Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10037
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMacedo, Ricardo Antônio Tavares de
dc.date.accessioned2023-12-21T18:56:13Z-
dc.date.available2023-12-21T18:56:13Z-
dc.date.issued2010-10-29
dc.identifier.citationMACEDO, Ricardo Antônio Tavares de. Efeitos da extrusão de H+/OH- em plantas de feijão crescidas com diferentes fontes de nitrogênio sobre o início da formação de nódulos radiculares. 2010. 118 f. Dissertação (Mestrado em Fitotecnia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2010.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10037-
dc.description.abstractO feijoeiro pode adquirir nitrogênio da matéria orgânica do solo, de adubos ou da fixação biológica do N2 atmosférico (FBN). Entretanto, nesta cultura o processo biológico tem apresentado baixa eficiência nas condições de campo. Em função disso, muitos produtores não inoculam as sementes com estirpes eficientes de rizóbio, sendo a adubação a principal fonte de N para esta cultura. Além da ausência da inoculação, altas doses de N aplicadas no solo inibem a nodulação e a FBN. No entanto, as causas para esta inibição não são totalmente esclarecidas, especialmente pelo fato do N ser absorvido na forma de nitrato (NO3 -) e amônio (NH4 +). Considerando que a rizosfera da planta crescida com nitrato é alcalinizada e com amônio é acidificada, este trabalho teve o objetivo de avaliar o efeito das alterações de pH rizosférico (pHR), causadas pelo metabolismo destas fontes de N, no início da formação de nódulos. Os experimentos foram realizados em câmara de crescimento com luminosidade média de 400 Lux, fotoperíodo de 12/12 horas (luz/escuro) e temperatura de 25ºC ± 2ºC. As plantas foram crescidas em vasos com areia, solos com baixo (8%) e médio (25%) teor de argila e em solução nutritiva. No 1º ensaio (salinidade) foi verificado que o amônio causou maior elevação da condutividade elétrica da areia (CE), obtendo-se na dose de 60 kgN ha-1 o valor de 1.655 μS cm-1 com amônio e de 1.301 μS cm-1 com nitrato. No ensaio seguinte foram comparadas 2 cultivares contrastantes quanto à capacidade nodular, que confirmaram a alta (Ouro Negro) e a baixa (Rio Tibagi) capacidade. Como entre as cultivares não ocorreram diferenças expressivas nos valores de pHR, nos demais experimentos avaliou-se apenas a Ouro Negro. Neste ensaio e nos demais o amônio foi a fonte de N que mais acidificou a rizosfera e inibiu a nodulação. Através de análises de regressão para cada fonte de N foi determinada a dose de inibição total da nodulação (nível crítico), pHR nesta dose e a dose onde ocorreu 80% da máxima nodulação (dose de convivência). Em geral, foram observadas as menores doses de NC e de convivência com uso do amônio do que com nitrato. No ensaio em areia (cv Ouro Negro coletada aos 20 DAE), para amônio e nitrato as doses de convivência foram 13 e 58 kgN ha-1 e os valores de pHR 3,95 e 5,59, respectivamente. No ensaio em diferentes tipos de solo (20 DAE), a dose de convivência foi menor com amônio do que com nitrato, sendo no solo com menor teor de argila 18 e 41 kgN ha-1 e no solo com maior teor de argila 15 e 27 kgN ha-1, respectivamente. Já os valores de pHR para amônio e nitrato foram 4,69 e 6,08 no solo com menor teor de argila e 4,23 e 4,63 no solo com maior teor de argila, respectivamente. Neste ensaio os neutralizantes aliviaram a acidificação da rizosfera e otimizaram a nodulação. No ensaio com aplicação de N via foliar, o amônio também acidificou a rizosfera e promoveu menor nodulação (pHR 4,15 e 14 nódulos planta-1) em relação ao nitrato (pHR 5,03 e 27 nódulos planta-1). No 6º experimento (20 DAE) a dose de 115 kgVO4 ha-1 permitiu que na mais alta dose de amônio o pHR não sofresse alterações, permitindo também a dose de convivência de 46 kgN ha-1 para o amônio. Em todos os ensaios, as mais altas doses de N de todas as fontes suprimiram a nodulação, sugerindo que nestas doses ocorreram fatores inibidores independentes do pH e não mensurados.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectSources and doses of nitrogeneng
dc.subjectrhizosphere pHeng
dc.subjectinhibition of nodulationeng
dc.subjectFontes e doses de nitrogêniopor
dc.subjectpH da rizosferapor
dc.subjectinibição da nodulaçãopor
dc.titleEfeitos da extrusão de H+/OH- em plantas de feijão crescidas com diferentes fontes de nitrogênio sobre o início da formação de nódulos radicularespor
dc.title.alternativeEffects of extrusion of H+/OH- in bean plants grown with different nitrogen sources on the early formation of root noduleseng
dc.typeDissertaçãopor
dc.description.abstractOtherBean plants can get nitrogen from soil organic matter, fertilizer or biological fixation of atmospheric N2 (BNF). However, the biological process in this culture has shown low efficiency under field conditions. As a result, many farmers do not inoculate the seeds with efficient strains of rhizobia, being fertilizer the main source of N to this culture. Besides the absence of inoculation, high doses of N applied to the soil inhibit nodulation and BNF. However, the reasons for this inhibition are not fully understood, especially because the N is uptaked as nitrate (NO3 -) and ammonium (NH4 +). Whereas the rhizosphere of plants grown with nitrate is alkalized and ammonium is acidified, the aim of this study was evaluate the effect of pH changes in rhizosphere (pHR), caused by the metabolism of these N sources, in start of nodules formation. The experiments were conducted in growth chamber with average brightness of 400 lux, photoperiod of 12/12 hours (light/dark) and temperature 25°C ± 2ºC. Plants were grown in pots with sand, soils with low (8%) and medium (25%) clay content and nutrient solution. In the 1st test (salinity) was found that ammonium had the greatest increase in electrical conductivity of the sand (EC), obtained with a 60 KgN ha-1 the value of 1.655 mS cm-1 with ammonium and 1.301 mS cm-1 with nitrate. In the following assay were compared two contrasting cultivars in capacity of nodulate, which confirmed the high (Ouro Negro) and low (Rio Tibagi) capability. As among cultivars were not significant differences in the values of pHR, in others experiments was evaluated Ouro Negro only. In this assay and in others ammonium was the source of N with more capacity of rhizosphere acidify and inhibit nodulation. Through regression analysis for each N source, was given the dose of total inhibition of nodulation (critical level), pHR at this dose and the dose which was 80% of maximum nodulation (dose of coexistence). In general, was verified the lowest doses of critical level and coexistence using ammonium than with nitrate. In the sand test (Ouro Negro sampled 20 DAE) for ammonium and nitrate the doses of coexistence was 13 and 58 KgN ha-1 and the values of pHR was 3,95 and 5,59, respectively. In test with different soil types (20 DAE), the dose of coexistence was lower with ammonium than nitrate, being in soil with lower clay content 18 e 41 KgN ha-1 and soil with higher clay content 15 e 27 KgN ha-1, respectively. The values of pHR for ammonium and nitrate were 4,69 and 6,08 in soil with lower clay content and 4,23 and 4,63 in soil with higher clay content, respectively. In this test the neutralizers alleviated acidification of the rhizosphere and nodulation was optimized. In test with leaf application of N, ammonium also more acidify the rhizosphere and promoted less nodulation (pHR 4,15 and 14 nodules plant-1) compared to nitrate (pHR 5,03 and 27 nodules plant-1). In the 6th experiment (20 DAE) the dose of 115 kgVO4 ha-1 allowed that highest dose of ammonium did not make changes in pHR, allowing also the dose of coexistence of 46 KgN ha-1 for ammonium as source of N. In all tests, the highest N rates from all sources completely inhibited nodulation, suggesting that these doses were the occurrence of others inhibiting factors independent of pH and not measured.eng
dc.contributor.advisor1Jacob Neto, Jorge
dc.contributor.advisor1ID8850585187por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6508017274417976por
dc.contributor.referee1Goi, Silvia Regina
dc.contributor.referee2Baldani, Vera Lucia Divan
dc.contributor.referee3Alves, Bruno José Rodrigues
dc.contributor.referee4Araújo, Jean Luiz Simões
dc.creator.ID7203916790por
dc.creator.Latteshttp://lattes.cnpq.br/9576506940830307por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesABAIDOO, R. C.; GEORGE, T.; BOHLOOL, B. B.; SINGLETON, P. W. Influence of elevation and applied nitrogen on rhizosphere colonization and competition for nodule occupancy by different rhizobial strains on field-grown soybean and common bean. Can. J. Microbiol. v.36, p.92-96, 1990. AGUILAR, S.A. & VAN DIEST, A. Rock-Phosphate mobilization induced by alkaline uptake pattern of legumes utilizing symbiotically fixed nitrogen. Plant and Soil, v.61, p.27- 42, 1981. AGUILAR, O.M.; GRASSO, D.H.; RICILLO, P.M.; LOPEZ, M.V.; SZAFER, E. Rapid identification of bean rhizobium isolates by a nifH gene-PCR assay. Soil Biol. Biochem. V.30, nº 13, p.1655-1661, 1998. ALCANTARA, R.M.C.M. & REIS, V.M. Metabolismo do carbono nos nódulos. EMBRAPA. Documentos 253. ISSN 1517-8498, Seropédica, 27 p., 2008. ALLEN, S. & SMITH, J.A.C. Ammonium Nutrition in Ricinus communis: Its Effect on Plant Growth and the Chemical Composition of the Whole Plant, Xylem and Phloem Saps. Journal of Experimental Botany, v.37, n.11, p.1599-1610, 1986. ALLEN, S.; RAVEN, J.A.; SPRENT, J.L. The role of long-distance transport in intracellular pH regulation in Phaseouls vulgaris grown with ammonium or nitrate as nitrogen source, or nodulated. Journal of Experimental Botany, v.39, p.513-528, 1988. ALMEIDA, C.; CARVALHO, M.A.C.; ARF, O.; SÁ, M.E.; BUZETTI, S. Uréia em cobertura e via foliar em feijoeiro. Scientia Agricola, v.57, n.2, p.293-298, 2000. ALVES, B.J.R.; ZOTARELLI, L.; FERNANDES, F.M.; HECKLER, J.C.; MACEDO, R.A.T.; BODDEY, R.M. JANTALIA, C.P.; URQUIAGA, S. Fixação biológica de nitrogênio e fertilizantes nitrogenados no balanço de nitrogênio em soja, milho e algodão. Pesq. Agropec. Bras., Brasília, v.41, n.3, p.449-456, 2006. ALVES, J. M. ; BRITO, H. N. F. ; DORNELLES, M. S. ; SUNDIN, M. F. C. A. M. ; JACOB NETO, J. Efeito da aplicação da alga Lithothamniun, triturada e incorporada ao solo, no pH e na produtividade de soja. Anais da IX Jornada de Iniciação Científica da UFRRJ. p.23-24, 1999a. ALVES, J. M. ; BRITO, H. N. F. ; DORNELLES, M. S. ; SUNDIN, M. F. C. A. M. ; JACOB NETO, J. Efeito da aplicação da alga Lithothamniun triturada no sulco de plantio e via foliar, em duas épocas do desenvolvimento de plantas de feijão (Phaseolus vulgaris L.) crescidas em condições de campo. Anais da IX Jornada de Iniciação Científica da UFRRJ, Seropédica. p.25-26, 1999b. ALVES, J.M. ; BRITO, H.N.F. ; JACOB NETO, J. Utilização da alga calcária Lithothamnion sp. Triturada na produção de soja (Glycine Max (L.) Merrill) e feijão (Phaseolus vulgaris L.). Anais da XI Jornada de Iniciação Científica da UFRRJ, Serpédica, v.11. p.77-80, 2001. 98 ALVES, V.G.; ANDRADE, M.J.B.; CORRÊA, J.B.D.; MORAES, A.R.; SILVA, M.V. Crescimento e produção de vagens do feijoeiro em diferentes graus de compactação e classes de solos. Ciênc. agrotec., Lavras, v.25, n.5, p.1051-1062, 2001. ALVIM, P.T. Net assimilation rate and growth behavior of beans as affected by gibberellic acid urea and sugar sprays. Plant physiology, v.35, n.3, 1960. ANDRADE, C.A.B.; PATRONI, S.M.S.; CLEMENTE. E.; SCAPIM, C.A. Produtividade e qualidade nutricional de cultivares de feijão em diferentes adubações. Ciênc. Agrotec. Lavras. v. 28. n.5. p.1077-1086. 2004. ANDRADE, D.S.; MURPHY, P.J.; GILLER, K.E. Effects os lime and legume/cereal cropping on populations of indigenous rhizobia in an acid Brazilian Oxisol. Soil Biology & Biochemistry, v.34, p.477-485, 2002. ANDRIOLO, J.; PEREIRA, P.A.A.; HENSON, R.A. Variabilidade entre linhas de formas silvestres quanto a características relacionadas com a fixação biológica de N2. Pesquisa Agropecuária Brasileira, v.29, n.6, p.831-837, 1994. ANGELINI, J.; CASTRO, S.; FABRA, A. Alterations in root colonization and nodC gene induction in the peanut–rhizobia interaction under acidic conditions. Plant Physiology and Biochemistry, v.41 p.289-294, 2003. ARAUJO, F.F.; MUNHOZ, R.E.V.; HUNGRIA, M. Início da nodulação em 7 cultivares de feijoeiro inoculadas com duas estirpes de Rhizobium. Pesq. Agrop. Bras. Brasília, v.31, n.6, p.435-443, 1996. ARAUJO, R.S. Fixação biológica do nitrogênio em feijão. In: ARAÚJO, R.S.; HUNGRIA, M. (Ed.) Microorganismos de importância agrícola. Brasília, Embrapa, 236p., 1994. ATKINS, C.A.; PATE, J.S.; GRIFFITHS, G.J. WHITE, S.T. Economy of Carbon and Nitrogen in Nodulated and Nonnodulated (NO3 -grown) Cowpea [Vigna unguiculata (L.) Walp]. Plant Physiology. 66, 978-983, 1980. BALASUBRAMANIAN, A. & RANGASWAMI, G. Influence of Foliar Application of Chemicals on the Root Exudations and Rhizosphere Microflora of Sorghum vulgare and Crotalaria juncea. Folia Microbiol., v.18, p.492-498, 1973. BANDYOPADHYAY, A.K.; JAIN, V.; NAINAWATEE, H.S. Nitrate alters the flavonoid profile and nodulation in pea (Pisum sativum L.). Biol. Fertil. Soils, v.21, p.189-192, 1996. BARKER, A.V.; VOLK, R.J.; JACKSON, W.A. Root Environment Acidity as a Regulatory Factor in Ammonium Assimilation by the Bean Plant. Plant Physiol., v.41, p.1193-1199, 1966. BASHAN, Y. & LEVANONY, H. Adsorption of the Rhizosphere Bacterium Azospirillum brasilense Cd to Soil, Sand and Peat Particles. Journal of General Microbiology, v.134, p.1811-1820, 1988. 99 BEN ZIONI, A.; VAADIA, Y.; LIPS, S.H. Nitrate uptake by roots is regulated by nitrate reduction products of the shoot. Physiol. Plant. 34: 288-290, 1971. BERGER, M.G.; KLAUS, R.E.; FOCK, H.P. Assimilation of gaseous ammonia by sunflower leaves during photosynthesis. Australian Journal of Plant Physiology, v.13, p.211-19, 1986. BEUTLER, A.N.; FERNANDES, L.A.; FAQUIN, V. Efeito do alumínio sobre o crescimento de duas espécies florestais. Rev. Bras. Ci. Solo, v.25, p. 923-928, 2001. BHARDWAJ, K.K.R. Survival and symbiotic characteristics of rhizobium in saline-alcali soils. Plant and Soil, v.43, p.377-385, 1975. BILAN, M.I. & USOV, A.I. Polysaccharides of Calcareous Algae and their Effect on the Calcification Process, Russian Journal of Biorganic Chemistry, v.27, p. 2-16, 2001. BLACQUIÈRE T. Ammonium and nitrate nutrition in Plantago lanceolata L. and Plantago major L. ssp. major. II. Efficiency of root respiration and growth. Comparison of measured and theorical values of growth respiration. Plant Physiol. Biochem. 25, 775–785, 1987. BLISS, F.A. Breeding common bean for improved biological nitrogen fixation. Plant and Soil, v.152, p.71-79, 1993. BLOOM A.J., SUKRAPANNA S.S. AND WARNER R.L. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 99, 1294–1301, 1992. BLOOM, A.J.; JACKSON, L.E.; SMART, D.R. Root growth as a function of ammonium and nitrate in the root zone. Plant, cell and environment, v.16, p.199-206, 1993. BLOOM, A.J.; MEYERHOFF, P.A.; TAYLOR, A.R.; ROST, T.L. Root Development and Absorption of Ammonium and Nitrate from the Rhizosphere. Journal Plant Growth Regul., v.21, p.416-431, 2003. BLUNDEM, G.; CAMPBELL, S;A; SMITH, J.R.; GUIRY, M.D.; HESSION, C.C.; GRIFFIN, R.L. Chemical and physical characterization of calcified red algal deposits known as maërl. J. Appl. Phycol. v.9, p.11-17, 1997. BOUHMOUCH, I.; SOUAD-MOUHSINE, B.; BRHADA, F.; AURAG, J. Influence of host cultivars and Rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under salt stress. Journal of Plant Physiology, v.162, p.1103-1113, 2005. BOUWMEESTER, H.J.; ROUX, C.; LOPEZ-RAEZ, J.A. BÉCARD, G. Rhizosphere communication of plants, parasitic plants and AM fungi. TRENDS in Plant Science, v.12 n.5, 2007. BOXMAN, A.W.; KRABBENDAM, H.; BELLEMAKERS, M.J.S; ROELOFS, J.G.M. Effects of ammonium and aluminum on the development and nutrition of Pinus nigra in hydroculture. Environ Pollut., v.73, p.119-136, 1991. 100 BRITO, D.T. & KRONZUCKER, H.J. NH4 + toxicity in higher plants: a critical review. Journal of Plant Physiol. 159, 567-584, 2002. BROUGHTON, W.J.; JABBOURI, S.; PERRET, X. Keys to Symbiotic Harmony. Journal of bacteriology, v.182, n.20, p.564-5652, 2000. BROWN, C.M. & DILWORTH, M.J. Ammonia Assimilation by Rhizobium Cultures and Bacteroids. Journal of General Microbiology, v.86, 39-48, 1975. BUTZ, R.G. & JACKSON, J.A. A mechanism for nitrate transport and reduction. Phytochemistry, v.16, p.409-417, 1977. CAIRES, E. F. & ROSOLEM, C. A. Calagem em genótipos de amendoim. Revista Brasileira de Ciência do Solo, Campinas, v.13, p.193-202, 1993. CAMARGO, O.A.; MONIZ, A.C.; JORGE, J.A.; VALADARES, J.M.A.S.. Métodos de Análises Química, Física e Mineralógica do Instituto Agronômico de Campinas. Instituto Agronômico, Boletim Técnico 106, Campinas, 94p., 1996. CAMPANHARO, M. Acidez do solo na fixação biológica do nitrogênio no feijoeiro. Dissertação de Mestrado. UFRPE (Pernambuco), 72p., 2006. CANELLAS, L.P.; ZANDONADI, D.B.; OLIVARES, F.L.; FAÇANHA, A.R. Efeitos fisiológicos de substâncias húmicas – o estímulo às H+-ATPases (capítulo 7). In. Nutrição Mineral de Plantas. Sociedade Brasileira de ciência do Solo. Viçosa, MG. 432 p. 2006. CANVIN, D.T. & ATKINS, C.A. Nitrate, Nitrite and Ammonia Assimilation by Leaves: Effect of Light, Carbon Dioxide and Oxygen. Planta, v.116, p.207-224, 1974. CARVALHO, A.O. Influência da fonte de nitrogênio sobre o pH da rizosfera de plantas de tomate (Lycopersicum esculentum Mill) por Fusarium oxysporum f. sp. lycopersici. (sacc) Snyder Hansen. Tese de Doutorado, Depto. de Fitotecnia, UFRRJ, Seropédica, 2003. CARVALHO, A.O.; JACOB-NETO, J.; DO CARMO, M.G.F. Colonização de raízes de tomateiro por Fusarium oxysporum f. sp. lycopersici em solução nutritiva com três fontes de nitrogênio. Fitopatol. bras. v.30. n.1 Brasília. 2005. CASTRO, O.M.; PRADO, H.; SEVERO, A.C.R.; CARDOSO, E.J.B.N. Avaliação da atividade de microrganismos do solo em diferentes sistemas de manejo de soja. Sci. Agric., Piracicaba, v.50 n.2, p.212-219, 1993. CHAGAS, E.; ARAÚJO, A.P.; TEIXEIRA, M.G.; GUERRA, J.G.M. Decomposição e liberação de nitrogênio, fósforo e potássio de resíduos da cultura do feijoeiro. Revista Brasileira de Ciência do Solo. Rev. Bras. Ci. Solo, v.31, p.723-729, 2007. CHAILLOU, S.; VESSEY, J.K.; MOROT-GAUDRY, J.F.; RAPER, C.D.; HENRY, L.T.; BOUTIN, J.P. Expression of Characteristics of Ammonium Nutrition as Affected by pH of the Root Medium. Journal of Experimental Botany, v.2, n.2, p.189-196, 1991. 101 CHENG, W.X.; ZHANG, Q.L.; COLEMAN, D.C.; CARROLL, C.R. Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol. Biochem., v.28, p.283–288, 1996. CHENG, Y.; HOWIESON, J.G.; O’HARA, G.W.; WATKIN, E.L.J.; SOUCHE, G.; JAILLARD, B.; HINSINGER, P. Proton release by roots of Medicago murex and Medicago sativa growing in acidic conditions, and implications for Rhizosphere pH changes and nodulation at low pH. Soil Biology & Biochemistry, v.36 p.1357-1365, 2004. CIAT - Centro Internacional de Agricultura Tropical. Research constraints provisionally identified by CIAT. In: Workshop On Advanced Phaseolus Beans Research Network, CIAT: Cali, 1990. 30p. CLAUSSEN, W. & LENZ, F. Effect of ammonium and nitrate on net photosynthesis, flower formation, growth and yield of eggplants (Solanum melongena L.). Plant and Soil, v.171, p.267-274, 1995. CNPAF. Cultivo do feijoeiro comum – Calagem e adubação. Sistemas de Produção Nº 2. ISSN 1679-8869. Versão eletrônica. Jan/2003. CNPAF. Origem e historia do feijão. Centro Nacional de Pesquisa de Arroz e Feijão. 2007. Disponível em: http://www.cnpaf.embrapa.br/feijao/historia.htm CORDOVILLA, M.D.P. & LLUCH, F.L.C. Effect of salinity on growth, nodulation and nitrogen assimilation in nodules of faba bean (Vicia faba L.). Applied Soil Ecology, 11, 1-7, 1999. CORONADO, C.; ZUANAZZI, J.A.S.; SALLAUD, C.; QUIRION, J.C.; ESNAULT, R.; HUSSON, H.P.; KONDOROSI, A.; RATET, P. Alfalfa Root Flavonoid Production 1s Nitrogen Regulated. Plant Physiology, v.108, p.533-542, 1995. DABA, S. & HAILE, M. Effects of rhizobial inoculant and nitrogen fertilizer on yield and nodulation of common bean. Journal of plant nutrition, vol. 23, n.5, p.581-591, 2000. DARBYSHIRE, J. Studies on the physiology of nodule formation. IX. The influence of combined nitrogen, glucose, light intensity and day length on root-hair infections in clover. Annals of Botany, v.30, P.623-638, 1966. DARRAH, P.R. The rhizosphere and plant nutrition: a quantitative approach. Plant and Soil. 155/156. 1-20. 1993. DAZZO, F.B. & BRILL, W.J. Regulation by fixed nitrogen of host-symbiont recognition in the Rhizobium-clover symbiosis. Plant Physiology, v.62, p.18-21, 1973. DE MICHELIS, M.I. & SPANSWICK, R.M. H+-Pumping Driven by the Vanadate-Sensitive ATPase in Membrane Vesicles from Corn Roots. Plant Physiology, v.81, p.542-547, 1986. DENISON, R.F. & HARTER, B.L. Nitrate Effects on Nodule Oxygen Permeability and Leghemoglobin. Plant Physiol., v.107, p.1355-1364, 1995. 102 DEUBEL, A.; GRANSEE, A.; MERBACH, W. Transformation of organic rhizodeposits by rhizosphere bacteria and its influence on the availability of tertiary calcium phosphate. J. Plant Nutr. Soil Sci., v.163, p.393-398, 2000. DIAS, G.T.M. Granulados bioclásticos - algas calcárias. Brazilian Journal of Geophysics, Vol. 18(3), 2000. DÖBEREINER, J. & DUQUE, F.F. Contribuição da pesquisa em fixação biológica do nitrogênio para o desenvolvimento do Brasil. In: Curso Sobre Fixação Biológica do Nitrogênio, n.3, Rio de Janeiro, 23p. 1980. DÖBEREINER, J. Manganese toxicity effects on nodulation and nitrogen fixation of beans (phaseolus vulgaris l.), in acid soils. Plant and Soil, v.24, n.1, 1966. DROZDOWICZ, A. G. Microbiologia ambiental. In: ROITMAN, I.; TRAVASSOS, L. R.; AZEVEDO, J. L. (Ed.) Tratado de microbiologia. Rio de Janeiro, v.2, p.1-102, 1991. DUSHA, I.; BAKOS, A.; KONDOROSI, A. BRUIJN, F.J.; SCHELL, J. The Rhizobium meliloti early nodulation genes (nodABC) are nitrogen-regulated: Isolation of a mutant strain with efficient nodulation capacity on alfalfa in the presence of ammonium. Mol. Gen. Genet., v.219, p.89-96, 1989. DUSHA, I.; OLÁH, B.; SZEGLETES, Z.; ERDEI, L.; KONDOROSI, A. syrM Is Involved in the Determination of the Amount and Ratio of the Two Forms of the Acidic Exopolysaccharide EPSI in Rhizobium meliloti. Molecular Plant-Microbe Interactions, v.12, n.9, p.755-765, 1999. DUZAN, H.M.; ZHOU, X.; SOULEIMANOV, A.; SMITH, D.L. Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions. Journal of Experimental Botany, v.55, n.408, p.2641–2646, 2004. FAGERIA, N.K. & STONE, L.F. Physical, Chemical, and Biological Changes in the Rhizosphere and Nutrient Availability. Journal of Plant Nutrition, v.29, n.7, p.1327-1356, 2006. FAO, 2010. Consulta ao site da FAO. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor FARQUHAR, G.D.; FIRT, P.M.; WETSELAAR, R.; WEIR, B.. On the gaseous exchange of ammonia between leaves and the environment: determination of the ammonia compensation point. Plant Physiology v.66, p.710-14, 1980. FILHO, M.P.B. & SILVA, O.F. Adubação e calagem para o feijoeiro irrigado em solo de cerrado. Pesquisa Agropecuária Brasileira, v.35, nº7, p.1317-1324, 2000. FISHER, R.F. & LONG, S.R. Rhizobium–plant signal exchange. Nature, v.357, p. 655-660, 1992. 103 FISCHER, K & NEWTON, W.E. Nitrogen Fixation- A General Overview. In Nitrogen Fixation at the Millennium. G. Jeffery Leigh (Editor). Elsevier Science B.V. All rights reserved. Chapter I. USA, 2002. FRANCO, A.A. & DAY, J.M. Effect of lime and molybdenum on nodulation and nitrogen fixation of Phaseolus vulgaris L. in acid soils of Brazil. Turrialba, Costa Rica, v.30, p.99- 105, 1980. FRANCO, A.A. & DÖBEREINER, J. Interferência do cálcio e nitrogênio na fixação simbiótica do nitrogênio por duas variedades de Phaseolus vulgaris L. Pesquisa Agropecuária Brasileira, v.3, p.223-227, 1968. FRANCO, A.A. & MUNNS, D.N. Acidity and aluminum restraints in nodulation, nitrogen fixation and growth of Phaseolus vulgaris in solution culture. Soil Sci. Soc. Amer. J. v.46, p.296-301, 1982. FRANCO, M.C.; CASSINI, S.T.A.; OLIVEIRA, V.R.; VIEIRA, C.; TSAI, S.M. Nodulação em cultivares de feijão dos conjuntos gênicos andino e meso-americano. Pesq. Agropec. Bras. Brasília. v. 37. n. 8. p. 1145-1150. 2002. FREIRE, A.L.O. & RODRIGUES, T.J.D. A salinidade do solo e seus reflexos no crescimento, nodulação e teores de n, k e na em leucena (Leucaena leucocephala (Lam.) De Vit.). Engenharia Ambiental, v.6, n.2, p.163-173, 2009. FREITAS, J.G.; CAMARGO, C.E.O.; FILHO, A.W.P.F.; JUNIOR, A.P. Produtividade e resposta de genótipos de trigo ao nitrogênio. Bragantia, v.53, n.2, p.281-290, 1994. FREITAS. F.O. Notas científicas. Evidências genético-arqueológicas sobre a origem do feijão comum no Brasil. Pesquisa Agropecuária Brasileira. Brasília. v.41. n.7. p.1199-1203. jul. 2006. GALLAGHER, S.R. & LEONARD, R.T. Effect of Vanadate, Molybdate, and Azide on Membrane-Associated ATPase and Soluble Phosphatase Activities of Corn Roots. Plant Physiology, v.70, p.1335-1340, 1982. GARRIDO, R.G. & BALDANI, V.L.D. Perspectivas da Nutrição Nitrogenada de Plantas após a Revolução Verde: Fixação Biológica e Uso Eficiente de Nitrogênio. Embrapa Agrobiologia, Série Documentos 203, 40p. 2005. GERKE, J. Kinetics of soil phosphate desorption as affected by citric acid. Z.Pflanzenernähr, v.157, p. 17-22, 1994. GIBSON, A.H. & PAGAN, J.D. Nitrate Effects on the Nodulation of Legumes Inoculated with Nitrate-reductase-deficient Mutants of Rhizobium. Planta, v.134, p.17-22, 1977. GIBSON, A.H. & HARPER, J.E. Nitrate effect on nodulation of soybean by Bradyrhizobium japonicum. Crop Science, v.25, p.497-501, 1985. GILLER, K.E. & WILSON, K.F. Nitrogen fixation in tropical cropping systems. CAB International. Wallingford, Oxon, 313p. 1993. 104 GNIAZDOWSKA, A. & RYCHTER, A.M. Nitrate uptake by bean (Phaseolus vulgaris L.) roots under phosphate deficiency. Plant and Soil, v.226, p.79–85, 2000. GOI, S.R.; SPRENT, J.I.; JAMES, E.K.; JACOB-NETO, J. Influence of nitrogen form and concentration on the nitrogen fixation of Acacia auriculiformis. Symbiosis. v.14, p.115-122, 1993. GOYAL, S.S. Inhibited effects of ammoniacal nitrogen on growth radish plants. I. Characterization of toxics of NH4 + on growth and its alleviation by NO3 -. Journal of American Society for Horticultural Science. v.107, p.125-129, 1982. GRAHAM, P.H. & VANCE, C.P. Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Research. 65, 93-106, 2000. GRAHAM, P.H., DRAEGER, K.J., FERREY, M.L., CONROY, M.J., HAMMER, B.E., MARTÍNEZ, E., AARONS, S.R., QUINTO, C. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Canadian Journal of Microbiology, v.40, p.198–207, 1994. HALLECK, F.E. & V.V. COCHRANE. The effect of fungistatic agents on the bacterial flora of rhizosphere. Phytopathology, v.40, p.715-718, 1950. HALVERSON, L.J. & STACEY, G. Signal Exchange in Plant-Microbe Interactions. Microbiological Reviews, v.50, n.2, p.193-225, 1986. HARVEY, A.S. & WOELKERLING, W.J. Guía para la identificación de rodolitos de algas rojas coralinas no geniculadas (Corallinales, Rhodophyta). Ciencias Marinas, v.33, p.411- 426, 2007. HAUSSLING, M.; LEISEN, E.; MARSCHNER, H.; RÖMHELD, V. An improved method for non-destructive measurements of the pH at the root-soil surface (Rhizosphere). Plant Physiology, v.117, p.371-375, 1985. HAUTER, R. & MENGEL, K. Measurement of pH at the root surface of red clover (Trifolium pratense) grown in soils differing in proton buffer capacity. Biol. Fertil. Soils. v.5, p.295-298, 1988. HAWKINS, H.J. & GEORGE, E. Reduced 15N-nitrogen Transport Through Arbuscular Mycorrhizal Hyphae to Triticum aestivum L. Supplied with Ammonium vs. Nitrate Nutrition. Annals of Botany, v.87, p.303-311, 2001. HAYNES, R.J. Active ion uptake and maintenance of cation-anion balance: A critical examination of their role in regulating rhizosphere pH. Plant and Soil, v.120, p.247-264, 1990. HECKMANN, M.O.; DREVON, J.J.; SAGLIO, P.; SALSAC, L. Effect of Oxygen and Malate on N03 - Inhibition of Nitrogenase in Soybean Nodules. Plant Physiology, v.90, p.224- 229, 1989. 105 HEIDSTRA, R., NILSEN, G.; MARTINEZ-ABARCA, F.; VAN KAMMEN, A.; BISSELING, T. Nod factor-induced expression of leghemoglobin to study the mechanism of NH4NO3 inhibition on root hair deformation. Mol. Plant-Microbe Interact. v.10, p.215–220, 1997. HERRIDGE, D.F. & DANSO, S.K.A. Enhancing crop legume N2 fixation through selection and breeding. Plant and Soil, v.174, p.51-82, 1995. HINSINGER, P. Bioavailability of soil inorganic P in the rhizosphere as affected by rootinduced chemical changes: a review. Plant and Soil, v.237, p.173–195, 2001. HINSINGER, P. & GILKES, R.J. Root-induced dissolution of phosphate rock in the rhizosphere of lupins grown in alcaline soil. Australian Journal of Soil Research. 33, 477- 489, 1995. HINSINGER, P.; PLASSARD, C.; TANG, C.; JAILLARD, B. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil, v.248, p.43–59, 2003. HORTA, P.A. Bases para a identificação das coralináceas não articuladas do litoral brasileiro – uma síntese do conhecimento. Biotemas, v.15, p.7-44, 2002. HOWITT, S.M. & UDVARDI, M.K. Structure, function and regulation of ammonium transporters in plants. Biochim. Biophys. Acta, v.1465, p.152-170, 2000. HUNGRIA, M.; BARRADAS, C.A.A.; WALLSGROVE, R.M. Nitrogen Fixation, Assimilation and Transport During the Initial Growth Stage Phaseolus vulgaris L. Journal of Exp. Botany, v.42, n.7, p.839-844, 1991. HUNGRIA, M.; VARGAS, M.A.T. & ARAÚJO, R.S. Fixação biológica do nitrogênio em feijoeiro. In: VARGAS, M.A.T. & HUNGRIA, M., (eds.). Biologia dos solos dos cerrados. Brasília, EMBRAPA, p.187-294, 1997. HUNGRIA, M. & FRANCO, A.A. Effects of high temperatures on nodulation and N2 fixation in Phaseolus vulgaris L. Plant and Soil. Dordrecht. v.149. 95-109. 1993. HUNGRIA, M. & RUSCHEL, A.P. Acetylene reduction, hydrogen evolution and nodule respiration in Phaseolus vulgaris. Biology and Fertility of Soils, v.7, n.4, p.351-358, 2004. HUNGRIA, M. & VARGAS, M.A.T. Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Research, v.65, p.151-164, 2000. HUNGRIA, M., ANDRADE, D.S., CHUEIRE, L.M.O., PROBANZA, A., GUITIERREZMANERO, F.J., MEGÍAS, M. Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biology & Biochemistry, v.21, p.1515–1528, 2000. 106 HUNGRIA, M.; CAMPO, R.; CHUEIRE, L.; GRANGE, L.; MEGÍAS, M. Symbiotic effectiveness of fast-growing rhizobial strains isolated from soybean nodules in Brasil. Biology and Fertility of Soils, v.33, n.5, p.387-394, 2001. HUNGRIA, M.; FRANCO, A.A.; SPRENT, J.I. New sources of high-temperature tolerant hrizobia for Phaseolus vulgaris L. Plant and Soil, v.149, p.103-109, 1993. IMSANDE, JOHN & TOURAINE, B. N Demand and the Regulation of Nitrate Uptake. Plant Physiology, v.105, p. 3-7, 1994. IZAWA, S. & GOOD N.E. Inhibition of photosynthetic electron transport and photophosphorylation. Methods in Enzymology. v.24, p.355-377, 1972. JACOB NETO, J. Variação estacional, concentração nas sementes e níveis críticos de Mo nos nódulos de feijoeiro (Phaseolus vulgaris L.). UFRRJ, Tese de Mestrado, 155 p., 1985. JACOB-NETO, J. & FRANCO, A.A. Beans ( Phaseolus vulgaris L. ) and soybean ( Glycine max L. ): response to molybdenum in tropical soils. In: International Symposium on Sustainable Agriculture for the Tropics. Angra dos Reis - RJ. The Role of Biological Nitrogen Fixation. 1995. JACOB-NETO, J.; THOMAS, R.J.; FRANCO, A. Avaliação estacional da concentração de molibdênio nos nódulos e demais partes de planta do feijoeiro (Phaseolus vulgaris L.). Turrialba, Costa Rica, v.38, p.51-57, 1988. JACOB-NETO, J. & FRANCO, A.A. Determinação do nível crítico de Mo nos nódulos de feijoeiro (Phaseolus vulgaris L.). Turrialba. v.39. p.215-223. 1989. JACOB-NETO, J.; GOI, S.R.; SPRENT, J.I. Efeito de diferentes formas de nitrogênio na nodulação e crescimento de Acacia mangium. Floresta e Ambiente, v.5, p.104-110, 1998. JACOB-NETO, J. The interactions of H+/OH- exchanges between roots and rhizosphere with plant nutrition and aluminium effects. University of Dundee. Scotland. Tese de PhD. 2003. JARVIS, S.C. & ROBSON, A.D. The effects of nitrogen nutrition of plants on the development of acidity in Western Australian soils. I. Effects with subterranean clover grown under leaching conditions. Aust. J. Agric. Res., v.34, p.341–353, 1983. JAUER, J.; DUTRA, L.M.C.; ZABOT, L.; UHRY, D.; LUDWIG, M.P.; FARIAS, J.R.; GARCIA, D.C.; LÚCIO, A.D.C.; FILHO, O.A.L.; PORTO, M.D.M. Efeitos da população de plantas e de tratamento fitossanitário no rendimento de grãos do feijoeiro comum, cultivar “TPS Nobre”. Ciência Rural. v.36. n.5. 2006. JONES D.L. Organic acids in the rhizosphere - a critical review. Plant and Soil, v.205, p.25- 44, 1998. JONES, D.L.; HODGE, A.; KUZYAKOV, Y. Plant and mycorrhizal regulation of rhizodeposition. New Phytologist, v.163, p.459-480, 2004. 107 JUNIOR, P.I.F. & REIS, V.M. Algumas limitações à Fixação Biológica de Nitrogênio em leguminosas. EMBRAPA Agrobiologia, Série Documentos 252, 33p. 2008. KIRKBY, E.A. & MENGEL, K. Ionic balance in different tissues of the tomato plant in relation to nitrate, urea, or ammonium nutrition. Plant Physiology, v.42, p.6-14, 1967. KIRKBY, E.A. & KNIGHT, A.H. Influence of the level of nitrate nutrition on ion uptake and assimilation, organic acid accumulation, and cation-anion balance in whole tomato plants. Plant Physiology, v.60, p.349-353, 1977. KOHLS, S.J. & BAKER, D.D. Effects of substrate nitrate concentration on symbiotic nodule formation in actinorhizal plants. Plant and Soil, v.118, p.171-179, 1989. KUBOTA, F.Y.; NETO, A.C.A.; ARAÚJO, A.P. TEIXEIRA, M.G. Crescimento e acumulação de nitrogênio de plantas de feijoeiro originadas de sementes com alto teor de molibdênio. Rev. Bras. Ciência do Solo, v.32, p.1635-1641, 2008. KUZYAKOV, Y. Factors affecting Rhizosphere priming effects. J. Plant Nutr. Soil Sci., v.165, p.382-396, 2002. KUZYAKOV, Y. & DOMANSKI, G. Carbon input by plants into the soil. J. Plant Nutr. Soil Sci., v.163, p.421-431, 2000. KUZYAKOV, Y.; BIRYUKOVA, O.V.; KUZNETZOVA, T.V.; MÖLTER, K.; KANDELER, E.; STAHR, K. Carbon partitioning in plant and soil, carbon dioxide fluxes and enzyme activities as affected by cutting ryegrass. Biol. Fert. Soils, v.35, p.348–358, 2002. LASA, B.; FRECHILLA, S.; LAMSFUS, C.; APARICIO-TEJO, P.M. The sensitivity to ammonium nutrition is related to nitrogen accumulation. Scientia Horticulturae, v.91, p.143- 152, 1991. LAWLOR, D.W. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. Journal of Experiment Botany. v. 53, p.773-787, 2002. LIMPENS, E. & BISSELING T. Signaling in symbiosis. Current Opinion in Plant Biology, v.6, p.343–350, 2003. LLORET, J., BOLAÑOS, L., LUCAS, M. M., PEART, J. M., BREWIN, N. J., BONILLA, I., AND RIVILLA, R. Ionic stress and osmotic pressure induce different alterations in the lipopolysaccharide of a Rhizobium meliloti strain. Appl. Environ. Microbiol. v.61, p.3701- 3704, 1995. LOBBAN, C.S & HARRISON, P.J. Seaweed ecology and physiology. Cambridge, U.K., University Press, 366p. 1994. LOHAUS, G. & HELDTH, W. Assimilation of gaseous ammonia and the transport of its products in barley and spinach leaves. Journal of Experimental Botany, v.48, n. 315, p.1779-1786, 1997. 108 LOPES, E.S.; NORRIS, D.O.; WEBER, D.F. Estudos sobre a influência de nitratos do solo e modo de inoculação das sementes na nodulação em alfafa (Medicago sativa L.). Bragantia, v.27, n.21, 1968. LUCASSEN, E.C.H.E.T.; BOBBINK, R.; SMOLDERS, A.J.P.; VAN DER VEM, P.J.M.; LAMERS, L.P.M.; ROELOFS, J.G.M. Interactive effects of low pH and high ammonium levels responsible for the decline of Cirsium dissectum (L.) Hill. Plant Ecology, v.165, p.45- 52, 2002. LYNCH, J.M. & BRAGG, E. Microorganisms and soil aggregate stability. Advances in Soil Science v.2, p.133-171, 1985. LYNCH, J.M. & WHIPPS, J.M. Substrate flow in the rhizosphere. Plant Soil, v.129, p.1-10, 1990. MA, J.F.; RYAN, P.R.; DELHAIZE, E. Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci., v.6, p.273-278, 2001. MACEDO, R.A.T. Influência de Fatores de Manejo Sobre a Fixação Biológica de Nitrogênio na Cultura da Soja em Áreas Experimentais e de Produção no Noroeste do Paraná. Dissertação de Mestrado. Agronomia - Ciência do solo, UFRRJ, 2003. MACEDO, R.A.T.; SILVA, M.F.; MAIA, L.S.F.M. Neutralização e estabilização do pH da vinhaça de cana de açúcar com uso da alga marinha lithothamnium em pó. Anais FERTBIO, Bonito/MS, 2006. MAHMOOD T,; WOITKE, M.; GIMMLER, H.; KAISER, W.M. Sugar exudation by roots of kallar grass [Leptochloa fusca (L.) Kunth] is strongly affected by the nitrogen source. Planta, p.214, p.887-894, 2002. MAHMOOD, T.; KAISER, W.M.; ALI, R.; ASHRAF, M.; GULNAZ, A.; IQBAL, Z. Ammonium versus nitrate nutrition of plants stimulates microbial activity in the rhizosphere. Plant and Soil, v.277, p.233–243, 2005. MAHON, J. D. Environmental and genotypic effects on the respiration associated with symbiotic nitrogen fixation in peas. Plant Physiology. v.63, p.892-97. 1979. MALIK, N.S.A.; CALVERT, H.E.; BAUER, W.D. Nitrate Induced Regulation of Nodule Formation in Soybean. Plant Physiology, v.84, p.266-271, 1987. MANTELIN, S & TOURAINE, B. Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. Journal of Experimental Botany, v.55, n.394, p.27-34, 2004. MARQUES, I.A. Effects of different nitrogen sources on photosynthetic carbon metabolism in primary leaves on non-nodulated Phaseolus vulgaris L. Plant Physiology, v.71, p.555-561, 1983. MARSCHNER, H. Mechanisms of adaptation of plants to acid soils. Plant and Soil, v.134, p.1-20, 1991. 109 MARSCHNER, H. Mineral nutrition of higher plants. London, Academic Press, 889 p., 1995. MARSCHNER, P.; GERENDÁS, J.; SATTELMACHER, B. Effect of N concentration and N source on root colonization by Pseudomonas fluorescens 2-79RLI. Plant and Soil, v.215, p.135–141, 1999. MARSCHNER, P.; CROWLEY, D.; YANG, C.H. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil, v.261, p.199-208, 2004. MARTÍNEZ-ROMERO, E., SEGOVIA, L., MERCANTE, F.M., FRANCO, A.A., GRAHAM, P., PARDO, M.A. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. International Journal of Systematic Bacteriology, v.41, p.417–426, 1991. MAURY, P.; SUC, S.; BERGER, M; PLANCHON, C. Response of photochemical processes of photosynthesis to dinitrogen fixation in soybean. Plant physiology. 101, p.493-497, 1993. MCCLURE, P.R.; KOCHIAN, L.V.; SPANSWICK, R.M.; SHAFF, J.E. Evidence for cotransport of nitrate and protons in maize roots. Plant Physiology, v.93, p.281-289, 1990. MENNA, P.; HUNGRIA, M.; BARCELLOS, F.G.; BANGEL, E.V.; HESS, P.N.; MARTINEZ-ROMERO, E. Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Systematic and Applied Microbiology, v.29, p.315–332, 2006. MERCANTE, F.M.; STRALIOTTO, R.; DUQUE, F.F.; FRANCO, A.A.; A inoculação do feijão comum com rizóbio. EMBRAPA-CNPBS, Comunicado técnico n.10, p.1-9, 1992. MEYER, R.J.K. Soybean and sustainability of production system. In: NAPOMPETH, B., ed. Soybean feeds the world. Kasetsart Univ. Press, Bangkok, Tailândia. p.367-372. 1997. MIGUEL, D. L. & MOREIRA, F. M. S. Influência do pH do meio de cultivo e da turfa no comportamento de estirpes de Bradyrhizobium. Rev. Bras. Ci. Solo, Viçosa, v.25, p.873-883, 2001. MINCHIN, F.R., MINGUEZ, M.I., SHEEHY, J.E., WITTY, J.F. SKOT, L. Relationships between nitrate and oxygen supply in symbiotic nitrogen fixation by white clover. Journal of Experimental Botany, v.37, p.1103-1113, 1986 MOAT, A.G.; FOSTER, J.W. SPECTOR, M.P. Microbial Physiology. Wiley-Liss, Inc. ISBN: 0-471-39483-1, Chapter 14, 2002. MONSANT, A.C.; TANG, C.; BAKER, A.J.M. The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens. Chemosphere, v.73, p.635-642, 2008. 110 MORGANTE, C.; ANGELINI, J.; CASTRO, S.; FABRA, A. Role of rhizobial exopolysaccharides in crack entry/intercellular infection of peanut. Soil Biology and Biochemistry. v.37, n.8, p.1436-1444, 2005. MORÓN, B.; SORIA-DÍAZ M.E.; AULT, J.; VERROIOS, G.; NOREEN, S.; RODRÍGUEZNAVARRO, D.N.; GIL-SERRANO, A.; THOMAS-OATES, J.; MEGÍAS, M.; SOUSA, C. Low pH Changes the Profile of Nodulation Factors Produced by Rhizobium tropici CIAT899. Chemistry & Biology. V.12. 1029–1040. 2005. MOSTASSO, L.; MOSTASSO, F., L.; VARGAS, M., A., T.; HUNGRIA, M. Selection of Bean (Phaseolus vulgaris) rhizobial strains for the Brasilian Cerrados. Field Crops Research, v. 73, n. 2, p. 121–132, 2002. MOUDIONGUI, A. & G. RINAUDO, G. Effect of ammonium nitrate on nodulation and nitrogen fixation (acetylene reduction) of the tropical legume Sesbania rostrata. Mircen Journal, v.3, p.235-241, 1987. MÜHLING, K.H. & LÄUCHLI, A. Influence of chemical form and concentration of nitrogen on apoplastic ph of leaves. Journal of Plant Nutrition, v.24, p.399-411, 2001. MUNNS, D.N. Nodulation of Medicago sativa in solution culture. III. Effects of nitrate on root hairs and infection. Plant and Soil, v.29, p.33-47, 1968. MYLONA, P.; PAWLOWSKI, K.; BISSELING, T. Symbiotic Nitrogen Fixation. The Plant Cell. Vol. 7, 869-885. American Society of Plant Physiologists. 1995 NEUMANN, G. & RÖMHELD, V. The Rhizosphere: Contributions of the Soil–Root Interface to Sustainable Soil Systems. In.: Biological Approaches to Sustainable Soil Systems, Cap.7, p.91-107, 2006. NEVES, M. C. P. & HUNGRIA, M. The physiology of nitrogen fixation in tropical grain legumes. Critical Reviews of Plant Science. v.6, Issue 3, 267-321, 1987. NÓBREGA, R.S.A.; MOTTA, J.S.; LACERDA, A.M.; MOREIRA, F.M.S. Tolerância de bactérias diazotróficas simbióticas à salinidade in vitro. Ciênc. agrotec., Lavras, v. 28, n. 4, p. 899-905, 2004. NYE, P.H. Changes of pH across the rhizosphere induced by roots. Plant and Soil, v.61, p.7- 26, 1981. OAKS, A. & HIREL, B. Nitrogen metabolism in roots. Annual Review of Plant Physiology. v.36, p.345-365, 1985. OLIVEIRA, E.L. de & PAVAN, M.A. Control of soil acidity in no-tillage system for soybean production. Soil & Tillage Research. v.38, p.47-57, 1996. OLIVEIRA, I.P.; ARAÚJO, R.S.; DUTRA, L.G. Nutrição mineral e fixação biológica de nitrogênio. In: ARAUJO, R.S.; RAVA, C.A.; STONE, L.F.; ZIMMERMANN, M.J.O. (Coord.). Cultura do feijoeiro comum no Brasil. Piracicaba. Potafos. p.169-221. 1996. 111 O'NEILL, S.D. & SPANSWICK, R.M. Effects of Vanadate on the Plasma Membrane ATPase of Red Beet and Corn. Plant Physiology, v.75, p.586-591, 1984. OTIENO, P.J.; MUTHOMI, J.W.; CHEMINING’WA, G.N.; NDERITU, J.H. Effect of rhizobia inoculation, farmyard manure and nitrogen fertilizer on growth, nodulation and yield of selected food grain legumes. African Crop Science Conference Proceedings, v.18, p.305-312, 2007. PATE J.S.; LAYZELL, D.B.; ATKINS, C.A. Economy of carbon and nitrogen in a nodulated and nonnodulated (NO3-grown) legume. Plant Physiol. 64, 1083- 1088, 1979. PATTERSON, T.G. & LARUE, T.A. Root Respiration Associated with Nitrogenase Activity (C2H2) of Soybean, and a Comparison of Estimates. Plant Physiology, v.72, p.701-705, 1983. PATERSON, E.; SIM, A.; STANDING, D.; DORWARD, M.; MCDONALD, A.J.S. Root exudation from Hordeum vulgare in response to localized nitrate supply. Journal of Experimental Botany, v.57, n.10, p.2413-2420, 2006. PEARSON, J. & SOARES, A. Physiological responses of plant leaves to atmospheric ammonia and ammonium. Atmospheric Environment. v.32, p.533-538, 1998. PEIXOTO, N.; BRAZ, L.T.; BANZATTO, D.A.; OLIVEIRA, A.P. Adaptabilidade e estabilidade em feijão-vagem de crescimento indeterminado. Horticultura brasileira. v. 20. n.4. 2002. PEREIRA, P.A.A. & BLISS, F.A. Nitrogen fixation and plant growth of common bean (Phaseolus vuigaris L.) at different levels of phosphorus availability. Plant and Soil. v.104, p.79-84, 1987. PIMENTEL, C. Metabolismo do carbono na agricultura tropical. Seropédica. UFRRJ. Inst. Fitotecnia. 159 p, 1998. POLLACK, B.M. & MANALO, J.R. Controlling substrate moisture oxygen levels during age of germination. Journal of the American Society for Horticultural Science, Alexandria, v.94, n.6, p.574-576, 1969. PONGSILP, N. & NUNTAGIJ, A. Selection and characterization of mungbean root nodule bacteria based on their growth and symbiotic ability in alkaline conditions. Suranaree J. Sci. Technol., v.14, p.277-286, 2007. PUIATTI, M. Mecanismos envolvidos na inibição da nodulação e fixação de N2 pelo NO3- em plantas de soja (Glycine max (L) Merril cv. Santa Rosa) cultivadas em hidroponia. Tese de Doutorado, Unicamp, Instituto de Biologia, Campinas/SP, 1997. PURITCH, G.S. & BARKER, A.V. Structure and function of tomato leaf chloroplasts during ammonium toxicity. Plant Physiology, v.42, n.7, p.1229-1238, 1967. RAMACHANDRA REDDY, T. K. Foliar spray of urea and rhizosphere microflora of rice (Oryza sefiva L.). Phytopathol. Z., v.36, p.286-289, 1959. 112 RAMACHANDRA REDDY, T. K. plant treatment in relation to the rhizosphere effect iii. foliar application of certain trace elements and metallic chelates in relation to rhizosphere microflora of rice (oryza sativa l.). Plant and Soil, v.29, n.1, 1968. RAMOS, D.P. Levantamento detalhado de solos da área da UFRRJ com base em fotografias aéreas e prospecções no terreno. Itaguaí, Seropédica, Dissertação de Mestrado, UFRRJ, Agronomia/Ciência do Solo, 128p., 1970. RANGA RAO, V.; JAYAKAR, M.; SHARMA, K.R.; MUKERJI, K.G. Effect of foliar spray of morphactin on fungi in the root zone of apsicum annuum. Plant and Soil, v.37, n.1, p.179- 182, 1972. RANGEL, A.F.; MOBIN, M.; RAO, I.M.; HORST, W.J. Proton toxicity interferes with the screening of common bean (Phaseolus vulgaris L.) genotypes for aluminium resistance in nutrient solution. J. Plant Nutr. Soil Sci. v.168, p.607–616, 2005. RAPOSEIRAS, R.; MARRIEL. I.E.. MUZZI, M.R.S.; PAIVA, E.; FILHO, I.A.P.; CARVALHAIS. L.C.; PASSOS, R.V.M.; PINTO, P.P.; DE SÁ, N.M.H. Rhizobium strains competitiveness on bean nodulation in Cerrado soils. Pesq. Agropec. Bras. Brasília. v.41. n.3. p.439-447. 2006. RAVEN, J.A. Acquisition of nitrogen by the shoots of land plants: its occurrence and implications for acid-base regulation, New Phytologist, v.109, n.1, p.1-20, 1988. RAVEN, J.A. & SMITH, F.A. Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol., v.76, p.415-431, 1976. RAVEN, J.A.; FRANCO, A.A.; JESUS, E.L.; JACOB-NETO, J. H+ extrusion and organicacid synthesis in N2-fixing symbioses involving vascular plants. New Phytologist. 114. 369- 389. 1990. RAVEN, J.A.; WOLLENWEBER, B.; HANDLEY, L.L. A comparison of ammonium and nitrate sources for photolithotrophs. New phytologist, v.121, p.19-32, 1992. RAYLE, D.L. & CLELAND, R.E. The acid growth theory of auxin-induced cell elongation is alive and well. Plant physiology, v.99, p.1271-1274, 1992. REZENDE, R.; GONÇALVES, A..C.A.; FRIZZONE, J.A.; FREITAS, P.S.L.; BERTONHA, A.; ANDRADE, C.A.B. Uniformidade de aplicação de água, variáveis de produção e índice de área foliar da cultivar de feijão iapar 57. Acta Scientiarum. Maringá. v.24. n.5. p.1561- 1568. 2002. RIBEIRO JÚNIOR, W.Q.; LOPES, E.S.; FRANCO, A.A. Eficiência de estirpes de Bradyrhizobium spp. Para quatro leguminosas arbóreas e competitividade das estirpes em Albizia lebbek em latossolo ácido. Rev. Bras. Ci. Solo, v.11. p.275-282, 1987. RODDA, M.R.C.; CANELLAS, L.P.; FAÇANHA, A.R., ZANDONADI, D.B.; GUERRA, J.G.M. ALMEIDA, D.L.; SANTOS, G.A. Estímulo no crescimento e na hidrólise de atp em raízes de alface tratadas com humatos de vermicomposto. I-efeito da concentração. Rev. Bras. Ciência do Solo, v.30, p.649-656, 2006. 113 RODRIGUEZ, M.B.; GODEAS, A.; LAVADO, R.S.. Soil Acidity Changes in Bulk Soil and Maize Rhizosphere in Response to Nitrogen Fertilization. Communications in Soil Science and Plant Analysis, v.39, n.17, p.2597-2607, 2008. ROLLWAGEN, B.A. & ZASOSKI, R.J. Nitrogen source effects on rhizosphere pH and nutrient accumulation by Pacific Northwest conifers. Plant and Soil, v.105, p.79-86, 1988. RÖMHELD, V. pH changes in the rhizosphere of various crop plants in relation to the supply of plant nutrients. Potash Review, v.12, p.1-12, 1986. ROSAS, J. C. & BLISS, F. A. Host-plant traits associated with estimates of nodulation and nitrogen fixation in common bean. HortScience, v.21, p.287-289, 1986. ROSOLEM, C.A. Nutrição e adubação do feijoeiro. Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato, 1987, 93p. (Boletim Técnico 8). ROSSIELO, R.O.P. & JACOB NETO, J. Toxidez de alumínio em plantas: novos enfoques para um velho problema (capítulo 9). In. Nutrição Mineral de Plantas. Sociedade Brasileira de ciência do Solo. Viçosa, MG. 432 p. 2006. RUAN, J.; ZHANG, F. WONG, M.H. Uptake and rhizosphere soil property of Camellia sinensis L. Plant and Soil, v.223, p.63-71, 2000. RUSCHEL, A.P.; SAITO, S.M.T. Efeito da inoculação de Rhizobium, nitrogênio e matéria orgânica na fixação simbiótica de nitrogênio em feijão (Phaseolus vulgaris L.). Revista Brasileira de Ciência do Solo, v.1, p.21-24, 1977. RUSCHEL, A.P.; SAITO, S.M.T.; TULMANN NETO, A. Efficiency of Rhizobium inoculation on Phaseolus vulgaris. I. Effects of nitrogen sources and plant variety. Revista Brasileira de Ciência do Solo, v.3, p.13-17, 1979. RYLE, G.J.A.; ARNOTT, R.A.; POWELL, C.E.; GORDON, A.J. N2 Fixation and the Respiratory Costs of Nodules, Nitrogenase Activity, and Nodule Growth and Maintenance in Fiskeby Soyabean. Journal of Experimental Botany, v.35, p. 1156-1165, 1984. SÁ, J.C.M.; CERRI, C.C.; DICK, W.A.; LAL, R.; VENSKE FILHO, S.P.; PICCOLO, M.C.; FEIGL, B.E. Organic Matter Dynamics and Carbon Sequestration Rates for a Tillage Chronosequence in a Brazilian Oxisol. Soil Sci. Soc. Am. J. v.65. p.1486-1499. 2001. SANTI, S.; LOCCI, G.; PINTON, R.; CESCO, S.; VARANINI, Z. Plasma Membrane H+- ATPase in Maize Roots lnduced for NO3 - Uptake. Plant Physiology, v.109, p.1277-1283, 1995. SANTOS, L.A. & REIS, V.M. A formação do nódulo em leguminosas. EMBRAPA Agrobiologia, Série Documentos 251, 14p. 2008. SANTOS, L.A. Absorção e remobilização de NO3- em arroz (Oriza sativa L.): Atividade das bombas de prótons e a dinâmica do processo. Dissertação de Mestrado. Depto Solos. UFRRJ. 2006. 114 SASAKAWA, H. & LARUE, T.A. Root Respiration Associated with Nitrate Assimilation by Cowpea. Plant Physiol. 972-975, 1986. SCHUBERT, K.R. Products of biological nitrogen fixation in higher plants: synthesis, transport and metabolism. Annual Review of Plant Physiology. 37, 539-574, 1986. SCHUBERT, S.; SCHUBERT, E.; MENGEL, K. Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba). Plant and Soil, v.124, p.239-244, 1990. SCHULZE, J..; ADGO, E.; MERBACH, W. Carbon Costs Associated with N2 Fixation in Vicia faba 1. and Pisum sativum 1. over a 14-Day Period. Plant biol. 1, 625-631, 1999. SILVA, J.C.; HELDWEIN, A.B.; MARTINS, F.B.; STRECK, N.A. GUSE, F.I. Risco de estresse térmico para o feijoeiro em Santa Maria, RS. Ciência Rural. v.37. n.3. 2007. SILVEIRA, J.A.G.; MATOS, J.C.S.; CECATTO, V.M.; VIEGAS, R.A.; OLIVEIRA, J.T.A. Nitrate Reductase activity, distribution, and response to nitrate in two contrasting Phaseolus species inoculated with Rhizobium spp. Environmental and Experimental Botany. 46, 37– 46, 2001. SINGLETON, P.W.; EL SWAIFY, S.A.; BOHLOOL, B.B. Effect of Salinity on Rhizobium Growth and Survival. Applied and Environmental Microbiology, p.884-890, 1982. SIQUEIRA, J.O. & MOREIRA, F.M.S. Biologia e bioquímica do solo. Lavras, Universidade Federal de Lavras, 291p., 2001. SKLENAR, J.; FOX, G.G.; LOUGHMAN, B.C.; PANNIFER, A.D.B.; RATCLIFFE, R.G. Effects of vanadate on the ATP content, ATPase activity and phosphate absorption capacity of maize roots. Plant and soil, v.167, p.57-62, 1994. SKOT, L.; HIRSCH, P.R.; WITTY, J.F. Genetic factors in Rhizobium affecting the symbiotic carbon costs of N2 fixation and host plant biomass production. Journal of Applied Bacteriology. 61, p.239-246, 1986. SMILEY, R.W. Antagonists of Gaeumannomyces graminis from the rhizoplane of wheat in soils fertilized with ammonium or nitrate nitrogen. Soil Biology and Biochemistry, v.10, n.3, p.169-174, 1978. SMILEY, R.W. & COOK, R.J. Relationship between Take-all and rhizosphere pH in soils fertilized with ammonium vs. nitrate-nitrogen. Phytopathology, v.63, p.882-890, 1973. SMIT, G., SWART, S.; LUGTENBERG, B.J.J.; KIJNE, J. Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol. Microbiol. v.6, p.2897–2903, 1992. SMOLDERS, A.J.P.; DEN HARTOG, c.; VAN GESTEL, C.B.L.; ROELOFS, J.G.M. The effects of ammonium on growth, accumulation of free amino acids and nutritional status of young phosphorus deficient Stratiotes aloides plants. Aquatic Botany, v.53, p. 85-96, 1986. 115 SOARES, A.H.V. CeresSefs: Sistema Especialista para o Cálculo da Necessidade de Calagem. Monografia, Ciência da computação, Lavras, MG, 2003. SODEK, L & SILVA, D.M. Nitrate inhibits soybean nodulation and nodule activity when applied to root regions distant from the nodulation sites. Rev. Bras. Fisiol. Veg., v.8, n.3, p.187-191, 1996. SÖDERBERG, K.H. & BAATH, E. The influence of nitrogen fertilization on bacterial activity in the rhizosphere of barley. Soil Biology & Biochemistry, v.36, p.195-198, 2004. SOUZA, M.F.M.; VALE, H.M.M.; STRALIOTTO, R. Competitividade de estirpes pertencentes a diferentes espécies de rizóbio para ocupação nodular em feijoeiro (Phaseolus vulgaris L.). Agronomia, v.37, n.1, p.59 - 63, 2003. SOUZA, S.R.; STARK, E.M.L.M.; FERNANDES, M.S. Enzimas de assimilação de nitrogênio. UFRRJ. Copyright©. 57 p. 2002. SRIVASTAVA, H.S. & ORMROD, D.P. Effects of Nitrogen Dioxide and Nitrate Nutrition on Nodulation, Nitrogenase Activity, Growth, and Nitrogen Content of Bean Plants. Plant Physiology, V.81, P.737-741, 1986. STRALIOTTO, R. & RUMJANEK, N.G. Biodiversidade do rizóbio que nodula o feijoeiro (phaseolus vulgaris L.) e os principais fatores que afetam a simbiose. Embrapa Agrobiologia, Série Documentos no 94, 1999. STREETER, J.G. Nitrate Inhibition of Legume Nodule Growth and Activity. Plant Physiol. v.77, p.325-328, 1985. TAGLIAVINI, M.; MASIA, A.; QUARTIER, M. Bulk soil pH and rhizosphere pH of peach trees in calcareous and alkaline soils as affected by the form of nitrogen fertilizers. Plant and Soil, v.176, p.263-271, 1995. TANG, C. & ROBSON, A.D. pH above 6,0 reduces nodulation in Lupinus species. Plant and Soil, v.152, p.269-276, 1993. TANG, C.; MCLAY, C.D.A.; BARTON, L. A comparison of proton excretion of twelve pasture legumes grown in nutrient solution. Aust. J. Exp. Agric. v.37, p.563-570, 1997 TANG, C.; ZHENG, S.J.; QIAO, Y.F.; WANG, G.H.; HAN, X.Z. Interactions between high pH and iron supply on nodulation and iron nutrition of Lupinus albus L. genotypes differing in sensitivity to iron deficiency. Plant and Soil, v.279, p.153–162, 2006. TANNER, J.W. & ANDERSON, I.C. External Effect of Combined Nitrogen on Nodulation. Plant Physiology, v.39(6), p.1039–1043, 1964. TEIXEIRA, I. R.; ANDRADE, M.J.B.; CARVALHO, J.G.; MORAIS, A.R.; CORRÊA, J.B.D. Resposta do feijoeiro (Phaseolus vulgaris L. cv. Pérola) a diferentes densidades de semeadura e doses de nitrogênio. Ciênc. agrotec., v.24, n.2, p.399-408, 2000. 116 TESTA, V. & BOSENCE, D.W.J. Physical and biological controls on the formation of carbonate and siliciclastic bedforms on the north-east Brazilian shelf. Sedimentology, v.46, p.279-301, 1999. TOURAINE, B.; MULLER, B.; GRIGNON, C. Effect of Phloem-Translocated Malate on N03 - Uptake by Roots of Intact Soybean Plants. Plant Physiology, v.99, p.1118-1123, 1992. TREBST, A.V.; LOSADA, M.; ARNON, D.I. Photosynthesis by isolated chloroplasts: XII. Inhibitors of CO2 assimilation in a reconstituted chloroplast system. Journal of Biological Chemistry. v. 235, n.3, p.840-844, 1960. TRUCHET, G.L. & DAZZO, F.B.. Morphogenesis of lucerne root nodules incited by Rhizobium meliloti in the presence of combined nitrogen. Planta, v.154, p.352-360, 1982. TSAI, S.M.; BONETTI, R.; AGBALA, S.M.; ROSSETTO, R. Minimizing the effect of mineral nitrogen on biological nitrogen fixation in common bean by increasing nutrient levels. Plant and Soil. v.152, p.131-138, 1993. VADEZ, V.; LASSO, J.H.; BECK, D.P.; DREVON, J.J. Variability of N2 fixation in common bean (Phaseolus vulgaris L.) under P deficiency is related to P use efficiency. Euphytica, v.106, p.231–242, 1999. VAN RHIJN, P. & VANDERLEYDEN, J. The Rhizobium-Plant Symbiosis. Microbiol. Reviews, v.59, n.1, p.124–142, 1995. VANCE, C.P. & HEICHEL G.H. Carbon In N2 Fixation: Limitation or Exquisite Adaptation. Annual Rev. Plant Physiol. Plant Mol. Biol. 42, 373-392, 1991. VARGAS, A.A.T. & GRAHAM, P.H. Phaseolus vulgaris cultivar and Rhizobium strain variation in acid-pH tolerance and nodulation under acid conditions. Field Crops Research, v.19, p.91-101, 1988. VARGAS, M.A.T. & HUNGRIA, M. Fixação biológica do nitrogênio na cultura da soja. In: VARGAS, M.AT.; HUNGRIA, M. (Ed.) Biologia dos solos dos Cerrados. Planaltina: Embrapa-CPAC, 524p, 1997. VARGAS, M.A.T.; MENDES, I.C.; CARVALHO, A.M.; LOBO-BURLE, M.; HUNGRIA, M. Inoculação de leguminosas e manejo de adubos verdes. In: SOUZA, D., M., G. & LOBATO, E. (Ed.). Cerrado: correção do solo e adubação. Planaltina: Embrapa Cerrados, 416p, 2002. VARGAS, M.A.T.; MENDES, I.C.; HUNGRIA, M. Response of field-grown bean (Phaseolus vulgaris L.) to Rhizobium inoculation and nitrogen fertilization in two Cerrados soils. Biol Fertil Soils., v.32, p.228–233, 2000. VESSEY, J.K. & WATERER, J. In search of the mechanism of nitrate inhibition of nitrogenase activity in legume nodules: recent developments. Physiol. Plant. v.84, p.171-176, 1992. 117 VINUESA, P., NEUMANN-SILKOW, F., PACIOS-BRAS, C., SPAINK, H. P., MARTÍNEZ-ROMERO, E., AND WERNER, D. Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol. Plant-Microbe Interact., v.16, p.159-168, 2003. VOISIN, A.S.; SALON, C.; JEUDY, C; WAREMBOURG, F.R. Symbiotic N2 fixation activity in relation to C economy of Pisum sativum L. as a function of plant phenology. Journal of Experimental Botany. v.54, n.393, p.2733-2744, 2003. VRANY, J. Changes of Microflora of Wheat Roots after Foliar Application of Urea. Folia Microbiol. v.19, p.229-235, 1974. VRANY, J. The Effect of Foliar Application of Urea on Fungi of Wheat Growing in Soil Artificially Contaminated with Fusarium spp. Folia Microbiol. v.17, p.500-504, 1972. WAHAB A.M.A., ZAHRAN, H.H.; ABD-ALLA, M.H. Root-Hair Infection and Nodulation of Four Grain Legumes as Affected by the Form and the Application Time of Nitrogen Fertilizer. Folia Microbiol. v.41, n.4, p.303-308, 1996. WANG, S.P. & STACEY, G. Ammonia regulation of nod genes in Bradyrhizobium japonicum. Mol. Gen. Genet., v.223, p.329- 331, 1990. WATKIN, E.L.J.; O’HARA, G.W. GLENN, A.R. Calcium and acid stress interact to affect the growth of rhizobium leguminosarum bv. trifolii. Soil Biol. Biochem., v.29, n.9/10, p.1427-1432, 1997. WEBSTER, G.; GOUGH, C.; VASSE, J.; BATCHELOR, C.A.; O’CALLAGHAN, K.J.; KOTHARI, S.L.; DAVEY, M.R.; DÉNARIÉ, J.; COCKING, E.C. Interactions of rhizobia with rice and wheat. Plant and Soil, v. 194, p. 115-122, 1997. WEISSMAN, G.S. Influence of ammonium and nitrate nutrition on enzymatic activity in soybean and sunflower. Plant Physiology, v.49, n.2, p.138-141, 1972. WITTE, C.P.; TILLER, S.A.; TAYLOR, M.A.; DAVIES, H.V. Leaf Urea Metabolism in Potato. Urease Activity Profile and Patterns of Recovery and Distribution of 15N after Foliar Urea Application in Wild-Type and Urease-Antisense Transgenics. Plant Physiology, v.8, p.1129-1136, 2002. WU, S. & HARPER, J.E. Nitrogen Fixation of Nodulation Mutants of Soybean as Affected by Nitrate. Plant Physiology, v.92, p.1142-1147, 1990. YAMADA, T. Melhoria na eficiência da adubação aproveitando as interações entre os nutrientes. Informações Agronômicas, Potafos, n.100, dezembro/2002. YAN, F.; SCHUBERT, S.; MENGEL. Effect of Low Root Medium pH on Net Proton Release, Root Respiration, and Root Growth of Corn (Zea mays L.) and Broad Bean (Vicia faba L.). Plant Physiol., v.99, p.415-421, 1992. 118 YANG, S.S.; BELLOGÍN, R.A.; BUENDÍA, A.; CAMACHO, M.; CHEN, M.; CUBO, T.; DAZA, A.; DIAZ, C.L.; ESPUNY, M.R.; GUTIÉRREZ, R.; HARTEVELD, M.; LI, X.H.; LYRA, M.C.C.P.; MADINABEITIA, N.; MEDINA, C.; MIAO, L.; OLLERO, F.J.; OLSTHOORN, M.M.A.; RODRÍGUEZ, D.N.; SANTAMARÍA, C.; SCHLAMAN, H.R.M.; SPAINK, H.P.; TEMPRANO, F.; THOMAS-OATES, J.E.; VAN BRUSSEL, A.A.N.; VINARDELL, J.M.; XIE, F.; YANG, J.; ZHANG, H.Y.; ZHEN, J.; ZHOU, J.; RUIZ-SAINZ, J.E. Effect of pH and soybean cultivars on the quantitative analyses of soybean rhizobia populations. Journal of Biotechnology v.91, p.243–255, 2001. YIN, Z.H.; KAISER, W.; HEBER, U.; RAVEN, J.A. Effects of gaseous ammonia on intracellular pH values in leaves of C3- and C4-plants. Atmospheric Environment, v.32. p.539-544, 1998. YOKOHAMA, M.; BANNO, K.; KLUTHCOUSKI, J. Aspectos socioeconômicos da cultura. In: ARAUJO, R.S.; RAVA, C.A.; STONE, L.F.; ZIMMERMANN, M.J.O. Cultura do feijoeiro comum no Brasil. Piracicaba, Potafos, p.771-786, 1996. YURGEL, S.N.; KAHN, M.L. Dicarboxylate transport by rhizobia. FEMS Microbiology Reviews. 28, p.489–501, 2004. ZAHRAN, H. H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. v.63, p.968-989, 1999. ZAHRAN, H.H. & SPRENT, J.I. Effects of sodium chloride and polyethylene glycol on roothair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta, v.167, p.303-309, 1986. ZERIHUN, A.; McKENZIE, B.A.; MORTON, J.D. Photosynthate costs associated with the utilization of different nitrogen-forms: influence on the carbon balance of plants and shootroot biomass partitioning. New Phytol., v.138, p.1-11, 1998.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5352/2010%20-%20Ricardo%20Ant%c3%b4nio%20Tavares%20de%20Macedo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/20066/2010%20-%20Ricardo%20Ant%c3%b4nio%20Tavares%20de%20Macedo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/26343/2010%20-%20Ricardo%20Ant%c3%b4nio%20Tavares%20de%20Macedo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/32786/2010%20-%20Ricardo%20Ant%c3%b4nio%20Tavares%20de%20Macedo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/39190/2010%20-%20Ricardo%20Ant%c3%b4nio%20Tavares%20de%20Macedo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/45512/2010%20-%20Ricardo%20Ant%c3%b4nio%20Tavares%20de%20Macedo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/51918/2010%20-%20Ricardo%20Ant%c3%b4nio%20Tavares%20de%20Macedo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/58358/2010%20-%20Ricardo%20Ant%c3%b4nio%20Tavares%20de%20Macedo.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1591
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-05-05T12:14:40Z No. of bitstreams: 1 2010 - Ricardo Antônio Tavares de Macedo.pdf: 1168736 bytes, checksum: f5cc6d2a34b5331058f2910d1fe16678 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-05-05T12:14:40Z (GMT). No. of bitstreams: 1 2010 - Ricardo Antônio Tavares de Macedo.pdf: 1168736 bytes, checksum: f5cc6d2a34b5331058f2910d1fe16678 (MD5) Previous issue date: 2010-10-29eng
Appears in Collections:Doutorado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2010 - Ricardo Antônio Tavares de Macedo.pdf2010 - Ricardo Antônio Tavares de Macedo1.14 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.