAS, E. População microbiana total e solubilizadora de fosfato em solo submetido a diferentes sistemas de cultivo. Pesquisa Agropecuária Brasileira, v. 35, p.2043-2050, 2000. BATTLE, S.E.; RELLO, J.; HAUSER, A.R. Genomic islands of Pseudomonas aeruginosa. FEMS Microbiology Letters, v. 290, p.70 78, 2009. BALDOTTO, L.E.B.; BALDOTTO, M.A.; OLIVARES, F.L.; VIANA, A.P.; BRESSAN-SMITH, R. Seleção de bactérias promotoras de crescimento no abacaxizeiro cultivar vitória durante a aclimatização. Revista Brasileira de Ciência do Solo, v.34, p.349-360, 2010. BANO, A.; FATIMA, M. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas spp. Biology & Fertility of Soils, v.45, p.405 413, 2009. 117 BASHAN, L.E.; ANTOUN, H.; BASHAN, Y. Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Journal of Phycology, v.44, 938 947, 2008. BAUER, W.D.; MATHESIUS, U.; TEPLITSKI. Eukaryotes deal with bacterial quorum sensing. ASM News, 71, p.129-135, 2005. BAREA, J.M.; POZO, M.J.; AZCON, R.; AGUILAR, C.A. Microbial co-operation in the rhizosphere. Journal of Experimental Botany, v.56, p. 1761 1778, 2005. BAUDOIN, E.; LERNER, A.; MIRZA, M. S.; EL ZEMRANY, H. et al. Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Research in Microbiology, v.161, p.219-226, 2010. BAYA, M.A., BOEHHING, R.S. AND RAMOS-CORMENZANA, A. Vitamin production in relation to phosphate solubilization by bacteria. Soil Biology & Biochemistry, v.13, p.527-531, 1981. BEHRENDT, U.; ULRICH, A.; SCHUMANN, P. ERLER, W.; BURGHARDT, J.; SEYFARTH, W. A taxonomic study of bacteria isolated from grasses: a proposed new species Pseudomonas graminis sp. nov. International Journal of Systematic Bacteriology, v.49, p.297 308, 1999. BENITE, A.M.C.; MACHADO, S.P. Sideróforos: uma resposta dos microorganismos . Química Nova, v.25, p.1155-1164, 2002 BENNASAR, A.; MULET, M.; LALUCAT, J.; GARCÍA-VALDÉS, E. PseudomoMLSA: a database for multigenic sequence analysis of Pseudomonas species. Microbiology, v.10, p.118, 2010. BERINGER, J.E.R. Factor transfer in Rhizobium leguminosarum. Journal of General Microbiology, v.84, p.188-198, 1974. BERG, G. Plant microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture Applied Microbiology Biotechnology, v.84, p.11 18, 2009. 118 BERRAQUERO, F.R.; BAYA, A.M.; CORMENZANA, A.R. Establecimiento de indices para el estudio de la solubilizacion de fosfatos por bacterias del suelo. Ars Pharmaceutica, v.17, p. 399-406, 1976. BEVIVINO, A.; TABACCHIONI, S.; CHIARINI, L.; CARUSI, M.; DEL GALLO, M.; VISCA, P.; Phenotypic comparison between rhizosphere and clinical isolates of Burkholderia cepacia. Microbiology, v.140,p. 1069-1077, 1994. BROWN, G. R.; SUTCLIFFE, I. C.; CUMMINGS, S. P. Reclassification of [Pseudomonas] doudoroffii (Baumann et al. 1983) into the genus Oceanomonas gen. nov. as Oceanomonas doudoroffii comb. nov., and description of a phenol-degrading bacterium from estuarine water as Oceanomonas baumannii sp. nov. International Journal of Systematic Bacteriology, v.51, p.67 72, 2001. BROWNE, P.; RICE, O.; MILLER, S.; BURKE, J., DOWLING, D.N.; MORRISEY, J.P.; O´GARA, F. Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Applied Soil Ecology, v.43, p.131-38, 2009. CAMILLI, A.; BASSLER, B. L. Bacterial small-molecule signaling pathways. Science, 311:1113-1116, 2006. CHAIHARN, M.; CHUNHALEUCHANON, S.; LUMYONG, S. SCREENING siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World Journal of Microbiology & Biotechnology, 25:1919 1928, 2009. CHANDRA, S., CHOURE, K., DUBEY, R. C., & MAHESHWARI, D. K. Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Brazilian Journal of Microbiology, v.38, p.124-130, 2007. CHANG, W.S.; MORTEL, M.; NIELSEN, L.; GUZMAN, G.N.; LI, XIAOHONG; HALVERSON, L.J. Alginate production by Pseudomonas spp. putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. Journal of Bacteriology, v.189, p.8290 8299, 2007. 119 CHEN, L.; DICK, W.A.; STREETER, J.G.; HOITINK, H.A.T. Fe chelates from compost microorganisms improve Fe nutrition of soybean and oat. Plant and Soil, 200:139-147, 1998. CHENG, Z.; PARK, E.; GLICK, B.R. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas spp. putida UW4 facilitates the growth of canola in the presence of salt. Canadian Journal of Microbiology, v.53, p.912 918, 2007. CHOUDHARY, D.K.; PRAKASH, W.A.V.; JOHRI, B.N. Insights of the fluorescent pseudomonads in plant growth regulation. Current Science, v.97, p.170-179, 2009. COLLAVINO, M.M.; SANSBERRO, P.A.; MROGINSKI, L.A.; AGUILAR, M.O. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils, v.46, p.727-738, 2010. COMPANT, S.; CLÉMENT, C.; SESSITSCH, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, v. 42, p.669-678, 2010. COMPANT, S.; DUFFY, B.; NOWAK, J.; CLEMENT, C.; BARKA, E. A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environment Microbiology, v.71, p.4951- 4959, 2005. COOK, R.J. Tell me again what it is that you do. Annual Review of Phytopathology, v.45, p.1-23, 2007. CORNELIS, P. Iron uptake and metabolism in pseudomonads. Applied Microbiology and Biotechnology, v.86, p.1637 1645, 2010. CORRÊA, S. Anuário brasileiro de hortaliças. Santa Cruz do Sul, 2010. 88 p. COSTERTON, J.W.; LEWANDOWSKI, Z.; CALDWELL, D.E.; KORBER, D.R.; LAPPIN-SCOTT. H.M. Microbial Biofilms. Annual Review of Microbiology, v.49, p.711-745, 1995. CURIE, C.; BRIAT, J.F. Iron transport and signaling in plants. Annual Review of Plant Biology, v.54, p. 183-206, 2003. 120 CZACZYK, K.; MYSZKA, K. Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish Journal of Environmental Studies, v.16, p.799-806, 2007. DAKORA, F.D.; PHILLIPS, D. Root exudates as mediators of mineral acquisition in low-nutrient environments, Plant and Soil, v.245, p.35-47, 2002. DANHORN, T.; FUQUA, C. Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, v.61, p.401-422, 2007. DEANGELIS et al. 2008 Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. Disponível em: http://escholarship.org/uc/item/7hs4001x. Acessado em: 4 set.2011. DECHO, A.; NORMAN, R.S.. VISSCHER,P.T. Quorum sensing in natural environments: emerging views from microbial mats. Trends in Microbiology, v.18, p.73- 80, 2010. DEGRASSI, G.; AGUILAR, C.; BOSCO, M.; ZAHARIEV, S.; SANDOR, P.; VENTURI, V. Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross-talk with quorum sensing bacterial sensors. Current Microbiology, v. 45, p. 250-254, 2002. DE LA FUENTE, L.; MAVRODIA, D.V.; THOMASHOW, L.S.; WELLER, D.M. Utilization of trehalose, benzoate, valerate, and seed and root exudates by genotypes of 2,4-diacetylphloroglucinol producing Pseudomonas fluorescens. Soil Biology & Biochemistry, v.39, p.2712 2722, 2007. DESNOS, T. Root branching responses to phosphate and nitrate. Current opinion in plant biology, v.11, p. 82-87, 2008. DIAS, A. Rizobactérias associadas a hortaliças sob cultivo orgânico: caracterização e seleção para o biocontrole de fungos fitopatogênicos habitantes do solo. 2008. 93f.. Dissertação (Mestrado em Biotecnologia Vegetal) Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro. 121 DUFFY, B.K.; DÉFAGO, G. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Applied and Environmental Microbiology, v.65, p.2429 2438, 1999. EGAMBERDIEVA, D. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiology of Plant, v.31, p.861 864, 2009. EGAMBERDIEVA, D.; BERG, G.; LINDSTRÖM, K.; RÄSÄNEN, L.A. Coinoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance off odder galega (Galega orientalis Lam.). European Journal of Soil Biology, v.46, p. 269-272, 2010. EUZÉBY, J.P. List of Prokaryotic names with Standing in Nomenclature. Disponível em: http://www.bacterio.cict.fr. Acessado em: 7 set. 2011. FEKETE, A.; FROMMBERGER, M.; ROTHBALLER, M.; LI, X.; ENGLMANN, M.; FEKETE, J.; HARTMANN, A.; EBERL, L.; SCHMITT-KOPPLIN, P. Identification of bacterial N-acylhomoserine lactones (AHLs) with a combination of ultra-performance liquid chromatography (UPLC), ultra-high-resolution mass spectrometry, and in-situ biosensors. Analytical and Bioanalytical Chemistry, v. 387, p.455 467, 2007. FERNANDES, M.C.A.; RIBEIRO, R.L.D.; AGUIAR-MENESES, E.L. Manejo ecológico de fitoparasitas, p. 273-322. In: AQUINO, A.M.; ASSIS, R.L. (Ed.) Agroecologia: princípios e práticas para uma agricultura orgânica sustentável. Brasília, DF: Embrapa Informação Tecnológica, 2005. 517 p. FISCHER, S.E.; JOFRE, E. C.; CORDERO, P.V.; MANERO, F.J.; GUTIERREZ, M.G.B. Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. Antonie van Leeuwenhoek, v. 97, p.241 251, 2010. FONSECA, M. C. C. Diversidade de Pseudomonas spp. fluorescentes num sistema integrado de produção agroecológica. RJ: Universidade Federal Rural do Rio de Janeiro, 2003.140p. (Tese de Doutorado defendida no curso de Fitotecnia) FOSKET, D. Plant growth and development: a molecular approach. Academic Press Inc. San Diego, 1994. 580p. 122 FUHRER, T.; FISCHER, E.; SAUER, U. Experimental identification and quantification of glucose metabolism in seven bacterial species. Journal of Bacteriology, v.187, p.1581 1590, 2005. GAMALERO, E.; BERTA, G.; MASSA, N.; GLICK, B.R.; LÍNGUA, G. Interactions between Pseudomonas spp. putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. Applied Microbiology, v.108, p.236 245, 2009. GARBEVA, P.; VEEN, J. A.; ELSAS, J. D. Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMS Microbiology & Ecology, v.47, p.51-64, 2004. GARRITY, G.M., LILBURN, T.G., COLE, J.R., HARRISON, S.H., EUZEBY, J., AND TINDALL, B.J. Taxonomic outline of the bacteria and archaea, Release 7.7. Michigan State University Board of Trustees, 2007. Disponível em: http://www.taxonomicoutline.org /index.php/toba/article/view/190/223 uma. Acessado em: 21 jan. 2010. GE, Y.H.; PEI, D.L.; ZHAO, Y.H.; LI, W.W.; WANG, S.F.; XU, Y.Q. Correlation between antifungal agent phenazine-1-carboxylic acid and pyoluteorin biosynthesis in Pseudomonas sp. M18. Current Microbiology, v.54, p.277 281, 2007. GEDDIE, J.L.; SUTHERLAND, I.W. Uptake of metals by bacterial polysaccharides. Journal Applied of Bacteriology, v.74, p.467 472, 1993. GILLIS, M.; VANDAMME, P.V.; SWINGS, J.; KERSTERS, K. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiological Reviews, v.60, p.407-438, 1996. GLICK, B.R. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters, v.251, p.1 7, 2005. GLICK, B.R.; TODOROVIC, B.; CZARNY, J.; CHENG, Z.; DUAN, J.; MCCONKEY, B. Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences, 26:227 242, 2007. 123 GLICK, B.R. Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, v. 28, p.367-374, 2010. GLICKMANN, E.; DESSAUX, Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied Environment and Microbiology,v. 61, p.793-796, 1995. GRAVEL, V.; ANTOUN, H.; TWEDDELL, R.J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biology and Biochemistry, v.39, p.1968 1977, 2007. GRICHKO, V.P.; FILBY, B.; GLICK, B.R. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. Journal of Biotechnology, v.81, p.45 53, 2000. GYANESHWAR, P.; KUMAR, G.N.; PAREKH, L.J.; POOLE, P.S. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, v.245, p. 83-93, 2002. HAAS, D.; KEEL, C. Regulation of antibiotic production in root colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopatology, v. 41, p. 117 153, 2003. HAAS, D.; DÉFAGO, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, v. 3, p. 307-319, 2005. HARA, F.A.D. S.; OLIVEIRA, L. A. D. Características fisiológicas e ecológicas de isolados de rizóbios oriundos de solos ácidos de Iranduba, Amazonas. Pesquisa Agropecuária Brasileira, v. 40, p.667-672, 2005. HARDOIM, P. R.; VAN OVERBEEK, L. S.; ELSAS, J. D. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, v.16, p.463-471, 2008. HARTMANN, A.; SCHMID, M, TUINEN, D.; BERG, G. Plant-driven selection of microbes. Plant Soil, v.321, P. 235-257, 2009. HASELWANDTER, K; WINKELMANN, G. Siderophores of Symbiotic Fungi. Soil Biology, v.12, p.91-103, 2007 124 HELL, R.; STEPHAN, U.W. Iron uptake, trafficking and homeostasis in plants. Planta, v.216, p. 541 551, 2003. HODGE, A.; BERTA, G.; DOUSSAN, C.; MERCHAN, F.; CRESPI, M. Plant root growth, architecture and function. Plant and Soil, v.321, p.153-187, 2009. HOFTE, M.; ALTIER, N.;) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Research in Microbiology, v.161, p.464-471,2010. IMLAY, J.A. Cellular defenses against superoxide and hydrogen peroxide. Annual Review of Biochemistry, v.77, p.755 76, 2008. JAMALI, F.; SHARIFI-TEHRANI, A.; LUTZ, M.P. ; MAURHOFER, M. Influence of host plant genotype, presence of a pathogen and coinoculation with Pseudomonas fluorescens strains on the rhizosphere expression of hydrogen cyanide- and 2,4- diacetylphloroglucinol biosynthetic genes in P. fluorescens biocontrol strain CHA0. Microbial Ecology, v.57, p.267 275, 2009. JAYASUDHA,T.; RANGESHWARAN, R.; VAJID, N. V. Relationship between indole acetic acid production by fluorescent Pseudomonas and plant growth promotion. Journal of Biological Control, v.24, p.349 359, 2010. JUHAS, M.; EBERL, L.; TUMMLER, B. Quorum sensing: the power of cooperation in the world of Pseudomonas. Environmental Microbiology, v.7,p.459 471, 2005. JUNI, E. Genus Acinetobacter. In: BRENNER, D.J., KRIEG, N.R., STALEY, J.T. (Ed.). Bergey s Manual of Systematic Bacteriology. Part B: The Proteobacteria. Springer, New York, 425 437, 2005. KACHLANY, S. C., S. B. LEVERY, J. S. KIM, B. L. REUHS, L. W. LION, AND W. C. GHIORSE. Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas spp. putida G7. Environment Microbiology, v.3, p.774 784, 2001. KAI, M.; EVMERT, U.; BERG, G.; PIECHULLA, B. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Archieves in Microbiology, v.187, p.351 360, 2007 KAMILOVA, F.; KRAVCHENKO, L. V.; SHAPOSHNIKOV, A. I.; AZAROVA, T.; MAKAROVA, N.; LUGTENBERG, B. Organic acids, sugars, and L-tryptophane in 125 exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Molecular Plant-Microbe, v.19, p.250-256, 2006. KAPSALIS, A.; GRAVANIS, F.; GOWEN, S. Involvement of phenazine-1- carboxylic acid, siderophores and hydrogen cyanide in suppression of Rhizoctonia solani and Pythium spp. damping-off by Pseudomonas oryzihabitans and Xenorhabdus nematophila. Journal of Food, Agriculture & Environment, v.6, p. 168-171, 2008. KAUSAR, R.; SHAHZAD, S.M.; ARSHAD, M.; ASHFAQ, M. A. Screening and evaluation of rhizobacteria containing acc-deaminase for growth promotion of wheat (Triticum aestivum L.) under salinity stress. Journal of Agriculture Research, v.47, p.237-247, 2009. KHALID, A.; ARSHAD, M.; ZAHIR, Z. A. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, v.96, p.473-480, 2004. KHAN, M.S.; ZAIDI, A.; WANI, P.A. Role of phosphate solubilizing microorganisms in sustainable agriculture: a review. Sustainable Agriculture, v.27, p. 29-43, 2009. KEITH, L. M.; BENDER, C. L. AlgT controls alginate production and tolerance to environmental stress in Pseudomonas spp. syringae. Journal of Bacteriology, v.181, p.7176 7184, 1999. KIMURA, O; RIBEIRO, R. L. D. Taxonomia do gênero Pseudomonas. In: RevisãoAnual de Patologia de Plantas, v.2, 209-228, 1994. KOCH, B.; NIELSEN, T.H.; SØRENSEN, D.; ANDERSEN, J.B.; CHRISTOPHERSEN, C.; MOLIN, S.; GIVSKOV, M.; SØRENSEN, J.; NYBROE, O. Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudate via the Gac two-component regulatory system. Applied and Environmental Microbiology, v.68, p. 4509 4516, 2002. KOCHAR, M., UPADHYAY, A., & SRIVASTAVA, S. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression. Research in Microbiology, v.162, p. 426-435, 2011. 126 KRAISER,T.; GRAS, D.E.; GUTIERREZ, A.G.; GONZA LEZ, B.; GUTIERREZ, R. A. A holistic view of nitrogen acquisition in plants. Journal of Experimental Botany, v.62, p.1455-1466, 2011. KRAVCHENKO, L.V.; AZAROVA, T.S.; MAKAROVA, N.M.; TIKHONOVICH, I.A. The effect of tryptophan of plant root metabolites on the phytostimulating activity of rhizobacteria. Mikrobiologiia, v.73, p.195-198, 2004. KRIEG, N. R.; HOLT, J. G. (Eds.). Bergey's Manual of Systematic Bacteriology. Baltimore: Williams & Wilkins, v.2, 787 p. 2005. LEMANCEAU, P.; ROBIN, A.; MAZURIER, S.; VANSUYT, G. Implication of pyoverdines in the interactions of fluorescent pseudomonads with soil microflora and plant in the rhizosphere. Soil Biology, v.12, p.165-192, 2007. LEWIN, R. How microorganisms transport iron? Science, 225:401-402, 1984. LINDSAY. W.L.; SCHWAB, A.P. The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition, v.5, p.821-840, 1982. LOH, J.; PIERSON, E.A.; PIERSON, L.S.; STACEY, G. Quorum sensing in plantassociated bacteria. Current Opinion in Plant Biology, v. 5, p.1-6, 2002. LOPER, J. E.; GROSS, H. Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. European Journal of Plant Pathology, 119:265 278, 2007. LOPER, J.E.; SCHROTH, M.N. Influence of bacterial sources of indole-3-acetic acid in root elongation of sugar beet. Phytopathology, v.76, p.386 389, 1996. LUCON, C.M.M. Sideróforos e controle biológico de fitopatógenos. In: MELO, I.S. & AZEVEDO, J.L. DE (Ed.) Controle Biológico. Jaguariúna, São Paulo. Embrapa Meio Ambiente, 2000. p. 141-161. LUCY, M.; REED, E.; GLICK, B.R. Applications of free living plant growthpromoting rhizobacteria. Antonie van Leeuwenhoek, v.86, p.1 25, 2004. LUGTENBERG, B.; CHIN-A-WOENG, T.F.C.; BLOEMBERG, G.V. Microbeplant interactions: principles and mechanisms. Antonie Van Leeuwenhoek, v. 81, p.373 383, 2002. 127 LUGTENBERG, B.; KAMILOVA, F. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, v.63, p.541-556, 2009. LYNCH, J. M. Introduction: some consequences of microbial rhizosphere competence for plant and soil. In: Lynch J M (ed). The Rhizosphere. Wiley, Nova York, 1990, p.1-10. MAFIA, R.G.;. ALFENAS, A.C.; MAFFIA, L.A.; FERRREIRA, E.M.; SIQUEIRA, L. Indução do enraizamento e crescimento do eucalipto por rizobactérias: efeito da adição de fonte alimentar e da composição do substrato de enraizamento. Revista Árvore, v.31, p. 589-597, 2007. MATILLA, M. A.; ESPINOSA-URGEL, M.; RODRIGUEZ-HERVA, J. J.; RAMOS, J. L.; RAMOS-GONZALEZ, M. I. Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biology, v. 8, p.179, 2007. MARTINS, L.M.V. Características ecológicas e fisiológicas de rizóbio que nodula caupi (Vigna unguiculata (L.) Walp) isolados a partir de solos da região Nordeste do Brasil. 1996. 213p.Dissertação (Mestrado) Universidade Federal Rural do Rio de Janeiro, Seropédica. MARULANDA, A.; BAREA, J.M.; AZCON, R. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulating, v.28, p.115 124, 2009. MATTHIJS, S.; TEHRANI, K.A.; LAUS, G.; JACKSON, R.W.; COOPER, R.M.; CORNELIS, P. Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti- Pythium activity. Environmental Microbiology, v. 9, p. 425 434, 2007. MAZZOLA, M.; FUNNELL, D.L.; RAAIJMAKERS, J.M. Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent pseudomonas species from resident soil populations, Microbial Ecology, 48: 338 348, 2004. MCARTHUR, J.V. Microbial ecology: an evolutionary approach. Academic Press. 2006. 415p. Academic Press San Diego 128 MESSIHA, N. A. S.; VAN DIEPENINGEN, A. D.; FARAG, N. S.; ABDALLAH, S. A.; JANSE, J. D.; VAN BRUGGEN, A. H. C. Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. European Journal of Plant Pathology, v. 118, n. 3, p. 211 225, 2007. MEYER, J.M.; ABDALLAH, M.A. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification, and physiochemical properties. Journal of General Microbiology, v.107, p.319 328, 1978. MEYER, J.M.; GRUFFAZ, C.; RAHARINOSY, V.; BEZVERBNAYA, I.; SCHAFER, M.; BUDZIKIEWIC, H. Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals, v.21, p.259 271, 2008. MILLER, K.J.; WOOD, J.M. Osmoadoptation by rhizosphere bacteria. Annual Review of Microbiology, v.50, p.101 136, 1996. MILLER, M.B.; BASSLER, B.L. Quorum sensing in bacteria. Annual Review of Microbiology, 55:165-199, 2001. MINKWITZ, A.; BERG, G. Comparison of antifungal activities and 16s ribosomal dna sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. Journal of Clinical Microbiology, v.39, p. 139-145, 2001. MOCKAITIS, K.; ESTELLE, M. Auxin Receptors and plant development: a newsignaling paradigm. Annual Review of Cell and Development Biology, 24:55 80, 2008. MOREIRA, F.M. de S.; SIQUEIRA, J.O. Microbiologia e Bioquímica do Solo. 2. ed. rev. e ampl. Lavras: UFLA, 2006. 729p. NAGARAJKUMARA,M;. JAYARAJB, J.; MUTHUKRISHNANB, S.; BHASKARANA, R.;VELAZHAHAN, R. Detoxification of oxalic acid by Pseudomonas fluorescens strain PfMDU2: Implications for the biological control of rice sheath blight caused by Rhizoctonia solani. Microbiological Research, v.160, p.291-298, 2005. NEILANDS, J.B. Iron absortion and transport in microorganisms. Annual Review of Nutrition, v.1, p.27-46, 1981. 129 NELSON, E.B. Microbial dynamics and interactions in the spermosphere. Annual Review of Phytopathology, v.42, p.271 309, 2004. NEVES, M. C. P.; GUERRA, J. G. M.; CARVALHO, S. R.; ALMEIDA, D. L. DE, RIBEIRO, R .DE L. D. Sistema Integrado de Produção Agroecológica ou Fazendinha Agroecológica do Km 47. AQUINO, A. M.; ASSIS, R. L. (ed). In: Agroecologia: princípios e técnicas para uma agricultura sustentável, 1st edn. Embrapa Agrobiologia, Seropédica, 2005. pp. 147-169. NIELSEN, M. N.; SORENSEN, J. Secondary metabolite- and endochitinasedependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere Applied Environment Microbiology, v.64, p.3563- 3569, 1998. NISHIMORI, E.; KITA-TSUKAMOTO, K.; WAKABAYASHI, H. Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. International Journal of Systematic Evolutionary Microbiology, v.50, p.83-89, 2000. NOTZ, R.; MAURHOFER, M.; DUBACH, H.; HAAS, D.; DÉFAGO, G. Fusaric acid producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Applied and Environmental Microbiology, v.68, p.2229 2235, 2002. ONGENA, M.; JOURDAN, E.; ADAM, A.; SCHÄFER, M.; BUDZIKIEWICZ, H.; THONART, P. Amino acids, iron, and growth rate as key factors influencing production of the pseudomonas putida BTP1 benzylamine derivative involved in systemic resistance induction in different plants. Microbial Ecology, v.55, p.280 292, 2008. ORTIZ-CASTRO, R.; DIAZ-PEREZ, C.; MARTINEZ-TRUJILLO, M.; RÍO, R.E.; CAMPOS-GARCÍA, F.; LOPEZ-BUCIO, J. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. PNAS, v.108, p.7253-7258, 2011. PALLERONI, N. J.; KUNISAWA, R.; CONTOPOULOU, R. & DOUDOROFF, M. Nucleic acid homologies in the genus Pseudomonas. International Journal of Systematic Bacteriology, v.23, p. 333 339, 1973. 130 PALLERONI, N. J. Genus I. Pseudomonas Migula 1984. In: KRIEG, N. R.; HOLT, J. G. (Ed). Bergey's Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore, pp. 141 199, 1984. PALLERONI, N. J. Genus I. Pseudomonas. In: BRENNER, D.J.; KRIEG, N.R.; STALEY, J.T. (Ed), Bergey s Manual of Systematic Bacteriology. Part B: The Proteobacteria. Springer, New York, pp. 323 379, 2005. PALLERONI, N.J., Genus IX. Stenotrophomonas. In: Brenner, D.J., Krieg, N.R., Staley, J.T. (Eds.), Bergey s Manual of Systematic Bacteriology. Part B: The Proteobacteria. Springer, New York, pp. 323 379, 2005. PARK, K.H.; LEE, C.Y.; SON, H.J. Mechanism of insoble phosphate solubilizatioln by Pseudomonas fluorescenes RAF 15 isolated from ginseng rhizosphere and it s plant growth-promoting activities. Letters iun Applied Microbiology, v.49, p. 222-228, 2009. PATEL, D.K.; MURAWALA, P.; ARCHANA, G.; KUMAR, G.N. Repression of mineral phosphate solubilizing phenotype in the presence of weak organic acids in plant growth promoting fluorescent pseudomonads. Bioresource Technology, v.102, p.3055- 3061, 2011. PATTEN, C.; GLICK, B.R. Role of Pseudomonas putida indolacetic acid in development of the host plant root system. Applied and Environmental Microbiology, v.68, p.3795-3801, 2002. PEIX, A.; RAMIREZ-BAHENA, M. H.; VELAZQUEZ, E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infection, Genetics and Evolution, v.9, p.1132-1147, 2009. PÉREZ-MIRANDA, S.; CABIROL, N.; GEORGE-TÉLLEZ, ZAMUDIO-RIVERA, R.L.S.; FERNÁNDEZ, F.J. O-CAS, a fast and universal method for siderophore detection. Journal of Microbiological Methods, v.70, p.127 131, 2007. PEYVANDIA, M.; FARAHANIB, M. F.; HOSSEINI, M.Z.; NOORMOHAMADID, S.A.; ASGHARZADEE, A. Pseudomonas fluorescent and its ability to promote root formation of olive microshoots. International Journal of Plant Production, v.4, p.63- 66, 2010. 131 PICARD, C.; BOSCO, M. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots. Naturwissenschaften, v.95, p.1-16, 2008. PIMENTEL, C. Metabolismo de carbono na agricultura tropical. Seropédica: Edur, 1998, 159p. PINTON, R.; DIAS, A.; XAVIER, T. F.; ROUWS, L. F. M.; XAVIER, G.R.; RUMJANEK, N.G.; RIBEIRO, R.L. D. Caracterização morfocultural, biossíntese de autoindutor e formação de biofilme por rizobactérias de hortaliças. Pesquisa Agropecuária Brasileira, v.45, p.284-293, 2010. PIROMYOU, P.; BURANABANYAT, B.; TANTASAWAT, P.; TITTABUTR, P. Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. European Journal of Soil Biology, v.47, p. 44-54, 2011. PLIEGO, C.; RAMOS, C.; DE VICENTE, A.; CAZORLA, F. Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant and Soil, v340.p.505-520, 2010. POONGUZHALI, S.; MADHAIYAN, M.; SA, T. Isolation and isolation and identifications of phosphate solubilizing bacteria from chinnese cabbage and their effect on growth and phosphorus utilization of plants. Journal of Microbiology and Biotechnology, v.18, p.773-777, 2008. PRASHANT, S.; MAKARAND, R.; BHUSHAN, C.; SUDHIR, C. Siderophoregenic Acinetobacter calcoaceticus isolated from wheat rhizosphere with strong PGPR activity. Malaysian Journal of Microbiology, v. 5, p. 6-12, 2009. RACHID, D.; AHMED, B. Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. African Journal of Biotechnology, v.4, p. 697- 702, 2005. RAD, U.; KLEIN, P.I.; DOBREV, J.K.; ZAZIMALOVA, E.; FEKETE, A.; HATMANN, A.; SCHMITT-KOPPLIN, P.; DURNER, J. Response of Arabidopsis thaliana to N -hexanoyl-DL -homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta, v.229, p.73-85, 2008. 132 RAJKUMAR, M.; ANORIHARU, E.;, PRASAD, M.; NARASIMHA, V.;FREITAS, H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction Trends in Biotechnology, v.28,142-149, 2010. REIS, V.M.; PEREIRA, W.; HIPÓLITO, G.S. Métodos de aplicação de bactérias diazotróficas em cana-planta para fins de determinação de eficiência agronômica. Comunicado técnico. Seropédica: Embrapa, 2009. 4p. (Documentos 118). REMANS, R.; BEEBE, S.; BLAIR, M.; MANRIQUE, G.; TOVAR, E.; RAO, I.; CROONENBORGHS, A.; TORRES-GUTIERREZ, R.; EL-HOWEITY, M.; MICHIELS, J.; VANDERLEYDEN, J. European Journal of Soil Biology, v. 47, p.44-54, 2011. RODRIGUEZ, H.; FRAGA, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, v.17, p.319-339, 1999. RODRIGUEZ, H.; VESSELY, S.; SHAH, S.; GLICK, B.R. Effect of a nickeltolerant ACC deaminase-producing Pseudomonas spp. strain on growth of nontransformed and transgenic canola plants. Current Microbiology, v.57, p.170 174, 2008. ROSAS, S.B.; JAVIER, A.A.; ROVERA, M.; CORREA, N.S.Phosphate-solubilizing Pseudomonas putida can influence the rhizobia legume symbiosis. Soil Biology and Biochemistry, v.38, p.3502-3505, 2006. ROKHBAKHSH-ZAMIN, F. D.; SACHDEV, N.; KAZEMI-POUR, A.; ENGINEER, K. R. ; PARDESI, S.; ZINJARDE, P. K. Characterization of plant-growthpromoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology, v.21, p.556-566, 2011. ROVIRA, A D.; ELLIOT, L. F.; COOK, R. J. The impact of cropping systems on rhizosphere organisms affecting plant health. In: Lynch, J.M. (Ed.) The Rhizosphere, 1990. 458p. RUMBERGER, A.; MARSCHNER, P. 2-Phenylethylisothiocyanate concentration and bacterial community composition in the rhizosphere of field-grown canola. Functional Plant Biology, v.31, p. 623 631, 2004. 133 RUMJANEK, N. G.; FONSECA, M. C. C. da; XAVIER, G. R. Quorum sensing em sistemas agrícolas: comportamento multicelular em procarioto via comunicação intercelular. Biotecnologia Ciência e Desenvolvimento, v. 33, p. 34-49, 2004. RUMJANEK, N.G.; MARTINS, L.M.V.; XAVIER, G. R.; NEVES, M. C. P. Fixação biológica de nitrogênio. In: FREIRE FILHO, F. R.; LIMA, J.A. A.; RIBEIRO, V.Q. (Ed). Feijão-caupi: avanços tecnológicos. Embrapa Informação Tecnológica, Brasília, pp. 281- 335 (2005). SALEEM, M.; ARSHAD, M.; HUSSAIN, S.; SAEED, B.A. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology and Biotechnology, v.34, p.635 648, 2007. SALMAN, M., Determination of antibiotic activity on plasmids from fluorescent pseudomonads isolates CW2, WB15 and WB52 against pre emergence damping-off caused by Pythium ultimum and Rhizoctonia solani in cucumber. Biological Control, v.53, p.161-167, 2010. SANDHYA, V.; ALI, S.K.Z ; GROVER, M.; VENKATESWARLU, B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas spp. putida strain GAP-P45. Biology and Fertility of Soils, v.46, p.17 26, 2009. SCHLEIFER, K.H. Classification of Bacteria and Archaea: past, present and future. Systematic and Applied Microbiology, v.32, p.533 542, 2009. SCHWIEGER, F. ; TEBBE, C.C. A new approach to utilize PCR- single strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Applied Environmental. Microbiology, v.64, p. 4870-4876, 1998. SCHWYN, B.; NEILANDS, J.B. Universal chemical assay for the detection and determination of siderophores. Analitical Biochemistry, v.140, p.47-56, 1986. SEGERS, P.; VANCANNEYT, M.; POT, B.; TORCK, U.; HOSTE, B.; DEWETTINCK, D.; FALSEN, E.; KERSTERS, K.; DE VOS, P. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. 134 nov. and Brevundimonas vesicularis comb. nov., respectively. International Journal of Systematic and Bacteriology, v.44, p.499 510, 1994. SHAHAROONA, B.; NAVEED, M.; ARSHAD, M.; ZAHIR, A. Fertilizerdependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Applied and Microbiology Biotechnology, v.79, p.147 155, 2008. SHANMUGAIAH,V.; MATHIVANAN, N.; VARGHESE, B. Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growthpromoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. Journal of Applied Microbiology, v.108, p.703 711, 2010. SHIRAISHI, A.; MATSUSHITA, N.; HOUGETSU, T. Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Systematic Applied Microbiology, v.33, p.269-274, 2010. SIDDIQUI, I.A.; SHAUKAT, S. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4- diacetylpholoroglucinol. Soil Biology & Biochemistry, v.35, 1615 1623, 2002. SILBY, M.W.; WINSTANLEY, C.; GODFREY, S.A.C.; LEVY,S.B.; ROBERT, W.J. Pseudomonas genomes: diverse and adaptable. FEMS Microbiology Reviews, v.35, p.652-680, 2011. SILVA, M.F.D.; OLIVEIRA, P. J. D.; XAVIER, G. R.; RUMJANEK, N.G.; REIS, V.M. Inoculantes formulados com polímeros e bactérias endofíticas para a cultura da cana-de-açúcar. Pesquisa Agropecuária Brasileira, v. 44, p.1437-1443, 2009. SINDHU, S.S.; SUNEJA, S.; GOEL, A.K.; PARMAR, N.; DADARWAL, K.R. Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and wilt sick soil conditions. Applied Soil Ecology, v.19, p.57-64, 2002. SINGH, J.S.; PANDEY, V.C.; SINGH, D.P. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems and Environment, v.140, p.339 353, 2011. 135 SNEH B, JABAJI-HARE S,NEATE S, DIJST G, EDS. Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Dordrecht, the Netherlands: Kluwer Academic Publishers, 67 75, 1996. SOTTERO, A.N.; FREITAS, S.D.S.; MELO, A.M.T.D.; TRANI, P.E. Rizobactérias e alface: colonização rizosférica, promoção de crescimento e controle biológico. Revista Brasileira de Ciências do Solo, v.30, p.225-234, 2006. SPAEPEN, S.; VANDERLEYDEN, J.; REMANS, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, v.31, p.425-448, 2007. SPAEPEN, S.; DAS, F.; LUYTEN, E.; MICHIELS, J.; VANDERLEYDEN, J. Indole-3-acetic acid-regulated genes in Rhizobium etli CNPAF512. FEMS Microbiology Lettera, v.291, p.195-200, 2009. SPAEPEN, S.; VANDERLEYDEN, J.; NAZARET, S.; OKON, Y.; MOENNELOCCOZ ,Y. Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Research in Microbiology, v. 161, p.219-226, 2010. SPIERS, A.J., BUCKLING, A., RAINEY, P.B. The causes of Pseudomonas diversity. Microbiology, 146: 2345 2350, 2000. STAJKOVIC, O.; DUSICA, D.; DRAGANA, J.; DORDE, K.; KUZMANOVIC, N.R.; JELENA, K. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Romanian Biotechnological Letters, v.16, 2011. STANIER, R.Y.; PALLERONI, N.J.; DOUDOROFF, M. The aerobic pseudomonads: a taxonomic study. Journal of General Microbiology, v.43, p.159-271, 1966. STRIGUL, N.S.; KRAVCHENKO, L.V. Mathematical modeling of PGPR inoculation into the rhizosphere. Environmental Modelling & Software, 21:1158-1171, 2006. 136 SUÁREZ-MORENO, Z.R.; CABALLERO-MELLADO, J.; COUTINHO, B.G.; MENDONÇA-PREVIATO, L.; JAMES, E.K.; VENTURI, V. Common features of environmental and potentially beneficial plant-associated burkholderia. Microbial Ecology, 2011. TAURIAN, T.; ANZUAY, M.S.; ANGELINI, J.G.; TONELLI, M.L.; LUDUEÑA, L.; PENA, D.;IBÁÑEZ F.; FABRA, A. Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant and Soil, v.329, p.421 431, 2010. TAIZ, L.; ZEIGER, E. Fisiologia Vegetal. 4a ed. Artmed, Porto Alegre, 2009. 820p. TORTORA, G.; FUNKE, B.R.; CASE, C.L. Microbiologia, 8ª. Ed. Artmed, São Paulo, 2005. 920p. TRUU, J.; TALPSEP, E.; HEINARU, E.; STOTTMEISTER, U.; WAND, H.; HEINARU, A. Comparison of API 20NE and Biolog GN identification systems assessed by techniques of multivariate analyses. Journal of Microbiological Methods, v.36, p.193-201, 1999. TSAVKELOVA E A, CHERDYNTSEVA T A AND NETRUSOV A I Auxin production by bacteria associated with orchid roots. Microbiology, v.74, p.46-53, 2005. VAN DILLEWIJN, P. What gets turned on in the rhizosphere? Microbiology Biotechnology, v.1, p.341-342, 2008. VAN HOUDT, R.; AERTSEN, A.; JANSEN, A.; QUINTANA, A.L.; MICHIELS, C.W. Biofilm formation and cell-to-cell signalling in Gram-negative bactéria isolated from a food processing environment. Journal of Applied Microbiology. v.96, p.177-184, 2004. VIEIRA, S. Análise de variância. Atlas, São Paulo, 2006. 204p. VISCA, P.; FRANCESCO, I.; LAMONT, L.L. Pyoverdine siderophores: from biogenesis to biosignificance. Trends in Microbiology, v. 15, p. 22-30, 2006. VON BODMAN,S.B.; BAUER, D. COPLIN, D. Quorum sensing in plantpathogenic bacteria. Annual Review of Phytopathology, v.41, p.455 482, 2003. 137 VYAS, P.; GULATI, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, v.9, p.174, 2009. WANI, P.A.; KHAN, M.S.; ZAIDI, A. Co-inoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agronomica Hungarica, v.55, p.315-323, 2007. WEI JIN, C.; LI, G.; XIN, X.; ZHENG, S.J.Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Annals of Botany, v.105, p.835 841, 2010. WHO Library Cataloguing-in-Publication Data Joint FAO/WHO (2004) Workshop on fruit and vegetables for health. Disponível em: http://www.who.int/dietphysicalactivity/publications/fruit_vegetables_report. pdf. Acessado em: 4 Jan.2011 WILLEMS, A.; FALSEN, E.; POT, B.; JANTZEN, E.; HOSTE, B.; VANDAMME, P.; GILLIS, M.; KERSTERS, K.; DE LEY, J.; Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. International Journal of Systematic Bacteriology, v.40, p.384 398, 1990. WOESE, C. R. Bacterial evolution. Microbiological Reviews, v.51, p.221 271, 1987. YABUUCHI, E.,; KOSAKO, Y.; OYAIZU, H.; YANO, I.; HOTTA, H.; HASHIMOTO, Y.; EZAKI, T.; ARAKAWA, M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiology and Immunology, v.36, p.1251-1275, 1992. YABUUCHI, E.,; KOSAKO, Y.; YANO, I.; HOTTA, H.; ARAKAWA, M. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia 138 solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiology and Immunology, 39(11): 897-904, 1995. YAMADA, T. The role of auxin in plant disease development. Annual Review of Phytopathology, v.31, p.253-73, 1993. YAN, AN; HUANG, XIANQING; LIU HAIMING; DONG DEXIAN; ZHANG DABING; ZANG, XUEHONG; XU, YUQUAN. An rhl-like quorum-sensing system negatively regulates pyoluteorin production in Pseudomonas sp. M18. Microbiology, v.153, p.16-28, 2007. YANG. J.; KLOEPPER. J.W.; RYU, C.M. Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, v.14, p.1-4, 2008. YAO, L.; WU, Z.; ZHENG, Y.; KALEEM, I.; CHUN, L. Growth promotion and protection against salt stress by Pseudomonas spp. putida Rs-198 on cotton. European Journal of Soil Biology, v.46, p.49-54, 2010. XAVIER, G. R.; SILVA, F. V.ZILLI, J. E.; RUMJANEK, N. G. Adaptação de método para extração de DNA microbiano. Seropédica: Embrapa, 2004. 24p. (Documentos 171). ZAGO, V.C.P.; DE-POLLI, H.; RUMJANEK, N.G. Pseudomonas fluorescentes associadas à cultura de couve: influência da adubação. Revista Caatinga, v.24, p.20-27, 2011. ZAIDI, A; KHAN, M.S.; AHEMAD, M. Plant growth promotion by phosphate solubilizing bacteria. Microbiology and Immunology, v.56, p.263-284, 2009 ZHAN, Q.S. Microbiological diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings. Microbiological Research, article in press, 2011por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/57393/2011%20-%20Anelise%20Dias.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1162
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2016-08-09T11:45:20Z No. of bitstreams: 1 2011 - Anelise Dias.pdf: 15332435 bytes, checksum: 2029d6acb53e3ead830aa60dc2c29a5a (MD5)eng
dc.originais.provenanceMade available in DSpace on 2016-08-09T11:45:20Z (GMT). No. of bitstreams: 1 2011 - Anelise Dias.pdf: 15332435 bytes, checksum: 2029d6acb53e3ead830aa60dc2c29a5a (MD5) Previous issue date: 2011-09-23eng
Appears in Collections:Doutorado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2011 - Anelise Dias.pdf4.96 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.