Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10255
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHottes, Emanoel
dc.date.accessioned2023-12-21T18:59:39Z-
dc.date.available2023-12-21T18:59:39Z-
dc.date.issued2021-08-05
dc.identifier.citationHOTTES, Emanoel. Aplicação de hidróxidos duplos lamelares na adsorção e liberação lenta do herbicida glifosato em meio aquoso. 2021. 114 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10255-
dc.description.abstractO uso extensivo de pesticidas na agricultura tem contribuído consideravelmente para o aumento na contaminação do meio ambiente. No Brasil, onde o glifosato responde pela maioria do consumo de agrotóxicos, este está associado à contaminação de solos e corpos hídricos. Os hidróxidos duplos lamelares (HDLs), materiais da família das argilas aniônicas, apresentam uma alta capacidade de intercalação de ânions e podem ser utilizados em diferentes segmentos, como nos processos de adsorção e liberação lenta de compostos químicos. Posto isso, o presente trabalho teve por objetivo o estudo da adsorção do pesticida glifosato utilizando HDLs calcinados – os chamados óxidos duplos lamelares (ODLs) e seu processo de liberação pelo material híbrido. Os estudos de adsorção do glifosato em pH 10, usando ODL na razão 2:1 de Mg/Al, indicaram que o processo segue uma cinética de pseudo-segunda ordem, sendo o modelo de isoterma de Langmuir o que apresentou melhor ajuste quando comparado aos modelos de Freundlich e Temkin. Valores de ΔG° negativos e ΔS° positivos indicam a espontaneidade do processo adsortivo. O mecanismo de interação glifosato/adsorvente foi estudado por meio de DRX de pó, FT-IR/ATR e RMN de sólido de 13C e 31P. O valor de 7,4 Å obtido para espaçamento interlamelar sugere que a adsorção não envolve a intercalação de glifosato e sim do ânion hidróxido. O deslocamento das bandas no FT-IR/ATR, das porções carboxilato e fosfonato, para menores números de onda no composto híbrido frente ao glifosato não adsorvido, indica que estes grupos estão envolvidos no processo de interação glifosato/lamela do HDL. A partir dos espectros de 13C CP/MAS e 31P CP/MAS foi possível inferir que o glifosato possivelmente se encontra complexado aos metais presentes nas lamelas do HDL. O estudo de competição aniônica indica que o aumento na concentração de carbonato leva a uma redução significativa na adsorção do glifosato, chegando a menos de 15 %quando a concentração de carbonato é de 200 μg/mL. Para o estudo de liberação foram sintetizados HDLs no sistema Mg-Al-glifosato (razão metálica 2:1) pelo método direto de co-precipitação seguido de refluxo e pelo método de reconstrução seguido de tratamento hidrotérmico. A análise de DRX de pó dos compostos híbridos sugeriu que o material sintetizado por reconstrução apresenta um caráter menos amorfo que o sintetizado por co-precipitação e o valor de espaçamento basal de 7,8 Å é um indicativo de glifosato intercalado na posição vertical. As análises de FT-IR/ATR e RMN dos compostos híbridos indicaram que o glifosato interage com a lamela através dos grupos carboxilato e fosfonato, assim como na adsorção. Para um tempo de contato de 48 horas, a liberação do glifosato foi mais efetiva para valores de pH iguais a 8 e 10, sendo superior a 70%, enquanto que para os pHs ácidos 6 e 4, os valores foram inferiores a 60%. Uma análise comparativa da liberação de glifosato frente a soluções dos ânions nitrato, carbonato e cloreto, todos na concentração de 5 x 10-3 M, indicou que mais de 60 % do glifosato presente no composto híbrido foi liberado após 15 horas quando em presença de carbonato, enquanto nas soluções dos demais ânions a liberação não passou de 35 % no mesmo período de tempo. Observou-se que, em meio aquoso, a liberação de glifosato é diretamente proporcional à concentração de carbonato.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectglifosatopor
dc.subjectHDLspor
dc.subjectODLspor
dc.subjectadsorção e cinéticapor
dc.subjectliberação lentapor
dc.subjectglyphosateeng
dc.subjectLDHseng
dc.subjectLDOseng
dc.subjectadsorption and kineticseng
dc.subjectslow releaseeng
dc.titleAplicação de hidróxidos duplos lamelares na adsorção e liberação lenta do herbicida glifosato em meio aquosopor
dc.title.alternativeApplication of lamellar double hydroxides in the adsorption and slow release of the herbicide glyphosate in an aqueous mediumeng
dc.typeTesepor
dc.description.abstractOtherThe widespread use of pesticides in agriculture has contributed significantly to the increase of environmental contamination. In Brazil, where glyphosate (GPS) responds to the majority of the herbicide consumption, GPS is associated with the contamination of soil and hydric bodies. The Lamellar double hydroxides (HDLs), materials from the anionic clay family, have a high anion intercalation capacity and can be used in different segments, such as in the adsorption and slow release processes of chemical compounds. The present work aimed to study the adsorption of the pesticide glyphosate using calcined HDLs – the so-called double layer oxides (ODLs) and their release process by the hybrid material. Adsorption studies of glyphosate at pH 10, using ODL in a 2:1 Mg/Al ratio, indicated that the process follows a pseudo-second order kinetics, with the Langmuir isotherm model showing the best fit when compared to Freundlich and Temkin models. Values of negative ΔG° and positive ΔS° indicate the spontaneity of the adsorptive process. The glyphosate/adsorbent interaction mechanism was studied using powder XRD, FT-IR/ATR and 13C and 31P solid NMR. The value of 7.4 Å obtained for interlayer spacing suggests that the adsorption does not involve the intercalation of glyphosate, but of the hydroxide anion. The shifting of the FT-IR/ATR bands, of the carboxylate and phosphonate moieties, to lower wavenumbers in the hybrid compound compared to non-adsorbed glyphosate, indicates that these groups are involved in the HDL glyphosate/lamella interaction process. From the spectra of 13C CP/MAS and P CP/MAS it was possible to infer that glyphosate is possibly complexed to metals present in HDL lamellae. The anionic competition study indicates that the increase in carbonate concentration leads to a significant reduction in glyphosate adsorption, reaching less than 15% when the carbonate concentration is 200 μg/mL. For the release study, LDHs were synthesized in the Mg-Al-glyphosate system (metal ratio 2:1) by the direct method of co-precipitation followed by reflux and by the reconstruction method followed by hydrothermal treatment. Powder XRD analysis of the hybrid compounds suggested that the material synthesized by reconstruction has a less amorphous character than that synthesized by co-precipitation and the basal spacing value of 7.8 Å is indicative of vertically intercalated glyphosate. FT-IR/ATR and NMR analysis of the hybrid compounds indicated that glyphosate interacts with the lamella through carboxylate and phosphonate groups, as well as in adsorption. For a contact time of 48 hours, glyphosate release was more effective for pH values equal to 8 and 10, being higher than 70%, while for acidic pH 6 and 4, values were lower than 60%. A comparative analysis of glyphosate release against solutions of nitrate, carbonate and chloride anions, all at a concentration of 5 x 10-3 M, indicated that more than 60% of the glyphosate present in the hybrid compound was released after 15 hours in the presence of carbonate, whereas in the solutions of the other anions, the release did not exceed 35% in the same period of time. It was observed that, in aqueous media, the release of glyphosate is directly proportional to the concentration of carbonate.eng
dc.contributor.advisor1Herbst, Marcelo Hawrylak
dc.contributor.advisor1ID787.714.209-91por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1609235573836042por
dc.contributor.advisor-co1Castro, Rosane Nora
dc.contributor.advisor-co1ID958.067.337-34por
dc.contributor.referee1Herbst, Marcelo Hawrylak
dc.contributor.referee2Oliveira, Renata Nunes
dc.contributor.referee3Garcia, Andres Calderin
dc.contributor.referee4Miranda, Jussara Lopes de
dc.contributor.referee5Sangil, Rosane Aguiar da Silva
dc.creator.ID114.855.037-28por
dc.creator.IDhttps://orcid.org/0000-0003-1205-2572por
dc.creator.Latteshttp://lattes.cnpq.br/6248671924868290por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesABDELLAOUI, K., PAVLOVIC, I., BOUHENT, M., et al. A comparative study of the amaranth azo dye adsorption/desorption from aqueous solutions by layered double hydroxides. Applied Clay Science, v. 143, p. 142-150, 2017. Doi: 10.1016/j.clay.2017.03.019 ALMEIDA, J. A. D., ERNANI, P. R., MAÇANEIRO, K. C.. Recomendação alternativa de calcário para solos altamente tamponados do extremo sul do Brasil. Ciência Rural, v. 29, p. 651-656, 1999. Doi: 10.1590/S0103-84781999000400014 AMARANTE JUNIOR, O. P. D., SANTOS, T. C. R. D., BRITO, N. M., et al. Glifosato: propriedades, toxicidade, usos e legislação. Quimica nova, v.25, n.4, p. 589-593, 2002. Doi: 10.1590/S0100-40422002000400014 ASIABI, H., YAMINI, Y., SHAMSAYEI, M. Highly selective and efficient removal of arsenic (V), chromium (VI) and selenium (VI) oxyanions by layered double hydroxide intercalated with zwitterionic glycine. Journal of hazardous materials, v. 339, p. 239-247, 2017. Doi: 10.1016/j.jhazmat.2017.06.042 BASHI, A. M., HUSSEIN, M. Z., ZAINAL, Z., et al. Synthesis and controlled release properties of 2, 4-dichlorophenoxy acetate–zinc layered hydroxide nanohybrid. Journal of Solid State Chemistry, v. 203, p. 19-24, 2013. Doi: 10.1016/j.jssc.2013.03.047 BATTAGLIN, W. A., KOLPIN, D. W., SCRIBNER, E. A., et al. Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002. Journal of the American Water Resources Association, v.41, n.2, p.323-332, 2005. Doi: 10.1111/j.1752-1688.2005.tb03738.x BEECHAM, J. E., SENEFF, S. The possible link between autism and glyphosate acting as glycine mimetic—A review of evidence from the literature with analysis. J. Molec. Genet. Med, v. 9, p. 4, 2015. Doi: 10.4172/1747-0862.1000187 BENDINELLI, E. V., ROCHA, A. C., BARCIA, O. E., et al. Effects of lamellar reconstruction routes in the release of molybdate encapsulated in Mg–Al layered double hydroxides. Materials Chemistry and Physics, v. 173, p. 26-32, 2016. Doi: 10.1016/j.matchemphys.2015.12.049 BENÍCIO, L. P. F., CONSTANTINO, V. R. L., PINTO, F. G., et al. Layered double hydroxides: New technology in phosphate fertilizers based on nanostructured materials. ACS Sustainable Chemistry & Engineering, v. 5, n. 1, p. 399-409, 2017. Doi: 10.1021/acssuschemeng.6b01784 BI, X., ZHANG, H., DOU, L. Layered double hydroxide-based nanocarriers for drug delivery. Pharmaceutics, v.6, n.2, p.298-332, 2014. Doi: 10.3390/pharmaceutics6020298 BIN HUSSEIN, M. Z., ZAINAL, Z., YAHAYA, A. H., et al. Controlled release of a plant growth regulator, α-naphthaleneacetate from the lamella of Zn–Al-layered double hydroxide nanocomposite. Journal of controlled release, v. 82, n. 2-3, p. 417-427, 2002. Doi: 10.1016/S0168-3659(02)00172-4 BOHN, H. L., MCNEAL, B. L., O’CONNOR, G. A. Soil chemistry. New York: John Wiley & Sons, Inc., 1979. p. 73. BOMBARDI, L.M. Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia. São Paulo: FFLCH-USP, 2017. BOMBARDI, L.M. Intoxicação e morte por agrotóxicos no Brasil:a nova versão do capitalismo oligopolizado. Boletim Dataluta,v. 45, p. 1-21, 2011. BRASIL. Agência Nacional de Vigilância Sanitária (ANVISA). Disponível em: <http://portal.anvisa.gov.br/>. Acesso em: 2 jun. março 2021. BRUNA, F., CELIS, R., PAVLOVIC, I., et al. Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA): systems Mg–Al, Mg–Fe and Mg–Al–Fe. Journal of hazardous materials, v. 168, n. 2-3, p. 1476-1481, 2009. Doi: 10.1016/j.jhazmat.2009.03.038 BRUNA, F., PAVLOVIC, I., CELIS, R., et al. Organohydrotalcites as novel supports for the slow release of the herbicide terbuthylazine. Applied Clay Science, v. 42, n. 1-2, p. 194-200, 2008. Doi: 10.1016/j.clay.2008.02.001 CADARS, S., LAYRAC, G., GÉRARDIN, C., et al. Identification and quantification of defects in the cation ordering in Mg/Al layered double hydroxides. Chemistry of Materials, v. 23, n. 11, p. 2821-2831, 2011. Doi: 10.1021/cm200029q CALISTO, J. S., PACHECO, I. S., FREITAS, L. L., et al. Adsorption kinetic and thermodynamic studies of the 2,4–dichlorophenoxyacetate (2, 4-D) by the [Co–Al–Cl] layered double hydroxide. Heliyon, v. 5, n. 12, p. e02553, 2019. Doi: 10.1016/j.heliyon.2019.e02553 CARDOSO, Lucelena Patricio. Estudo da aplicação de hidróxidos duplos lamelares na remoção e liberação lenta de pesticidas. 2006. Tese de Doutorado. Universidade de São Paulo. CARDOSO, L. P., CELIS, R., CORNEJO, J., et al. Layered double hydroxides as supports for the slow release of acid herbicides. Journal of agricultural and food chemistry, v. 54, n. 16, p. 5968-5975, 2006. Doi: 10.1021/jf061026y CARNEIRO, R. T., TAKETA, T. B., NETO, R., et al. Removal of glyphosate herbicide from water using biopolymer membranes. Journal of environmental management, v. 151, p. 353-360, 2015. Doi: 10.1016/j.jenvman.2015.01.005 CHAILLOT, D., BENNICI, S., BRENDLÉ, J. Layered double hydroxides and LDH-derived materials in chosen environmental applications: a review. Environmental Science and Pollution Research, p.1-31, 2020. Doi: 10.1007/s11356-020-08498-6 CHAO, H. P., WANG, Y. C., TRAN, H. N. Removal of hexavalent chromium from groundwater by Mg/Al-layered double hydroxides using characteristics of in-situ synthesis. Environmental pollution, v. 243, p. 620-629, 2018. Doi: 10.1016/j.envpol.2018.08.033 CHAPARADZA, A., HOSSENLOPP, J. M. Removal of 2, 4-dichlorophenoxyacetic acid by calcined Zn–Al–Zr layered double hydroxide. Journal of colloid and interface science, v. 363, n. 1, p. 92-97, 2011. Doi: 10.1016/j.jcis.2011.07.002 CHÂTELET, L., BOTTERO, J. Y., YVON, J., et al. Competition between monovalent and divalent anions for calcined and uncalcined hydrotalcite: anion exchange and adsorption sites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 111, n. 3, p. 167-175, 1996. Doi: 10.1016/0927-7757(96)03542-X CHEN, M., ZHU, R., LU, X., et al. Influences of cation ratio, anion type, and water content on polytypism of layered double hydroxides. Inorganic chemistry. v. 57, n. 12, p. 7299-7313, 2018. Doi: 10.1021/acs.inorgchem.8b00949 CHEN, Q., ZHENG, J., YANG, Q., et al. Insights into the glyphosate adsorption behavior and mechanism by a MnFe2O4@ cellulose-activated carbon magnetic hybrid. ACS applied materials & interfaces, v. 11, n. 17, p. 15478-15488, 2019. Doi: 10.1021/acsami.8b22386 CHITRAKAR, R., MAKITA, Y., SONODA, A., et al. Synthesis of a novel layered double hydroxides [MgAl4(OH)12](Cl)2·2.4H2O and its anion-exchange properties. Journal of hazardous materials, v. 185, n. 2-3, p. 1435-1439, 2011. Doi: 10.1016/j.jhazmat.2010.10.066 CHUBAR, N., GILMOUR, R., GERDA, V., et al. Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability. Advances in colloid and interface science, v. 245, p. 62-80, 2017. Doi: 10.1016/j.cis.2017.04.013 CLARK, I., SMITH, J., GOMES, R. L., et al. Towards the Continuous Hydrothermal Synthesis of ZnO@ Mg2Al-CO3 Core-Shell Composite Nanomaterials. Nanomaterials, v. 10, n. 10, p. 2052, 2020. Doi: 10.3390/nano10102052 COSTANTINO, U., VIVANI, R., BASTIANINI, M., et al. Ion exchange and intercalation properties of layered double hydroxides towards halide anions. Dalton Transactions, v. 43, n. 30, p. 11587-11596, 2014. Doi: 10.1039/C4DT00620H CREPALDI, E. L., VALIM, J. B. Hidróxidos duplos lamelares: Síntese, estrutura, propriedades e aplicações. Química Nova, v.21, n.3, p.300-311, 1998. DAI, J., JIN, L., WANG, L., ZHANG, Z. Determination and estimation of water solubilities and octanol/water partition coefficients for derivates of benzanilides. Chemosphere, v. 37, n. 8, p. 1419-1426, 1998. Doi: 10.1016/S0045-6535(98)00132-5. DAS, J., PARIDA, K. M. Heteropoly acid intercalated Zn/Al HTlc as efficient catalyst for esterification of acetic acid using n-butanol. Journal of Molecular Catalysis A: Chemical, v. 264, n. 1-2, p. 248-254, 2007. Doi: 10.1016/j.molcata.2006.09.033 DAS, J., PATRA, B. S., BALIARSINGH, N., et al. Calcined Mg–Fe–CO3 LDH as an adsorbent for the removal of selenite. Journal of colloid and interface science, v. 316, n. 2, p. 216-223, 2007. Doi: 10.1016/j.jcis.2007.07.082 DAUD, M., HAI, A., BANAT, F., et al. A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH)–Containing hybrids as promising adsorbents for dyes removal. Journal of Molecular Liquids, v. 288, p. 110989, 2019. Doi: 10.1016/j.molliq.2019.110989 DE LIMA FILHO, O. F. Deficiências nutricionais em guandu. Embrapa Agropecuária Oeste-Circular Técnica (INFOTECA-E), 2020. DE ROY, A. Lamellar double hydroxides. Molecular Crystals and Liquid Crystals Science and Technology. Section A, v.311, n.1, p.173-193, 1998. DOS SANTOS, R. M. M., GONÇALVES, R. G. L., CONSTANTINO, V. R. L., et al. Removal of Acid Green 68: 1 from aqueous solutions by calcined and uncalcined layered double hydroxides. Applied clay science, v. 80, p. 189-195, 2013. Doi: 10.1016/j.clay.2013.04.006 ERDOĞAN, S., ÖNAL, Y., AKMIL-BAŞAR, C., et al. Optimization of nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation. Applied surface science, v. 252, n. 5, p. 1324-1331, 2005. Doi: 10.1016/j.apsusc.2005.02.089 EVANS, D. G., SLADE, R. C. T. Structural aspects of layered double hydroxides. Layered double hydroxides, p. 1-87, 2006. EXTREMERA, R., PAVLOVIC, I., PÉREZ, M. R., et al. Removal of acid orange 10 by calcined Mg/Al layered double hydroxides from water and recovery of the adsorbed dye. Chemical engineering journal, v. 213, p. 392-400, 2012. Doi: 10.1016/j.cej.2012.10.042 FAISAL, A. A., SHIHAB, A. H., NAUSHAD, et al. Green synthesis for novel sorbent of sand coated with (Ca/Al)-layered double hydroxide for the removal of toxic dye from aqueous environment. Journal of Environmental Chemical Engineering, v. 9, n. 4, p. 105342, 2021. Doi: 10.1016/j.jece.2021.105342 FORANO, C., HIBINO, T., LEROUX, F., et al. Handbook of clay science. Developments in Clay Science, v. 1, p. 1021-1095, 2006. FROST, R. L., KLOPROGGE, J. T. Theo. Infrared emission spectroscopic study of brucite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 55, n. 11, p. 2195-2205, 1999. Doi: 10.1016/S1386-1425(99)00016-5 GHAZALI, S. A. I. S. M., HUSSEIN, M. Z., SARIJO, S. H. Layered double hydroxide as carrier of herbicide, 2-methyl-4-chlorophenoxy acetic acid: Physicochemical characterization and controlled release properties. Advanced Science Letters, v. 19, n. 11, p. 3355-3360, 2013. Doi: 10.1166/asl.2013.5142 GHAZALI, S. A. I. S. M., SARIJO, S. H., HUSSEIN, M. Z. New synthesis of binate herbicide-interleaved anionic clay material: synthesis, characterization and simultaneous controlled-release properties. Journal of Porous Materials, v. 28, n. 2, p. 495-505, 2021. Doi: 10.1166/asl.2013.5142 GIESY, J. P., DOBSON, S., SOLOMON, K. R. Ecotoxicological risk assessment for roundup herbicide. Reviews of Environmental Contamination and Toxicology, v.167, n.1, p.35-120, 2000. Doi.org/10.1007/978-1-4612-1156-3_2. GOH, K. H., LIM, T. T., DONG, Z. Application of layered double hydroxides for removal of oxyanions: a review. Water research, v. 42, n. 6-7, p. 1343-1368, 2008. Doi: 10.1016/j.watres.2007.10.043 GUO, H., WHITE, J. C., WANG, Z., et al. Nano-enabled fertilizers to control the release and use efficiency of nutrients. Current Opinion in Environmental Science & Health, v. 6, p. 77-83, 2018. Doi: 10.1016/j.coesh.2018.07.009 HADERLIE, L. C., SLIFE, F. W., BUTLER, H. S. 14C‐glyphosate absorption and translocation in germinating maize (Zea mays) and soybean (Glycine max) seeds and in soybean plants. Weed Research, v.18, n.5, p. 269-273, 1978. Doi: 10.1111/j.1365-3180.1978.tb01159.x HADJ-ABDELKADER, N. E. H., BELTRAO-NUNES, A. P., BELKHADEM, F., et al. New insights in MgAl and MgFe-LDH affinity towards carbon dioxide–role of the hydrophilic character on CO2 retention strength. Applied Clay Science, v. 198, p. 105829, 2020. Doi: 10.1016/j.clay.2020.105829 HASHIM, N., HUSSEIN, M. Z., ISA, I. M., et al. Synthesis and controlled release of cloprop herbicides from cloprop-layered double hydroxide and cloprop-zinc-layered hydroxide nanocomposites. Open Journal of Inorganic Chemistry, v. 2014, 2014. Doi: 10.4236/ojic.2014.41001 HENSLEY, D. L.; BEUERMAN, D. S. N.; CARPENTER, P. L. The inactivation of glyphosate by various soils and metal salts. Weed Research, v. 18, n. 5, p. 287-291, 1978. Doi: 10.1111/j.1365-3180.1978.tb01162.x. HERAS‐MENDAZA, F., CASADO‐FARIÑAS, I., PAREDES‐GASCÓN, M., et al. Erythema multiforme‐like eruption due to an irritant contact dermatitis from a glyphosate pesticide. Contact Dermatitis, v. 59, n. 1, p. 54-56, 2008. Doi: 10.1111/j.1600-0536.2007.01307.x HERATH, I., KUMARATHILAKA, P., AL-WABEL, M. I., et al. Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar. Microporous and mesoporous materials, v. 225, p. 280-288, 2016. Doi: 10.1016/j.micromeso.2016.01.017 HONG, Y., PENG, J., ZHAO, X., et al. Efficient degradation of atrazine by CoMgAl layered double oxides catalyzed peroxymonosulfate: optimization, degradation pathways and mechanism. Chemical Engineering Journal, v. 370, p. 354-363, 2019. Doi: 10.1016/j.cej.2019.03.127 HOTTES, E., BAUERFELDT, G. F., HERBST, M. H., CASTRO, R. N., SAN GIL. R. A. S. Rapid quantification of residual glyphosate in water treated with layered double hydroxides using liquid chromatography / quantificação rápida de glifosato residual em água tratada com hidróxidos duplos lamelares usando cromatografia líquida. Brazilian Journal of Development, v. 7, p. 20923-20938, 2021. Doi: 10.34117/bjdv7n3-006 HU, Y. S., ZHAO, Y. Q., SOROHAN, B. Removal of glyphosate from aqueous environment by adsorption using water industrial residual. Desalination, v. 271, n. 1-3, p. 150-156, 2011. Doi: 10.1016/j.desal.2010.12.014 HUSSEIN, M. Z., JAAFAR, A. M., YAHAYA, A. H., et al. The effect of single, binary and ternary anions of chloride, carbonate and phosphate on the release of 2, 4-dichlorophenoxyacetate intercalated into the Zn–Al-layered double hydroxide nanohybrid. Nanoscale research letters, v. 4, n. 11, p. 1351-1357, 2009. Doi: 10.1007/s11671-009-9404-9 HUSSEIN, M. Z., YAHAYA, A. H., ZAINAL, et al. Nanocomposite-based controlled release formulation of an herbicide, 2, 4-dichlorophenoxyacetate incapsulated in zinc–aluminium-layered double hydroxide. Science and Technology of Advanced Materials, v. 6, n. 8, p. 956, 2005. Doi: 10.1016/j.stam.2005.09.004 IFTEKHAR, S., KÜÇÜK, M. E., SRIVASTAVA, V., et al. Application of zinc-aluminium layered double hydroxides for adsorptive removal of phosphate and sulfate: equilibrium, kinetic and thermodynamic. Chemosphere, v. 209, p. 470-479, 2018. Doi: 10.1016/j.chemosphere.2018.06.115 INÁCIO, J., TAVIOT-GUEHO, C., FORANO, C., BESSE, J. P. Adsorption of MCPA pesticide by Mg-Al-layered double hydroxides. Applied Clay Science, v. 18, n. 5-6, p. 255-264, 2001. Doi: 10.1016/S0169-1317(01)00029-1 JAYASUMANA, C., GUNATILAKE, S., SENANAYAKE, P. Glyphosate, hard water and nephrotoxic metals: are they the culprits behind the epidemic of chronic kidney disease of unknown etiology in Sri Lanka?. International journal of environmental research and public health, v. 11, n. 2, p. 2125-2147, 2014. Doi: 10.3390/ijerph110202125 JEONG, I. R., LEE, J. H., SONG, J., et al. Control of structural disorder in spinel ceramics derived from layered double hydroxides. Ceramics International, v. 46, n. 5, p. 6594-6599, 2020. Doi: 10.1016/j.ceramint.2019.11.145 JIANG, X., OUYANG, Z., ZHANG, Z., et al. Mechanism of glyphosate removal by biochar supported nano-zero-valent iron in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 547, p. 64-72, 2018. Doi: 10.1016/j.colsurfa.2018.03.041 JULIANTI, N. K., WARDANI, T. K., GUNARDI, I., et al. Effect of Calcination at Synthesis of Mg-Al Hydrotalcite Using co-Precipitation Method. The Journal of Pure and Applied Chemistry Research, v.6, n.1, p.7, 2017. Doi: 10.21776/ub.jpacr.2017.006.01.280 KAGUNYA, W., BADDOUR-HADJEAN, R., KOOLI, F., et al. Vibrational modes in layered double hydroxides and their calcined derivatives. Chemical Physics, v. 236, n. 1-3, p. 225-234, 1998. Doi: 10.1016/S0301-0104(98)00234-1 KAWAMOTO, K., URANO, K. Parameters for predicting fate of organochlorine pesticides in the environment (II) Adsorption constant to soil. Chemosphere, v. 19, p. 1223-1231, 1989. Doi : 10.1016/0045-6535(89)90069-6 KHENIFI, A., DERRICHE, Z., MOUSTY, C., et al. Adsorption of glyphosate and glufosinate by Ni2AlNO3 layered double hydroxide. Applied clay science, v. 47, n. 3-4, p. 362-371, 2010. Doi: 10.1016/j.clay.2009.11.055 KHITOUS, M., SALEM, Z., HALLICHE, D. Effect of interlayer anions on chromium removal using Mg–Al layered double hydroxides: Kinetic, equilibrium and thermodynamic studies. Chinese Journal of Chemical Engineering, v. 24, n. 4, p. 433-445, 2016. Doi: 10.1016/j.cjche.2015.11.018 KLOPROGGE, J. T., FROST, R. L.. Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites. Journal of Solid State Chemistry, v. 146, n. 2, p. 506-515, 1999. Doi: 10.1006/jssc.1999.8413 LEGROURI, A., LAKRAIMI, M., BARROUG, A., et al. Removal of the herbicide 2, 4-dichlorophenoxyacetate from water to zinc–aluminium–chloride layered double hydroxides. Water research, v. 39, n. 15, p. 3441-3448, 2005. Doi: 10.1016/j.watres.2005.03.036 LEITE, V. D. S. A., DE JESUS, B. G. L., DE OLIVEIRA., et al. Determination of chromium (VI) by dispersive solid-phase extraction using dissolvable Zn-Al layered double hydroxide intercalated with l-Alanine as adsorbent. Microchemical Journal, v. 146, p. 650-657, 2019. Doi: 10.1016/j.microc.2019.01.063 LEROUX, F., BESSE, J. P. Polymer interleaved layered double hydroxide: a new emerging class of nanocomposites. Chemistry of Materials, v. 13, n. 10, p. 3507-3515, 2001. Doi: 10.1021/cm0110268 LI, F., ZHANG, L., EVANS, D. G., FORANO, C., DUAN, X. Structure and thermal evolution of Mg–Al layered double hydroxide containing interlayer organic glyphosate anions. Thermochimica Acta, v. 424, n. 1-2, p. 15-23, 2004. Doi: 10.1016/j.tca.2004.05.007 LI, F., WANG, Y., YANG, Q., et al. Study on adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution. Journal of hazardous materials, v. 125, n. 1-3, p. 89-95, 2005. Doi: 10.1016/j.jhazmat.2005.04.037 LI, W., WANG, Y. J., ZHU, M., et al. Inhibition mechanisms of Zn precipitation on aluminum oxide by glyphosate: a 31P NMR and Zn EXAFS study. Environmental science & technology, v. 47, n. 9, p. 4211-4219, 2013. Doi : 10.1021/es305120x LI, W., FENG, X., YAN, Y., et al. Solid-state NMR spectroscopic study of phosphate sorption mechanisms on aluminum (hydr) oxides. Environmental science & technology, v. 47, n. 15, p. 8308-8315, 2013. Doi : 10.1021/es400874s LI, Y., ZHAO, C., WEN, Y., et al. Adsorption performance and mechanism of magnetic reduced graphene oxide in glyphosate contaminated water. Environmental Science and Pollution Research, v. 25, n. 21, p. 21036-21048, 2018. Doi: 10.1007/s11356-018-2282-x LIU, B., DONG, L., YU, Q., et al. Thermodynamic study on the protonation reactions of glyphosate in aqueous solution: potentiometry, calorimetry and NMR spectroscopy. The Journal of Physical Chemistry B, v. 120, n. 9, p. 2132-2137, 2016. Doi: 10.1021/acs.jpcb.5b11550 LIU, C. M., MCLEAN, P. A., SOOKDEO, C. C., et al. Degradation of the herbicide glyphosate by members of family Rhizobiaceae. Applied Environmental Microbiology, v.57, n.6, p.1799-1840, 1991. Doi: 10.1128/aem.57.6.1799-1804.1991 LU, X., TAO, S., CAO, J., DAWSON, R. W. Prediction of fish bioconcentration factors of nonpolar organic pollutants based on molecular connectivity indices. Chemosphere, v. 39, n. 6, p. 987-999, 1999. Doi: 10.1016/S0045-6535(99)00020-X MALLAKPOUR, S., HATAMI, M., HUSSAIN, C. M. Recent innovations in functionalized layered double hydroxides: Fabrication, characterization, and industrial applications. Advances in Colloid and Interface Science, v.283, p.102216, 2020. Doi: 10.1016/j.cis.2020.102216 MASCOLO, G., MASCOLO, M. C. On the synthesis of layered double hydroxides (LDHs) by reconstruction method based on the “memory effect”. Microporous and Mesoporous Materials, v. 214, p. 246-248, 2015. Doi: 10.1016/j.micromeso.2015.03.024 MAYAKADUWA, S. S., KUMARATHILAKA, P., HERATH, I., et al. Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal. Chemosphere, v. 144, p. 2516-2521, 2016. Doi: 10.1016/j.chemosphere.2015.07.080 MENG, J., ZHANG, H., EVANS, D. G., et al. Novel layered pesticide slow/controlled release materials-supramolecular structure and slow release property of glyphosate intercalated layered double hydroxides. Chinese Science Bulletin, v. 50, n. 8, p. 745-751, 2005. Doi : 10.1360/982004-212 MILAGRES, J. L., BELLATO, C. R., VIEIRA, R. S., et al. Preparation and evaluation of the Ca-Al layered double hydroxide for removal of copper (II), nickel (II), zinc (II), chromium (VI) and phosphate from aqueous solutions. Journal of environmental chemical engineering, v. 5, n. 6, p. 5469-5480, 2017. Doi: 10.1016/j.jece.2017.10.013 MISHRA, G., DASH, B., PANDEY, S. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Applied Clay Science, v. 153, p. 172-186, 2018a. Doi: 10.1016/j.clay.2017.12.021 MISHRA, G., DASH, B., PANDEY, S., et al. Comparative Evaluation of Synthetic Routes and Antibacterial/Antifungal Properties of Zn–Al Layered Double Hydroxides Containing Benzoate Anion. Environmental Engineering Science, v. 35, n. 3, p. 247-260, 2018b. Doi: 10.1089/ees.2017.0062 MIYATA, S. Anion-exchange properties of hydrotalcite-like compounds. Clays & Clay Minerals, v. 31, n. 4, p. 305-311, 1983. Doi: 10.1346/CCMN.1983.0310409 MIYATA, S. The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties I: The systems Mg2+-A13+-NO3, Mg2+-A13+-C1-, Mg2+-A13+-ClO4-, Ni2+-A13+-C1- and Zn2+-A13+-C1-. Clays & Clay Minerals, v. 23, p. 369-375, 1975. MOHSEN NOUROUZI, M., CHUAH, T. G., CHOONG, T. S. Adsorption of glyphosate onto activated carbon derived from waste newspaper. Desalination and Water Treatment, v. 24, n. 1-3, p. 321-326, 2010. Doi: 10.5004/dwt.2010.1461 MONQUERO, P. A., CHRISTOFFOLETI, P. J., OSUNA, M. D., et al. Absorção, translocação e metabolismo do glifosato por plantas tolerantes e suscetíveis a este herbicida. Planta Daninha, v.22, n.3, p.445-451, 2004. Doi: 10.1590/S0100-83582004000300015 MORAES, R. F. Agrotóxicos no Brasil: padrões de uso, política da regulação e prevenção da captura regulatória.TD 2506. Brasília: IPEA, setembro de 2019. MOREL-DESROSIERS, N., PISSON, J., ISRAËLI, Y., et al. Intercalation of dicarboxylate anions into a Zn–Al–Cl layered double hydroxide: microcalorimetric determination of the enthalpies of anion exchange. Journal of Materials Chemistry, v. 13, n. 10, p. 2582-2585, 2003. Doi: 10.1039/B303953F NADIMINTI, P. P., SHARMA, H., KADA, S. R., et al. Use of Mg–Al nanoclay as an efficient vehicle for the delivery of the herbicide 2, 4-dichlorophenoxyacetic acid. ACS Sustainable Chemistry & Engineering, v. 7, n. 12, p. 10962-10970, 2019. Doi: 10.1021/acssuschemeng.9b02001 ÖZACAR, M. Equilibrium and kinetic modelling of adsorption of phosphorus on calcined alunite. Adsorption, v. 9, n. 2, p. 125-132, 2003. Doi: 10.1023/A:1024289209583 PAGANELLI, A., GNAZZO, V., ACOSTA, H., et al. Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling. Chemical research in toxicology, v. 23, n. 10, p. 1586-1595, 2010. Doi: 10.1021/tx1001749 PALAPA, N. R., TAHER, T., MOHADI, R., et al. Removal of Anionic Direct Dye Using Zn/Al, Zn/Fe and Zn/Cr Layered Double Hydroxides Toward Interlayer Distance. Science and Technology Indonesia, v. 4, n. 3, p. 70-76, 2019. Doi: 10.26554/sti.2019.4.3.70-76 PALAPA, N. R., TAHER, T., SIREGAR, P. M. S. B. N., et al. High Structural Stability and Adsorption Capacity of Zn/Al-Biochar and Cu/Al-Biochar Toward Adsorption of Cr (VI). Journal of Ecological Engineering, v. 22, n. 4, p. 213-223, 2021. Doi: 10.12911/22998993/134153 PAVLOVIC, I., BARRIGA, C., HERMOSÍN, M. C., et al. Adsorption of acidic pesticides 2,4-D, Clopyralid and Picloram on calcined hydrotalcite. Applied Clay Science, v. 30, n. 2, p. 125-133, 2005. Doi: 10.1016/j.clay.2005.04.004 PEIXOTO, M. M., BAUERFELDT, G. F., HERBST, M. H., et al. Study of the Stepwise Deprotonation Reactions of Glyphosate and the Corresponding p K a Values in Aqueous Solution. The Journal of Physical Chemistry A, v. 119, n. 21, p. 5241-5249, 2015. Doi: 10.1021/jp5099552. PHUONG, N. T. K., HA, H. N. N., DIEU, N. T. P. Herbicide/Zn-Al-layered double hydroxide hybrid composite: synthesis and slow/controlled release properties. Environmental Science and Pollution Research, v. 24, n. 23, p. 19386-19392, 2017. Doi: 10.1007/s11356-017-9580-6 PICCOLO, A., CELANO, G. Hydrogen‐bonding interactions between the herbicide glyphosate and water‐soluble humic substances. Environmental Toxicology and Chemistry: An International Journal, v. 13, n. 11, p. 1737-1741, 1994. Doi: 10.1002/etc.5620131104 PICCOLO, A., CELANO, G. Modification of infrared spectra of the herbicide glyphosate induced by pH variation. Journal of Environmental Science & Health Part B, v. 28, n. 4, p. 447-457, 1993. Doi: 10.1080/03601239309372835 PICCOLO, A., CELANO, G., ARIENZO, M., et al. Adsorption and desorption of glyphosate in some European soils. Journal of Environmental Science & Health Part B, v.29, n.6, p.1105-1115, 1994. Doi: 10.1080/03601239409372918 PICCOLO, A., CELANO, G., CONTE, P. Adsorption of glyphosate by humic substances. Journal of Agricultural and Food Chemistry, v. 44, p. 2442-2446, 1996. Doi: 10.1021/jf950620x. PLINE-SRNIC, W. Physiological Mechanisms of Glyphosate Resistance1. Weed technology, v.20, n.2, p.290-300, 2006. Doi: 10.1614/WT-04-131R.1. PÖTTKER, D.; BEN, J. R. Calagem para uma rotação de culturas no sistema plantio direto. Revista Brasileira de Ciência do Solo, v. 22, n. 4, p. 675-684, 1998. Doi: 10.1590/S0100-06831998000400013 PRATA, F., LAVORENTI, A. Retenção e mobilidade de defensivos agrícolas no solo. In: ALLEONI, L. R. F., REGITANO, J. B. (Org.). Apostila do Simpósio sobre Dinâmica de Defensivos Agrícolas no Solo: aspectos práticos e ambientais. ESALQ/USP, 2002. p. 57-69. PRATA, F., LAVORENTI, A., REGITANO, J. B., et al. Influência da matéria orgânica na sorção e dessorção do glifosato com diferentes atributos mineralógicos. Revista Brasileira de Ciência do Solo, v. 24, p. 947-951, 2000. Doi: 10.1590/S0100-06832000000400026 QIU, D., HOU, W., XU, J., et al. Synthesis and Characterization of Imidacloprid/Hydrotalcite‐like Compound Nanohybrids. Chinese Journal of Chemistry, v. 27, n. 10, p. 1879-1885, 2009. Doi: 10.1002/cjoc.200990315 QUAGHEBEUR, D., SMET, B., WULF, E., STEURBAUT, W. Pesticides in rainwater in Flanders, Belgium: results from the monitoring program 1997-2001. Journal of Environmental Monitoring, v.6, n.3, p.182-190, 2004. Doi: doi.org/10.1039/B312558K RAGAVAN, A., KHAN, A. I., O'HARE, D, D. Intercalation and controlled release of 2, 4-dichlorophenoxyacetic acid using rhombohedral [LiAl2(OH)6]Cl· xH2O. Journal of Physics and Chemistry of Solids, v. 67, n. 5-6, p. 983-986, 2006. Doi: 10.1016/j.jpcs.2006.01.076 RIVES, V., DEL ARCO, M., MARTÍN, C. Intercalation of drugs in layered double hydroxides and their controlled release: A review. Applied clay science, v. 88, p. 239-269, 2014. Doi: 10.1016/j.clay.2013.12.002 RYU, S. J., JUNG, H., OH, J. M., et al. Layered double hydroxide as novel antibacterial drug delivery system. Journal of Physics and Chemistry of Solids, v. 71, n. 4, p. 685-688, 2010. Doi: 10.1016/j.jpcs.2009.12.066 SAKR, A. E., ZAKI, T., ELGABRY, O., et al. Influence of intercalated anions on CO2 removal from natural gas. Applied Clay Science, v. 160, p. 263-269, 2018. Doi: 10.1016/j.clay.2018.02.043 SALMAN, J. M., AL-SAAD, K. H. A. L. I. D. Batch study for herbicide bentazon adsorption onto palm oil fronds activated carbon. Int. J. Chem. Sci, v. 10, n. 2, 2012. SALOMÃO, R., MILENA, L. M., WAKAMATSU, M. H., et al. Hydrotalcite synthesis via co-precipitation reactions using MgO and Al (OH) 3 precursors. Ceramics International, v. 37, n. 8, p. 3063-3070, 2011. Doi: 10.1016/j.ceramint.2011.05.034 SAMSEL, A., SENEFF, S. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance. Interdisciplinary toxicology, v. 6, n. 4, p. 159-184, 2013b. Doi: 10.2478/intox-2013-0026 SAMSEL, A., SENEFF, S. Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy, v. 15, n. 4, p. 1416-1463, 2013a. Doi: 10.3390/e15041416 SANTOS, T. R., ANDRADE, M. B., SILVA, M. F., et al. Development of α-and γ-Fe2O3 decorated graphene oxides for glyphosate removal from water. Environmental technology, v. 40, n. 9, p. 1118-1137, 2019. Doi : 10.1080/09593330.2017.1411397 SARIJO, S. H., GHAZALI, S. A. I. S. M., HUSSEIN, M. Z., et al. Synthesis of nanocomposite 2-methyl-4-chlorophenoxyacetic acid with layered double hydroxide: physicochemical characterization and controlled release properties. Journal of nanoparticle research, v. 15, n. 1, p. 1-9, 2013. Doi: 10.1007/s11051-012-1356-9 SARIJO, S. H., GHAZALI, S. A. I. S. M., HUSSEIN, M. Z. Synthesis of dual herbicides-intercalated hydrotalcite-like nanohybrid compound with simultaneous controlled release property. Journal of Porous Materials, v. 22, n. 2, p. 473-480, 2015. Doi: 10.1007/s10934-015-9916-x SHAFIGH, M., HAMIDPOUR, M., FURRER, G. Zinc release from Zn-Mg-Fe (III)-LDH intercalated with nitrate, phosphate and carbonate: the effects of low molecular weight organic acids. Applied Clay Science, v. 170, p. 135-142, 2019. Doi: 10.1016/j.clay.2019.01.016 SHAMIM, M., DANA, K. Efficient removal of Evans blue dye by Zn–Al–NO 3 layered double hydroxide. International Journal of Environmental Science and Technology, v. 15, n. 6, p. 1275-1284, 2018. Doi: 10.1007/s13762-017-1478-9 SHIM, Y. K., MLYNAREK, S. P., VAN WIJNGAARDEN, E. Parental exposure to pesticides and childhood brain cancer: US Atlantic coast childhood brain cancer study. Environmental health perspectives, v. 117, n. 6, p. 1002-1006, 2009. Doi: 10.1289/ehp.0800209 SLAGER, R. E., SIMPSON, S. L., LEVAN, T. D., et al. A. Rhinitis associated with pesticide use among private pesticide applicators in the agricultural health study. Journal of Toxicology and Environmental Health, Part A, v. 73, n. 20, p. 1382-1393, 2010. Doi: 10.1080/15287394.2010.497443 SOTILES, A. R., BAIKA, L. M., GRASSI, M. T., et al. Cation exchange reactions in layered double hydroxides intercalated with sulfate and alkaline cations (A (H2O)6)[M2+6 Al3(OH)18 (SO4)2]· 6H2O (M2+= Mn, Mg, Zn, A+= Li, Na, K). Journal of the American Chemical Society, v.141, n.1, p.531-540, 2018. Doi: 10.1021/jacs.8b11389 SPRANKLE, P., MEGGIT, W., PENNER, D. Adsorption, mobility and microbial degradation of glyphosate in soil. Weed Science, v. 23, p. 229-234, 1975. Doi: 10.1017/S0043174500052929 SRIRAM, G., UTHAPPA, U. T., LOSIC, D., KIGGA, M., JUNG, H. Y., KURKURI, M. D. Mg–Al-layered double hydroxide (LDH) modified diatoms for highly efficient removal of Congo red from aqueous solution. Applied Sciences, v. 10, n. 7, p. 2285, 2020. Doi: 10.3390/app10072285 TAN, K. L., HAMEED, B. H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, v. 74, p. 25-48, 2017. Doi: 10.1016/j.jtice.2017.01.024 THOMMES, M., KANEKO, K., NEIMARK, A. V., et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and applied chemistry, v. 87, n. 9-10, p. 1051-1069, 2015. Doi: 10.1515/pac-2014-1117 TICHIT, D., BERNARD, C. Catalysis by hydrotalcites and related materials. Cattech, v.7, n.6, p.206-217, 2003. Doi: 10.1023/B:CATT.0000007166.65577.34 TONI, L. R. M., SANTANA, H., ZAIA, D. A. M. Adsorção de glyphosate sobre solos e minerais. Química Nova, v.29, n.4, p.829-833, 2006. TOULOUPAKIS, E., MARGELOU, A., GHANOTAKIS, D. F. Intercalation of the herbicide atrazine in layered double hydroxides for controlled‐release applications. Pest management science, v. 67, n. 7, p. 837-841, 2011. Doi: 10.1002/ps.2121 UREÑA-AMATE, M. D., BOUTARBOUCH, N. D., DEL MAR, M., et al. Controlled release of nitrate from hydrotalcite modified formulations. Applied clay science, v. 52, n. 4, p. 368-373, 2011. Doi: 10.1016/j.clay.2011.03.018 VACCARI, A. Preparation and catalytic properties of cationic and anionic clays. Catalysis Today, v. 41, n. 1-3, p. 53-71, 1998. Doi: 10.1016/S0920-5861(98)00038-8 VALLE, A. L., MELLO, F. C. C., ALVES-BALVEDI, R. P., et al. Glyphosate detection: methods, needs and challenges. Environmental Chemistry Letters, v. 17, n. 1, p. 291-317, 2019. Doi.org/10.1007/s10311-018-0789-5. VYALIKH, A., COSTA, F. R., WAGENKNECHT, U., et al. From Layered Double Hydroxides to Layered Double Hydroxide-Based Nanocomposites: A Solid-State NMR Study. The Journal of Physical Chemistry C, v. 113, n. 51, p. 21308-21313, 2009. Doi: 10.1021/jp9069338 WANG, S., GAO, B., LI, Y., et al. Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites. Rsc Advances, v. 6, n. 22, p. 17792-17799, 2016. Doi: 10.1039/C5RA17490B WANG, Y., KANG, J., JIANG, S., et al. A composite of Ni–Fe–Zn layered double hydroxides/biochar for atrazine removal from aqueous solution. Biochar, v. 2, n. 4, p. 455-464, 2020. Doi: 10.1007/s42773-020-00066-y WOO, M. A., KIM, T. W., PAEK, M. J., et al. Phosphate-intercalated Ca–Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate. Journal of solid state chemistry, v. 184, n. 1, p. 171-176, 2011. Doi: 10.1016/j.jssc.2010.11.003 YAMAGUCHI, N. U., BERGAMASCO, R., HAMOUDI, S. Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water. Chemical Engineering Journal, v. 295, p. 391-402, 2016. Doi: 10.1016/j.cej.2016.03.051 YANG, R., GAO, Y., WANG, J., et al. Layered double hydroxide (LDH) derived catalysts for simultaneous catalytic removal of soot and NOx. Dalton Transactions, v. 43, n. 27, p. 10317-10327, 2014. Doi: 10.1039/C3DT52896K YOU, Y., ZHAO, H., VANCE, G. F. Adsorption of dicamba (3, 6-dichloro-2-methoxy benzoic acid) in aqueous solution by calcined–layered double hydroxide. Applied Clay Science, v. 21, n. 5-6, p. 217-226, 2002. Doi : 10.1016/S0169-1317(01)00102-8 YU, P., LI, X., ZHANG, X., ZHOU, H., et al. Insights into the glyphosate removal efficiency by using magnetic powder activated carbon composite. Separation and Purification Technology, v. 254, p. 117662, 2021. Doi: 10.1016/j.seppur.2020.117662 ZHANG, B., LIU, W., SUN, D., et al. Hollow nanoshell of layered double oxides for removal of 2, 4-dichlorophenol from aqueous solution: synthesis, characterization, and adsorption performance study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 561, p. 244-253, 2019. Doi: 10.1016/j.colsurfa.2018.10.068 ZHANG, G., ZHANG, X., MENG, Y., PAN, G., et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: a review. Chemical Engineering Journal, v. 392, p. 123684, 2020. ZHENG, X., KANG, F., LIU, X., et al. Carbon-coated Mg–Al layered double oxide nanosheets with enhanced removal of hexavalent chromium. Journal of Industrial and Engineering Chemistry, v. 80, p. 53-64, 2019. Doi: 10.1016/j.jiec.2019.07.030 ZHOU, C., JIA, D., LIU, M., et al. Removal of glyphosate from aqueous solution using nanosized copper hydroxide modified resin: equilibrium isotherms and kinetics. Journal of Chemical & Engineering Data, v. 62, n. 10, p. 3585-3592, 2017. Doi: 10.1021/acs.jced.7b00569por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/72742/2021%20-%20Emanoel%20Hottes.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6468
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-03-24T18:29:39Z No. of bitstreams: 1 2021 - Emanoel Hottes.pdf: 4090422 bytes, checksum: c51bbe110bc098e7bcc7ec77b7c245d6 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-03-24T18:29:39Z (GMT). No. of bitstreams: 1 2021 - Emanoel Hottes.pdf: 4090422 bytes, checksum: c51bbe110bc098e7bcc7ec77b7c245d6 (MD5) Previous issue date: 2021-08-05eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Emanoel Hottes.pdf3.99 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.