Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10256
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEpifanio, Neide Mara de Menezes
dc.date.accessioned2023-12-21T18:59:39Z-
dc.date.available2023-12-21T18:59:39Z-
dc.date.issued2020-12-18
dc.identifier.citationEPIFANIO, Neide Mara de Menezes. Caracterização química e atividade antioxidante do extrato aquoso da salsa crespa (Petroselinum crispum var. crispum). 2020. 169 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10256-
dc.description.abstractO estresse oxidativo, resultante do desequilíbrio entre a produção e eliminação de radicais livres, oriundos de espécies reativas de oxigênio e nitrogênio, tem grande importância nos processos de envelhecimento e morte celular. A ingestão de ervas condimentares, como substitutos do sal, tem sido estimulada pelo fato delas conterem compostos bioativos capazes de desativar os radicais livres. O objetivo deste trabalho foi determinar o teor de compostos fenólicos e flavonoides totais (método de Folin-Ciocalteu e Cloreto de Alumínio, respectivamente), avaliar a capacidade antioxidante (métodos do DPPH e FRAP), e promover uma triagem fitoquímica do extrato aquoso das folhas de Petroselinum crispum var. crispum (salsa) por CLAE-EM. Um alto teor de fenólicos (12,49 ± 1,70 mg GAE/g de extrato de salsa) e flavonóides totais (15,05 ± 2,20 mg de equivalentes de quercetina/g de extrato de salsa) foram quantificados na salsa, além de alta atividade antioxidante (EC50 - 15,50 mg.mL-1, método DPPH) e (189,8 mM Fe (II)/mg de extrato vegetal seco - método FRAP). Vinte e sete flavonoides glicosilados foram identificados no extrato, sendo a apiina, o composto principal; a partir da hidrólise ácida da apiina foi obtida a aglicona apigenina (90% de pureza) e ambas foras utilizadas para os ensaios in vivo com células de Saccharomyces cerevisiae. O extrato aquoso da salsa crespa mostrou baixa toxidez, porém revelou alto potencial antioxidante dose-dependente, principalmente no ensaio de peroxidação lipídica. O flavonoide glicosilado apiina também apresentou ação antioxidante nas células de levedura sob estresse oxidativo no ensaio de viabilidade celular (0,1 mM) e peroxidação lipídica (0,01 e 0,1 mM), enquanto apigenina foi levemente antioxidante, demonstrando resultados diferente aos já relatados anteriormente na literatura em ensaios invitro. A apiina mostrou ser o composto fenólico mais abundante no extrato, portanto, é provável que a atividade antioxidante da apiina esteja relacionada à capacidade antioxidante total da salsa.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectCLAE-EMpor
dc.subjectflavonoidespor
dc.subjectapiinapor
dc.subjectantioxidantespor
dc.subjectperoxidação lipídicapor
dc.subjectHPLC-MSeng
dc.subjectflavonoidseng
dc.subjectapiineeng
dc.subjectantioxidantseng
dc.subjectlipid peroxidationeng
dc.titleCaracterização química e atividade antioxidante do extrato aquoso da salsa crespa (Petroselinum crispum var. crispum)por
dc.title.alternativeChemical characterization and antioxidant activity in vivo of parsley (Petroselinum crispum var. crispum) aqueous extracteng
dc.typeTesepor
dc.description.abstractOtherOxidative stress, resulting from the imbalance between the production and elimination of free radicals, originating from reactive oxygen and nitrogen species, is of great importance in the processes of aging and cell death. The intake of condiment herbs, as salt substitutes, has been stimulated by the fact that they contain bioactive compounds capable of deactivating free radicals. The objective of this work was to determine the content of phenolic compounds and total flavonoids (Folin-Ciocalteu and Aluminum Chloride method, respectively), to evaluate the antioxidant capacity (DPPH and FRAP methods), and to promote a phytochemical screening of the aqueous leaf extract of Petroselinum crispum var. crispum (parsley) by HPLC-MS. A high content of phenolics (12.49 ± 1.70 mg GAE / g of parsley extract) and total flavonoids (15.05 ± 2.20 mg of quercetin equivalents / g of parsley extract) were quantified in parsley, in addition to high antioxidant activity (EC50 - 15.50 mg.mL-1, DPPH method) and (189.8 mM Fe (II) / mg of dry plant extract - FRAP method). Twenty-seven glycosylated flavonoids were identified in the extract, with apiine, the main compound; from the acid hydrolysis of the apiine, the aglycone apigenin (90% purity) was obtained and both were used for the in vivo tests with Saccharomyces cerevisiae cells. The aqueous extract of the parsley showed low toxicity, however it revealed a high dose-dependent antioxidant potential, mainly in the lipid peroxidation test. The glycosylated flavonoid apiine also showed antioxidant action on yeast cells under oxidative stress in the cell viability assay (0.1 mM) and lipid peroxidation (0.01 and 0.1 mM), while apigenin was slightly antioxidant, showing different results to previously reported in the literature in invitro trials. Apiine has been shown to be the most abundant phenolic compound in the extract, so it is likely that the antioxidant activity of apiine is related to the total antioxidant capacity of parsley.eng
dc.contributor.advisor1Chaves, Douglas Siqueira de Almeida
dc.contributor.advisor1ID054.196.887-43por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1864237318361425por
dc.contributor.referee1Chaves, Douglas Siqueira de Almeida
dc.contributor.referee2Castro, Rosane Nora
dc.contributor.referee3Miranda, Rogelio Gregorio Pereda
dc.contributor.referee4Langassner, Silvana Maria Zucolotto
dc.contributor.referee5Pereira, Marcos Dias
dc.creator.ID090.719.447-86por
dc.creator.IDhttps://orcid.org/0000-0003-2842-6647por
dc.creator.Latteshttp://lattes.cnpq.br/6181150261358627por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesABAD-GARCIA B, BERRUETA LA, GARMON-LOBATO S, URKAREGI A, GALLO B, VICENTE F. Chemometric characterization of fruit juices from spanish cultivars according to their phenolic compound contents: I. Citrus fruits. Journal of agricultural and food chemistry. 2012; 60(14):3635–44. ABDULMANEA, K.; PROKUDINA, E. A.; LANKOVÁ, P.; VANÍCKOVÁ, L.; KOBLOVSKÁ, R.; ZELENÝ, V.; LAPCÍK, O. Immunochemical and HPLC identification of isoflavonoids in the Apiaceae Family. Biochemical Systematics and Ecology, 2012, 45, 237–243. ABU-REIDAH, I.M., ARRÁEZ-ROMÁN, D., AL-NURI, M., WARAD, I., SEGURACARRETERO, A. Untargeted metabolite profiling and phytochemical analysis of Micromeria fruticosa L. (Lamiaceae) leaves. Food Chem., 2018, 279, 128-143 ABU-SERIE, M. M.; HABASHY, N. H.; MAHER, A. M. In vitro anti-nephrotoxic potential of Ammi visnaga, Petroselinum crispum, Hordeum vulgare, and Cymbopogon schoenanthus seed or leaf extracts by suppressing the necrotic mediators, oxidative stress and inflammation. BMC Complementary and Alternative Medicine, 2019, 19, 1, 1–16. ACHAKZAI A.K.K., ACHAKZAI P., MASOOD A., KAYANI S.A., TAREEN R.B. Response of plant parts and age on the distribution of secondary metabolites on plants found in quetta. Pakistan Journal of Botany. 2009, 41, 2129–2135. AGUILAR DIAZ DE LEON, J., & BORGES, C. R. Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. Journal of Visualized Experiments, 2020, 159, e61122. AHN-JARVIS, J.H.; A. PARIHAR, A.; DOSEFF, A. I. Dietary Flavonoids for Immunoregulation and Cancer: Food Design for Targeting Disease. Antioxidants, 2019, 8, 1–30. ALAM, M.N.; BRISTI, N. J.; RAFIQUZZAMAN, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 2013, 21, 2, 143–152. ALBANO, S. M., & MIGUEL, M. G. Biological activities of extracts of plants grown in Portugal. Industrial Crops and Products, 2011, 33, 2, 338–343. AL-JUHAIMI, F.& GHAFOOR, K. Total phenols and antioxidant activities of leaf and stem extracts from coriander, mint and parsley grown in Saudi Arabia. Pak. J. Bot., 2011, 43 4, 2235-2237. ALVES, C.Q.; DAVID, J.M.; DAVID, J.P.; BAHIA, M.V.; AGUIAR, R.M. Métodos para determinação da atividade antioxidante in vitro em substratos orgânicos. Quim. Nova, 2010, 33, 10, 2202-2210. AL-YOUSOFY, F.; GUMAIH, H.; IBRAHIM, H.; A. ALASBAHY, A. Parsley! Mechanism as antiurolithiasis remedy. Am. J. Clin. Exp. Urol., 2017, 5, 55–62. AMARAL, A. B.; SILVA, M. V.; LANNES, S.C. S. Lipid oxidation in meat: mechanisms and protective factors – a review. Food Sci. Technol, 2018, 38, 1, 1-15. AMIC, D.; DAVIDOVIC-AMIC, D.; BESLO, D.; RASTIJA, V.; LUCIC, B.; TRINAJSTIC, N. SAR and QSAR of the Antioxidant Activity of Flavonoids. Current Medicinal Chemistry, 2007, 14(7), 827–845. ANCUCEANU R, ANGHEL AI, HOVANET MV, DINU MI, OLARU OT, DUNE AL, POPESCU, C. Variation of iron contents polyphenols and flavonoids in Petroselinum crispum (mill) fuss (Apiaceae). Farmacia, 2018; 66: 275-81. ANDRADE JUNIOR, D. R.; SOUZA, R.B.; SANTOS, S. A.; ANDRADE, D. R. Os radicais livres de oxigênio e as doenças pulmonares. J. Bras. Pneumol., 2005, 31, 1, 60- 68 ANJOS, O.; FERNANDES, R.; CARDOSO, S.M.; DELGADO, T.; FARINHA, N.; PAULA, V.; ESTEVINHO, L.M.; CARPES, S.T. Bee pollen as a natural antioxidant source to prevent lipid oxidation in black pudding. LWT - Food Science and Technology, 2019, 111, 869–875. ANTTONEN, M. J., & KARJALAINEN, R. O. High-Performance Liquid Chromatography Analysis of Black Currant (Ribes nigrum L.) Fruit Phenolics Grown either Conventionally or Organically. Journal of Agricultural and Food Chemistry, 2006, 54, 20, 7530–7538. ARORA, A.; NAIR, M. G.; STRASBURG, G. M. Structure–Activity Relationships for Antioxidant Activities of a Series of Flavonoids in a Liposomal System. Free Radical Biology and Medicine, 1998, 24, 9, 1355–1363. ARUOMA, O.I. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat. Res., 2003. 523, 9 – 20. AZWANIDA, N.N. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med Aromat Plants, 2015, 4, 3, 1000196. BAKR, R.O.; EL-NAA, M.M.; ZAGHLOUL, S.S.; OMAR, M.M. Profile of bioactive compounds in Nymphaea alba L. leaves growing in Egypt: hepatoprotective, antioxidant and anti-inflammatory activity. BMC Complementary and Alternative Medicine, 2017, 17, 52, 1-13. BARBOSA, K.B.F., COSTA, N.M.B.; ALFENAS, R.C.G.; DE PAULA, S.O.; MINIM, V.P.R.; BRESSAN, J. Estresse oxidativo: conceito, implicações e fatores modulatórios. Rev. Nutr. 2010, 23, 3, 629-643. BARREIROS, L. B. S.; DAVID, J. M.; DAVID, J. P. Estresse oxidativo: relação entre geração de espécies reativas e defesas do organismo. Química Nova, 2006, 29, 1, 113- 123. BARROS, L.; DUEÑAS, M.; DIAS, M.I.; SOUSA, M.J.; SANTOS-BUELGA, C.; FERREIRA, I.C.F.R. Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chemistry, 2012, 132, 841–848. BARROSO, M. F., NORONHA, J. P., DELERUE-MATOS, C., & OLIVEIRA, M. B. P. P. Flavored Waters: Influence of ingredients on antioxidant capacity and terpenoid profile by HS-SPME/GC-MS. Journal of Agricultural and Food Chemistry, 2011, 59, 9, 5062– 5072. BASU P, MAIER C. In vitro antioxidant activities and polyphenol contents of seven commercially available fruits. Phcog Res., 2016, 8, 258-64. BEGUM, N.; PRASAD, N., THAYALAN, K. Apigenin protects gamma-radiation induced oxidative stress, hematological changes and animal survival in whole body irradiated Swiss albino mice. International Journal of Nutrition, Pharmacology, Neurological Diseases, 2012, 2, 1, 45. BENAYAD, Z., GÓMEZ-CORDOVÉS, C., ES-SAFI, N. Characterization of Flavonoid Glycosides from Fenugreek (Trigonella foenum-graecum) Crude Seeds by HPLC–DAD– ESI/MS Analysis. International Journal of Molecular Sciences, 2014, 15, 11, 20668– 20685. BENZIE, I. F. F., & DEVAKI, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: concepts, procedures, limitations and applications. Measurement of Antioxidant Activity & Capacity, 2017, 77–106. BENZIE, I. F. F., & STRAIN, J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP Assay. Analytical Biochemistry, 1996, 239, 1, 70–76. BESSADA, S.M.F.; BARREIRA, J.C.M.; BARROS, L.; FERREIRA, I.C.F.R.; OLIVEIRA, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.)Rchb.f.: An underexploited and highly disseminated species. Industrial Crops and Products, 2016, 89,45–51. BEZERRA, A.G.; NEGRI, G.; DUARTE-ALMEIDA, J.M.; SMAILI, S.S.; CARLINI, E.A. Análise fitoquímica do extrato hidroetanólico de Turnera diffusa Willd e avaliação de seus efeitos na morte de astrócitos. Einstein (Sao Paulo), 2016, 14, 56–63. BHATTI, J. S., BHATTI, G. K., & REDDY, P. H. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2017, 1863, 5, 1066–1077. BIANCHI, M.L.P. & ANTUNES, L.M.G. Radicais Livres e os principais antioxidantes da dieta. Rev. Nutr,, 1999, 12, 2, 123- 130. BISBY, R. H.; BROOKE, R.; NAVARATNAM, S. Effect of antioxidant oxidation potential in the oxygen radical absorption capacity (ORAC) assay. Food Chemistry, 2008, 108, 3, 1002–1007. BOLDIZSARA, I.; FUZFAIB, Z.; MOLNAR-PERLB, I. Petroselinum crispum glycosides: Determined by chromatography upon their sugar and flavonoid products. Journal of Chromatography A, 2013, 1293, 100– 106. BOUDET A. M. Evolution and current status of research of in phenolic compounds. Phytochemistry, 2007, 68, 2722-2735. BRAND-WILLIAMS, W., CUVELIER, M. E., & BERSET, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 1995, 28, 1, 25–30. BRAT, P.; MENNEN, L.; GEORGÉ, S.; SCALBERT, A.; BELLAMY, A.; AMIOTCARLIN, M.-J.; DU CHAFFAUT, L. Determination of the polyphenol content of fruits and vegetables. Establishment of a database and estimation of the polyphenol intake in the french diet. Acta Horticulturae, 2007, 744, 61–70. BRAUER, M. J.; SALDANHA, A. J.; DOLINSKI, K.; BOTSTEIN, D. Homeostatic Adjustment and Metabolic Remodeling in Glucose-limited Yeast Cultures. Molecular Biology of the Cell, 2005, 16, 5, 2503–2517. BUCKI, R.; PASTORE, J. J.; GIRAUD, F.; SULPICE, J. C.; JANMEY, P. A. Flavonoid inhibition of platelet proagulant activity and phosphoinositide synthesis. J. Thromb. Haemost., 2003, 1, 1820-1828. BURSAC, M., POPOVIC, M., MITIC, R., KAURINOVIC, B., JAKOVLJEVIC, V. Effects of Parsley (Petroselinum crispum) and Celery (Apium graveolens.) Extracts on Induction and Sleeping Time in Mice. Pharmaceutical Biology, 2005, 43, 9, 780–783. BUTLER M. S. The Role of Natural Product Chemistry in Drug Discovery. J. Nat. Prod. 2004, 67, 12, 2141–2153. CAMPOS, K.E.; BALBI, A. P. C.; ALVES, M. J. Q. D. F. Diuretic and hipotensive activity of aqueous extract of parsley seeds (Petroselinum sativum Hoffm.) in rats. Brazilian J. Pharmacogn., 2009, 19, 41–45. CAMPOS, M.T. & LEME, F.O.P. Estresse oxidativo: fisiopatogenia e diagnóstico laboratorial. Pubvet, Medicina Veterinária e Zootecnia, 2018, 12, 1, 1-8. CANUTO, G. A. B.; XAVIER, A. G. O.; NEVES, L. C.; BENASSI, M. T. Caracterização Físico-Química de Polpas de Frutos da Amazônia e Sua Correlação Com a Atividade Anti-Radical livre. Revista Brasileira de Fruticultura, Jaboticabal, 2010, 32, 1196-1205. CAPECKA, E., MARECZEK, A., & LEJA, M. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chemistry, 2005, 93, 2, 223–226. CASTELO-BRANCO, V. N.; TORRES, A. G. Capacidade antioxidante total de óleos vegetais comestíveis: determinantes químicos e sua relação com a qualidade dos óleos. Rev. Nutr., Campinas, 2011, 24,1. CAZAROLLI, L.H.; ZANATTA, L.; ALBERTON, E.H.; FIGUEIREDO, M.S.R.B.; FOLADOR, P.; DAMAZIO, R.G.; PIZZOLATTI, M.G.; SILVA, F.R.M.B. Flavonoids: Prospective Drug Candidates. Mini-Reviews in Medicinal Chemistry. 2008, 8, 13, 1429. CENINI, G., LLORET, A., & CASCELLA, R. Oxidative Stress in Neurodegenerative Diseases: From a Mitochondrial Point of View. Oxidative Medicine and Cellular Longevity, 2019, 1–18. CHAVARRIA, D.F. Desenvolvimento de Novos Antioxidantes Lipofílicos como Solução Terapêutica para Doenças Neurodegenerativas. Dissertação (Mestrado). Faculdade de Ciências da Universidade do Porto em Bioquímica, 2014. CHAVES, D.S.A.; FRATTANI, F.S.; MARIANE ASSAFIM, M.; ALMEIDA, A.P.; ZINGALI, R.B.; COSTA, S.S. Phenolic chemical composition of Petroselinum crispum extract and its effect on haemostasis. Nat. Prod. Commun., 2011, 6, 964–961. CHEN, C.H.; PEARSON, A.M.; GRAY, J.I. Effects of synthetic antioxidants (BHA, BHT and PG) on the mutagenicity of IQ-like compounds Food Chemistry, 1992, 43, 177. CHEN, Z.; BERTIN, R.; FROLDI, G. EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chemistry, 2013, 138, 414–420. CHIARADIA, M.C.; COLLINS, C.l H.; JARDIM, I. C. S. F. O estado da arte da cromatografia associada à espectrometria de massas acoplada à espectrometria de massas na análise de compostos tóxicos em alimentos. Quím. Nova, 2008, 31, 3, 623-636 CHOE, E.; MIN, D.B. Mechanisms of antioxidants in the oxidation of foods. Compr. Rev. Food Sci. F., 2009, 8,4, 345-358. COOK, N. C.; SAMMAN, S. “Review: flavonoids-chemistry, metabolism, cardioprotective effects and dietary sources,” Journal of Nutritional Biochemistry, 1996, 7, 2, 66–76. COSTA, V & FERREIRA-MORADAS Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Molecular Aspects of Medicine, 2001, 22, 4-5, 217–246. COTINGUIBA, G. G.; SILVA, J. R. N.; AZEVEDO, R. R. S.; SANTOS, A. F.; ROCHA, T. J. M. Método de Avaliação da Defesa Antioxidante: Uma Revisão de Literatura. Cient. Ciênc. Biol. Saúde. 2013, 15, 3, 231-237. COURTS, F. L., & WILLIAMSON, G. The Occurrence, Fate and Biological Activities of C-glycosyl Flavonoids in the Human Diet. Critical Reviews in Food Science and Nutrition, 2013, 55, 10, 1352–1367. CUNHA, A.L.; MOURA, K.S.; BARBOSA, J.C.; SANTOS, A. F. Os metabólitos secundários e sua importância para o organism. Diversitas Journal, 2016, 1, 2, 175-181. CUSHNIE, T. P.; LAMB, A. J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents., 2005, 26, 343-356. CUYCKENS, F., & CLAEYS, M. Mass spectrometry in the structural analysis of flavonoids. Journal of Mass Spectrometry, 2004, 39, 1, 1–15. D’ARCHIVIO, M.; FILESI, C.; VARÌ, R.; SCAZZOCCHIO, B.; MASELLA, R. Bioavailability of the Polyphenols: Status and Controversies. International Journal of Molecular Sciences, 2010, 11,4, 1321–1342. DAHLE, L. K.; HILL, E. G.; HOLMAN, R. T. The thiobarbituric acid reaction and the autoxidations of polyunsaturated fatty acid methyl esters. Arch. Biochem. Biophys. 1962, 98, 253-261. DE OLIVEIRA, G., CARNEVALE NETO, F., DEMARQUE, D., DE SOUSA PEREIRA-JUNIOR, J., SAMPAIO PEIXOTO FILHO, R., DE MELO, S., ALMEIDA, J.R.G.S.; LOPES, J.L.C.; LOPES, N. Dereplication of Flavonoid Glycoconjugates from Adenocalymma imperatoris-maximilianii by Untargeted Tandem Mass Spectrometry- Based Molecular Networking. Planta Medica, 2016, 83, 07, 636–646. DEGÁSPARI, C.H.; WASZCZYNSKYJ, N. Propriedades antioxidantes de compostos fenólicos. Visão Acadêmica, 2004, 5, 1, 33-40. DENG, J., CHENG, W., & YANG, G. A novel antioxidant activity index (AAU) for natural products using the DPPH assay. Food Chemistry, 2011, 125, 4, 1430–1435. DENG, G.-F; LIN, X.; XU, X.-R.; GAO, L.-L.; XIE, J.-F.; LI, H.-B. Antioxidant capacities and total phenolic contents of 56 vegetables. Journal of Functional Foods, 2013, 5, 260–266. DEVIENNE, K.F.; RADDI, M.S.G.; POZETTI, G.L. Das plantas medicinais aos fitofármacos. Revista Brasileira de Plantas Medicinais. 2004, 6, 3, 11-14. DEWICK, P. M. Medicinal natural products: a biosynthetic approach. John Wiley & Sons, Ltd. 2002, 2nd ed. DOBRIČEVIĆ, N.; ŠIC ŽLABUR, J.; VOĆA, S.; PLIESTIĆ, S.; GALIĆ, A.; DELIĆ, A.; FABEK UHER, S. Bioactive compounds content and nutritional potential of different parsley parts (Petroselinum crispum Mill.). Journal of Central European Agriculture, 2019, 20, 3, 900-910. DOĞRU, Y. Z.; ERAT, M. Investigation of some kinetic properties of polyphenol oxidase from parsley (Petroselinum crispum, Apiaceae). Food Research International, 2012, 49, 411–415. DOMON, B., COSTELLO, C.E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate J., 1988, 5, 397–409 ĐORĐEVIĆ, N., TODOROVIĆ, N., NOVAKOVIĆ, I., PEZO, L., PEJIN, B., MARAŠ, V., TEŠEVI´C, V.V.; PAJOVIĆ, S. Antioxidant Activity of Selected Polyphenolics in Yeast Cells: The Case Study of Montenegrin Merlot Wine. Molecules, 2018, 23, 8, 1971. DORMAN, H. J. D.; LANTTO, T. A.; RAASMAJA, A.; HILTUNEN, R. Antioxidant, pro-oxidant and cytotoxic properties of parsley. Food & Function, 2011, 2, 6, 328. DORNAS, W.C.; OLIVEIRA, T. T.; RODRIGUES-DAS-DORES, R. G.; SANTOS, A. F.; NAGEM, T. J. Flavonoides: potencial terapêutica no estresse oxidativo. Rev. Ciênc. Farm. Básica Apl., 2007, 28, 3,241 – 249. DUPONT, M. S.; MONDIN, Z.; WILLIAMSON, G.; PRICE, K. R. Effect of Variety, Processing, and Storage on the Flavonoid Glycoside Content and Composition of Lettuce and Endive. Journal of Agricultural and Food Chemistry, 2000, 48, 9, 3957–3964. EL-SAYED, M.M.; METWALLY, N.H.; IBRAHIM, I.A.; ABDEL-HADY, H.; ABDEL-WAHAB, B.S.A. Antioxidant Activity, total phenolic and flavonoid contents of Petroselinum crispum Mill. Journal of Applied Life Sciences International, 2018, 19, 2, 1-7. EL-ZAEDDI, H., CALÍN-SÁNCHEZ, Á., NOWICKA, P., MARTÍNEZ-TOMÉ, J., NOGUERA-ARTIAGA, L., BURLÓ, F., WOJDYŁO, A.; CARBONELLBARRACHINA, Á. A. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chemistry, 2017, 226, 179–186. EMBUSCADO, M.E. Spices and herbs: Natural sources of antioxidants – a mini review. J. of Functional Foods. 2015, 18 (B), 811-819. EPIFANIO, N. M. DE M., CAVALCANTI, L. R. I., DOS SANTOS, K. F., DUARTE, P. S. C., KACHLICKI, P., OZAROWSKI, M., RIGER, C.J.; CHAVES, D. SIQUEIRA DE ALMEIDA. Chemical characterization and antioxidant activity in vivo of parsley (Petroselinum crispum) aqueous extract. Food & Function, 2020, 11(6):5346-5356. ERLEJMAN, A. G.; VERSTRAETEN, S. V.; FRAGA, C. G.; OTEIZA, P. I. The Interaction of Flavonoids with Membranes: Potential Determinant of Flavonoid Antioxidant Effects. Free Radical Research, 2004, 38,12, 1311–1320. EZER, N. & ARISAN, Ö.M. Folk Medicines in Merzifon (Amasya, Turkey). Turk. J. Botany, 2006, 30, 223–230. FARAH, H.; ELBADRAWY, E.; AL-ATOOM, A.A. Evaluation of antioxidant and antimicrobial activities of ethanolic extracts of Parsley (Petroselinum crispum) and Coriander (Coriandrum sativum) plants grown in Saudi Arabia. International Journal of Advanced Research, 2015, 3, 4, 1244-1255. FARZAEI M. H., ABBASABADI Z., REZA SHAMS M. R., RAHIMI R., FARZAEI F. Parsley: a review of ethnopharmacology, phytochemistry and biological activities. J Tradit Chin Med., 2013, 33, 6, 815-826. FARZAEI, M. H.; ABBASABADI, Z.; REZA, S. M. R.; RAHIMI, R.; FARZAEI, F. Parsley: review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med., 2013, 33, 6, 815-826. FEENEY, M. B., & SCHÖNEICH, C. Tyrosine Modifications in Aging. Antioxidants & Redox Signaling, 2012, 17, 11, 1571–1579. FERREIRA, A.L.A.; MATSUBARA, L.S. Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Rev. Assoc. Med. Bras., 1997, 43, 1, 61-68. FERRERES, F., GIL-IZQUIERDO, A., VINHOLES, J., GROSSO, C., VALENTAO, P., & ANDRADE, P. B. Approach to the study of C-glycosyl acylated with aliphatic and aromatic acids from Spergularia rubra by high-performance liquid chromatographyphotodiode array detection/electrospray ionization multistage mass spectrometry. Mass spectrometry, 2011, 25, 700–712. FERRERES, F., LLORACH, R., GIL-IZQUIERDO, A. Characterization of the interglycosidic linkage in di-, tri-, tetra- and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of Mass Spectrometry, 2004, 39, 3, 312–321. FIRMO, W. C. A.; MENEZES, V. J.; PASSOS, C. E. C.; DIAS, C. N.; ALVES, L. P. L.; DIAS, I. C.; NETO, M. S.; OLEA, R. S. G. Contexto histórico, uso popular e concepção científica sobre plantas medicinais.Cad. Pesq.do São Luís. 2011, 18, n. especial, dez. FÖRSTER, J.; FAMILI, I.; FU, P.; PALSSON, B. NIELSEN, J. Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic Network. Forster, J. (2003). Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic Network. Genome Research, 2003, 13, 2, 244–253. GARCIA-SALAS, P.; MORALES-SOTO, A.; SEGURA-CARRETERO, A.; FERNÁNDEZ-GUTIÉRREZ, A. Phenolic Compound Extraction Systems for Fruit and Vegetable Samples. Molecules, 2010, 15, 8813-8826. GEBHARDT, Y, S.; FORKMANN, G.; LUKACIN, R.; MATERN, U.; MARTENS, S. Molecular evolution of flavonoid dioxygenases in the family Apiaceae. Phytochemistry. 2005, 66, 1273. GEBHARDT, Y. H.; WITTE, S.; STEUBER, H.; MATERN, U.; MARTENS, S. Evolution of Flavone Synthase I from Parsley Flavanone 3-beta-Hydroxylase by Site- Directed Mutagenesis. Plant Physiology, 2007, 144, 3, 1442–1454. GRAILLE, M.; WILD, P.; SAUVAIN, J.; HEMMENDINGER, M.; CANU, I.G.; HOPF, N.B. Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. Int. J. Mol. Sci., 2020, 21, 3743. GROSS, J.H. Mass Spectrometry: A Textbook. Springer, 2017. 3rd Edition, 968. GROTTO, D., MARIA, L. S., VALENTINI, J., PANIZ, C., SCHMITT, G., GARCIA, S. C., POMBLUM, V.J.; ROCHA, J.B.T.; FARINA, M. Importance of the lipid peroxidation biomarkers and methodological aspects FOR malondialdehyde quantification. Química Nova, 2009, 32,1, 169–174. GUO J. D., ZHAO X., LI Y., LI G. R., LIU X. L. Damage to dopaminergic neurons by oxidative stress in Parkinson's disease. Int. J. Mol. Med., 2018, 41, 1817–1825. GUO, C.; SUN, L.; CHEN, X.; ZHANG, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res., 2013, 8, 21, 2003–2014. GURIB-FAKIM, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine 27, 2006, 1–93. HÄHKÖNEN, M. P.; HOPIA, A. I.; VUORELA, H. J.; RAUHA, J. P.; PIHLAJA, K.; KUJALA, T. S.; HEINONEN. M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 10, 3954-3962. HAHLBROCK, K.; SUTTER, A.; WELLMANN, E.; ORTMANN, R.; GRISEBACH, H. Relationship between organ development and activity of enzymes involved in flavone glycoside biosynthesis in young parsley plants. Phytochemistry, 1971, 10, 109-116. HAIDARIA F.; KESHAVARZB S. A.; SHAHIA M. M.; MAHBOOBC S.; RASHIDID, M. Effects of parsley (Petroselinum crispum) and its flavonol constituents, kaempferol and quercetin, on serum uric acid levels, biomarkers of oxidative stress and liver xanthine oxidoreductase activity in oxonate-induced hypericemic rats. Iranian Journal of Pharmaceutical Research, 2011, 10, 4, 811-819. HAN, J.-Y.; AHN, S.-Y.; KIM, C.-S.; YOO, S.-K.; KIM, S.-K.; KIM, H.-C.; HONG, HAN, J.-Y., AHN, S.-Y., KIM, C.-S., YOO, S.-K., KIM, S.-K., KIM, H.-C., HONG, J.T., OH, K.-W. Protection of Apigenin against Kainate-Induced Excitotoxicity by Antioxidative Effects. Biol. Pharm. Bull., 2012, 35, 1440–1446. HARBORNE, J. B. Characterisation of flavonoid glycosides by acidic and enzymic hydrolysis. Phytochemistry, 1965, 4, 107-120. HEIM, K. E., TAGLIAFERRO, A. R., & BOBILYA, D. J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 2002, 13, 10, 572–584. HEMPEL J, PFORTE H, RAAB B, ENGST W, BOHM H, JACOBASH G. Flavonols and flavones of parsley cell suspension culture change the antioxidative capacity of plasma in rats. Nahrung, 1999; 43: 201-204. HERMAN, P. K. Stationary phase in yeast. Current Opinion in Microbiology, 2002, 5, 6, 602–607. HERTOG, M. G. L., HOLLMAN, P. C. H., & VENEMA, D. P. Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. Journal of Agricultural and Food Chemistry, 1992, 40, 1591–1598. HIDALGO, M., SÁNCHEZ-MORENO, C., DE PASCUAL-TERESA, S. Flavonoid– flavonoid interaction and its effect on their antioxidant activity. Food Chemistry, 2010, 121, 3, 691–696. HINNEBURG, I.; DAMIEN DORMAN, H. J.; HILTUNEN, R. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry, 2006, 97, 1, 122-129. HIRANO, R., SASAMOTO, W., MATSUMOTO, A., ITAKURA, H., IGARASHI, O., KONDO, K. Antioxidant Ability of Various Flavonoids against DPPH Radicals and LDL Oxidation. Journal of Nutritional Science and Vitaminology, 2001, 47, 5, 357–362. HOFFMANN, E.& STROOBANT, V. Mass Spectrometry: Principles and Applications. John Wiley & Sons, Ltd., 2007, 3rd Edition, 502. HUANG, D.; OU, B.; PRI, R. L. The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 2005, 53, 6, 1841–1856. HUANG, M.-H.; WANG, B.-S.; CHIU, C.-S.; AMAGAYA, S.; HSIEH, W.-T.; HUANG, S.-S.; SHIE, P.-H.; HIANG, G.-J. Antioxidant, antinociceptive, and antiinflammatory activities of Xanthii Fructus Extract. Journal of Ethnopharmacology. 2011, 135, 545–552. HUBER, L. S.; RODRIGUES-AMAYA, D. B.; RIBANI, R. H. Quantitative variation in Brazilian vegetable sources of flavonols and flavones. Food Chemistry, 2009, 113, 4, 1278-1282. HUBER, L. S.; RODRIGUEZ-AMAYA, D. B. Flavonóis e flavonas: fontes brasileiras e fatores que influenciam a composição em alimentos. Alim. Nutr., 2008. 19, 1, 97-108. HVATTUM, E., & EKEBERG, D. Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. Journal of Mass Spectrometry, 2003, 38, 1, 43–49. ILYASOV, I.R.; BELOBORODOV, V.L.; SELIVANOVA, I.A.; TEREKHOV, R.P. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. Int. J. Mol. Sci. 2020, 21, 1131, 1-27. IWASHINA, T.; SMIRNOV, S.V.; DAMDINSUREN, O.; KONDO, K. Saussurea Species from the Altai Mountains and Adjacent Area, and Their Flavonoid Diversity. Bull. Natl. Mus. Nat. Sci., 2010, Ser. B, 36, 4, 141–154. JABEEN, S.; ASIF, H. M.; MUMTAZ, K. M.; KHAN, Q. R. W. Natural products sources and their active compounds on disease prevention: A Review. IJCBS, 2014. 6, 76-83. JACOB, V.; HAGAI, T.; SOLIMAN, K. Structure-Activity Relationships of Flavonoids. Current Organic Chemistry, 2011, 15, 15, 2641–2657. JIMÉNEZ-ALIAGA, K.; BERMEJO-BESCÓS, P.; BENEDÍ, J.; MARTÍN-ARAGÓN, S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sciences, 2011, 89,25-26, 939–945. JUSTESEN, U. & KNUTHSEN, P. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chemistry, 2001, 73,245-250. KACHLICKI, P., PIASECKA, A., STOBIECKI, M., & MARCZAK, Ł. Structural Characterization of Flavonoid Glycoconjugates and Their Derivatives with Mass Spectrometric Techniques. Molecules, 2016, 21, 11, 1494. KAISER, A., CARLE, R., & KAMMERER, D. R. Effects of blanching on polyphenol stability of innovative paste-like parsley (Petroselinum crispum (Mill.) Nym ex A. W. Hill) and marjoram (Origanum majorana L.) products. Food Chemistry, 2013, 138, 2-3, 1648–1656. KARKLELIENĖ, R.; DAMBRAUSKIENĖ, E.; JUŠKEVIČIENĖ, D., RADZEVIČIUS, A., RUBINSKIENĖ, M., VIŠKELIS, P. Productivity and nutritional value of dill and parsley. Horticultural Science (Prague), 2014, 41, 3, 131–137. KASHYAPA, D.; SHARMAB, A.; TULIC, H. S.; SAKD, K.; GARGE, V. K.; BUTTARF, H. S.; SETZERG, W. N.; SETHI, G. Apigenin: A natural bioactive flavonetype molecule with promising therapeutic function. Journal of Functional Foods, 2018, 48, 457–471. KASOTE, D.M.; KATYARE, S.S.; HEGDE, M. V.; BAE, H. Significance of Antioxidant Potential of Plants and its Relevance to Therapeutic Applications. International Journal of Biological Sciences, 2015, 11, 8, 982–991. KATERJI, M., FILIPPOVA, M., & DUERKSEN-HUGHES, P. Approaches and Methods to Measure Oxidative Stress in Clinical Samples: Research Applications in the Cancer Field. Oxidative Medicine and Cellular Longevity, 2019, 1–29. KHOUBNASABJAFARI, M., ANSARIN, K., JOUYBAN, A. Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. BioImpacts, 2015, 5, 3, 123–127. KHURANA, V.; & LINDQUIST, S. Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker’s yeast? Nature Reviews Neuroscience, 2010, 11, 6, 436–449. KNEKT P, JARVINEN R, REUNANEN A, MAATELA J. Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ. 1996, 312, 7029, 478-481. KRISHNAIAH, D.; SARBATLY, R.; NITHYANANDAM, R. A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing, 2011, 89, 3, 217–233. KUDRYAVTSEVA, A.V.; KRASNOV, G.S.; DMITRIEV, A.A.; ALEKSEEV, B.Y.; KARDYMON, O.L.; SADRITDINOVA, A.F.; FEDOROVA, M.S.; POKROVSKY, A.V.; MELNIKOVA, N.V.; KAPRIN, A.D.; MOSKALEV, A.A.; SNEZHKINA, A.V. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget, 2016, 7, 29, 44879-44905. KUMAR, B.R. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs). J. Pharm. Anal. 2017, 7, 6, 349-364. KUMAR, S.; PANDEY, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. Scientific World Journal, 2013, 1627-50. LECHTENBERG, M.; ZUMDICK, S.; GERHARDS, C.; SCHIMDT, T.J.; HENSEL, A. Evaluation of analytical markers characterising different drying methods of parsley leaves (Petroselinum crispum L.). Pharmazie, 2007, 62, 12, 949-954. LESPADE, L.& BERCION, S. Theoretical investigation of the effect of sugar substitution on the antioxidant properties of flavonoids. Free Rad. Res., 2012, 46, 346– 58. LIN, L.-Z.; LU, S.; HARNLY, J.M. Detection and Quantification of Glycosylated Flavonoid Malonates in Celery, Chinese Celery, and Celery Seed by LC-DAD-ESI/MS. J. Agric. Food Chem., 2007, 55, 1321-1326. LIU, F., XU, Y., HUANG, J., GAO, S., & GUO, Q. Sensitive liquid chromatography/mass spectrometry assay for the quantification of azithromycin in human plasma. Biomedical Chromatography, 2007, 21, 12, 1272–1278. LOTITO, S. B.; FREI, B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon? Free Radical Biology & Medicine, 2006, 41, 1727–1746. LUSHCHAK, V. I. Oxidative stress in yeast. Biochemistry (Moscow), 2010, 75, 3, 281– 296. LUTHRIA, D. L., MUKHOPADHYAY, S., KWANSA, A. L. A systematic approach for extraction of phenolic compounds using parsley (Petroselinum crispum) flakes as a model substrate. Journal of the Science of Food and Agriculture, 2006, 86, 9, 1350–1358. LUTHRIA, D. L.; Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chemistry, 2008, 107, 745-752. LUTHRIA, D. L.; MUKHOPADHYAY, S.; KWANSA, A. L.A systematic approach for extraction of phenolic compounds using parsley (Petroselinum crispum) flakes as a model substrate. Journal of the Science of Food and Agriculture, 2006, 86, 9, 1350–1358. LUZIA, D. M. M.; JORGE, N. Atividade antioxidante do extrato de sementes de limão (Citrus limon) adicionado ao óleo de soja em teste de estocagem acelerada. Quimica Nova, 2009, 32, 4, 946-949. MAGALHÃES, L. M.; SEGUNDO, M. A.; REIS, S.; LIMA, J. L. F. Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, 2008, 613, 1, 1-19. MAGER, W. H.; & WINDERICKX, J. Yeast as a model for medical and medicinal research. Trends in Pharmacological Sciences, 2005, 26, 5, 265–273. MAJEWSKA, M. SKRZYCKI, M.; PODSIAD, M.; CZECZOT, H. Evaluation of antioxidant potential of flavonoids: an in vitro study Acta. Pol. Pharm., 2011, 68, 4, 611- 615. MARKHAM, K. R. & ANDERSEN, O. M. Separation and quantification of flavonoids. Flavonoids: Chemistry, Biochemistry, and Applications. Ed. CRC Press. 2006. Cap.1. MATIOLLI, L.S. Avaliação da citotoxicidade e atividade antioxidante de plantas condimentares. Dissertação (mestrado) em Biociencias. FCLAS- Universidade Estadual Paulista, 2014, 115p. MENDES, M. D. S. Caracterização química e molecular de espécies das famílias Lamiaceae e Apiaceae da flora aromática de Portugal. Mestrado em Biologia Celular e Biotecnologia, Universidade de Lisboa, 2007. MERKEN, H. M., & BEECHER, G. R. Measurement of Food Flavonoids by High- Performance Liquid Chromatography: A Review. Journal of Agricultural and Food Chemistry, 2000, 48, 3, 577–599. MEYER, H., BOLARINWA, A., WOLFRAM, G., LINSEISEN, J. Bioavailability of Apigenin from Apiin-Rich Parsley in Humans. Annals of Nutrition and Metabolism, 2006, 50, 3, 167–172. MIDDLETON, E. J. R.; KANDASWAMI, C.; THEOHARIDES, T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological Reviews. 2000, 52, 673. MILIAUSKAS, G.; VENSKUTONIS, P. R.; VAN BEEK, T. A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004. 85, 2, 231-237. MISHRA, B. B.; TIWARI, V. K. Natural products: a envolving role in future drug Discovery. Eur. J. Med. Chem. 2011, 46, 4769–4807. MONTANARI, C.A. & BOLZANI, V.S. Planejamento Racional de Fármacos Baseado em Produtos Naturais. Quim. Nova, 2001, 24, 1, 105-111. MORANO, K. A.; GRANT, C. M.; MOYE-ROWLEY, W. S. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae. Genetics, 2011, 190, 4, 1157– 1195. MUKAI R. & TERAO J. Role of dietary flavonoids in oxidative stress and prevention of muscle atrophy. J. Phys. Fitness Sports Med., 2013, 2, 385-392 NAGULA, R. L.; WAIRKAR, S. Recent advances in topical delivery of flavonoids: A review. Journal of Controlled Release, 2019, 296, 190–201. NEGRI, G.; SANTI, D.; TABACH, R. Chemical composition of hydroethanolic extracts from Siparuna guianensis, medicinal plant used as anxiolytics in Amazon region. Revista Brasileira de Farmacognosia, 2012, 22,5,1024-1034. NEHA, K.; HAIDER, M. R.; PATHAK, A.; YAR, M. S. Medicinal prospects of antioxidants: A review. European Journal of Medicinal Chemistry, 2019, 178, 687-704. NEWMAN, D.J.; CRAG, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629−661. NEWMAN, D.J.; CRAG, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 3, 770-803. NIELSEN, S.E.; YOUNG, J.F.; DANESHVAR, B.; LAURIDSEN, S.T.; KNUTHSEN, P.; SANDSTRON, B.; DRAGSTE, L. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr., 1999, 81, 6, 447-455. NUTTILA A. M.; KAMMIOVIRTA K.; OKSMAN-CALDENTEY K. M. Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chemistry. 2002, 76, 519–525. OCK, C.-Y.; KIM, E.-H.; CHOI, D.J.; LEE, H.J.; HAHM, K.-B.; CHUNG, M.H. 8- Hydroxydeoxyguanosine: Not mere biomarker for oxidative stress, but remedy for oxidative stress-implicated gastrointestinal diseases. World J Gastroenterol., 2012, 18, 4, 302-308. OGA, S. Fundamentos de Toxicologia. 2. ed. Atheneu Editora., 2003, 39-55 OHADOMA, S. C.; AKAH, P. A.; OKOLO, C. E. Isolation and characterization of flavonol glycosides from leaves extract of Lupinus arboreus sims. UK Journal of Pharmaceutical and Biosciences, 2016, 4, 3, 06-09. OZAROWSKI, MARCIN, PIASECKA, ANNA, PASZEL-JAWORSKA, ANNA, CHAVES, DOUGLAS SIQUEIRA DE A., ROMANIUK, ALEKSANDRA, RYBCZYNSKA, MARIA, GRYSZCZYNSKA, AGNIESZKA, SAWIKOWSKA, ANETA, KACHLICKI, PIOTR, MIKOLAJCZAK, PRZEMYSLAW L., SEREMAKMROZIKIEWICZ, AGNIESZKA, KLEJEWSKI, ANDRZEJ, & THIEM, BARBARA. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Revista Brasileira de Farmacognosia, 2018, 28, 2, 179-191. PANCHE, A. N.; DIWAN, A. D.; CHANDRA, S. R. Flavonoids: an overview. Journal of Nutritional Science, 2016, 5, 47, 1-15. PANDEY, A.; TRIPATHI, S. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. Journal of Pharmacy Phytochemistry, 2014, 2, 5, 115-9. PAPASTERGIADIS, A.; MUBIRU, E.; LANGENHOVE, H.V.; MEULENAER. B. Malondialdehyde Measurement in Oxidized Foods: Evaluation of the Spectrophotometric Thiobarbituric Acid Reactive Substances (TBARS) Test in Various Foods. J. Agric. Food Chem. 2012, 60, 9589−9594. PÁPAY, Z. E.; KÁLLAI-SZABÓ, N.; LUDÁNYI, K.; KLEBOVICH, I.; ANTAL, I. Development of oral site-specific pellets containing flavonoid extract with antioxidant activity. European Journal of Pharmaceutical Sciences, 2016, 95, 161–169. PAPAY, Z.E. & ANTAL, I. Study on the antioxidant activity during the formulation of biological active ingredient. European Scientific Journal, 2014, Specialedition, 3, 252 – 257 PAPUC, C.; PREDESCU, C.; NICORESCU, V, STEFAN, G.; NICORESCU, I. Antioxidant Properties of a Parsley (Petroselinum crispum) Juice Rich in Polyphenols and Nitrites. Curr Res Nutr Food Sci., 2016, 4 (Special Issue Confernce). PAREJO, I., JÁUREGUI, O., VILADOMAT, F., BASTIDA, J., & CODINA, C. Characterization of acylated flavonoid-O-glycosides and methoxylated flavonoids from Tagetes maxima by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 23, 2801– 2810. PATEL, K.; KUMAR, V.; RAHMAN, M.; VERMA, A.; PATEL, D. K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni-Suef University Journal of Basic and Applied Sciences. 2018, 7, 31–42. PATRA, B.; SCHLUTTENHOFER, C.; WU, Y.; PATTANAIK, S.; YUAN, L. Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochimica et Biophysica Acta 1829, 2013, 1236–1247. PATWARDHAN, B.; WARUDE, D.; PUSHPANGADAN, P.; BHATT, N. Ayurveda and Traditional Chinese medicine: a comparative overview. Evid Based Comple. Alter Med. 2, 2005, 465-473. PEREIRA, D.M.; VALENTÃO, P.; PEREIRA, J.A.; ANDRADE, P. Phenolics: From Chemistry to Biology, Molecules, 2009, 14, 6, 2202-2211. PEREIRA, R. J.; CARDOSO, M. G. Vegetable secondary metabolites and antioxidants benefits. J. Biotec. Biodivers., 2012, 3, 4, 146-152. PÉREZ-JIMÉNEZ, J.; SAURA-CALIXTO, F. Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 2006, 39, 791-800. PIETTA, P. G. Flavonoids as antioxidants. Journal of Natural Products, 2000, 63, 1035- 1042. PRIECINA, L. & KARKLINA, D. Natural Antioxidant Changes in Fresh and Dried Spices and Vegetables. World Academy of Science, Engineering and Technology International Journal of Nutrition and Food Engineering, 2014, 8, 5, 492-496. PRIOR, R. L.; WU, X.; SCHAICH, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 2005, 53, 10, 4290–4302. PRIOR, R.L.; WU, X.; SCHAICH, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290−4302. PROBST, Y. C.; GUAN, V. X.; KENT, K. Dietary phytochemical intake from foods and health outcomes: a systematic review protocol and preliminary scoping. BMJ Open, 2017, 7, 2, e013337. PROCHÁZKOVÁ, D., BOUŠOVÁ, I., & WILHELMOVÁ, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia,, 2011, 82, 4, 513–523. QUETTIER-DELEU, C., GRESSIER, B., VASSEUR, J., DINE, T., BRUNET, C., LUYCKX, M., CAZIN, M.; CAZIN, J.-C.; BAILLEUL, F.; TROTIN, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, 2000, 72, 1-2, 35–42. QUIDEAU, S.; DEFFIEUX, D.; DOUAT-CASASSUS, C.; POUYSÉGU, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angewandte Chemie International Edition, 2011, 50, 3, 586–621. RE, R.; PELLEGRINI, N.; PROTEGGENTE, A.; PANNALA, A.; YANG, M.; RICEEVANS, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and medicine, 1999, 26, 9-10, 1231–1237. REKHI, H., RANI, S., SHARMA, N., & MALIK, A. K. A Review on Recent Applications of High-Performance Liquid Chromatography in Metal Determination and Speciation Analysis. Critical Reviews in Analytical Chemistry, 2017, 47,6, 524–537. RICE-EVANS, C., & MILLER, N. J. Total antioxidant status in plasma and body fluids. Oxygen Radicals in Biological Systems Part D, 1994, 279–293. RIGER, C.J.; FERNANDES, P.N.; VILELA, L.F.; MIELNICZKI-PEREIRA, A.A.; BONATTO, D.; HENRIQUES, J.A.P.; ELEUTHERIO, E.C.A. Evaluation of heavy metal toxicity in eukaryotes using a simple functional assay. Metallomics. Metallomics, 2011, 3, 1355–1361. RODRIGUEZ-AMAYA, D. B. Quantitative analysis, in vitro assessment of bioavailability and antioxidant activity of food carotenoids—A review. Journal of Food Composition and Analysis, 2010, 23, 7, 726–740. ROZE, L.V.; CHANDA, A.; LINZ, J.E. Compartmentalization and molecular traffic in secondary metabolism: a new undestanding of established cellular processes. Fungal Genetics and Biology. 2011, 48, 35–48. RUFINO, M. S. M.; ALVES, R. E.; BRITO, E. S.; MANCINI FILHO, J.; MOREIRA, A. V. B. Metodologia cientifica: determinação da atividade antioxidante total em frutas no sistema b-caroteno/ácido linoleico. Fortaleza: Embrapa, 2006. (Comunicado Técnico). SADOWSKA-BARTOSZ, I., PĄCZKA, A., MOŁOŃ, M., & BARTOSZ, G. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae. FEMS Yeast Research, 2013, 13(8), 820–830. SADOWSKA-BARTOSZ, I.; PĄCZKA, A.; MOŁOŃ, M.; BARTOSZ, G. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae. FEMS Yeast Research, 2013, 13, 8, 820–830. SALEH, H. A.-R.; EL-NASHAR, Y. I.; SERAG-EL-DIN, M. F.; DEWIR, Y. H. Plant growth, yield and bioactive compounds of two culinary herbs as affected by substrate type. Scientia Horticulturae, 2019, 243, 464–471. SANTOS, T. N.; COSTA, G.; FERREIRA, J. P.; LIBERAL, J.; FRANCISCO, V.; PARANHOS, A.; CRUZ, M.T.; CASTELO-BRANCO, M.; FIGUEIREDO, I.V.; BATISTA, M. T. Antioxidant, anti-Inflammatory, and analgesic activities of Agrimonia eupatoria L. infusion. Evidence-Based Complementary and Alternative Medicine, 2017, 1–13. SATHISHKUMAR T; BASKAR R; SHANMUGAM, S. Optimization of flavonoids extraction from the leaves of Tabernaemontana heyneana Wall. using L16 orthogonal design. Nat. Sci., 2008, 6, 3, 10-19. SAYED-AHMADA, B.; TALOUA, T.; SAADB, Z.; HIJAZIB, A.; MERAHA, O. The Apiaceae: Ethnomedicinal family as source for industrial uses Industrial Crops & Products, 2017, 109, 661–671. SHAHIDI, F., & AMBIGAIPALAN, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods, 2015, 18, 820–897. SHARMA A.K.; GANGWAR M.; CHTAURVEDI A.P.; SINHA A.S.K.; TRIPATHI Y.B. Comparative analysis of phenolic and flavonoid content of Jatropha curcas L. Plant Archives. 2012, 12, 823–826. SHARMA, K., & MULLANGI, R. A concise review of HPLC, LC-MS and LC-MS/MS methods for determination of azithromycin in various biological matrices. Biomedical Chromatography, 2013, 27,10, 1243–1258. SHARMA, K.S. Mass spectrometry—The early years. International Journal of Mass Spectrometry, 2013, 349– 350, 3– 8. SHUKLA S. & GUPTA S. Apigenin: A Promising Molecule for Cancer Prevention. Pharm. Res., 2010, 27, 6, 962–978. SIES, H. Oxidative stress: oxidants and antioxidants. Experimental Physiology, 1997, 82, 2, 291–295. SLIMESTAD, R. FOSSEN, T.; BREDE, C. Flavonoids and other phenolics in herbs commonly used in Norwegian commercial kitchens. Food Chem., 2020, 309:125678. SOARES, D.G.; ANDREAZZA, A.C.; SALVADOR, M. Avaliação de compostos com atividade antioxidante em células da levedura Saccharomyces cerevisiae. Brazilian Journal of Pharmaceutical Sciences, 2005, 41, 1, SOARES, D.G.; ANDREAZZA, A.C.; SALVADOR, M. Avaliação de compostos com atividade antioxidante em células da levedura Saccharomyces cerevisiae. Revista Brasileira de Ciências Farmacêuticas, 2005, 41, 1. SOARES, D.G.; ANDREAZZA, A.C.; SALVADOR, M. Saccharomyces cerevisiae como modelo biológico para avaliação da capacidade antioxidante de compostos. Rev. Bras. Farm., 2004, 85, 2, 45-47. SÓJKA, M., GUYOT, S., KOŁODZIEJCZYK, K., KRÓL, B., BARON, A., Composition and properties of purified phenolics preparations obtained from an extract of industrial blackcurrant (Ribes nigrum L.) pomace. J. Hortic. Sci. Biotechnol., 2009, 100-106 SOTO-HERNÁNDEZ, M.; PALMA-TENANGO, M.; GARCÍA-MATEOS, M.R. Phenolic Compounds - Biological Activity, InTechOpen, Croatia, 2017, 236p. SPENCER, J. Food for thought: The role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance: Symposium on ‘Diet and mental health’. Proceedings of the Nutrition Society, 2008, 67, 2, 238-252. SPENCER, J. P. E. Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr., 2009, 4, 243–250. STEELS, E.L. LEARMONTH’, R.P.; WATSON, K. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiol., 1994, 140, 569-576. STOBIECKI, M., KACHLICKI, P., & WOJAKOWSKA, A. Application of LC/MS systems to structural characterization of flavonoid glycoconjugates. Phytochemistry Letters, 2015, 11, 358–367. STRATIL, P.; KLEJDUS, B.; KUBÁŇ, V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods. Journal of Agricultural and Food Chemistry, 2006, 54, 3, 607–616. SUHAJ, M. Spice antioxidants isolation and their antiradical activity: a review. J. of Food C. and Analysis, 2006, 19.6-7, 531-537. TAN, B.L.; NORHAIZAN, M.E.; LIEW, W.P.P.; SULAIMAN RAHMAN, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Frontiers in Pharmacology, 2018, 9, 1–28. TANG, E. L.; RAJARAJESWARAN, J.; FUNG, S.Y.; KANTHIMATHI, M. S. Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells. J. Sci. Food Agric., 2015, 95, 2763– 2771. TANG, E.L.-H.; RAJARAJESWARAN, J.; FUNG, S.; KANTHIMATHI, M. Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells. Journal of the Science of Food and Agriculture, 2015, 95, 13, 2763–2771. TELANGE, D. R., PATIL, A. T., PETHE, A. M., FEGADE, H., ANAND, S., & DAVE, V. S. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. European Journal of Pharmaceutical Sciences, 2017, 108, 36–49. TIVERON, A.P. Atividade antioxidante e composição fenólica de legumes e verduras consumidos no Brasil. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) – Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 2010, 103p TIWARI R.; RANA C. S. Plant secondary metabolites: a review. International Journal of Engineering Research and General Science. 2015, 3, 5. TLILI, I., HDIDER, C., LENUCCI, M. S., ILAHY, R., JEBARI, H., DALESSANDRO, G. Bioactive compounds and antioxidant activities of different watermelon (Citrullus lanatus (Thunb.) Mansfeld) cultivars as affected by fruit sampling area. Journal of Food Composition and Analysis, 2011, 24, 307-314. TOSCANO RICO, J. M. Plantas Medicinais. Academia das Ciências de Lisboa, Instituto de Estudos Acadêmicos para Seniores, Lisboa, 2011. TRIFUNSCHI, S. & ARDELEAN, D. Quantification of phenolics and flavonoids from Petroselinum crispum extracts. Jurnal Medical Aradean (Arad Medical Journal), 2012, XV, 1-4, 83-86. TUPE, R.S.; KEMSE, N.G.; KHAIRE, A.A. Evaluation of antioxidant potentials and total phenolic contents of selected Indian herbs powder extracts. International Food Research Journal, 2013, 20, 3, 1053-1063. UDENSI, U. K. & TCHOUNWOU, P. B. Oxidative stress in prostate hyperplasia and carcinogenesis. Journal of Experimental & Clinical Cancer Research, 2016, 35, 1, 1–19. VALKO M.; LEIBFRITZ, D.; MONCOL, J.; CRONIN, M.T.D. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 2007, .39, 44-84. VERMA N.; SHUKLA S. Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants. 2015, 2,105–113. VERSTRAETEN, S.V.; KEEN, C.L.; SCHMITZ, H.H.; FRAGA, C.G.; OTEIZA, P.I. Flavan-3-ols and procyanidins protect liposomes against lipid oxidation and disruption of the bilayer structure. Free Radic Biol Med., 2003, 34, 84–92. WANG, M.; FIRRMAN, J.; LIU, L.; YAM, K. A review on flavonoid apigenin: dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed Research International, eCollection, 2019, Article ID 7010467, 18 pages. WANG, S.; YANG, C.; TU, H.; ZHOU, J.; LIU, X.; CHENG, Y.; LUO, J.; DENG, X.; ZHANG, H.; XU, J. Characterization and Metabolic Diversity of Flavonoids in Citrus Species. Nature: Scientific Reports. 2017, 7, 10549. WANG, T.Y.; BI, Q. L. K.-S. Bioactive flavonoids in medicinal plants: Structure, activity, and biological fate. Asian Journal of Pharmaceutical Sciences. 2018, 13, 12–23. WANG, S.; ALSEEKH, S.; FERNIE, A.R.; LUO, J. The Structure and Function of Major Plant Metabolite Modifications. Molecular Plant, 2019, 12(7), 899-919 WATERMAN, P.G. & MOLE, S. Why are phenolic compounds so importante? In: WATERMAN, P.G.; MOLE, S. Analysis of phenolic plant metabolites. Oxford Blackwell Scientific Publications, 1994, 3, 44-65. WINKEL-SHIRLEY, B. Flavonoid Biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001, 126, 485. WONG, A., XIANG, X., ONG, P., MITCHELL, E., SYN, N., WEE, I., KUMAR, A. P.; YONG, W.P.; SETHI, G.; GOH, B.C., HO, P. C.; WANG, L. A Review on Liquid Chromatography-Tandem Mass Spectrometry Methods for Rapid Quantification of Oncology Drugs. Pharmaceutics, 2018, 10(4), 221. WONG, P.Y.Y. & KITTS, D.D. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem., 2006, 97, 505–515. WOOD, L.G.; GIBSON, P.G.; GARG, M.L. A review of the methodology for assessing in vivo antioxidant capacity. J Sci Food Agric., 2006, 86, 13, 2057–2066. XIAO, J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance?, Critical Reviews in Food Science and Nutrition, 2017, 57, 9, 1874-1905. XU, Y.; ZHANG, R.; FU, H. Studies on the optimal process to extract flavonoids from red-raspberry fruits. Nature and Science, 2005, 3, 2, 43-46. YILDIZ, F. Physiologically Bioactive Compounds Advances in Food Biochemistry. Middle East Technical University, Ankara, Turkey. 2009, 1, 8, 243-247. YOSHIDA, Y., UMENO, A., SHICHIRI, M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. Journal of Clinical Biochemistry and Nutrition, 2013, 52, 1, 9–16. YOSHIKAWA, M.; UEMURA, T.; SHIMODA, H.; KISHI, A.; KAWAHARA, Y.; MATSUDA, H.; Medicinal foodstuffs. XVIII. Phytoestrogens from the aerial parts of Petroselinum crispum MILL. (Parsley) and structures of 6”- Acetylapiin and a new monoterpeno glycoside, petroside. Chemical Pharmaceutical Bulletin, 2000, 48,7, 1039– 1044. ZENGIN, G., MAHOMOODALLY, M. F., PAKSOY, M. Y., PICOT-ALLAIN, C., GLAMOCILJA, J., SOKOVIC, M., DIUZHEVA, A.; JEKŐF, J.; CZIÁKYF, Z.; RODRIGUES, M.J.; KOUADIO IBRAHIME SINAN, K.I.; CUSTODIO, L. Phytochemical characterization and bioactivities of five Apiaceae species: Natural sources for novel ingredients. Industrial Crops and Products, 2019,135, 107–121. ZHANG, H.; CHEN, F.; WANG, X.; YAO, H.-Y. Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Research International, 2006, 39, 8, 833–839. ZHANG, K.; ZHANG, K.J.; GAO, Z.-G.; ZHANG, D.; ZHU, L.; HAN, G.W.; MOSS, S.M.; PAOLETTA, S.; KISELEV, E.; LU, W.; FENALTI, G.; ZHANG, W.; MULLER, C.E.; YANG, H.; JIANG, H.; CHEREZOV, V.; KATRITCH, V.; JACOBSON, K.A.; STEVENS, R.C.; WU, B.; ZHAO, Q. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature, 2014, 509, 115–118.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/72120/2020%20-%20Neide%20Mara%20de%20Menezes%20Epifanio.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6314
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-02-06T20:07:13Z No. of bitstreams: 1 2020 - Neide Mara de Menezes Epifanio.pdf: 3851747 bytes, checksum: 4102d3a843585b0f0f4c2f183802a4c3 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-02-06T20:07:13Z (GMT). No. of bitstreams: 1 2020 - Neide Mara de Menezes Epifanio.pdf: 3851747 bytes, checksum: 4102d3a843585b0f0f4c2f183802a4c3 (MD5) Previous issue date: 2020-12-18eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Neide Mara de Menezes Epifanio.pdf3.76 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.