Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/10030
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Matos, Gustavo Feitosa de | |
dc.date.accessioned | 2023-12-21T18:56:08Z | - |
dc.date.available | 2023-12-21T18:56:08Z | - |
dc.date.issued | 2021-03-29 | |
dc.identifier.citation | MATOS, Gustavo Feitosa. Aspectos ecológicos e funcionais do gênero Bradyrhizobium associado com cana-de-açúcar. 2021, 119 f. Tese (Doutorado em Fitotecnia) - Instituto de Agronomia, Departamento de Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/10030 | - |
dc.description.abstract | Muitas espécies do gênero Bradyrhizobium têm a capacidade de se associar de forma simbiótica com plantas da família Fabaceae (leguminosas), beneficiando o crescimento vegetal pelo processo da fixação biológica de nitrogênio (FBN). Entretanto, o gênero Bradyrhizobium também é encontrado em outros tipos de ambientes, frequentemente em vida livre, como na endosfera e rizosfera de plantas não leguminosas. Na cana-de-açúcar, estudos, por métodos independentes de cultivo, mostraram que o gênero Bradyrhizobium pode ter um papel importante no processo de FBN. A presente tese teve como objetivo compreender melhor as funções e a ecologia de Bradyrhizobium spp. associadas à cana-de-açúcar. A tese contém quatro capítulos de pesquisa. No primeiro, uma coleção diversa de 103 estirpes de Bradyrhizobium spp. de cana é caracterizada por meio de duas técnicas moleculares do tipo fingerprinting, pela análise de sequência do gene housekeeping recA e pela caracterização morfocultural. No segundo capítulo, mediante uma abordagem de genômica comparativa e funcional, investiga-se fatores genéticos (clusters de gene nif) na estirpe recém descrita Bradyrhizobium sacchari, que se mostra atípico pela sua capacidade de fixar nitrogênio de forma mutualista com várias espécies e plantas leguminosas, mas que também apresenta a capacidade de FBN em vida livre. No capítulo III estuda-se o potencial de se usar estirpes de Bradyrhizobium spp. para melhorar o crescimento de plantas de cana-de-açúcar. Esses estudos foram conduzidos primeiramente em condições de casa de vegetação e, em seguida, a nível de campo. O capítulo IV trata de um aspecto mais ecológico e busca avaliar como o histórico recente de cultivo do solo (sem cultivo, com a gramínea braquiária, ou com as leguminosas amendoim e soja) influencia a comunidade bacteriana encontrada na rizosfera de cana-de-açúcar. Os resultados indicaram que há uma diversidade de grupos de bactérias do gênero Bradyrhizobium associados à cana-de-açúcar ainda não explorados. Além disso, a análise conjunta de BOX e ERIC PCR foi capaz de agrupar eficientemente as estirpes com correspondência entre as características fenotípicas e filogenia do gene recA. Revelou-se a situação atípica de que B. sacchari possui dois clusters completos de genes para FBN, designados como simbiótico (SC) e não simbiótico (NSC). Análises de RT-qPCR mostraram que o nível de expressão dos dois genes nifH (redutase da nitrogenase) varia de acordo com as condições ambientais. Ensaios de inoculação em condições de casa de vegetação permitiram a identificação de três estirpes de Bradyrhizobium que afetam de forma positiva aspectos do crescimento vegetal, como tamanho do sistema radicular, conteúdo de clorofila e superfície total de folhas. Ensaios a nível de campo não foram conclusivos, mas indicaram que a inoculação de estirpes de Bradyrhizobium possuem potencial para aumentar a área foliar das plantas durante os primeiros meses de desenvolvimento. Além disso, encontrou-se que o cultivo prévio do solo com amendoim e soja aumentou a abundância de rizobios e de alguns outros gêneros de bactérias promotoras de crescimento na rizosfera de cana-de-açúcar. Desta forma, os resultados apresentados na presente tese representam um avanço na compreensão da funcionalidade, na aplicabilidade e na ecologia de Bradyrhizobium spp. no cultivo de cana-de-açúcar. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | rizóbios | por |
dc.subject | promoção de crescimento | por |
dc.subject | gramíneas | por |
dc.subject | fixação biológica de nitrogênio | por |
dc.subject | genômica | por |
dc.subject | rhizobia | eng |
dc.subject | growth promotion | eng |
dc.subject | grasses | eng |
dc.subject | biological nitrogen fixation | eng |
dc.subject | genomics | eng |
dc.title | Aspectos ecológicos e funcionais do gênero Bradyrhizobium associado com cana-de-açúcar | por |
dc.title.alternative | Ecological and functional study of the association of Bradyrhizobium strains with sugarcane | eng |
dc.type | Tese | por |
dc.description.abstractOther | Many species of the genus Bradyrhizobium have the ability to associate symbiotically with plants of the Fabaceae family (legumes), benefiting plant growth through the process of biological nitrogen fixation (BNF). However, the genus Bradyrhizobium is also found in other types of environments, often in the free-living conditions, such as in the endosphere and rhizosphere of non-legume plants. In sugarcane, independent cultivation methods have shown that the genus Bradyrhizobium can play an important role in the BNF process. This thesis aimed to better understand the functions and ecology of Bradyrhizobium spp. associated with sugarcane. The thesis contains four research chapters. In the first, a diverse collection of 103 strains of Bradyrhizobium spp. From sugarcane is characterized by means of two molecular fingerprinting techniques, by sequence analysis of the recA housekeeping gene and by morphocultural characteristics. In the second chapter, using a comparative and functional genomics approach, we investigate genetic factors (nif gene clusters) in the recently described strain Bradyrhizobium sacchari, which is atypical for its ability to fix nitrogen in a mutualistic way with various species and leguminous plants, but which also has the ability of free-living BNF. In chapter III, it was studied the potential of using strains of Bradyrhizobium spp. to improve the growth of sugarcane plants. These studies were conducted first under greenhouse conditions and then at field level. Chapter IV deals with a more ecological aspect and seeks to assess how the recent history of soil cultivation (uncultivated, with Brachiaria grass, or with leguminous peanuts and soybeans) influences the bacterial community found in the sugarcane rhizosphere. The results indicated that there is a diversity of bacterial groups of the genus Bradyrhizobium associated with sugarcane that have not been explored yet. Furthermore, joint analysis of BOX and ERIC PCR was able to efficiently group the strains with correspondence between the phenotypic characteristics and phylogeny of the recA gene. The atypical situation was revealed that B. sacchari possesses two complete clusters of genes for BNF, designated as symbiotic (SC) and non-symbiotic (NSC). RT-qPCR analysis showed that the expression level of the two nifH genes (nitrogenase reductase) varies according to environmental conditions. Inoculation tests under greenhouse conditions allowed the identification of three Bradyrhizobium strains that positively affect aspects of plant growth, such as root system size, chlorophyll content and total leaf surface. Field-level trials were inconclusive but indicated that inoculation of Bradyrhizobium strains has the potential to increase plant leaf area during the first few months of development. Furthermore, it was found that previous soil cultivation with peanuts and soybeans increased the abundance of rhizobia and some other genera of growth-promoting bacteria in the sugarcane rhizosphere. Thus, the results presented in this thesis represent an advance in the understanding of the functionality, applicability and ecology of Bradyrhizobium spp. in the cultivation of sugar cane. | eng |
dc.contributor.advisor1 | Baldani, José Ivo | |
dc.contributor.advisor1ID | 538.864.458-87 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/8391182235603982 | por |
dc.contributor.advisor-co1 | Rouws, Luc Felicianus Marie | |
dc.contributor.advisor-co1ID | 014.563.806-56 | por |
dc.contributor.referee1 | Baldani, José Ivo | |
dc.contributor.referee2 | Oliveira, André Luiz Martinez de | |
dc.contributor.referee3 | Leite, Jakson | |
dc.contributor.referee4 | Damasceno Junior, Pedro Correa | |
dc.contributor.referee5 | Pereira, Willian | |
dc.creator.ID | 602.783.683-01 | por |
dc.creator.ID | https://orcid.org/0000-0002-0124-0722 | por |
dc.creator.Lattes | http://lattes.cnpq.br/0129530048505952 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Agronomia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Fitotecnia | por |
dc.relation.references | ACINAS, S. G. et al. Divergence and Redundancy of 16S rRNA Sequences in Genomes with Multiple rrn Operons. Journal of Bacteriology, v. 186, n. 9, p. 2629–2635, 2004. AGLER, M. T. et al. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation. PLoS Biology, v. 14, n. 1, p. 1–31, 2016. ALAZARD, D. Nitrogen fixation in pure culture by rhizobia isolated from stem nodules of tropical Aeschynomene species. FEMS Microbiology Letters, v. 68, n. 1–2, p. 177–182, 1990. ALBERTON, O.; KASCHUK, G.; HUNGRIA, M. Sampling effects on the assessment of genetic diversity of rhizobia associated with soybean and common bean. Soil Biology and Biochemistry, v. 38, n. 6, p. 1298–1307, 2006. ALBUQUERQUE, L. et al. Gaiella occulta gen. nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov. Systematic and Applied Microbiology, v. 34, n. 8, p. 595–599, 2011. ALVES, B. J. R.; BODDEY, R. M.; URQUIAGA, S. The success of BNF in soybean in Brazil. Plant and soil, v. 252, n. 1, p. 1–9, 2003. ALY, M. M. et al. Physiological response of Zea mays to NaCl stress with respect to Azotobacter chroococcum and Streptomyces niveus. Pak J Biol Sci, v. 6, p. 2073–2080, 2003. ALY, M. M.; EL SAYED, H. E. A.; JASTANIAH, S. D. Synergistic effect between Azotobacter vinelandii and Streptomyces sp. isolated from saline soil on seed germination and growth of wheat plant. Journal of American Science, v. 8, n. 5, p. 667–676, 2012. AMBROSANO, E. J. et al. Produtividade da cana-de-açúcar após o cultivo de leguminosas. Bragantia, v. 70, n. 4, p. 810–818, 2011. ANDO, S. et al. Detection of nifH Sequences in Sugarcane (Saccharum officinarum L.) And Pineapple (Ananas comosus [L.] Merr.). Soil Science and Plant Nutrition, v. 51, n. 2, p. 303–308, 2005. ANTUNES, J. E. L. Bactérias diazotróficas endofíticas em cana-de-açúcar : estratégia para uma agricultura sustentável. [s.l.] Universidade Federal Rural de Pernambuco, 2016. ASAF, S. et al. Complete genome sequencing and analysis of endophytic Sphingomonas sp. LK11 and its potential in plant growth. 3 Biotech, v. 8, n. 9, p. 1–14, 2018. ASERSE, A. A. et al. Phylogenetically diverse groups of Bradyrhizobium isolated from nodules of Crotalaria spp., Indigofera spp., Erythrina brucei and Glycine max growing in Ethiopia. Molecular Phylogenetics and Evolution, v. 65, n. 2, p. 595–609, nov. 2012. AVONTUUR, J. R. et al. Genome-informed Bradyrhizobium taxonomy: where to from here? Systematic and Applied Microbiology, v. 42, n. 4, p. 427–439, 2019. AZIZ, R. K. et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genomics, v. 9, p. 1–15, 2008. BALDANI, J. I. et al. a Root- Associated Nitrogen-Fixing Bacterium. p. 86–93, 1986. BALDANI, J. I. et al. Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. International Journal of Systematic Bacteriology, v. 46, n. 3, p. 802–810, 1996. BALDANI, J. I. et al. Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, v. 29, n. 5–6, p. 911–922, 1997. BALDANI, J. I. et al. Fixação biológica de nitrogênio em plantas da família Poaceae (antiga gramineae). Tópicos em ciência do solo, v. 1, p. 203–271, 2009. BALDANI, V. L. D.; BALDANI, J. I.; DÖBEREINER, J. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biology and Fertility of Soils, v. 30, n. 5–6, p. 485–491, 2000. BANKEVICH, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, v. 19, n. 5, p. 455–477, 2012. BASTIÁN, F. et al. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regulation, v. 24, n. 1, p. 7–11, 1998. BEIJERINCK, M. W. Cultur des Bacillus radicicola aus den Knöllchen. Bot Ztg, v. 46, p. 740–750, 1888. BENDING, G. D. et al. In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and Soil pH. Applied and Environmental Microbiology, v. 69, n. 2, p. 827–834, 2003. BODDEY, L. H. et al. A Avaliação da Fixação Biológica de N2 Associada a Leguminosas e Não-Leguminosas Utilizando a Técnica da Redução do Acetileno: História, Teoria e Prática. EMBRAPA - Documentos 245, p. 43, 2007. BODDEY, R. M. et al. Use of the15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses. Functional Plant Biology, v. 28, n. 9, p. 889–895, 2001. BODDEY, R. M.; KNOWLES, R. Methods for quantification of nitrogen fixation associated with gramineae. Critical reviews in plant sciences, v. 6, n. 3, p. 209–266, 1987. BOIERO, L. et al. Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Applied Microbiology and Biotechnology, v. 74, n. 4, p. 874–880, 2007. BOMAR, L. et al. Directed culturing of microorganisms using metatranscriptomics. mBio, v. 2, n. 2, p. 1–8, 2011. BREWER, T. E. et al. Genome reduction in an abundant and ubiquitous soil bacterium “Candidatus Udaeobacter copiosus”. Nature Microbiology, v. 2, n. October 2016, 2016. BURBANO, C. S. et al. Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce. Environmental Microbiology Reports, v. 3, n. 3, p. 383–389, 2011. BURNS, J. H. et al. Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB PLANTS, v. 7, n. 1, p. 1–10, 2015. BURRIS, R. H. 100 years of discoveries in biological N2 fixation. Nitrogen fixation: hundred years after: proceedings of the 7th International Congress on N [Triple-bond] Nitrogen Fixation, Koln (Cologne), FRG, March 13-20, 1980/edited by H. Bothe, FJ de Bruijn and WE Newton. Anais...Stuttgart: G. Fischer, 1988., 1988 CALLAHAN, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, v. 13, n. 7, p. 581–583, 2016. CAPORASO, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal, v. 6, n. 8, p. 1621–1624, 2012. CARVER, T. et al. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics, v. 28, n. 4, p. 464–469, 2012. CAVALCANTE, V. A.; DOBEREINER, J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and Soil, v. 108, n. 1, p. 23–31, 1988. CHAINTREUIL, C. et al. Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Applied and Environmental Microbiology, v. 66, n. 12, p. 5437–5447, 2000. CHALK, P. M. Dynamics of biologically fixed N in legume-cereal rotations: a review. Australian Journal of Agricultural Research, v. 49, n. 3, p. 303–316, 1998. CHAPARRO, J. M. et al. Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils, v. 48, n. 5, p. 489–499, 2012. CHAPARRO, J. M.; BADRI, D. V.; VIVANCO, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME Journal, v. 8, n. 4, p. 790–803, 2014. CHAUHAN, H.; BAGYARAJ, D. J.; SHARMA, A. Plant growth-promoting bacterial endophytes from sugarcane and their potential in promoting growth of the host under field conditions. Experimental Agriculture, v. 49, n. 1, p. 43–52, 2013. CHEAVEGATTI-GIANOTTO, A. et al. Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil. Tropical Plant Biology, v. 4, n. 1, p. 62–89, 2011. CHEN, B. et al. The endophytic bacterium, sphingomonas samr12, improves the potential for zinc phytoremediation by its host, sedum alfredii. PLoS ONE, v. 9, n. 9, 2014. CHERKASOV, N.; IBHADON, A. O.; FITZPATRICK, P. A review of the existing and alternative methods for greener nitrogen fixation. Chemical Engineering and Processing: Process Intensification, v. 90, p. 24–33, 2015. CLIFTON-BROWN, J. C.; JONES, M. B. The thermal response of leaf extension rate in genotypes of the C4-grass Miscanthus: An important factor in determining the potential productivity of different genotypes. Journal of Experimental Botany, v. 48, n. 313, p. 1573–1581, 1997. CLISTIANE DOS ANJOS MENDES. Construção de um modelo de seleção genômica ampla para canade-açúcar (Saccharum spp.) no contexto do programa de melhoramento da RIDESA - Goiás. [s.l.] Universidade Federal de Goiás, 2015. COENYE, T. et al. Towards a prokaryotic genomic taxonomy. FEMS Microbiology Reviews, v. 29, n. 2, p. 147–167, 2005. CONAB. Acompanhamento da safra brasileira. cana, v. 4 - Safra 2017/18, n. 1 -. Primeiro levantamento, p. 1–28, 2015. CONAB. Acompanhamento da safra brasileira V.7 - SAFRA 2020/21 - N.2 - Segundo levantamento. p. 3–115, 2020. COTTA, S. R. et al. Temporal dynamics of microbial communities in the rhizosphere of two genetically modified (GM) maize hybrids in tropical agrosystems. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, v. 103, n. 3, p. 589–601, 2013. CRONQUIST, A. The Evolution and Classification of Flowering Plants–Bronx. NY: New York Botanical Gardens, 1988. DA SILVEIRA, A. P. D. et al. Exploitation of new endophytic bacteria and their ability to promote sugarcane growth and nitrogen nutrition. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, v. 112, n. 2, p. 283–295, 2019. DAVIS, A. S.; JACOBS, D. F. Quantifying root system quality of nursery seedlings and relationship to outplanting performance. New Forests, v. 30, n. 2–3, p. 295–311, 2005. DE BRUIJN, F. J. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Applied and Environmental Microbiology, v. 58, n. 7, p. 2180–2187, 1992. DE MATOS, G. F. et al. Bradyrhizobium sacchari sp. nov., a legume nodulating bacterium isolated from sugarcane roots. Archives of Microbiology, v. 199, n. 9, p. 1251–1258, 2017. DE OLIVEIRA, A. L. M. et al. Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant and Soil, v. 284, n. 1–2, p. 23–32, 2006. DE SANTI FERRARA, F. I. et al. Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant and Soil, v. 353, n. 1–2, p. 409–417, 2012. DE SOUZA, R. S. C. et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Scientific Reports, v. 6, n. June, p. 1–15, 2016. DELAMUTA, J. R. M. et al. Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. International Journal of Systematic and Evolutionary Microbiology, v. 63, n. PART9, p. 3342–3351, 2013. DILWORTH, M. J. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochimica et Biophysica Acta (BBA)-General Subjects, v. 127, n. 2, p. 285-294, 1966. DIXON, R.; KAHN, D. Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology, v. 2, n. 8, p. 621–631, 2004. DO CARMO SILVA BARRETO, M. et al. Inoculation of endophlytic diazotrophic bacteria in micropropagated seedlings of sugarcane (Saccharum officinarum sp.). Environmental Sustainability, v. 2, n. 1, p. 5–12, 2019. DÖBEREINER, J. Recent changes in concepts of plant bacteria interactions: endophytic N2 fixing bacteria. Ciência e Cultura, v. 44, n. 5, p. 310–313, 1992. DÖBEREINER, J.; BALDANI, V. L. D.; BALDANI, J. I. Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. [s.l.] Embrapa SPI, 1995. DOS-SANTOS, C. M. et al. A Culture-Independent Approach to Enrich Endophytic Bacterial Cells from Sugarcane Stems for Community Characterization. Microbial Ecology, v. 74, n. 2, p. 453–465, 2017. DOS SANTOS, R. L. et al. Changes in Biological Nitrogen Fixation and Natural-Abundance N Isotopes of Sugarcane Under Molybdenum Fertilization. Sugar Tech, v. 21, n. 6, p. 925–935, 2019a. DOS SANTOS, S. G. et al. Rooting and growth of pre-germinated sugarcane seedlings inoculated with diazotrophic bacteria. Applied Soil Ecology, v. 133, n. August, p. 12–23, 2019b. DRAPCHO, D. L.; SISTERSON, D.; KUMAR, R. Nitrogen fixation by lightning activity in a thunderstorm. Atmospheric Environment (1967), v. 17, n. 4, p. 729–734, 1983. EAGLESHAM, A. R. J.; SZALAY, A. A. Aerial stem nodules on Aeschynomene spp. Plant Science Letters, v. 29, n. 2–3, p. 265–272, 1983. ELBOUTAHIRI, N. et al. Genotypic characterization of indigenous sinorhizobium meliloti and Rhizobium sullae by rep- PCR, RAPD and ARDRA analyses. African Journal of Biotechnology, v. 8, n. 6, p. 979–985, 2009. EMBRAPA, E. B. D. P. A. Inoculante para fixação de nitrogênio para cana é lançado pela Basf e Embrapa - Portal Embrapa. Disponível em: <https://www.embrapa.br/busca-de-noticias/-/noticia/39688081/inoculante-para-fixacao-de-nitrogenio-para-cana-e-lancado-pela-basf-e-embrapa>. Acesso em: 16 mar. 2021. FELSENSTEIN, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution, v. 39, n. 4, p. 783, 1985a. FELSENSTEIN, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution, v. 39, n. 4, p. 783, 1985b. FERREIRA, D. F. Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, v. 38, n. 2, p. 109–112, 2014. FERREIRA, N. S. et al. Interaction of phytohormone-producing rhizobia with sugarcane mini-setts and their effect on plant development. Plant and Soil, p. 1–18, 2020. FIERER, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, v. 15, n. 10, p. 579–590, 2017. FIGUEIREDO, P. Breve história da cana-de-açúcar e do papel do Instituto Agronômico no seu estabelecimento no Brasil. Cana-de-açúcar. Campinas: Instituto Agronômico, p. 31–44, 2008. FISCHER, D. et al. Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant and Soil, v. 356, n. 1–2, p. 83–99, 2012. FRANCO, A. A.; DOBEREINER, J. Especificidade hospedeira na simbiose com rhizobium-feijão e influência de diferentes nutrientes. Embrapa Agrobiologia-Artigo em periódico indexado (ALICE), 1967. FRANK, B. Ueber die Pilzsymbiose der Leguminosen. Berichte der Deutschen Botanischen Gesellschaft, v. 7, n. 8, p. 332–346, 1889. FRIED, M.; BROESHART, H. An independent measurement of the amount of nitrogen fixed by a legume crop. Plant and Soil, v. 43, n. 1, p. 707–711, 1975. GALTIER, N.; GOUY, M.; GAUTIER, C. SEA VIEW and PHYLO_ WIN: two graphic tools for sequence alignment and molecular phylogenyCABIOS. [s.l: s.n.]. Disponível em: <https://academic.oup.com/bioinformatics/article-abstract/12/6/543/231577>. Acesso em: 3 out. 2019. GAO, X. et al. Rhizosphere Bacterial Community Characteristics over Different Years of Sugarcane Ratooning in Consecutive Monoculture. BioMed Research International, v. 2019, 2019. GEVERS, D. et al. Defining prokaryotic species Reevaluating prokaryotic species. Microbiology, v. 3, n. September, p. 733–739, 2005. GIBSON, K. D.; FISCHER, A. J.; FOIN, T. C. Shading and the growth and photosynthetic responses of Ammannia coccinnea. Weed Research, v. 41, n. 1, p. 59–67, 2001. GILLIS, M. et al. Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. International Journal of Systematic Bacteriology, v. 39, n. 3, p. 361–364, 1989. GIRAUD, E. et al. Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva. Proceedings of the National Academy of Sciences of the United States of America, v. 97, n. 26, p. 14795–14800, 2000. GIRAUD, E. et al. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science, v. 316, n. 5829, p. 1307–1312, 2007a. GIRAUD, E. et al. Legumes symbioses: Absence of Nod genes in photosynthetic bradyrhizobia. Science, v. 316, n. 5829, p. 1307–1312, 2007b. GOPALASUNDARAM, P.; BHASKARAN, A.; RAKKIYAPPAN, P. Integrated Nutrient Management in Sugarcane. Sugar Tech, v. 14, n. 1, p. 3–20, 2012. GOVINDARAJAN, M. et al. Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant and Soil, v. 280, n. 1–2, p. 239–252, 2006. GRANGE, L.; HUNGRIA, M. Genetic diversity of indigenous common bean (Phaseolus vulgaris) rhizobia in two Brazilian ecosystems. Soil Biology and Biochemistry, v. 36, n. 9, p. 1389–1398, 2004. GREETATORN, T. et al. Empowering rice seedling growth by endophytic Bradyrhizobium sp. SUTN9-2. Letters in Applied Microbiology, v. 68, n. 3, p. 258–266, 2019. GUREVICH, A. et al. QUAST: Quality assessment tool for genome assemblies. Bioinformatics, v. 29, n. 8, p. 1072–1075, 2013. GUTIÉRREZ-MAÑERO, F. J. et al. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, v. 111, n. 2, p. 206–211, 2001. HAAG, A. F. et al. Molecular insights into bacteroid development during Rhizobium- legume symbiosis . FEMS Microbiology Reviews, v. 37, p. n/a-n/a, 2012. HARA, S. et al. Identification of nitrogen-fixing bradyrhizobium associated with roots of field-grown sorghum by metagenome and proteome analyses. Frontiers in Microbiology, v. 10, n. MAR, p. 1–15, 2019. HARDY, R. W. F.; BURNS, R. C.; HOLSTEN, R. D. Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biology and Biochemistry, v. 5, n. 1, p. 47–81, 1973. HERMANN, E. R.; CÂMARA, G. M. DE S. Um metodo para estimar a área foliar da cana-de-açúcar. Stab. Açúcar, Álcool e Subprodutos, v. 17, n. 5, p. 32–34, 1999. HERRIDGE, D. F.; PEOPLES, M. B.; BODDEY, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, v. 311, n. 1–2, p. 1–18, 2008. HU, Y.; RIBBE, M. W. Nitrogenase and homologs. Journal of Biological Inorganic Chemistry, v. 20, n. 2, p. 435–445, 2015. HULTON, C. S. J.; HIGGINS, C. F.; SHARP, P. M. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Molecular Microbiology, v. 5, n. 4, p. 825–834, 1991. IKI, T.; AONO, T.; OYAIZU, H. Evidence for functional differentiation of duplicated nifH genes in Azorhizobium caulinodans. FEMS Microbiology Letters, v. 274, n. 2, p. 173–179, 2007. INMAM-BAMBER, N. G. Some Physiological Factors Affecting the Optimum Age and Season for Harvesting Sugarcane. Proceeding of the S A Sugar Technologists’ Association, n. June, p. 1–6, 1991. INMAN-BAMBER, N. G. Temperature and seasonal effects on canopy development and light interception of sugarcane. Field Crops Research, v. 36, n. 1, p. 41–51, 1 jan. 1994. INMAN-BAMBER, N. G.; LAKSHMANAN, P.; PARK, S. Sugarcane for water-limited environments: Theoretical assessment of suitable traits. Field Crops Research, v. 134, p. 95-104, 2012. ISLAM, M. R. et al. Diversity of free-living nitrogen-fixing bacteria associated with Korean paddy fields. Annals of Microbiology, v. 62, n. 4, p. 1643–1650, 2012. JAHN, C. E.; CHARKOWSKI, A. O.; WILLIS, D. K. Evaluation of isolation methods and RNA integrity for bacterial RNA quantitation. Journal of Microbiological Methods, v. 75, n. 2, p. 318–324, 2008. JAMES, E. K. et al. Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. Journal of Experimental Botany, v. 45, n. 6, p. 757–766, 1994. JIAO, X. et al. Low-temperature leaf photosynthesis of a Miscanthus germplasm collection correlates positively to shoot growth rate and specific leaf area. Annals of Botany, v. 117, n. 7, p. 1229–1239, 2016. JOHNSON, G.; NOLAN, T.; BUSTIN, S. A. Real-time quantitative PCR, pathogen detection and MIQE. In: Methods in Molecular Biology. [s.l: s.n.]. v. 943p. 1–16. JORDAN, D. C. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. International Journal of Systematic and Evolutionary Microbiology, v. 32, n. 1, p. 136–139, 1982a. JORDAN, D. C. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. International Journal of Systematic Bacteriology, v. 32, n. 1, p. 136–139, 1982b. JÚNIOR, I. DE A. M. et al. Occurrence of diverse Bradyrhizobium spp. in roots and rhizospheres of two commercial Brazilian sugarcane cultivars. Brazilian Journal of Microbiology, v. 50, n. 3, p. 759–767, 2019. KANEKO, T. et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Research, v. 9, n. 6, p. 189–197, 2002. KANESHIRO, T.; KURTZMAN, M. A. Glutamate as a differential nitrogen source for the characterization of acetylene‐reducing Rhizobium strains. Journal of applied bacteriology, v. 52, n. 2, p. 201–207, 1982. KASCHUK, G. et al. Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Applied Soil Ecology, v. 32, n. 2, p. 210–220, 2006. KENNEDY, I. R.; CHOUDHURY, A. T. M. A.; KECSKÉS, M. L. Non-symbiotic bacterial diazotrophs in crop-farming systems: Can their potential for plant growth promotion be better exploited? Soil Biology and Biochemistry, v. 36, n. 8, p. 1229–1244, 2004. KHAN, A. L. et al. Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environmental and Experimental Botany, v. 133, p. 58–69, 2017. KLEINGESINDS, C. K. et al. Sugarcane growth promotion by Kosakonia sp. ICB117 an endophytic and diazotrophic bacterium. African Journal of Microbiology Research, v. 12, n. 5, p. 105–114, 2018. KLINDWORTH, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, v. 41, n. 1, p. 1–11, 2013. KONDOROSI, E.; MERGAERT, P.; KERESZT, A. A Paradigm for Endosymbiotic Life: Cell Differentiation of Rhizobium Bacteria Provoked by Host Plant Factors . Annual Review of Microbiology, v. 67, n. 1, p. 611–628, 2013. KRALIK, P.; RICCHI, M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Frontiers in Microbiology, v. 8, n. FEB, p. 1–9, 2017. KRUASUWAN, W.; THAMCHAIPENET, A. Diversity of Culturable Plant Growth-Promoting Bacterial Endophytes Associated with Sugarcane Roots and Their Effect of Growth by Co-Inoculation of Diazotrophs and Actinomycetes. Journal of Plant Growth Regulation, v. 35, n. 4, p. 1074–1087, 2016. KUMAR, A.; DUBEY, A. Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. Journal of Advanced Research, v. 24, p. 337–352, 2020. KUMAR, S.; STECHER, G.; TAMURA, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular biology and evolution, v. 33, n. 7, p. 1870–1874, 2016. KURZ, W. G. W.; LARUE, T. A. Nitrogenase activity in rhizobia in absence of plant host. Nature, v. 256, n. 5516, p. 407–409, 1975. KUYKENDALL, L. D. et al. Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Canadian Journal of Microbiology, v. 38, n. 6, p. 501–505, 1992. LACEY, J. Actinomycetales: characteristics and practical importance. Society for Applied Bacteriology Symposium Series. Anais...1973 LANDELL, M. G. DE A. et al. Sistema de multiplicação de cana-de-açúcar com uso de mudas pré-brotadas (MPB), oriundas de gemas individualizadas. In: Ribeirão Preto: Instituto Agronômico de Campinas,. [s.l: s.n.]. p. 17. LANDELL, M. G. DE A.; BRESSIANI, J. A. Melhoramento genético, caracterização e manejo varietal. Cana-de-açúcar. Campinas: Instituto Agronômico, p. 101–155, 2008. LEGHARI, S. J. et al. Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, v. 10, n. 9, p. 209–219, 2016. LI, C. et al. Change in deep soil microbial communities due to long-term fertilization. Soil Biology and Biochemistry, v. 75, p. 264–272, 2014. LI, F. et al. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Frontiers in Microbiology, v. 8, n. FEB, 2017. LI, R. et al. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in sugarcane fields applied with organic fertilizer. BioMed Research International, v. 2020, 2020. LIMA, E.; BODDEY, R. M.; DÖBEREINER, J. Quantification of biological nitrogen fixation associated with sugar cane using a 15N aided nitrogen balance. Soil Biology and Biochemistry, v. 19, n. 2, p. 165–170, 1987. LOUWS, F. J. et al. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology, v. 60, n. 7, p. 2286–2295, 1994. LUNDBERG, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature, v. 488, n. 7409, p. 86–90, 2012. LUPSKI, J. R.; WEINSTOCK, G. M. Short, interspersed repetitive DNA sequences in prokaryotic genomes. Journal of Bacteriology, v. 174, n. 14, p. 4525–4529, 1992. MADHAIYAN, M. et al. Bacillus rhizosphaerae sp. nov., an novel diazotrophic bacterium isolated from sugarcane rhizosphere soil. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, v. 100, n. 3, p. 437–444, 2011. MAGALHAES, F. M. et al. New acid-tolerant Azospirillum species. Anais-Academia Brasileira de Ciencias, 1983. MAGNANI, G. S. et al. Diversity of endophytic bacteria in Brazilian sugarcane. Genetics and Molecular Research, v. 9, n. 1, p. 250–258, 2010. MAGURRAN, A. E. Ecological diversity and its measurement. [s.l.] Princeton university press, 1988. MAILLARD, A. et al. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Frontiers in Plant Science, v. 6, n. MAY, p. 1–15, 2015. MARAFON, A. C. Análise quantitativa de crescimento em Cana-de-açúcar: Uma introducao ao procedimento práctico. Embrapa Tabuleiros Costeiros, v. 168, n. 1, p. 31, 2012. MARCELLETTI, S.; FERRANTE, P.; SCORTICHINI, M. Multilocus sequence typing reveals relevant genetic variation and different evolutionary dynamics among strains of Xanthomonas arboricola pv. juglandis. Diversity, v. 2, n. 11, p. 1205–1222, 2010. MARTIN, B. et al. conserved repeated DNA. v. 20, n. 13, p. 3479–3483, 1992. MARTINS, M. T. B. et al. Characterization of sugarcane (Saccharum spp.) leaf senescence: Implications for biofuel production. Biotechnology for Biofuels, v. 9, n. 1, p. 1–17, 2016. MASSON-BOIVIN, C. et al. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends in Microbiology, v. 17, n. 10, p. 458–466, 2009. MATOS, G. F. DE. Caracterização de novos rizóbios isolados de raízes de cana-de-açúcar. [s.l.] Universidade Federal Rural do Rio de Janeiro, 2017. MATSUBARA, M.; ZÚÑIGA-DÁVILA, D. Phenotypic and molecular differences among rhizobia that nodulate Phaseolus lunatus in the Supe valley in Peru. Annals of Microbiology, v. 65, n. 3, p. 1803–1808, 2015. MATTHEWS, S. S. The response of wheat to inoculation with the diazothroph Azorhizobium caulinodans.University of Nottingham, , 2001. MCMURDIE, P. J.; HOLMES, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, v. 8, n. 4, 2013. MEENA, K. K. et al. Mitigation of Salinity Stress in Wheat Seedlings Due to the Application of Phytohormone-Rich Culture Filtrate Extract of Methylotrophic Actinobacterium Nocardioides sp. NIMMe6. Frontiers in Microbiology, v. 11, n. September, p. 1–16, 2020. MENNA, P. et al. Rep-PCR of tropical rhizobia for strain fingerprinting, biodiversity appraisal and as a taxonomic and phylogenetic tool. Symbiosis, v. 48, n. 1–3, p. 120–130, 2009. MOLOUBA, F. et al. Photosynthetic bradyrhizobia from Aeschynomene spp. are specific to stem-nodulated species and form a separate 16S ribosomal DNA restriction fragment length polymorphism group. Applied and Environmental Microbiology, v. 65, n. 7, p. 3084–3094, 1999. MOREIRA, F. M. S.; SIQUEIRA, J. O. Microbiologia e Bioquímica do Solo. Editora UFLA, v. ed. 2, p. 729, 2006. MOZEN, M. M.; BURRIS, R. H. The incorporation of 15N-labelled nitrous oxide by nitrogen fixing agents. Biochimica et biophysica acta, v. 14, n. 4, p. 577–578, 1954. NEI, M.; KUMAR, S. Molecular evolution and phylogenetics. 2000. NIINEMETS, U. Growth of young trees of Acer platanoides and Quercus robur along a gap understory continuum: Interrelationships between allometry, biomass partitioning, nitrogen, and shade tolerance. International Journal of Plant Sciences, v. 159, n. 2, p. 318–330, 1998. NOGUEIRA, A. R. DE A. et al. Manual de laboratórios: solo, água, nutrição vegetal, nutrição animal e alimentos. [s.l.] EMBRAPA-CPPSE, 1998. NOISANGIAM, R. et al. Genetic diversity, symbiotic evolution, and proposed infection process of bradyrhizobium strains isolated from root nodules of Aeschynomene americana L. in Thailand. Applied and Environmental Microbiology, v. 78, n. 17, p. 6236–6250, 2012. NORRIS, D. O.; DATE, R. A. Legume bacteriology Commonwealth Bureau of Pastures and Field Crops. 1976. NOUWEN, N. et al. The role of rhizobial (NifV) and plant (FEN1) homocitrate synthases in Aeschynomene/photosynthetic Bradyrhizobium symbiosis. Scientific Reports, v. 7, n. 1, p. 1–10, 2017. NUNES JUNIOR, D. et al. Indicadores agrícolas do setor canavieiro: safra 2003/2004. Ribeirão Preto: Idea, 2005. OKAZAKI, S. et al. Genome analysis of a novel bradyrhizobium sp. doa9 carrying a symbiotic plasmid. PLoS ONE, v. 10, n. 2, p. 1–18, 2015. OKUBO, T. et al. Complete genome sequence of bradyrhizobium sp. S23321: Insights into symbiosis evolution in soil oligotrophs. Microbes and Environments, v. 27, n. 3, p. 306–315, 2012. OKUBO, T. et al. Origin and evolution of nitrogen fixation genes on symbiosis Islands and plasmid in Bradyrhizobium. Microbes and Environments, v. 31, n. 3, p. 260–267, 2016. OLDROYD, G. E. D. et al. The Rules of Engagement in the Legume-Rhizobial Symbiosis. Annual Review of Genetics, v. 45, n. 1, p. 119–144, 2011. OLDROYD, G. E. D. Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, v. 11, n. 4, p. 252–263, 2013. OLIVEIRA, A. L. M. et al. Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. European Journal of Soil Biology, v. 45, n. 1, p. 106–113, 2009. OO, K. T. et al. Isolation , Screening and Molecular Characterization of Multifunctional Plant Growth Promoting Rhizobacteria for a Sustainable Agriculture. p. 773–792, 2020. ORMEÑO-ORRILLO, E.; MARTÍNEZ-ROMERO, E. A genomotaxonomy view of the bradyrhizobium genus. Frontiers in Microbiology, v. 10, n. JUN, p. 1–13, 2019. OVERBEEK, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, v. 42, n. D1, p. 206–214, 2014. PAGAN, J. D. et al. Nitrogen fixation by Rhizobium cultured on a defined medium. Nature, v. 256, n. 5516, p. 406–407, 1975. PALANIYANDI, S. A. et al. Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of “Micro Tom” tomato plants. Journal of applied microbiology, v. 117, n. 3, p. 766–773, 2014. PARK, S. E. et al. A legume rotation crop lessens the need for nitrogen fertiliser throughout the sugarcane cropping cycle. Field Crops Research, v. 119, n. 2–3, p. 331–341, 2010. PAUNGFOO-LONHIENNE, C. et al. Legume crop rotation suppressed nitrifying microbial community in a sugarcane cropping soil. Scientific Reports, v. 7, n. 1, p. 1–7, 2017. PENG, S. et al. Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agronomy Journal, v. 94, n. 4, p. 925–929, 2002. PEREIRA, L. B. et al. Responses of the sugarcane rhizosphere microbiota to different levels of water stress. Applied Soil Ecology, v. 159, n. October, p. 103817, 2021. PEREIRA, W. et al. Nitrogen acquisition and 15N-fertiliser recovery efficiency of sugarcane cultivar RB92579 inoculated with five diazotrophs. Nutrient Cycling in Agroecosystems, v. 0123456789, 2020. PIROMYOU, P. et al. Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution. Applied and Environmental Microbiology, v. 81, n. 9, p. 3049–3061, 2015. PIROMYOU, P. et al. Potential of rice stubble as a reservoir of bradyrhizobial inoculum in rice-legume crop rotation. Applied and Environmental Microbiology, v. 83, n. 22, 1 nov. 2017. PRAUSER, H. of the Order Actinomycetales. Cultures, p. 58–65, 1976. RADEMAKER, J.; BRUIJN, F. Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysisDNA markers: protocols, applications and …, 1997. RATÓN, T. DE LOS M. O. et al. Isolation and characterisation of aerobic endospore forming Bacilli from sugarcane rhizosphere for the selection of strains with agriculture potentialities. World Journal of Microbiology and Biotechnology, v. 28, n. 4, p. 1593–1603, 2012. REBOUÇAS, E. DE L. et al. Real time PCR and importance of housekeepings genes for normalization and quantification of mRNA expression in different tissues. Brazilian Archives of Biology and Technology, v. 56, n. 1, p. 143–154, 2013. REINHOLD-HUREK, B.; HUREK, T. Living inside plants: Bacterial endophytes. Current Opinion in Plant Biology, v. 14, n. 4, p. 435–443, 2011. REIS, V. M. et al. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. International Journal of Systematic and Evolutionary Microbiology, v. 54, n. 6, p. 2155–2162, 2004. REIS, V. M. et al. Agronomic performance of sugarcane inoculated with Nitrospirillum amazonense (BR11145). Revista Caatinga, v. 33, n. 4, p. 918–926, 2020. REIS, V. M.; BALDANI, J. I.; URQUIAGA, S. Recomendação de uma mistura de estirpes de cinco bactérias fixadoras de nitrogênio para inoculação de cana-de-açúcar: Gluconacetobacter diazotrophicus BR 11281, Herbaspirillum seropedicae, estirpe BR 11335, Herbaspirillum rubrisubalbicans, BR 11504; Azosp. Embrapa Agrobiologia. Circular Técnica, 2009. REZENE, Y. et al. Rep-PCR Genomic Fingerprinting Revealed Genetic Diversity and Population Structure among Ethiopian Isolates of Pseudocercospora griseola Pathogen of the Common Bean (Phaseolus vulgaris L.). Journal of Plant Pathology & Microbiology, v. 9, n. 11, 2018. RILLING, J. I. et al. Current opinion and perspectives on the methods for tracking and monitoring plant growth‒promoting bacteria. Soil Biology and Biochemistry, v. 130, n. December 2018, p. 205–219, 2019. RIO, D. C. et al. Purification of RNA using TRIzol (TRI Reagent). Cold Spring Harbor Protocols, v. 5, n. 6, p. 1–4, 2010. RIVAS, R. et al. Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. International Journal of Systematic and Evolutionary Microbiology, v. 54, n. 4, p. 1271–1275, 2004. ROBERTSON, G. P.; VITOUSEK, P. M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annual Review of Environment and Resources, v. 34, n. 1, p. 97–125, 2009. RODRIGUES COELHO, M. R. et al. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiology Letters, v. 279, n. 1, p. 15–22, 2008. RODRIGUES NETO, J. Meio simples para o isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathol, v. 12, p. 16, 1986. RODRÍGUEZ, H.; FRAGA, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, v. 17, n. 4–5, p. 319–339, 1999. ROESCH, L. F. W. et al. Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant and Soil, v. 302, n. 1–2, p. 91–104, 2008. ROSENBLUETH, M.; MARTÍNEZ-ROMERO, E. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, v. 19, n. 8, p. 827–837, 2006. ROSSELLÓ-MÓRA, R. Towards a taxonomy of Bacteria and Archaea based on interactive and cumulative data repositories. Environmental Microbiology, v. 14, n. 2, p. 318–334, 2012. ROUWS, L. F. M. et al. Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes. Letters in applied microbiology, v. 51, n. 3, p. 325–330, 2010. ROUWS, L. F. M. et al. Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies. Environmental Microbiology Reports, v. 6, n. 4, p. 354–363, 2014. RUSCHEL, A. P.; HENIS, Y.; SALATI, E. Nitrogen-15 tracing of N-fixation with soil-grown sugarcane seedlings. Soil Biology+ Biochemistry, 1975. SAITOU, N.; NEI, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, v. 4, n. 4, p. 406–425, 1987. SALEH, S. A. et al. Survival of Azorhizobium and Azospirillum in different carrier materials: inoculation of wheat and Sesbania rostrata. BULLETIN-FACULTY OF AGRICULTURE UNIVERSITY OF CAIRO, v. 52, n. 2, p. 319–338, 2001. SANTI, C.; BOGUSZ, D.; FRANCHE, C. Biological nitrogen fixation in non-legume plants. Annals of Botany, v. 111, n. 5, p. 743–767, 2013. SANTOYO, G. et al. Plant growth-promoting bacterial endophytes. Microbiological research, v. 183, p. 92–99, 2016. SCHNEIDER, M.; DE BRUIJN, F. J. Rep-PCR mediated genomic fingerprinting of rhizobia and computer-assisted phylogenetic pattern analysis. World Journal of Microbiology and Biotechnology, v. 12, n. 2, p. 163–174, 1996. SCHÖLLHORN, R.; BURRIS, R. H. Acetylene as a competitive inhibitor of N-2 fixation. Proceedings of the National Academy of Sciences of the United States of America, v. 58, n. 1, p. 213–216, 1967. SCHULTZ, N. et al. Avaliação agronômica de variedades de cana-de-açúcar inoculadas com bactérias diazotróficas e adubadas com nitrogênio. Pesquisa Agropecuária Brasileira, v. 47, n. 2, p. 261–268, 2012. SCHULTZ, N. et al. Inoculation of sugarcane with diazotrophic bacteria. Revista Brasileira de Ciência do Solo, v. 38, n. 2, p. 407–414, 2014. SCHULTZ, N. et al. Produtividade e diluição isotópica de 15N em cana-de-açúcar inoculada com bactérias diazotróficas. Pesquisa Agropecuária Brasileira, v. 51, n. 9, p. 1594–1601, 2016. SCHULTZ, N. et al. Yield of sugarcane varieties and their sugar quality grown in different soil types and inoculated with a diazotrophic bacteria consortium. Plant Production Science, v. 20, n. 4, p. 366–374, 2 out. 2017. SCIVITTARO, W. B. et al. Utilização de nitrogênio de adubos verde e mineral pelo milho. Revista Brasileira de Ciência do Solo, v. 24, n. 4, p. 917–926, 2000. SHARPLES, G. J.; LLOYD, R. G. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Research, v. 18, n. 22, p. 6503–6508, 1990. SHEARER, G.; KOHL, D. H. N2-fixation in field settings: estimations based on natural 15N abundance. Functional Plant Biology, v. 13, n. 6, p. 699–756, 1986. SHOKO, M. D.; ZHOU, M. Nematode diversity in a soybean-sugarcane production system in a semi-arid region of Zimbabwe. v. 1, n. 2, p. 25–28, 2009. SIMONSSON, M. et al. Potassium release and fixation as a function of fertilizer application rate and soil parent material. v. 140, p. 188–198, 2007. SINCLAIR, T. R. et al. Sugarcane leaf area development under field conditions in Florida , USA $. v. 88, p. 171–178, 2004. SINGH, R. K. et al. Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: A comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biology, v. 20, n. 1, p. 1–21, 2020. SMERCINA, D. N. et al. Erratum for Smercina et al., “To Fix or Not To Fix: Controls on Free-Living Nitrogen Fixation in the Rhizosphere”. Applied and environmental microbiology, v. 85, n. 22, p. 1–15, 2019. SMITH, D. M.; INMAN-BAMBER, N. G.; THORBURN, P. J. Growth and function of the sugarcane root system. Field Crops Research, v. 92, n. 2- 3 SPEC. ISS., p. 169–183, 2005. SOARES, M. B. B. et al. Comunidade infestante e área de reforma de cana crua submetida a diferentes manejos. Planta Daninha, v. 34, n. 1, p. 91–98, 2016. SOARES, M. B. B. et al. Phytosociological study on the weed communities in green sugarcane field reform using conservation tillage and oilseed crops in succession. Applied ecology and environmental research, v. 15, n. 3, p. 417–428, 2017. SOLANKI, M. K. et al. Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems. Journal of Soils and Sediments, v. 19, n. 4, p. 1911–1927, 2019. SOLANKI, M. K. et al. Impact of Sugarcane–Legume Intercropping on Diazotrophic Microbiome. Sugar Tech, v. 22, n. 1, p. 52–64, 2020. SORENSEN, S. R.; JUHLER, R. K.; AAMAND, J. Degradation and mineralisation of diuron by Sphingomonas sp. SRS2 and its potential for remediating at a realistic μg L-1 diuron concentration. Pest Management Science, v. 69, n. 11, p. 1239–1244, 2013. SPATZAL, T. The center of biological nitrogen fixation: FeMo-cofactor. Zeitschrift fur Anorganische und Allgemeine Chemie, v. 641, n. 1, p. 10–17, 2015. STȨPKOWSKI, T. et al. European origin of bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. Applied and Environmental Microbiology, v. 71, n. 11, p. 7041–7052, nov. 2005. SUN, J.-G. et al. Isolation, identification and inoculation effect of nitrogen-fixing bacteria Sphingomonas GD542 from maize rhizosphere. Chinese Journal of Eco-Agriculture, v. 18, n. 1, p. 89–93, 19 jan. 2010. TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. [s.l.] Artmed Editora, 2017. TAKAHASHI, Y.; TOKUMOTO, U. A third bacterial system for the assembly of iron-sulfur clusters with homologs in Archaea and plastids. Journal of Biological Chemistry, v. 277, n. 32, p. 28380–28383, 2002. TEAM, R. C. R: a language and environment for statistical computing, version 3.0. 2. Vienna, Austria: R Foundation for Statistical Computing; 2013, 2019. TERAKADO-TONOOKA, J.; FUJIHARA, S.; OHWAKI, Y. Possible contribution of Bradyrhizobium on nitrogen fixation in sweet potatoes. Plant and Soil, v. 367, n. 1–2, p. 639–650, 2013. TEULET, A. et al. Phylogenetic distribution and evolutionary dynamics of NOD and T3SS genes in the genus bradyrhizobium. Microbial Genomics, v. 6, n. 9, p. 1–18, 2020. THAWEENUT, N. et al. Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): Expression of nifH genes similar to those of rhizobia. Plant and Soil, v. 338, n. 1, p. 435–449, 2011. TINDALL, B. J. et al. Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology, v. 60, n. 1, p. 249–266, 2010. UNKOVICH, M. et al. Measuring plant-associated nitrogen fixation in agricultural systems. [s.l.] Australian Centre for International Agricultural Research (ACIAR), 2008. UNTERGASSER, A. et al. Primer3-new capabilities and interfaces. Nucleic Acids Research, v. 40, n. 15, p. 1–12, 2012. URQUIAGA, S. et al. Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N 2 fixation to Brazilian sugarcane varieties. Plant and Soil, v. 356, n. 1–2, p. 5–21, 2012a. URQUIAGA, S. et al. Evidence from field nitrogen balance and 15 N natural abundance data for the contribution of biological N 2 fixation to Brazilian sugarcane varieties. Plant and soil, v. 356, n. 1–2, p. 5–21, 2012b. URQUIAGA, S.; CRUZ, K. H. S.; BODDEY, R. M. Contribution of Nitrogen Fixation to Sugar Cane: Nitrogen-15 and Nitrogen-Balance Estimates. Soil Science Society of America Journal, v. 56, n. 1, p. 105–114, 1992. VAN BERKUM, P. et al. Discordant phylogenies within the rrn loci of Rhizobia. Journal of Bacteriology, v. 185, n. 10, p. 2988–2998, 2003. VANINSBERGHE, D. et al. Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. ISME Journal, v. 9, n. 11, p. 2435–2441, 2015. VERSALOVIC, J. et al. 1nstitute for Molecular Genetics and department of Pediatrics , Baylor College of Medicine ,. Cell, v. 19, n. 24, p. 6823–6831, 1991. VERSALOVIC, J. et al. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology, v. 5, n. 1, p. 25–40, 1994. VESSEY, J. K. Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, v. 255, n. 2, p. 571–586, 2003. VINCENT, J. M. A Manual for the Practical Study of Root-nodule Bacteria - J. M. Vincent - Google Livros. [s.l: s.n.]. VINUESA, P. et al. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Brady. International Journal of Systematic and Evolutionary Microbiology, v. 55, n. 2, p. 569–575, 2005. VITORINO, L. C.; BESSA, L. A. Microbial diversity: The gap between the estimated and the known. Diversity, v. 10, n. 2, 2018. WACHOWSKA, U. et al. Biological control of winter wheat pathogens with the use of antagonistic Sphingomonas bacteria under greenhouse conditions. Biocontrol Science and Technology, v. 23, n. 10, p. 1110–1122, 2013. WANG, Y. et al. Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant, Cell & Environment, v. 16, n. 5, p. 579–585, 1993. WANG, Z. et al. Draft genome analysis offers insights into the mechanism by which Streptomyces chartreusis WZS021 increases drought tolerance in sugarcane. Frontiers in Microbiology, v. 10, n. JAN, p. 1–14, 2019. WANG, Z. et al. Diversity of sugarcane root-associated endophytic Bacillus and their activities in enhancing plant growth. Journal of Applied Microbiology, v. 128, n. 3, p. 814–827, 2020. WARDLE, D. A. et al. Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period. Soil Biology and Biochemistry, v. 31, n. 12, p. 1707–1720, 1999. WDOWIAK, S.; MAŁEK, W. Numerical Analysis of Astragalus cicer Microsymbionts. v. 41, p. 142–148, 2000. WHITE, P. J. Long-distance Transport in the Xylem and Phloem. [s.l.] Elsevier Ltd, 2011. WICKHAM, H. et al. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics (2018). URL https://CRAN. R-project. org/package= ggplot2. R package version, v. 2, n. 1, p. 2, 2019. WILLEMS, A. et al. In most Bradyrhizobium groups sequence comparison of 16S-23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. Systematic and Applied Microbiology, v. 26, n. 2, p. 203–210, 2003. WILLEMS, A. The taxonomy of rhizobia: An overview. Plant and Soil, v. 287, n. 1–2, p. 3–14, 2006. WILLEMS, A.; COOPMAN, R.; GILLIS, M. Phylogenetic and DNA-DNA hybridization analyses of Bradyrhizobium species. International Journal of Systematic and Evolutionary Microbiology, v. 51, n. 1, p. 111–117, 2001. WILLMS, I. M. et al. Globally Abundant “ Candidatus Udaeobacter” Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging . mSphere, v. 5, n. 4, p. 1–17, 2020. WONGDEE, J. et al. NifDK clusters located on the chromosome and megaplasmid of bradyrhizobium sp. Strain DOA9 contribute differently to nitrogenase activity during symbiosis and free-living growth. Molecular Plant-Microbe Interactions, v. 29, n. 10, p. 767–773, 2016. WOODS, C. R. et al. Whole-cell repetitive element sequence-based polymerase chain reaction allows rapid assessment of clonal relationships of bacterial isolates. Journal of Clinical Microbiology, v. 31, n. 7, p. 1927–1931, 1993. XIE, C. H.; YOKOTA, A. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. International Journal of Systematic and Evolutionary Microbiology, v. 56, n. 4, p. 889–893, 2006. XU, L. M. et al. Bradyrhizobium liaoningense sp. nov., Isolated from the root nodules of soybeans. International Journal of Systematic Bacteriology, v. 45, n. 4, p. 706–711, 1995. YANNI, Y. G. et al. Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant and Soil, v. 194, n. 1–2, p. 99–114, 1997. YAO, Z. Y. et al. Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. International Journal of Systematic and Evolutionary Microbiology, v. 52, n. 6, p. 2219–2230, 2002. YONEYAMA, T. et al. Molecular Analyses of the Distribution and Function of Diazotrophic Rhizobia and Methanotrophs in the Tissues and Rhizosphere of Non-Leguminous Plants. Plants, v. 8, n. 10, p. 408, 2019. YOON, V. et al. Colonization efficiency of different sorghum genotypes by Gluconacetobacter diazotrophicus. Plant and Soil, v. 398, n. 1–2, p. 243–256, 2016. ZAKHIA, F.; DE LAJUDIE, P. Taxonomy of rhizobia. 2001. ZHANG, F. et al. Potassium nutrition of crops under varied regimes of nitrogen supply. Plant and Soil, v. 335, n. 1, p. 21–34, 2 mar. 2010. ZHAO, Q. et al. Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: Dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer. Science of the Total Environment, v. 609, p. 1238–1247, 2017. ZILLI, J. É. et al. Dinâmica de rizóbios em solo do cerrado de Roraima durante o período de estiagem. Acta Amazonica, v. 43, n. 2, p. 153–160, 2013. | por |
dc.subject.cnpq | Agronomia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/72950/2021%20-%20Gustavo%20Feitosa%20de%20Matos.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6523 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-04-14T18:40:48Z No. of bitstreams: 1 2021 - Gustavo Feitosa de Matos.pdf: 3171063 bytes, checksum: d103ec97269b4240acc3e1e4e5012106 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-04-14T18:40:48Z (GMT). No. of bitstreams: 1 2021 - Gustavo Feitosa de Matos.pdf: 3171063 bytes, checksum: d103ec97269b4240acc3e1e4e5012106 (MD5) Previous issue date: 2021-03-29 | eng |
Appears in Collections: | Doutorado em Fitotecnia |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2021 - Gustavo Feitosa de Matos.pdf | 3.1 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.