Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/10249
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Santos, Paulo Pitasse | |
dc.date.accessioned | 2023-12-21T18:59:33Z | - |
dc.date.available | 2023-12-21T18:59:33Z | - |
dc.date.issued | 2022-01-10 | |
dc.identifier.citation | SANTOS, Paulo Pitasse. Planejamento, síntese e avaliação da atividade biológica de peptídeos e conjugados peptídeo-fármacos, com atividade antibacteriana e antiparasitária. 2022. 170 f. Tese (Doutorado em Química, Química Orgânica) - Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/10249 | - |
dc.description.abstract | Peptídeos são compostos por aminoácidos ligados em sequência e compõem uma classe de moléculas de interesse dentro da química medicinal. Tanto por sua alta seletividade por alvos específicos quanto pela complexidade de suas estruturas, que permitem que sejam aplicados com diferentes funções, tal qual compostos de ação antimicrobiana ou como agentes de penetração celular conjugados a fármacos. Peptídeos e conjugados possuem alto potencial de aplicação em áreas carentes de inovação terapêutica, como no desenvolvimento de antibióticos para o tratamento de bactérias multirresistentes ou de novos agentes quimioterápicos para o tratamento da doença de Chagas. Neste trabalho são propostas três séries de peptídeos anfifílicos catiônicos com potencial aplicação como antimicrobianos e como peptídeos de penetração celular. Também se avalia a estratégia de conjugação peptídeo-fármaco com ou sem controle de liberação do fármaco no ambiente intracelular, utilizando peptídeos de interesse dentro da série proposta e o peptídeo helicoidal poliprolina tipo II P14LRR, de reconhecida atividade antimicrobiana e de penetração celular. A preparação de peptídeos e conjugados envolveu o emprego de técnicas de síntese orgânica clássica, com otimização de protocolos presentes na literatura, bem como a metodologia de síntese de peptídeos em fase sólida. Os fármacos linezolida (Lnz) e benznidazol (Bzd) foram utilizados para a estratégia de conjugação. Os conjugados peptídeo-fármaco conectados via espaçador contendo ligação dissulfeto, redutível no meio intracelular, foram avaliados quanto sua à cinética de liberação de fármaco induzido quimicamente. Adicionalmente os peptídeos e conjugados foram avaliados sobre Escherichia coli quanto à sua atividade antimicrobiana e possíveis mecanismos de ação. O desenho das séries permitiu traçar uma relação estrutura atividade, de modo que o peptídeo Ac-YGRRLLRRLL-NH2 se mostrou o mais promissor para esta aplicação (MIC = 2 µM). Foi avaliada também a atividade contra formas amastigotas e tripomastigotas de Trypanosoma cruzi, de modo que o peptídeo Ac-YGRRLLRRLLRRLLRRLL-NH2 apresentou alta efetividade na inibição da infecção do parasito in vitro (EC50 = 299 ± 86 nM). Foram realizados ainda experimentos para a avaliação do potencial de penetração celular do peptídeo Fl-YGRRLLRRLL-NH2 e do conjugado Lnz-Fl-P14LRR, ambos marcados com sonda de fluoresceína. Através de técnicas de citometria e de microscopia confocal foi possível constatar o acúmulo dos compostos no meio intracelular e, no caso de Lnz-Fl-P14LRR, indicativos de sua colocalização em nível subcelular com lisossomos. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | por |
dc.description.sponsorship | FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | peptídeos de penetração celular | por |
dc.subject | liberação de fármacos | por |
dc.subject | síntese de peptídeos em fase sólida | por |
dc.subject | Trypanosoma cruzi | por |
dc.subject | cell penetrating peptides | eng |
dc.subject | drug delivery | eng |
dc.subject | solid phase peptide synthesis | eng |
dc.title | Planejamento, síntese e avaliação da atividade biológica de peptídeos e conjugados peptídeo-fármacos, com atividade antibacteriana e antiparasitária | por |
dc.title.alternative | Planning, synthesis and biological assessment of the of peptides and peptide-drug conjugates, bearing antibacterial and antiparasitic activity | eng |
dc.type | Tese | por |
dc.description.abstractOther | Peptides are composed of amino acids linked in sequence and comprise a class of molecules of interest within medicinal chemistry. Both for their high selectivity for specific targets and for the complexity of their structures, which allow them to be applied for different purposes, such as antimicrobials or cell penetrating agents conjugated to drugs. Peptides and conjugates are potentially applicable on areas lacking therapeutic innovation, such as the development of new antibiotics for the treatment of multidrug-resistant bacteria or new chemotherapeutic agents for the treatment of Chagas disease. In this work they are proposed three series of cationic amphiphilic peptides with potential application as antimicrobials and cell penetrating peptides. The peptide-drug conjugation strategy with or without control of drug release in the intracellular environment is also evaluated, using peptides of interest within the proposed series and the type II polyproline helix P14LRR, which has been reported as an antimicrobial and cell penetrating peptide. The synthesis of peptides and conjugates involved the use of classical organic synthesis techniques, with optimization of protocols found in the literature, as well as the solid phase peptide synthesis methodology. The drugs linezolid (Lnz) and benznidazole (Bzd) were used for the conjugation strategy. Peptide-drug conjugates connected via a spacer containing a disulfide bond, reducible in the intracellular medium, were evaluated for their chemically induced drug release kinetics. Additionally, the peptides and conjugates were evaluated against Escherichia coli for their antimicrobial activity and insights on mechanisms of action. The design of the series made it possible to trace a structure-activity relationship and the peptide Ac-YGRRLLRRLL-NH2 was identified to be the most promising for this application (MIC = 2 µM). The activity against amastigotes and trypomastigotes of Trypanosoma cruzi was also evaluated. The peptide Ac-YGRRLLRRLLRRLLRRLL-NH2 showed high effectiveness on inhibiting parasite infection in vitro (EC50 = 299 ± 86 nM). Experiments were also carried out to evaluate the cell penetration potential of the Fl-YGRRLLRRLL-NH2 peptide and the Lnz-Fl-P14LRR conjugate, both labeled with a fluorescein probe. They were used flow cytometry and confocal microscopy techniques to verify the accumulation of compounds in the intracellular environment and, in the case of Lnz-Fl-P14LRR, also an indicative of its colocation at the subcellular level with lysosomes. | eng |
dc.contributor.advisor1 | Lima, Marco Edilson Freire de | |
dc.contributor.advisor1ID | 880.202.667-04 | por |
dc.contributor.advisor-co1 | Lima, Débora Decotè Ricardo de | |
dc.contributor.advisor-co1ID | 875.362.007-06 | por |
dc.contributor.advisor-co2 | Chmielewski, Jean | |
dc.contributor.referee1 | Lima, Marco Edilson Freire de | |
dc.contributor.referee2 | Romeiro, Nelilma Correia | |
dc.contributor.referee3 | Rodrigues, Juliany Cola Fernandes | |
dc.contributor.referee4 | Andricopulo, Adriano Defini | |
dc.contributor.referee5 | Lacerda, Renata Barbosa | |
dc.creator.ID | 120.854.447-09 | por |
dc.creator.Lattes | http://lattes.cnpq.br/1280725643158086 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Ciências Exatas | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Química | por |
dc.relation.references | ADADE, Camila M. et al. Melittin peptide kills Trypanosoma cruzi parasites by inducing different cell death pathways. Toxicon, v. 69, p. 227-239, 2013. AGER, Sally; GOULD, Kate. Clinical update on linezolid in the treatment of Gram-positive bacterial infections. Infection and drug resistance, v. 5, p. 87, 2012. AITKEN, Alastair; LEARMONTH, Michèle P. Protein determination by UV absorption. In: The protein protocols handbook. Humana Press, Totowa, NJ, 2009. p. 3-6. AKSNES, Henriette; HOLE, Kristine; ARNESEN, Thomas. Molecular, cellular, and physiological significance of N-terminal acetylation. International review of cell and molecular biology, v. 316, p. 267-305, 2015. ALSINA, Jordi; ALBERICIO, Fernando. Solid‐phase synthesis of C‐terminal modified peptides. Peptide Science, v. 71, n. 4, p. 454-477, 2003. ALVES PASSOS, Carlos Luan et al. Anti-Leishmania amazonensis activity of Serjania lethalis A. St.-Hil. Parasitology international, 2017. ANDRADE, Daniela V.; GOLLOB, Kenneth J.; DUTRA, Walderez O. Acute Chagas disease: new global challenges for an old neglected disease. PLoS neglected tropical diseases, v. 8, n. 7, p. e3010, 2014. AVALOS, Martin et al. NMR Studies of sugar amides and thioamides. Journal of the Chemical Society, Perkin Transactions 2, n. 12, p. 2205-2215, 1992. AVALOS, Martin et al. Reaction of thioamides with silver carboxylates in aprotic media. A nucleophilic approach to the synthesis of imides, amides, and nitriles. Tetrahedron letters, v. 35, n. 3, p. 477-480, 1994. AVALOS, Martín et al. Reactions of thioamides with metal carboxylates in organic media. Tetrahedron, v. 53, n. 42, p. 14463-14480, 1997. BANGSTAD, Hans‐Jacob et al. Insulin treatment. 2007. BANTING, Frederick Grant et al. Pancreatic extracts in the treatment of diabetes mellitus. Canadian Medical Association Journal, v. 12, n. 3, p. 141, 1922. BEHRENDT, Raymond; WHITE, Peter; OFFER, John. Advances in Fmoc solid‐phase peptide synthesis. Journal of Peptide Science, v. 22, n. 1, p. 4-27, 2016. BODKIN, Michael J.; GOODFELLOW, Julia M. Hydrophobic solvation in aqueous trifluoroethanol solution. Biopolymers, v. 39, n. 1, p. 43-50, 1996. BÖHME, David; BECK‐SICKINGER, Annette G. Drug delivery and release systems for targeted tumor therapy. Journal of Peptide Science, v. 21, n. 3, p. 186-200, 2015. BRADY, Kieran; HEGARTY, Anthony F. The isoimide–imide rearrangement. Journal of the Chemical Society, Perkin Transactions 2, n. 1, p. 121-126, 1980. BRAY, Brian L. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nature Reviews Drug Discovery, v. 2, n. 7, p. 587-593, 2003. BREZDEN, Anna et al. Dual targeting of intracellular pathogenic bacteria with a cleavable conjugate of kanamycin and an antibacterial cell-penetrating peptide. Journal of the American Chemical Society, v. 138, n. 34, p. 10945-10949, 2016. BROWN, Tyler D.; WHITEHEAD, Kathryn A.; MITRAGOTRI, Samir. Materials for oral delivery of proteins and peptides. Nature Reviews Materials, v. 5, n. 2, p. 127-148, 2020. BUCKNER, Frederick S. et al. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrobial agents and chemotherapy, v. 40, n. 11, p. 2592-2597, 1996. CAREY, Francis A. Química Orgânica-Vol. 2. AMGH Editora, 2011. CARPINO, Louis A. et al. The 2, 2, 4, 6, 7-pentamethyldihydrobenzofuran-5-sulfonyl group (Pbf) as arginine side chain protectant. Tetrahedron letters, v. 34, n. 49, p. 7829-7832, 1993. CENTERS FOR DISEASE CONTROL - https://www.cdc.gov/parasites/chagas/biology.html CHAGAS, Carlos. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Memórias do Instituto Oswaldo Cruz, v. 1, n. 2, p. 159-218, 1909. CHAN, David I.; PRENNER, Elmar J.; VOGEL, Hans J. Tryptophan-and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochimica et Biophysica Acta (BBA)-Biomembranes, v. 1758, n. 9, p. 1184-1202, 2006. CHEN, Yuxin et al. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrobial agents and chemotherapy, v. 51, n. 4, p. 1398-1406, 2007. CLANCY, Cornelius J.; NGUYEN, M. Hong. Coronavirus disease 2019, superinfections, and antimicrobial development: what can we expect?. Clinical Infectious Diseases, v. 71, n. 10, p. 2736-2743, 2020. COURA, José Rodrigues; BORGES-PEREIRA, José. Chronic phase of Chagas disease: why should it be treated? A comprehensive review. Memorias do Instituto Oswaldo Cruz, v. 106, n. 6, p. 641-645, 2011. DA’SAN MM, Jaradat. Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino acids, v. 50, n. 1, p. 39-68, 2018. DE SOUZA, Rita de Cássia Moreira et al. Chagas disease in the context of the 2030 agenda: Global warming and vectors. Mem. Inst. Oswaldo Cruz, v. 116, p. e200479, 2021. DENG, Zhengyu; HU, Jinming; LIU, Shiyong. Disulfide‐Based Self‐Immolative Linkers and Functional Bioconjugates for Biological Applications. Macromolecular rapid communications, v. 41, n. 1, p. 1900531, 2020. DESLOUCHES, Berthony et al. Engineered cationic antimicrobial peptides (eCAPs) to combat multidrug-resistant bacteria. Pharmaceutics, v. 12, n. 6, p. 501, 2020. DIETSCHE, Thomas A. et al. Targeting Intracellular Pathogenic Bacteria Through N-Terminal Modification of Cationic Amphiphilic Polyproline Helices. The Journal of Organic Chemistry, v. 85, n. 11, p. 7468-7475, 2020. DUBEY, Sunil Kumar et al. Oral peptide delivery: Challenges and the way ahead. Drug discovery today, 2021. ECHEVERRÍA, Luis Eduardo et al. WHF IASC roadmap on Chagas disease. Global heart, v. 15, n. 1, 2020. FANG, I.-Ju; TREWYN, Brian G. Application of mesoporous silica nanoparticles in intracellular delivery of molecules and proteins. Methods in Enzymology, v. 508, p. 41-59, 2012. FIELDS, Gregg B. Methods in enzymology. Vol. 289, Solid-phase peptide synthesis. Academic Press, 1997. FILLON, Yannick A.; ANDERSON, Jason P.; CHMIELEWSKI, Jean. Cell penetrating agents based on a polyproline helix scaffold. Journal of the American Chemical Society, v. 127, n. 33, p. 11798-11803, 2005. FORNS, Pilar; ALBERICIO, Fernando. Merrifield Resin. Encyclopedia of Reagents for Organic Synthesis, 2001. FREIRE-DE-LIMA, Leonardo et al. Sialic acid: a sweet swing between mammalian host and Trypanosoma cruzi. Frontiers in Immunology, 3, e356, 2012. GAJDÁCS, Márió. The concept of an ideal antibiotic: implications for drug design. Molecules, v. 24, n. 5, p. 892, 2019. GAO, Xinli et al. Membrane potential drives direct translocation of cell-penetrating peptides. Nanoscale, v. 11, n. 4, p. 1949-1958, 2019. GATLIN, Larry A. et al. Freeze-Drying Concepts: The Basics. In: Protein Formulation and Delivery. CRC Press, 2007. p. 195-214. GEISLER, Iris M.; CHMIELEWSKI, Jean. Dimeric cationic amphiphilic polyproline helices for mitochondrial targeting. Pharmaceutical research, v. 28, n. 11, p. 2797-2807, 2011. GEISLER, Iris; CHMIELEWSKI, Jean. Cationic amphiphilic polyproline helices: side‐chain variations and cell‐specific internalization. Chemical biology & drug design, v. 73, n. 1, p. 39-45, 2009. GESTIN, Maxime; DOWAIDAR, Moataz; LANGEL, Ülo. Uptake mechanism of cellpenetrating peptides. In: Peptides and peptide-based biomaterials and their biomedical applications. Springer, Cham, 2017. p. 255-264. GIULIANI, Andrea; PIRRI, Giovanna; NICOLETTO, Silvia. Antimicrobial peptides: an overview of a promising class of therapeutics. Open Life Sciences, v. 2, n. 1, p. 1-33, 2007. GNAIM, Samer; SHABAT, Doron. Quinone-methide species, a gateway to functional molecular systems: from self-immolative dendrimers to long-wavelength fluorescent dyes. Accounts of chemical research, v. 47, n. 10, p. 2970-2984, 2014. GOODWIN, D.; SIMERSKA, P.; TOTH, I. Peptides as therapeutics with enhanced bioactivity. Current medicinal chemistry, v. 19, n. 26, p. 4451-4461, 2012. GREENFIELD, Norma J. Using circular dichroism spectra to estimate protein secondary structure. Nature protocols, v. 1, n. 6, p. 2876-2890, 2006. GWADZ, R. W. et al. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infection and immunity, v. 57, n. 9, p. 2628-2633, 1989. HABAULT, Justine; POYET, Jean-Luc. Recent advances in cell penetrating peptide-based anticancer therapies. Molecules, v. 24, n. 5, p. 927, 2019. HALLAL, Pedro C.; VICTORA, Cesar G. Overcoming Brazil’s monumental COVID-19 failure: an urgent call to action. Nature Medicine, v. 27, n. 6, p. 933-933, 2021. HANSEN, Lars H.; KNUDSEN, Steen; SØRENSEN, Søren J. The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens. Current microbiology, v. 36, n. 6, p. 341-347, 1998. HARRINGTON, John M. Antimicrobial peptide killing of African trypanosomes. Parasite immunology, v. 33, n. 8, p. 461-469, 2011. HARTRAMPF, Nina et al. Synthesis of proteins by automated flow chemistry. Science, v. 368, n. 6494, p. 980-987, 2020. HENNRICH, Ute; KOPKA, Klaus. Lutathera®: the first FDA-and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals, v. 12, n. 3, p. 114, 2019. HERNANDEZ-GORDILLO, Victor; GEISLER, Iris; CHMIELEWSKI, Jean. Dimeric unnatural polyproline-rich peptides with enhanced antibacterial activity. Bioorganic & medicinal chemistry letters, v. 24, n. 2, p. 556-559, 2014. HOF, Herbert. Antibacterial activities of the antiparasitic drugs nifurtimox and benznidazole. Antimicrobial agents and chemotherapy, v. 33, n. 3, p. 404-405, 1989. https://www.anm.org.br/carlos-justiniano-ribeiro-das-chagas: acessado em 30/12/2021. HU, Gaowei et al. A novel CAV derived cell-penetrating peptide efficiently delivers exogenous molecules through caveolae-mediated endocytosis. Veterinary research, v. 49, n. 1, p. 1-9, 2018. ISIDRO-LLOBET, Albert; ALVAREZ, Mercedes; ALBERICIO, Fernando. Amino acidprotecting groups. Chemical reviews, v. 109, n. 6, p. 2455-2504, 2009. JACOBS, Thomas et al. NK-lysin and its shortened analog NK-2 exhibit potent activities against Trypanosoma cruzi. Antimicrobial agents and chemotherapy, v. 47, n. 2, p. 607-613, 2003. JESBERGER, Martin; DAVIS, Thomas P.; BARNER, Leonie. Applications of Lawesson’s reagent in organic and organometallic syntheses. Synthesis, v. 2003, n. 13, p. 1929-1958, 2003. JOSSE, Olivier; LABAR, Daniel; MARCHAND-BRYNAERT, Jacqueline. A Convenient Synthesis of Ethyl 3-Aminopropanedithioate (β-Alanine Ethyl Dithioester). Synthesis, v. 1999, n. 03, p. 404-406, 1999. JUBAN, Martha M.; JAVADPOUR, Maryam M.; BARKLEY, Mary D. Circular dichroism studies of secondary structure of peptides. In: Antibacterial peptide protocols. Humana Press, 1997. p. 73-78. JUNG, David et al. Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chemistry & biology, v. 11, n. 7, p. 949-957, 2004. KAISER, Emil Thomas. The 1984 Nobel Prize in Chemistry. Science, v. 226, n. 4679, p. 1151- 1153, 1984. KAKSONEN, Marko; ROUX, Aurélien. Mechanisms of clathrin-mediated endocytosis. Nature reviews Molecular cell biology, v. 19, n. 5, p. 313-326, 2018. KARDANI, Kimia et al. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert opinion on drug delivery, v. 16, n. 11, p. 1227-1258, 2019. KAWAGUCHI, Yoshimasa et al. Syndecan-4 is a receptor for clathrin-mediated endocytosis of arginine-rich cell-penetrating peptides. Bioconjugate chemistry, v. 27, n. 4, p. 1119-1130, 2016. KENTSIS, Alex; SOSNICK, Tobin R. Trifluoroethanol promotes helix formation by destabilizing backbone exposure: desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding. Biochemistry, v. 37, n. 41, p. 14613-14622, 1998. KIRKBY, Melissa; HUTTON, Aaron RJ; DONNELLY, Ryan F. Microneedle mediated transdermal delivery of protein, peptide and antibody based therapeutics: current status and future considerations. Pharmaceutical research, v. 37, p. 1-18, 2020. KITANI, Hiroshi et al. Synthetic nonamer peptides derived from insect defensin mediate the killing of African trypanosomes in axenic culture. Parasitology research, v. 105, n. 1, p. 217- 225, 2009. KUMAR, Priti; NAGARAJAN, Arvindhan; UCHIL, Pradeep D. Analysis of cell viability by the MTT assay. Cold spring harbor protocols, v. 2018, n. 6, p. pdb. prot095505, 2018. KURIAKOSE, Jerrin et al. Targeting intracellular pathogenic bacteria with unnatural prolinerich peptides: coupling antibacterial activity with macrophage penetration. Angewandte Chemie International Edition, v. 52, n. 37, p. 9664-9667, 2013. LACERDA, Ariane F. et al. Anti-parasitic peptides from arthropods and their application in drug therapy. Frontiers in microbiology, v. 7, p. 91, 2016. LANGEL, Ülo. Clinical Trials and Commercialization Using CPPs. In: CPP, Cell-Penetrating Peptides. Springer, Singapore, 2019. p. 395-408. LEE, Ming-Tao et al. Process of inducing pores in membranes by melittin. Proceedings of the National Academy of Sciences, v. 110, n. 35, p. 14243-14248, 2013. LEI, Jun et al. The antimicrobial peptides and their potential clinical applications. American journal of translational research, v. 11, n. 7, p. 3919, 2019. LIANG, Chen et al. Phenylglycine racemization in Fmoc-based solid-phase peptide synthesis: Stereochemical stability is achieved by choice of reaction conditions. Tetrahedron Letters, v. 58, n. 24, p. 2325-2329, 2017. LIDANI, Kárita Cláudia Freitas et al. Chagas disease: from discovery to a worldwide health problem. Frontiers in public health, v. 7, p. 166, 2019. LÖFGREN, S. E. et al. Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals. Experimental parasitology, v. 118, n. 2, p. 197-202, 2008. LYDDIARD, Dane; JONES, Graham L.; GREATREX, Ben W. Keeping it simple: lessons from the golden era of antibiotic discovery. FEMS microbiology letters, v. 363, n. 8, 2016. MA, Q. Q. et al. Rational design of cationic antimicrobial peptides by the tandem of leucinerich repeat. Amino Acids, v. 44, n. 4, p. 1215-1224, 2013. MANGONI, Maria Luisa et al. Effect of natural L-to D-amino acid conversion on the organization, membrane binding, and biological function of the antimicrobial peptides bombinins H. Biochemistry, v. 45, n. 13, p. 4266-4276, 2006. MARTIN, Vincent et al. Greening the synthesis of peptide therapeutics: an industrial perspective. RSC Advances, v. 10, n. 69, p. 42457-42492, 2020. MAYA, Juan Diego et al. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, v. 146, n. 4, p. 601-620, 2007. MCGWIRE, Bradford S.; KULKARNI, Manjusha M. Interactions of antimicrobial peptides with Leishmania and trypanosomes and their functional role in host parasitism. Experimental parasitology, v. 126, n. 3, p. 397-405, 2010. MEDONE, Paula et al. The impact of climate change on the geographical distribution of two vectors of Chagas disease: implications for the force of infection. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 370, n. 1665, p. 20130560, 2015. MENDEZ-SAMPERIO, Patricia; DE-LA-ROSA-ARANA, J. L. Antimicrobial peptides as parasiticidal against human trypanosomatids: mechanisms of action and current status in development. Journal of the Egyptian Society of Parasitology, v. 43, n. 1, p. 195-208, 2013. MERRIFIELD, Robert B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society, v. 85, n. 14, p. 2149-2154, 1963. MILLER, David S. et al. ZoptEC: Phase III study of zoptarelin doxorubicin (AEZS-108) in platinum-taxane pretreated endometrial cancer (Study AEZS-108-050). 2014. MOHAMED, Mohamed F. et al. Targeting biofilms and persisters of ESKAPE pathogens with P14KanS, a kanamycin peptide conjugate. Biochimica et Biophysica Acta (BBA)-General Subjects, v. 1861, n. 4, p. 848-859, 2017. MOLYNEUX, David H. et al. The history of the neglected tropical disease movement. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 115, n. 2, p. 169- 175, 2021. MOOKHERJEE, Neeloffer et al. Antimicrobial host defence peptides: functions and clinical potential. Nature reviews Drug discovery, v. 19, n. 5, p. 311-332, 2020. MORADI, Mahmoud et al. A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers. The Journal of chemical physics, v. 133, n. 12, p. 09B614, 2010. MULANI, Mansura S. et al. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Frontiers in microbiology, v. 10, p. 539, 2019. MUTTENTHALER, Markus et al. Trends in peptide drug discovery. Nature Reviews Drug Discovery, v. 20, n. 4, p. 309-325, 2021. NELSON, David L.; COX, Michael M. Princípios de Bioquímica de Lehninger-7. Artmed Editora, 2018. NEPAL, Manish et al. A library approach to cationic amphiphilic polyproline helices that target intracellular pathogenic bacteria. ACS infectious diseases, v. 4, n. 9, p. 1300-1305, 2018. NEPAL, Manish et al. Targeting intracellular bacteria with an extended cationic amphiphilic polyproline helix. Organic & biomolecular chemistry, v. 13, n. 21, p. 5930-5936, 2015. NIKAIDO, Hiroshi. Multidrug resistance in bacteria. Annual review of biochemistry, v. 78, p. 119-146, 2009. NOBLE, James E.; BAILEY, Marc JA. Quantitation of protein. Methods in enzymology, v. 463, p. 73-95, 2009. NUSSBAUM, K. et al. Trypanosomatid parasites causing neglected diseases. Current medicinal chemistry, v. 17, n. 15, p. 1594-1617, 2010. O'NEILL, Jim. Tackling drug-resistant infections globally: final report and recommendations. 2016. Disponível em: https://apo.org.au/sites/default/files/resource-files/2016-05/aponid63983. pdf. Acesso em 17/12/2021 ONOUE, Satomi; HASHIMOTO, Naofumi; YAMADA, Shizuo. Dry powder inhalation systems for pulmonary delivery of therapeutic peptides and proteins. Expert Opinion on Therapeutic Patents, v. 18, n. 4, p. 429-442, 2008. OZTURK, Turan; ERTAS, Erdal; MERT, Olcay. Use of Lawesson's reagent in organic syntheses. Chemical Reviews, v. 107, n. 11, p. 5210-5278, 2007. PACE, C. Nick et al. How to measure and predict the molar absorption coefficient of a protein. Protein science, v. 4, n. 11, p. 2411-2423, 1995. PALLADINO, Pasquale; STETSENKO, Dmitry A. New TFA-free cleavage and final deprotection in Fmoc solid-phase peptide synthesis: Dilute HCl in fluoro alcohol. Organic letters, v. 14, n. 24, p. 6346-6349, 2012. PALOMO, Jose M. Solid-phase peptide synthesis: an overview focused on the preparation of biologically relevant peptides. Rsc Advances, v. 4, n. 62, p. 32658-32672, 2014. PATEL, Jean B.; COCKERILL, F. R.; BRADFORD, Patricia A. Performance standards for antimicrobial susceptibility testing: twenty-fifth informational supplement. 2015. PELFRENE, Eric; BOTGROS, Radu; CAVALERI, Marco. Antimicrobial multidrug resistance in the era of COVID-19: a forgotten plight?. Antimicrobial Resistance & Infection Control, v. 10, n. 1, p. 1-6, 2021. PEREIRA, Paulo Câmara Marques; NAVARRO, Elaine Cristina. Challenges and perspectives of Chagas disease: a review. Journal of venomous animals and toxins including tropical diseases, v. 19, p. 1-17, 2013. PEREIRA-CHIOCCOLA, Vera Lucia et al. Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-alphagalactosyl antibodies. Journal of cell science, v. 113, n. 7, p. 1299-1307, 2000. PICOLI, Tony et al. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microbial pathogenesis, v. 112, p. 57-62, 2017. PINTO, Erika Gracielle et al. Antimicrobial peptides isolated from Phyllomedusa nordestina (Amphibia) alter the permeability of plasma membrane of Leishmania and Trypanosoma cruzi. Experimental parasitology, v. 135, n. 4, p. 655-660, 2013. POGLIANO, Joe; POGLIANO, Nicolas; SILVERMAN, Jared A. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. Journal of bacteriology, v. 194, n. 17, p. 4494-4504, 2012. RAMI, Marouan et al. Hypoxia-targeting carbonic anhydrase IX inhibitors by a new series of nitroimidazole-sulfonamides/sulfamides/sulfamates. Journal of medicinal chemistry, v. 56, n. 21, p. 8512-8520, 2013. REDKA, Dar’ya S. et al. Differential ability of proinflammatory and anti-inflammatory macrophages to perform macropinocytosis. Molecular biology of the cell, v. 29, n. 1, p. 53- 65, 2018. REY, L. Parasitologia. 3. ed. Rio de Janeiro: Guanabara Koogan. p. 856, 2001. RICE, Louis B. Antimicrobial resistance in gram-positive bacteria. American journal of infection control, v. 34, n. 5, p. S11-S19, 2006. ROUX, Stéphane et al. Elimination and exchange of trifluoroacetate counter‐ion from cationic peptides: a critical evaluation of different approaches. Journal of peptide science: an official publication of the European Peptide Society, v. 14, n. 3, p. 354-359, 2008. RUGGIERO, Michael T. et al. Measuring the Elasticity of Poly‐l‐Proline Helices with Terahertz Spectroscopy. Angewandte Chemie, v. 128, n. 24, p. 6991-6995, 2016. SABNIS, Ram Wasudeo. Handbook of fluorescent dyes and probes. John Wiley & Sons, 2015. SERENO, Denis; LEMESRE, Jean-Loup. Use of an enzymatic micromethod to quantify amastigote stage of Leishmania amazonensis in vitro. Parasitology research, v. 83, n. 4, p. 401-403, 1997. SHANG, Jing et al. Steric and electronic effects in the synthesis and regioselective hydrolysis of unsymmetrical imides. Australian Journal of Chemistry, v. 68, n. 12, p. 1854-1858, 2015. SINGH, Rajeeva et al. [14] Reagents for rapid reduction of disulfide bonds. Methods in enzymology, v. 251, p. 167-173, 1995. SOLOMONS, TW Graham; FRYHLE, Craig B; SNYDER, Scott A. Química Orgânica. Vol 2.. LTC Editora, 2018. SOUZA, André LA et al. Temporizin and Temporizin-1 peptides as novel candidates for eliminating Trypanosoma cruzi. Plos one, v. 11, n. 7, p. e0157673, 2016. SREERAMA, Narasimha; WOODY, Robert W. Computation and analysis of protein circular dichroism spectra. Methods in enzymology, v. 383, p. 318-351, 2004. STAECKER, Hinrich et al. Efficacy and safety of AM-111 in the treatment of acute unilateral sudden deafness—a double-blind, randomized, placebo-controlled phase 3 study. Otology & Neurotology, v. 40, n. 5, p. 584, 2019. STEPHENS, Liam J. et al. Antimicrobial innovation: a current update and perspective on the antibiotic drug development pipeline. Future Medicinal Chemistry, v. 12, n. 22, p. 2035- 2065, 2020. STEVEN, S. Yu et al. A phase II trial of AEZS-108 in castration-and taxane-resistant prostate cancer. Clinical genitourinary cancer, v. 15, n. 6, p. 742-749, 2017. THANGAMANI, Shankar et al. Antibacterial activity and therapeutic efficacy of Fl-PRPRPL- 5, a cationic amphiphilic polyproline helix, in a mouse model of staphylococcal skin infection. Drug design, development and therapy, v. 9, p. 5749, 2015. THIBODEAU, Stacey A.; FANG, Rui; JOUNG, J. Keith. High-throughput β-galactosidase assay for bacterial cell-based reporter systems. Biotechniques, v. 36, n. 3, p. 410-415, 2004. TIPPIN, Brigette; PHAM, Phuong; GOODMAN, Myron F. Error-prone replication for better or worse. Trends in microbiology, v. 12, n. 6, p. 288-295, 2004. TRAVKOVA, Oksana G.; MOEHWALD, Helmuth; BREZESINSKI, Gerald. The interaction of antimicrobial peptides with membranes. Advances in colloid and interface science, v. 247, p. 521-532, 2017. TSAI, Chia-Lung et al. Preparation and conformational analysis of polyproline tri-helix macrocycle nanoscaffolds of varied sizes. Nanoscale, v. 13, n. 8, p. 4592-4601, 2021. TULLA-PUCHE, Judit et al. Methods for the peptide synthesis and analysis. Peptide Chemistry and Drug Design; John Wiley & Sons, Inc.: Hoboken, NJ, USA, p. 11-73, 2015. VHORA, Imran et al. Protein–and peptide–drug Conjugates: an emerging drug delivery technology. Advances in protein chemistry and structural biology, v. 98, p. 1-55, 2015. WANG, Guangshun; LI, Xia; WANG, Zhe. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic acids research, v. 44, n. D1, p. D1087-D1093, 2016. WEI, Yang; THYPARAMBIL, Aby A.; LATOUR, Robert A. Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230 nm. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, v. 1844, n. 12, p. 2331-2337, 2014. WINKLER, Dirk FH. Automated Solid-Phase Peptide Synthesis. In: Peptide Synthesis. Humana, New York, NY, 2020. p. 59-94. WORLD HEALTH ORGANIZATION et al. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire, v. 90, n. 06, p. 33-44, 2015. WORLD HEALTH ORGANIZATION et al. Sustaining the drive to overcome the global impact of neglected tropical diseases: second WHO report on neglected diseases. World Health Organization, 2013. XIE, Jing et al. Cell-penetrating peptides in diagnosis and treatment of human diseases: From preclinical research to clinical application. Frontiers in pharmacology, v. 11, p. 697, 2020. YANG, Guang et al. The chirality induction and modulation of polymers by circularly polarized light. Symmetry, v. 11, n. 4, p. 474, 2019. YAVARI, Bahram et al. The potential use of peptides in cancer treatment. Current Protein and Peptide Science, v. 19, n. 8, p. 759-770, 2018. ZAIMA, Nobuhiro et al. Matrix-assisted laser desorption/ionization imaging mass spectrometry. International journal of molecular sciences, v. 11, n. 12, p. 5040-5055, 2010. ZHANG, Yajie et al. Just how prevalent are peptide therapeutic products? A critical review. International Journal of Pharmaceutics, p. 119491, 2020. | por |
dc.subject.cnpq | Química | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/69260/2022%20-%20Paulo%20Pitasse%20Santos.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5642 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-05-11T19:03:58Z No. of bitstreams: 1 2022 - Paulo Pitasse Santos.pdf: 11707985 bytes, checksum: 31c138ee846110b4a98399e07268a693 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-05-11T19:03:58Z (GMT). No. of bitstreams: 1 2022 - Paulo Pitasse Santos.pdf: 11707985 bytes, checksum: 31c138ee846110b4a98399e07268a693 (MD5) Previous issue date: 2022-01-10 | eng |
Appears in Collections: | Doutorado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022 - Paulo Pitasse Santos.pdf | 7.26 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.