Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10167
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerreira, Francis Barbosa
dc.date.accessioned2023-12-21T18:58:24Z-
dc.date.available2023-12-21T18:58:24Z-
dc.date.issued2016-08-04
dc.identifier.citationFERREIRA, Francis Barbosa. Planejamento baseado na estrutura da metaloprotease BPMP-I e avaliação de tiossemicarbazonas ativas contra a peçonha da serpente Bothrops pauloensis. 2016. 101 f. Tese (Doutorado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10167-
dc.description.abstractNeste trabalho, foram utilizadas semi e tiossemicarbazonas, selecionadas na quimioteca do LaDMol-QM (Dequim-UFRRJ), para o estudo das interações destas com o sítio ativo de uma metaloprotease da peçonha da serpente Bothrops pauloensis por modelagem molecular e ensaios de inibição da atividade enzimática e biológica sobre a toxina. A estrutura cristalográfica de uma metaloprotease (BaPI) complexada com um inibidor (um peptideomimético) (código PDB 2W12) foi utilizada como molde para a construção do modelo 3D da metaloprotease da peçonha de B. pauloensis (BpMP-I). O modelo 3D teórico da BpMP-I, inédito para esta toxina, apresentou bons parâmetros de qualidade, sendo considerado adequado para estudos de planejamento de ligantes baseado na estrutura. As tiossemicarbazonas obtiveram melhores resultados, quando comparados com os resultados das semicarbazonas, tanto para os ensaios de docagem molecular quanto para estudos de inibição da atividade enzimática in vitro. Estudos por métodos semiempíricos indicam uma entalpia de interação positiva, sugerindo que a inibição enzimática por estes compostos deve ser um processo controlado entropicamente. Os resultados foram utilizados para selecionar o derivado LDQM-IN-23 e propor modificações estruturais planejadas racionalmente, visando melhorar a interação deste com a toxina. O estudo do sítio catalítico da metaloprotease mostrou que esta possui uma cavidade adjacente com grupos amino das ligações peptídicas disponíveis para interação. Foi proposta, então, a inserção de um grupo carboxilato com diferentes espaçadores, 2 (LDQM-IN-23b) e 3 grupos metileno (LDQM-IN-23c). Os resultados de docagem e otimização semi-empírica mostraram que houve uma melhora considerável na interação dos ligantes modificados, os quais foram sintetizados e testados para as atividades de inibição enzimática e biológica. Na inibição enzimática, houve melhora da CI50 com o aumento do espaçador. O composto LDQM-IN-23 tem CI50 de 3011,00 μM e os compostos modificados possuem a CI50 de 79,12 (LDQM-IN-23b) e 1,77 μM (LDQM-IN- 23c). Estes compostos foram testados para a inibição da atividade hemorrágica in vivo induzida pela Botropoidina, uma metaloprotease da classe P-III, e pela peçonha bruta de B. pauloensis. Os três compostos conseguiram inibir a atividade hemorrágica induzida pela toxina isolada e pela peçonha, sendo que o composto LDQM-IN-23c mostrou maior eficiência, quando comparado com os outros dois, e para a proporção de 1:10 (m/m peçonha/inibidor) a inibição da atividade foi de 100%. Foi realizado um estudo de docagem deste composto líder com outras metaloproteases de peçonha de serpentes (SVMPs – Snake Venom Metalloproteinases), de espécies e gêneros diferentes, mostrando que este ligante consegue interagir com outras SVMPs e é um candidato para inibir a atividade hemorrágica de SVMPs presentes na peçonha, não só de B. pauloensis, mas de outras serpentespor
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectMetalloprotease. . . .eng
dc.subjectSnake venomeng
dc.subjectThiosemicarbazoneseng
dc.subjectHemorrhagic activity inhibitioneng
dc.subjectComputer Assisted Ligand Designeng
dc.subjectMetaloproteasespor
dc.subjectVeneno de serpentespor
dc.subjectTiossemicarbazonaspor
dc.subjectInibição de atividade hemorrágicapor
dc.subjectPlanejamento de ligantes auxiliado por computadorpor
dc.titlePlanejamento baseado na estrutura da metaloprotease BPMP-I e avaliação de tiossemicarbazonas ativas contra a peçonha da serpente Bothrops pauloensispor
dc.title.alternativeStructure-based planning of BPMP-I metalloprotease and evaluation of thiosemicarbazones active against the snake venom Bothrops pauloensiseng
dc.typeTesepor
dc.description.abstractOtherIn this work, semi and thiosemicarbazones selected from the LaDMol-QM library, were used to study their interactions with a metalloproteinase from the snake Bothrops pauloensis (BpMP-I) by molecular modelling and enzymatic inhibition assays with the toxin. The crystalographic structure of BaPI (PDB code: 2W12) was used as a mold to build the 3D model of BpMP-I by homology modeling. The theorical model of BpMP-I showed good quality parameters and was used in a subsequent molecular modeling study. The thiossemicarbazones showed better molecular docking results and in vitro enzymatic inhibitions assays than semicarbazones. Studies by semi-empirical methods indicate a positive enthalpy of interaction, suggesting that the enzyme inhibition by these compounds must be a entropy-driven process. The results were used together to select the LDQM-IN-23 compound and propose rationally designed modifications to improve the interactions with the toxin. The study of the catalytic site of BpMP-I showed that there is an adjacent pocket with amino groups of the peptide bonds available for interaction. All results were used together to design structural changes, aiming the enhancing of the interaction with toxin. Therefore, was proposed the insertion of the carboxyl group with different spacers, containing 2 (LDQM-IN- 23b) and 3 methylene groups (LDQM-IN-23c). The docking results and semi-empiric optimization showed that there was a considerable improvement in the interaction for the modified compounds. The modified compounds were synthesized and tested for biological and enzymatic inhibition activity. It was observed that the IC50 values have improved: the original molecule, LDQM-IN-23 has an IC50 of 3,011 μM and the modified molecules have IC50 of 79.12 (LDQM-IN-23b) and 1.77 μM (LDQM-IN-23c). These molecules were tested for inhibition of hemorrhagic activity induced by Bothropoidin, a P-III class metalloproteinase, and by the B. pauloensis whole snake venom. The three molecules can inhibit the hemorrhagic activity induced by isolated toxin and whole venom, and LDQM-IN- 23c showed higher efficiency compared with the other two, and in a rate of 1:10 (w/w venom/inhibitor) the inhibition of the hemorrhagic activity was 100%. A molecular docking study of this lead compound with Snake Venom Metalloproteases (SVMPs) from different snake species and genera showed that this molecule can effectivelly interact with these SVMPs.eng
dc.contributor.advisor1Sant'Anna, Carlos Mauricio Rabello de
dc.contributor.advisor1ID827.232.227-72por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2087099684752643por
dc.contributor.advisor-co1Ávila, Veridiana de Melo Rodrigues
dc.contributor.advisor-co1ID709.611.826-87por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/6372375421254490por
dc.contributor.referee1Albuquerque, Magaly Girão
dc.contributor.referee2Rodrigues, Renata Santos
dc.contributor.referee3Castro, Rosane Nora
dc.contributor.referee4Pontes, Emerson Guedes
dc.creator.ID4983411607por
dc.creator.Latteshttp://lattes.cnpq.br/9083119856566076por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesACD/ChemSketch, Freeware version, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com, 2015. AKAO, P. K.; TONOLI, C. C.; NAVARRO, M. S.; CINTRA, A. C.; NETO, J. R.; ARNI, R. K.; MURAKAMI, M. T. Structural studies of BmooMPalpha-I, a non-hemorrhagic metalloproteinase from Bothrops moojeni venom. Toxicon, v. 55, p. 361-368, 2010. AKAO, P. K. Caracterização biofísica e estrutural da metaloproteinase não-hemorrágica do veneno de Bothrops moojeni e da endo-β-glicanase de Bacillus subtilis. Dissertação de Mestrado, Universidade Estadual Paulista, São José do Rio Preto, 2011. ALBUQUERQUE, N. H.; COSTA, T. B. G.; CAVALCANTI, M. L. F. Estudo dos acidentes ofídicos provocados por serpentes do gênero Bothrops notificados no estado da Paraíba. Rev. de Biol. e Ciên. da Terra, v. 5, n. 1, 1º sem., 2004. ALTSCHUL, S.F., GISH, W., MILLER, W., MYERS, E.W. & LIPMAN, D.J.. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215, pp 403-410. AMARAL, A. A general consideration of snake poisoning and observations on Neotropical pit-vipers. Contributions of Harvard Institute of Tropical Biology and Medicine, v. 2, p. 1-64, 1925. ANDRADE-FILHO, A. Análise clínico-epideiolódica de casos de ofidismo atendidos em um hospital público estadual de Minas Gerais de 2003 a 2012. Dissetação de Mestrado, Belo Horizonte, Minas Gerais, Brasil, 2015. ANTUNES, A.; SANTOS, A. S.; SILVA, M. F.; RAGI, R.; BAGNATO, V. S. Método de Hartree-Fock: dois exemplos analiticamente solúveis. Revista Brasileira de Ensino de Física, v. 21, p. 221-232, 1999. 66 ANTUNES, T. C.; YAMASHITA, K. M.; BARBARO, K. C.; SAIKI, M. SANTORO, M. L. Comparative analysis of newborn and adult Bothrops jararaca snake venoms. Toxicon, v. 56, p. 1443-1458, 2010. APTE, S. S. A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. Journal Biological Chemistry, v. 284, p. 31493-31497, 2009. ARNOLD, K.; BORDOLI, L.; KOPP, J.; SCHWEDE. T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, vol. 22, p. 195-201, 2006. ATKINS, P. W.; PAULA, J. Físico-Química. 7ªed., vol. 2, Rio de Janeiro (RJ): LTC Editora, 2004, 620 p. BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal: as bases moleculares da ação dos fármacos. 3ª Ed., Porto Alegre (RS): ArtMed, 2015, 608 p. BECKER, A.B.; ROTH, R.A. Identification of glutamate 169 as the binding third zinc residue in proteinase III, a member of the family of insulin-degrading enzymes. Biochemistry Journal, v. 292, p. 137-142, 1993. BENKERT, P.; BIASINI, M.; SCHWEDE, T. Toward the estimation of the absolute quality of individual proteins structure models. Bioinformatics, v. 27, p. 343-350, 2011. BERALDO, H. Semicarbazonas e tiossemicarbazonas: o amplo perfil farmacológico e usos clínicos. Química Nova, v. 27, p. 461-471, 2004. BERNARD, P.; SCIOR, T.; DIDIER, B.; HIBERT, M.; BERTHON, J. Y. Ethnopharmacology and bioinformatic combination for leads discovery: application to phospholipase A2 inhibitors. Phytochemistry, v. 58, p. 865-874, 2001. BERNSTEIN, H. J. README: RasMol 2.7.5. 2009. available at: http://www.openrasmol.org/software/rasmol/. Acessado em 04/2016. BIASINI, M.; BIENERT, S.; WATERHOUSE, A.; ARNOLD, K.; STUDER, G.; SCHMIDT, T.; KIEFER, F.; CASSARINO, T. G.; BERTONI, M.; BORDOLI, L.; SCHWEDE, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, v. 42, p. 252-258, 2014. BJARNASON, J.B., FOX, J.W. Hemorragic metalloproteinases from snake venoms. Pharmacology & Therapeutics, v. 62, p.325-372, 1994. BLOBEL, C.P. Metalloprotease- disintegrins: links to cell adhesion and cleavage of TNF alpha and Notch. Cell, v. 90, 589-592, 1997. BODE,W.; GOMIS-RUTH, F.X.; STÖCKLER, W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincs’. Federation of European Biochemical Societies FEBS Letters, v. 331, p. 134-140, 1993. 67 BORDOLI, L.; KIEFER, F.; ARNOLD, K.; BENKERT, P.; BATTEY, J.; SCHWEDE, T. Proteins structure homology modeling using SWISS-MODEL workspace. Nat. Protoc., v. 4, p. 1-13, 2009. BRADFORD, M. M. Rapid and sensitive method for the quatitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., n. 72, p. 248-254, 1976. BRAHMA, R. K.; McCLEARY, R. J. R.; KINI, R. M.; DOLEY, R. Venom gland transcriptomics for identifying, cataloging, and characterizing vemom proteins in snakes. Toxicon, v. 93, p. 1-10, 2015. BRASIL, Ministério da Saúde. Disponível em: http://portalsaude.saude.gov.br/images/pdf/2016/janeiro/20/1-Casos-Ofidismo-2000- 2015.pdf>. Acessado em 02/2016b. BRASIL, Ministério da Saúde. Guia de Vigilância Epidemiológica. Disponível em: <bvsms.saude.gov.br/bvs/publicacoes/funasa/manu_peconhentos.pdf >. Acessado em 02/2016a. BRAUD, S.; BON, C.; WISNER, A. Snake venom proteins acting on hemostasis. Biochimie, v. 82, p. 851-859, 2000. CADLE, J. E. Phylogenetic relationships among vipers: immunological evidence. In: CAMPBELL, J. A.; BRODIE Jr., E. D. (Eds). Biology of the pitvipers, Texas: Selva, p. 41- 48, 1992. CAL, E.; OBAYA, A.J.; LLAMAZARES, M.; GARABAYA, C.; QUESADA, V.; LÓPEZOTÍN, C. Cloning, expression analysis and structural characterization of seven novel human ADAMSs a Family of metalloproteinases with disintegrin and thrombosondin-1 domain. Gene, v. 283, 49-62, 2002. CALVETE, J. J.; SANZ, L.; ÂNGULO, Y.; LOMONTE, B.; GUTIÉRREZ, J. M. Venoms, venomics, antivenomics. FEBS Letters, v. 583, p. 1736-1743, 2009. CAMPBELL, J. A., LAMAR, W. W. 2004. The venomous reptiles of Latin American. Ithaca- New York, Comstock, v.2, 870p. CANTAÑEDA, I. C. H.; PEREAÑES, J. A.; JIOS, J. L. Substituted thiobenzoic acid S-benzyl as potential inhibitors of a snake venom phospholipase A2: Synthesis, spectroscopic and computational studies. Journal of Molecular Structure, v. 1028, p. 7-12, 2012. CAVASOTTO, C. N.; PHATAK, S. S. Homology modeling in drug discovery: current trends and applications. Drug Discovery Today, v. 14, p. 676-683, 2009. CERDÀ-COSTA, N.; GOMIS-RÜTH, F.X. Architecture and function of metallopeptidase catalytic domains. Protein Science, v. 23, p.123 – 144, 2014. 68 CHENG. Y.; PRUSOFF, W. H. Ralationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacolo., v. 22, p. 3099-3108, 1973. CHOU, T. L.; WU, C. H.; HUANG, K. F.; WANG, A. H. Crystal structure of a Trimeresurus mucrosquamatus venom metalloproteinase providing new insights into the inhibition by endogenous tripeptide inhibitors. Toxicon, v. 71c, p. 140-146, 2013. CLARK, D. E.; KRAMER, R. D.; van OPDENBOSCH, N. Validation of the general-purpose TRIPOS 5.2 force-field. Journal of Computational Chemistry, v. 10, p. 982-1012, 1989. CORONADO, M.A.; MORAES, F.R.; ULLAH, A.; MASSOD, R.; SANTANA, V.S.; MARIUTTI, R.; BROGNARO, H.; GEORGIEVA, D.; MURAKAMI, M.T.; BETZEL, C.; ARNI, R.K. Three-dimensional structures and mechanisms of snake venom serine proteinases, metalloproteinases, and phospholipase A2s. Toxinology, v. 17, p. 1-25, 2014. COSTA, F. L. S.; RODRIGUES, R. S.; IZIDORO, L. F. M.; MENALDO, D. L.; HAMAGUCHI, A.; HOMSI-BRANDEBURGO, M. I.; FULY, A. L.; SOARES, S. G.; SELISTRE-DE-ARAUJO, H. S.; BARRAVIERA, B.; SOARES, A. M.; RODRIGUES, V. M. Biochemical and functional properties of a thrombin-like enzyme isolated from Bothrops pauloensis snake venom. Toxicon, v. 54, p. 725-735, 2009. COSTA, J. O.; FONSECA, K. C.; MAMEDE, C. C. N.; BELETTI, M. E.; SANTOS-FILHO, N. A.; SOARES, A. M.; ARANTES, E. C.; HIRAYAMA, S. N. S.; SELISTRE-DEARAÚJO, H. S.; FONSECA, F.; HENRIQUE-SILVA, F.; PENHA-SILVA, N.; OLIVEIRA, F. Bhalternin: Functional and structural characterization of a new thrombin-like enzyme from Bothrops alternatus snake venom. Toxicon, v. 55, p. 1365-1377, 2010. COSTA-FILHO, P. A.; POPPI, R, J. Algoritmo genético em química. Química Nova, v. 22, p. 405-411, 1999 COTRIM, C. A.; OLIVEIRA, S. C. B.; DIZ-FILHO, E. B. S.; FONSECA, F. V.; BALISSERA-JR, L.; ANTUNES, E.; XIMENES, R. M.; MONTEIRO, H. S. A.; RABELLO, M. M.; HERNANDES, M. Z.; TOYAMA, D. O.; TOYAMA, M. H. Quercetin as an inhibitor of snake venom secretory phospholipase A2. Chemico-Biological Interactions, v. 189, p. 9- 16, 2011. CUPO, P.; AZEVEDO-MARQUES, M. M.; MENEZES, J. B.; HERING, S. E. Reações de hipersenbilidade imediata após uso intravenoso de soros antivenenos: valor prognóstico dos testes de sensibilidade intradérmicos. Ver. Inst. Med. Trop. São Paulo, v. 33, p. 115-122, 1991. DENNIS, E. A. The growing phospholipase A2 superfamily of signal transduction enzymes. TiBS, v. 22, p. 1-2, 1997. DESSEN, A. Structure and mechanism of human cytosolic phospholipase A2. Biochimica et Biophysica Acta, v. 1488, p. 40-47, 2000. 69 DEWAR, M. J. S.; ZOEBISCH, E. G.; HEALY, E. F.; STEWART, J. J. P. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, p. 107, p. 3902-3909, 1985. ELDRIDGE, M. D.; MURRAY, C. W.; AUTON, T. R.; PAOLINI, G. V.; MEE, R. P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, v. 11, p. 425-445, 1997. FENWICK, A. M.; GUTBERLET JR, R. L.; EVANS, J. A.; PARKINSON, C. L. Morphological and molecular evidence for phylogeny and classification of South American pitvipers, genera Bothrops, Bothriopsis, and Bothrocophias (Serpentes: Viperidae). Zoological Journal of the Linnean Society, v. 156, p. 617-640, 2009. FERNANDES, W.; ABE, A. S. An eletrophoretic approach to the relationships among the subspedies of the lancehead Bothrops neuwiedi (Serpentes, Viperidae). Zool. Anz., v. 226, p. 195-201, 1991. FERREIRA, F. B.; GOMES, M. S. R.; NAVES-DE-SOUZA, D. L.; GIMENES, S. N. C.; CASTANHEIRA, L. E.; BORGES, M. H.; RODRIGUES, R. S.; YONEYAMA, K. A. G.; BRANDEBURGO, M. I. H.; RODRIGUES, V. M. Molecular cloning and pharmacological properties of na acidic PLA2 flrom Bothrops pauloensis, snake venom. Toxins, v. 5, p. 2403- 2419, 2013. FOX, J.W.; SERRANO, S.M.T. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. Federation of European Biochemical Societies (FEBS) Letters, v. 275, p 3016-3030, 2008. FRANCISCHETTI, I. M. B.; CASTRO, H. C.; ZINGALI, R. B.; CARLINI, C. R. and GUIMARAES, J. A. Bothrops sp. snake venoms: comparison of some biochemical and physicochemical properties and interference in platelet functions. Comp. Biochem. Physiol, v. 119c, p. 21-29, 1998. FREITAS, M. A.; GENO, P. W.; SUMMER, L. W.; COOKE, M. E.; HUDIBURG, S. A.; OWNBY, C. L.; KAISER, I. I.; ODELL, G. V. Citrate is a major component of snake venoms. Toxicon, v. 30, p. 461-464, 1992. GIBAS, C.; JAMBECK, P. Developing Bioinformatics Computer Skills. O’Reilly Media Inc., Sebastopol, CA, Estados Unidos, 1 Ed., 2001, 427 p. GIMENES, S. N. C.; FERREIRA, F. B.; SILVEIRA, A. C. P.; RODRIGUES, R. S.; YONEYAMA, K. A. G.; SANTOS, J. I.; FONTES, M. R. M.; BRITES, V. L. C.; SANTOS, A. L. Q.; BORGES, M. H.; LOPES, D. S.; RODRIGUES, V. M. Isolation and biochemical characterization of a γ-type phospholipases A2 inhibitor from Crotalus durissus collilineatus snake serum. Toxicon, v. 81, p. 58-66, 2014. GOMES, M. S. R.; NAVES-DE-SOUZA, D. L.; GUIMARÃES, D. O.; LOPES, D. S.; MAMEDE, C. C. N.; GIMENES, S. N. C.; ACHÊ, D. C.; RODRIGUES, R. S.; YONEYAMA, K. A. G.; BORGES, M. H.; OLIVEIRA, F.; RODRIGUES, V. M. Biochemical and functional characterization of Bothropoidin: the first haemorrhagic 70 metalloproteinase from Bothrops pauloensis snake venom. J. Biochem., v. 157, p. 137-149, 2015. GOMES, M. S. R.; QUEIROZ, M. R.; MAMEDE, C. C. N.; MENDES, M. M.; HAMAGUCHI, A.; HOMSI-BRANDEBURGO, M. I.; SOUSA, M. V.; AQUINO, E. N.; CASTRO, M. S.; OLIVEIRA, F.; RODRIGUES, V. M. Purification and functional characterization of a new metalloproteinase (BleucMP) from Bothrops leucurus snake venom. Comp. Biochem. Physiol. C, v. 153, p. 290-300, 2011. GÖMIS-RUTH, F. X. Structural aspects of the Metzincin Clan of Metalloendopeptidases.Molecular Biotechnology, v. 24, p.157 – 2002, 2003. GOMIS-RÜTH, F.X. Catalytic domain architecture of metzincin metalloproteases. The Journal Biological Chemistry, v. 23, p. 15353-15357, 2009. GÖMIS-RUTH, F.X.; BOTELHO, T.O; BODE, W. A stadad orientation for metallopeptidases. Biochimica et Biophysica Acta, v. 1824, p. 157-163, 2012. GOMIS-RUTH, F. X.; MEYER, E. F.; KRESS, L. F.; POLITI, V. Structures of adamalysin II with peptidic inhibitors. Implications for the design of tumor necrosis factor alpha convertase inhibitors. Protein Sci., v. 7, p. 283-292, 1998. GONG, W.; ZHU, X.; LIU, S.; TENG, M.; NIU, L. Crystal structures of acutolysin A, a three-disulfide hemorrhagic zing metalloproteinase from the snake venom of Agkistrodon acutus. Journal Mol. Biol., v. 283, p. 657-668, 1998. GOUJON, M.; MCWILLIAM, H.; LI, W.; VALENTIN, F.; SQUIZZATO, S.; PAERN, J.; LOPEZ, R. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Research, v. 38, p. 695-699, 2010. GRAMS, R.; HUBER, R.; KRESS, L. F.; MORODER, L.; BODE, W. Activation of snake venom metalloproteinase by a cysteine switch-like mechanism. Federation of European Biochemical Societies FEBS Letters, v. 335, p. 76-80, 1993. GUEX, N.; PEITSCH, M. C. Swiss-Model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, v. 18, p. 2714-2723, 1997. GUEX, N.; PEITSCH, M. C.; SCHWEDE, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, v. 30, p. 162-173, 2009. GUTIERREZ, J. M.; LOMONTE, B. 2003. Efectos locales en el envenenamento ofídico em América Latina, p. 310-323. In: CARDOSO, J. L. C.; FRANÇA, F. O. S.; WEN, F. H.; MÁLAQUE, C. M. S.; HADDAD-JR. Animais peçonhentos no Brasil: biologia, clínica e terapêutica dos acidentes. São Paulo: Savier, FAPESP, 480 p. GUTIÉRREZ, J. M.; OWNBY, C. L. Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity. Toxicon, v. 42, p. 915–931, 2003. 71 GUTIERREZ, J.M.; RUCAVADO, A.; ESCALANTE, T.; DIAZ, C. Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon, v. 45, p. 997-1011, 2005. GUTIÉRREZ, J. M.; RUCAVADO, A. Snake venom metalloproteinases: Their role the pathogenesis of local tissue damage. Biochimie, v. 82, p. 841 – 850 , 2000. GUTIÉRREZ, J. M.; LOMONTE, B.; LÉON, G.; ALAPE-GIRÓN, A.; FLOREZ-DÍAZ, M.; SANZ, L.; ÂNGULO, Y.; CALVETE, J. J. Snake venomics and antivenomics: Proteomic tools in the design and controlo f antivenoms for the treatment of snakebite envenoming. Journal of Proteomics, v. 72, p. 165-182, 2009a. GUTIÉRREZ, J. M.; RUCAVADO, A.; CHAVES, F.; DÍAZ, C.; ESCALANTE, T. Experimental pathology of local tissue damage induced by Bothrops asper snake venom. Toxicon, v. 54, p. 958-975, 2009b. GUTIÉRREZ, J. M.; RUCAVADO, A.; ESCALANTE, T.; LOMONTE, B.; ÂNGULO, Y. Tissue pathology induced by snake venoms: How to unsdertand a complex pattern of alteratios from a systems biology perpective?. Toxicon, v. 55, p. 166-170, 2010. GUTIÉRREZ, J. M.; WATTELL. D. A.; WILLIAMS, D. J.; JENSEN, S.; BROWN, N.; CALVETE, J. J.; HARRISON, R. A. The need for full integration of snakebite envenoming within a global strategy to combat the neglected tropical diseases: The way forward. PLOS Neglected tropical Diseases, v. 7, p. 1-3, 2013. GUTIERREZ, J. M.; WARRELL, D. A.; WILLIAMA, D. J.; JENSEN, S.; BROWN, N.; CALVETE, J. J.; HARRISON, R. A. The need for full integration of snakebite envenoming within a global strategy to combat the neglected tropical diseases: The way forward. PLoS Negl. Trop. Dis., v. 7, p. 1-3, 2015. HEGE, T. E.; BAUMANN, U. The conserved methionine residue of the metzincins: a sitedirected mutagenesis study. Journal of Molecular Biology, v. 314, n. 2, p. 181-186, 2001. HERPETOLOGIA, Sociedade Brasileira (SBH). Lista das espécies de répteis brasileiros. Disponível em: < www.sbherpetologia.org.br/checklist/repteis.htm>. Acessado em 01/2016. HOOPER, N. M. Families of zinc metalloproteases. FEBS Letters, v. 354, p. 1-6, 1994. HOWES, J. M.; THEAKSTON, R. D. G.; LAING, G. D. Neutralization of the haemorrhagic activities of viperine snake venoms and venom metalloproteinases using synthetic peptide inhibitors and chelators. Toxicon. v. 49, p. 734-739, 2007. ISBISTER, G. K.; BROWN, S. G.; MacDONALDO, E.; WHITE, J.; CURRIE, B. J. Current use of Australian snake antivenoms and frequency of inmediate-tipe hypersensitivity reactions and anaphylaxis. Medical Journal of Australia, v. 188, p. 473-476, 2008. JANEIRO-CINQUINI, T. R. F.; CARDOSO Jr., R. P; ABE, A. S.; SEGURA, O. P. Agrupamento de serpente do gênero Bothrops pelos caracteres do hemipênis (Serpentes: Viperidae). In: CONGRESSO BRASILEIRO DE ZOOLOGIA, 24, 1987, Juiz de Fora. Livro de Resumos XIV Congresso Brasileiro de Zoologia, Juiz de Fora: UFMG, p. 358, 1987. 72 JENSEN, F. Introduction to Computational Chemistry. West Sussex: John Wiley & Sons, 1999, 429 p. JONES, G.; WILLETT, P.; GLEN, R. C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of Molecular Biology, v. 254, p. 43-53, 1995a. JONES, G.; WILLETT, P.; GLEN, R. C. A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. Journal of Computer-Aided Molecular Design, v. 9, p. 532-549, 1995b. JONES, G.; WILLETT, P.; GLEN, R. C.; LEACH, A. R; TAYLOR, R. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, v. 267, p. 727-748, 1997. KASHIMA, S.; ROBERTO, P. G.; SOARES, A. M.; ASTOLFI-FILHO, S.; PEREIRA, J. O.; GIULIATI, S.; FARIA-JR., M.; XAVIER, M. A. S.; FONTES, M. R. M.; GIGLIO, J. R.; FRANÇA, S. Analysis of Bothrops jararacussu venomous gland transcriptome focusing on structural and functional aspects: I-gene expression profile of highly expressed phospholipase A2. Biochimie, v. 86, p. 211-219, 2004. KASTURIRATNE, A.; WICKREMASINGHE, A. R.; SILVA, N. de; GUNAWARDENA, N. K.; PATHMESWARAN, A.; PREMARATNA, R.; AVIOLI, L.; LALLOO, D. G.; SILVA, H. J. de. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Medicine, v. 5, p. 01-14, 2008. KAWAGUCHI, N.; XU, X.; TAJINA, R. ADAM 12 protease induces adipogenesis in transgenic mice. The American Journal of Pathology, v. 160, p. 1895-1903, 2002. KIEFER, F.; ARNOLD, K.; KÜNZLI, M.; BORDOLI, L.; SCHWEDE, T. The SWISSMODEL Repository and associated resources. Nucleic Acids Research, v. 37, p. 387-392, 2009. KINI, R. M. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon, v. 42, p. 827-840, 2003. KINI, R.M.; EVANS, H. J. Structural domains in venom proteins: evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disitegrins) from snake venoms are derived by proteolysis from a common precursor. Toxicon, v. 30, p. 265-293, 1992. KITCHEN, D. B.; DECORNEZ, H.; FURR, J. R.; BAJORATH, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews in Drug Discovery, v. 3, p. 935-949, 2004. KOCHVA, E. The origin of snakes and evolution of the venom apparatus. Toxicon, v. 25, p. 65-106, 1987. 73 KORB, O.; STÜTZLE, T.; EXNER, T.E. Empirical scoring function for advanced proteinligand docking with plants. Journal of Chemical Information and Modeling, v. 49, p. 84-96, 2009. KUNTZ, I. D.; BLANEY, J. M.; OATLEY, S. J.; LANGRIDGE, R.; FERRIN, T. E. A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, v. 161, p. 269-288, 1982. LAING, D. G.; CLISSA, P. B.; THEAKSTON, R. D. G.; MOURA, D. A. S.; TAYLOR, M. J. Inflammatory pathogenesis of snake venom metalloprotease-induced skin necrosis. European Journal Immunology, v.33, p 3458-3463, 2003. LARKIN, M. A.; BLACKSHIELDS, G.; BROWN, N. P.; CHENNA, R.; MCGETTIGAN, P. A.; MCWILLIAM, H.; VALENTIN, F.; WALLACE, I. M.; WILM, A.; LOPEZ, R.; THOMPSON, J. D.; GIBSON, T. J.; HIGGINS, D. G. Clustal W and Clustal X version 2.0. Bioinformatics, v. 23, p. 2947-2948, 2007. LEACH, A. R. Molecular Modeling: Principles and Applications. 2ªed. New Jersey: Prentice Hall, 2001, 744 p. LEVINE, I. N. Physical Chemistry. 4ªed. Singapore: McGraw Hill International Editions, 1995, 901 p. LI, W.; COWLEY, A.; ULUDAG, M.; GUR, T.; MCWILLIAM, H.; SQUIZZATO, S.; PARK, Y. M.; BUSO, N.; LOPEZ, R. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Research, v. 43, p. 580-584, 2015. LIEBESCHUETZ, J. W.; COLE, J. C.; KORB, O. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test. J. Comput. Aided Mol. Des., v. 26, p. 737-748, 2012. LINGOTT, T.; SCHLEBERGER, C.; GUTIERREZ, J. M.; MERFORT, I. High-Resolution crystal structure of the snake venom metalloproteinase BaP1 complexed with a peptidomimetic: Insight into inhibitor bindin. Biochemistry, v. 48, p. 6166-6174, 2009. LOVELL, S. C.; DAVIS, I. W.; ARENDAL, W. B.; BAKKER, P. I. W.; WORD, J. M.; PRISANT, M. G.; RICHARDSON, J. S.; RICHARDSON, D. C. Structure validation by Calpha geometry: phi, psi and C-beta deviation. Proteins: Structure, Function and Genetics, v. 50, p. 437-450, 2012. MACHADO, T. Filogenia molecular das espécies de Bothrops do grupo neuwiedi (Serpentes, Viperidae). 2010. p. 26. Dissertação de Mestrado – Instituto de Biociências da Universidade de São Paulo, São Paulo, 2010. MARKLAND, F. S. Snake venoms and the hemostatic system. Toxicon, v. 36, p. 1749-1800, 1998. MASUDA, S.; MURAKAMI, M.; ISHIKAWA, Y.; ISHII, T.; KUDO, I. Diverse cellular localizations of secretory phospholipase A2 enzymes in several human tissues. Biochimica et Biophysica Acta, n. 1736, p. 200-210, 2005. 74 MATRISIAN, L. M. The matrix degrading metalloproteinases. BioEssay, v. 14, p 455-463, 1992. MATSUI, T.; FUJIMURA, Y.; TITANI, K. Snake venom proteases affecting hemostasis and thrombosis. Biochemica et Biophysica Acta: BBA, v. 1477, 146-156. 2000. MACKERROW, J. H. Human fibroblast collagenase contains an amino acid sequence homologous to the zinc-binding site of Serratia proteases. The Journal of Biological Chemistry, v. 262, p. 5943-5943, 1987. MCWILLIAM, H.; LI, W.; ULUDAG, M.; SQUIZZATO, S.; PARK, Y. M.; BUSO, N.; COWLEY, A. P.; LOPEZ, R. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Research, v. 41, p. 597-600, 2013. MENDES, M. M.; VIEIRA, S. A. P. B.; GOMES, M. S. R.; PAULA, V. F.; ALCÂNTARA, T. M.; HOMSI-BRANDEBURGO, M. I.; SANTOS, J. I.; MAGRO, A. J.; FONTES, M. R. M.; RODRIGUES, V. M. Triacontyl p-coumarate: Na inhibitor of snake venom metalloproteinases. Phytochemistry, v. 86, p. 72-82, 2013. MOCHIZUKI. S.; OKADA, Y. ADAMs in cancer cell proliferation and progression. Cancer Science, v. 98, p. 521-527, 2007. MOOIJ, W. T. M.; VERDONK, M. L. General and targeted statistical potentials for proteinligand interactions. Proteins: Structure, function and Bioinf., v. 61, p. 272-287, 2005. MORRIS, G. M.; GOODSELL, D. S.; HALLIDAY, R. S.; HUEY, R.; HART, W. E.; BELEW, R. K.; OLSON, A. J. Automated docking using a Lamarckian Genetic Algorithm and an empirical binding free energy function. Journal of Computational Chemistry, v. 19, p. 1639-1662, 1998 MOURA-DA-SILVA, A.M.; BUTERA, D.; TANJONI, I. Importance of snake venom metalloproteinases in cell biology: effects on platelets, inflammatory and endothelial cells. Curr. Pharmaceut. Des. v. 28, p. 2893-2905, 2007. MURPHY, G.; NAGASE, H. Reappraising metaloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nature Clinical Practice Rheumatology, v. 4, 128-135, 2008. NAVES-DE-SOUZA, D. L.; GOMES, M. S. R.; FERREIRA, F. B.; RODRIGUES, R. S.; ACHÊ, D. C.; RICHARDSON, M.; BORGES, M. H.; RODRIGUES, V. M. Biochemical and enzymatic characterization of BpMP-I, a fibrinogenolytic metalloproteinase isolated from Bothropoides pauloensis snake venom. Comparative Biochemistry and Physiology, Part B, v. 161, p. 102-109, 2012. NEIVA, M.; ARRAES, F. B. M.; SOUZA, J. V.; RÁDIS-BAPTISTA, G.; PRIETO-DASILVA, A. R. B.; WALTER, M. E. M. T.; BRIGIDO, M. M.; YZMANE, T.; LÓPEZLOZANO, J, L.; ASTOLFI-FILHO, S. Transcriptome analysis of the Amazonian viper 75 Bothrops atrox venom gland using expressed sequence tags (ESTs). Toxicon, v. 53, p. 427- 436, 2009. NIKAI, T.; MORI, N.; KISHIDA, M.; SUGIHARA, H.; TU, A. T. Isolation and biochemical characterization of hemorrhagic toxin from the venom of Crotalus atrox (western diamondback rattlesnake). Arch. Biochem. Biophys., v. 231, p. 309-319, 1984. NUNES, D. C. O.; FRANCO, P. S.; RODRIGUES, V. M.; MENDES, M. M. Aspectos clínico-epidemiológicos dos acidentes ofídicos ocorridos na região do Triâgulo Mineiro, Minas Gerais, Brasil: Estudo retrospectivo. Biosci. J., v. 30, p. 1942-1951, 2014. NUÑES, V.; CID, P.; SANZ, L.; TORRE, P. D. L.; ÂNGULO, Y.; LOMONTE, B.; GUITIÉREZ, J. M.; CALVETE, J. J. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. Journal of Proteomics, v. 73, p. 57-58, 2009. OLIVEIRA, C. F.; LOPES, D. S.; MENDES, M. M.; HOMSI-BRADEBURGO, M. I.; HAMAGUCHI, A.; ALCANTARA, T. M.; CLISSA, P. B.; RODRIGUES, V. M. Insights of Local Tissue Damage and Regeneration Induced By Bnsp-7, a Myotoxin Isolated from Bothrops (Neuwiedi) Pauloensis Snake Venom. Toxicon, v. 53, p. 560-569, 2009. OLIVEIRA, F. G.; SANT’ANNA, C. M. R.; CAFFARENA, E. R.; DARDENNE, L. E.; BARREIRO, E. J. Molecular docking study and development of na empirical vinding free energy model for phosphodiesterase 4 inhibitors. Bioorganic and Medicinal Chemistry, v. 14, p. 6001-6011, 2006. OLIVEIRA, F. G.; SANT’ANNA, C. M. R.; CAFFARENA, E. R.; DARDENNE, L. E.; OLIVEIRA, F. G. Estudo do perfil de interação de fosfodiesterase 4 com seus inibidores. Dissertação de Mestrado, Instituto de Química, Universidade Federal do Rio de Janeiro – RJ, 2005. PAIVA, R. O.; HNEIPP, L. F.; GOULAR, C. M.; ALBUQUERQUE, M. A.; ECHEVARRIA, A. Antifungal activities of thiosemicarbazones and semicarbazones against mycotoxigenic fungi. Ciênc. Agrotec. Lavras, v. 38, p. 531-537, 2014. PARKINSON, C. L.; CHIPPINDALE, P.; CAMPBELL, J. Multigene analyses of pitviper phylogeny with comments on their biogeographical history. In: SCHUETT, G. W.; HOGGREN, M.; DOUGLAS, M. E.; GREENE, H. W. (Eds.). Biology of the vipers. Utah: Eagle Montain, p. 93-110, 2002. PEARSON, R. G. Hard and Soft acids and bases. J. Am. Chem. Soc., v. 85, p. 3533-3539, 1963. PESANTES, O. S.; FERNANDES, W. Afinidade de Bothrops erythromelas aferida através da eletroforese do plasma e da morfologia do hemipênis (Serpentes: Viperidae). In: CONGRESSO BRASILEIRO DE ZOOLOGIA, 26, 1989, João Pessoa. Livro de Resumos XVI Congresso Brasileiro de Zoologia, João Pessoa: UFPB, p. 74-75, 1989. POLITI, A.; DURDAGI, S.; MOUTEVELIS-MINAKAKIS, P.; KOKOTOS, G.; MAVROMOUSTAKOS, T. Development of accurate binding affinity predictions of novel 76 renin inhibitors through molecular docking studies. Journal of Mol. Grap. And Modell., v. 29, p. 425-435, 2010. POPOVIC-BIJELIC, A.; KOWOL, C. R.; LIND, M. E.; LUO, J.; HIMO, F.; ENYEDY, E. A.; ARION, V. B.; GRASLUND, A. Ribonucleotide reductase inhibition by metal compleses of triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): a combined experimental and theoretical study. J. Inorg. Biochem., v. 105, p. 1422-1431, 2011. PRIMAKOFF, P.; MYLES, D.G. Penetration, adhesion, and fusion in mammalian sperm-egg interaction. Science, v. 296, 2183-2185, 2002. QUEIROZ, G. P.; PESSOA, L. A.; PORTARO, F. C. V.; FURTADO, M. F. D.; TAMBOURGI, D. V. Interespecific variation in venom composition and toxicity of Brazilian snakes from Bothrops genus. Toxicon, v. 52, p. 842-851, 2008. RAMACHANDRAN, G. N.; SASISKEHARAN, V. Conformation of polypeptides and proteins. Advances in Protein Chemistry, v. 23, p. 283-256, 1968. RAMOS, O. H. P.; SELISTRE-DE-ARAÚJO, H. S. Snake venom metalloprotease-structure and function of catalytic and desintegrin domains. Comparative biochemistry and Physiology – parte C, v. 142, p. 328-346, 2006. RAWLINGS, N. D.; WALLER, M.; BARRETT, A. J.; BATEMAN, A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, v. 42, p. 503-509, 2014. ROCHA, G. B.; FREIRE, R. O.; SIMAS, A. M.; STEWART, J. J. RM1: a reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem, v. 27, p. 1101-1111, 2006 RODRIGUES, R. S.; IZIDORO, L. F. M.; TEIXEIRA, S. S.; SILVEIRA, L. B.; HAMAGUCHI, A.; HOMSI-BRANDEBURGO, M. I.; SELISTRE-DE-ARAUJO, H. S.; GIGLIO, J. R.; FULY, A. L.; SOARES, A. M.; RODRIGUES, V. M. Isolation and funcional characterization of a new myotoxic acidic phospholipase A2 from Bothrops pauloensis snake venom. Toxicon, v. 50, p. 153-165, 2007. RODRIGUES, R. S.; BOLDRINI-FRANÇA, J.; FONSECA, F. P. P.; DE-LA-TORRE, P.; HENRIQUE-SILVA, F.; SANZ, L.; CALVETE, J. J.; RODRIGUES, V.M. Combined snake venomics and venom gland transcriptomic analysis of Bothropoides pauloensis. Journal of Proteomics, v. 75, p. 2707-2720, 2012. RODRIGUES, V. M.; SOARES, A. M.; MANCIN, A. C.; FONTES, M. R. M.; HOMSIBRANDEBURGO, M. I.; GIGLIO, J. R. Geographic variations in the composition of composition of myotoxins from Bothrops neuwiedi snake venoms: biochemical characterization and biological activity. Comparative Biochem. and Physiol. v. 121, p. 215– 222, 1998. RODRIGUES, V. M.; LOPES, D. S.; CASTANHEIRA, L. E.; GIMENES, S. N. C.; NAVESDE- SOUZA, D. L.; ACHE, D. C.; BORGES, I. P.; YONEYAMA, K. A. G.; RODRIGUES, 77 R. S. Bothrops pauloensis snake venom toxins: The search for new therapeutic models. Cueent Topics in Medicinal Chemistry, v. 15, p. 670-684, 2015. RODRIGUEZ-ARGUELLES, M. C.; BELICCHI, F. M.; GASPARRI, F. G.; PELIZZI, C.; TARASCONI, P.; ALBERTINI, R.; DALL’AGLIO, P. P.; LUNGHI, P.; PINELLI, S. 2,6- diacetylpyridine bis (thiosemicarbazones) zinc complexes: synthesis, structure, and biological activity. J. Inorg. Biochem., v. 15, p. 157-175, 1995. ROGERS, D.W. Computational Chemistry Using the PC. 3ªed. Hoboken, NJ: John Wiley & Sons Inc., 2003. 349p. SANTOS, A. C. S.; SANT’ANNA, C. M. R. 20-hydroxyecdysone receptor ligand domain: 1. A semiempirical study of dibenzoylhydrazines selectivity. Journal of Molecular Structure, v. 585, p. 61-68, 2002. SANTOS-FILHO, O. A.; ALENCASTRO, R. B. Modelagem de proteínas por homologia. Química Nova, v. 26, p. 253-259, 2003. SCHALOSKE, R. H.; DENNIS, E. A. The phospholipase A2 superfamily and its group numbering system. Biochimica et Biophysica Acta, v. 1761, p. 1246-1259, 2006. SEARLE, M. S.; WILLIAMS, D. H. The cost of conformational order: entropy changes in molecular associations. Journal of the American Chemical Society, v. 114, p. 10690-10697, 1992. SEARLE, M. S.; WILLIANS, D. H.; GERHARD, U. contributions in the estimation of binding constants: residual motions and consequences for amide-amide hydrogen bond strengths. Journal of the American Chemical Society, v. 114, p. 10697-10704, 1992. SILVA, V.X. da, 2004. The Bothrops neuwiedi complex, p.410-422. In Campbell, J.A. & Lamar, W.W. (ed.). The Venomous Reptiles of the Western Hemisphere. Comstock, Ithaca, London. SILVA, G. R.. Estudo da reativação da acetilcolinesterase inibida por organofosforados: análise conformacional da molécula de HI-6 e simulação da reação de desfosforilação. Dissertação de Mestrado, Instituto Militar de Engenharia, Rio de Janeiro, RJ, 2005. SILVA, V. X.; RODRIGUES, M. T. Taxonomic revision of the Bothrops neuwiedi complex (Serpentes, Viperidae) with description of a new species. Phyllomedusa, v. 7, n. 1, p. 45-90, 2008. SILVEIRA, P. V.; NISHIOKA, P. South American rattlesnake bite in a Brazilian teaching hospital. Clinical and epidemiological study of 87 cases, with analysis of factors predictive of renal failure. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 86, n. 5, p. 562-564, 1992. SIX, D. A.; DENNIS, E. A. The Expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochimica et Biophysica Acta, n. 1488, p. 1-19, 2000. 78 SLACK, B. E.; MAS, L. K.; SEAH, C. C. Constitutive shedding of amyloid precursor protei ectodomain is up-regulate by tumour necrosis factor-alpha converting enzyme. Biochemistry Journal, v. 357, 787-794, 2001. SOUZA, J. R. F.; MONTEIRO, R. Q.; CASTRO, H. C.; ZINGALI, R. B. Proteolytic action of Bothrops jararaca venom upon its own constituents. Toxicon, v. 39, p. 787-792, 2001. SPRINGMAN, E. B.; ANGLETON, E. L.; BIRKEDAL-HANSEN, H.; VAN-WART, H. E. Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys 73 active-site zinc complex in latency and “cysteine switch” mechanism for activation. Proceedings of National Academy of Sciences, v. 1, p. 364-368, 1990. STEWART, J. J. P. Optimization of parameters for semiempirical methods. II Applications. Journal of Computational Chemistry, v. 10, p. 221-264, 1989. STEWART, J. J. MOPAC: a semiempirical molecular orbital program. Journal of Computer-Aided Molecular Design, v. 4, p. 1-105, 1990 STEWART, J. J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, v. 13, p. 1173-1213, 2007. STEWART, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model, v. 19, p. 1-32, 2013. STOCKER, K. Compositions of venoms snakes. In: Medical use of snake proteins, p. 33-56, 1990. STOCKER, K.; FISCHER, H.; MEIER, J. Thrombin-like snake venom proteinases. Toxicon, v. 20, p. 265-273, 1982. STÖCKER, W.; BODE, W. Structural features of a superfamily of zinc-endopeptidases: the metzincins. Current Opinion in Structural Biology, v. 5, p. 383–390, 1995. STÖCKER, W.; GRAMS, F.; BAUMANN, U.; REINEMER, P.; GOMIS-RUTH, F.X.; McKAY, D.B.; BODE, W. The metzincins – Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Science, v. 4, p. 823-840, 1995. TAKEDA, S.; TAKEYA, H.; IWANAGA, S. Snake venom metalloproteinases: Structure, function and relevance to the mammalian ADAM/ADAMS family proteins. Biochimica et Biophysica Acta: BBA, v. 1824, p. 164-176, 2012. TAKEYA, H.; IWANAGA, S. Proteases that induce hemorrhage, in: G.S. Bailey (Ed.) Enzymes from Snake Venom, Alake, Colorado, p. 11-38, 1998. TEIXEIRA, C. F. P.; LANDUCCI, E. C. T.; ANTUNES, E.; CHACUR, M.; CURY, U. Inflamatory effects of snake venom myotoxic phospholipase A2. Toxicon, v. 42, p. 947-962, 2003. 79 TERRA, R. M. S.; PINTO, A. F. M.; GUIMARÃES, J. A.; FOX, J. W. Proteomic profiling of snake venom metalloproteinases (SVMPs): Insights into venom induced pathology. Toxicon, v. 54, p. 836-844, 2009. TU, A. T. Snake venoms: General background and composition. In: Venoms: Chemistry and Molecular Biology, p. 1-19, 1988. VALE, L. H. F.; MENDES. M. M.; FERNADES, R. S.; COSTA, T. R.; HAGE-MELIM, L. I. S.; SOUSA, M. A.; HAMAGUCHI, A.; HOMSI-BRANDEBURGO, M. I.; FRANCA, S. C.; SILVA, C. H. T. P.; PEREIRA, P. S.; SOARES, A. M.; RODRIGUES, V. M. Protective effect of Schizolobium parahyba flavonoids against snake venoms and isolated toxins. Current Topics in Medicinal Chemistry, v. 11, p. 2566-2577, 2011. VALENTE, R. H.; GUIMARÃES, P. R.; JUNQUEIRA, M.; NEVES-FERREIRA, A. G. C.; SOARES, M. R.; CHAPEAUROUGE, A.; TRUGILHO, M. R. O.; LÉON, I. R.; ROCHA, S. L. G.; OLIVEIRA-CARVALHO, A. L.; WERMELINGER, L. S.; DUTRA, D. L. S.; LEÃO, L. I.; JUNQUEIRA-DE-AZEVEDO, I. L. M.; HO, P. L.; ZINGALI, R. B.; PERALES, J.; DOMONT, G. B. Bothrops insularis venomics: A proteomic analysis supported by transcriptomic-generated sequence data. Journal of Proteomics, v. 72, p. 241-255, 2009. VILLALTA-ROMERO, F.; GORTAT, A.; HERRERA, A. E.; ARGUEDAS, R.; QUESADA, J.; MELO, R. L.; CALVETE, J. J.; MONTERO, M.; MUTILLO, R.; RUCAVADO, A.; GUTIERREZ, J. M.; PÉRES-PAYA, E. Identification of new snake venom metalloproteinase inhibitors using compound screening and rational peptide design. ACS Med. Chem. Lett., v. 3, p. 540-543, 2012. WADOOD, A.; ALI, S. A.; SATTAR, R.; LODHI, M. A.; UI-HAQ, Z. A novel pharmacophore model to identify leads for simultaneous inhibition of anti-coagulation and anti-inflammatory activities of snake venom phospholipase A2. Chem Biol. Drug Des., v. 79, p. 431-441, 2012. WANG, S.; MILNE, G. W. A.; NICKLAUS, M. C.; MARQUEZ, V. E.; LEE, J; BLUMBERG, P. M. Protein kinase C modeling of the binding site and prediction of binding constants. Journal of Medicinal Chemistry, v. 37, p. 1326-1338, 1994. WARRELL, D. A. Snake bite. Lancet, v. 375, p. 77-88, 2010. WHITE, J. Snake venom and coagulopathy. Toxicon, v. 45, p. 951-967, 2005. WILLETT, P. Genetic algoritims in molecular recognition and design. Trends Biotechnol., v. 13, p. 516-521, 1995. WOLFSBERG, T. G.; STRAINGHT, P. D.; GERENA, R. L. ADAM, a widely distributed and developmentally regulate gene family encoding membrane proteins with A Disintegrin And Metalloprotease domain. Dev Biology , v. 169, 378-383, 1995. WÜSTER, W.; THORPE, R. S.; SALOMAO, M. G.; THOMAS, L.; PUORTO, G.; THEAKSTON, R. G. D.; WARRELL, D. A. Origin and phylogenetic position of the Lesser 80 Antilean species of Bothrops (Serpentes, Viperidae): biogeographical and medical implications. Bull. Nat. Hist. Mus. Lond. Zool., v. 68, n. 2, p. 101-106, 2002. ZHANG, D.; BOTOS, I.; GOMIS-RUTH, F. X.; DOLL, R.; BLOOD, C.; NJOROGE, F. G.; FOX, J. W.; BODE, W.; MEYER, E. F. Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (from d). Proc. Natl. Acad. Sci. USA, v. 91, p. 8447-8451, 1994. ZHANG, T.; OZBIL, M.; BARMAN, A.; PAUL, T.J.; BORA, R.P.; PRABHAKAR, R. Theoretical Insights into the functioning of metallopeptidases and their shynthetic analogues. Accounts of Chemical Research, v. 48, p. 192-200, 2015.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5610/2016%20-%20Francis%20Barbosa%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/20412/2016%20-%20Francis%20Barbosa%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/26739/2016%20-%20Francis%20Barbosa%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/33132/2016%20-%20Francis%20Barbosa%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/39496/2016%20-%20Francis%20Barbosa%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/45880/2016%20-%20Francis%20Barbosa%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/52274/2016%20-%20Francis%20Barbosa%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/58778/2016%20-%20Francis%20Barbosa%20Ferreira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1655
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-05-17T11:44:30Z No. of bitstreams: 1 2016 - Francis Barbosa Ferreira.pdf: 4527522 bytes, checksum: 6a5a6589610ff851e68801c3ec05e3c9 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-05-17T11:44:30Z (GMT). No. of bitstreams: 1 2016 - Francis Barbosa Ferreira.pdf: 4527522 bytes, checksum: 6a5a6589610ff851e68801c3ec05e3c9 (MD5) Previous issue date: 2016-08-04eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2016 - Francis Barbosa Ferreira.pdf2016 - Francis Barbosa Ferreira4.42 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.