Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10266
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoares, Cinthia Santos
dc.date.accessioned2023-12-21T18:59:48Z-
dc.date.available2023-12-21T18:59:48Z-
dc.date.issued2022-07-06
dc.identifier.citationSOARES, Cinthia Santos. Abordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídica. 2022. 132 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10266-
dc.description.abstractA presente tese teve como objetivo principal estudar as interações entre uma molécula de dissacarídeo e um protótipo de membrana fosfolipídica, formado por um sistema dimérico composto por duas moléculas de fosfolipídio. Tal estudo foi feito de maneira teórica, utilizando métodos quânticos para a modelagem dos sistemas moleculares de interesse: um método baseado na Teoria do Funcional da Densidade (B97-D/6-31G(d,p)) e um método semi-empírico (PM6). Os dissacarídeos considerados foram trealose, maltose e celobiose. O fosfolipídio considerado foi dioctanoil- fosfatidilcolina. O estudo de tais interações envolveu a construção do protótipo de membrana fosfolipídica e a criação de um protocolo para a aproximação dos dissacarídeos ao protótipo e se deu por meio do cálculo da energia de interação quando na formação dos sistemas interagentes (dissacarídeo-protótipo de membrana fosfolipídica). Com base em critérios geométricos, foram identificados dois tipos de interações entre todos os dissacarídeos e o protótipo de membrana fosfolipídica: interações com grupos fosfato e com grupos trimetil-amônio. Foram obtidos os espectros de absorção no infravermelho para o protótipo de membrana fosfolipídica isolado e para todos os sistemas interagentes – quatro para a trealose, três para a maltose e dois para a celobiose, a fim de comparar o comportamento do sinal correspondente ao estiramento assimétrico do grupo fosfato para agregados fosfolipídicos secos e agregados fosfolipídicos na presença de diferentes carboidratos, indicado na literatura como diferentemente afetado pela presença de diferentes carboidratos. Utilizando uma equação que relaciona o valor da constante de acoplamento de spin heteronuclear à três ligações 3JC1,H1’ ao valor do ângulo diedro definido pela sequência de átomos C1–O–C1’–H1’, ao longo da ligação glicosídica da trealose, foram calculados os respectivos valores de 3JC1,H1’ para todos os quatro sistemas interagentes obtidos. A partir do cálculo de população de Boltzmann para os sistemas interagentes, foi obtido um valor médio para a constante de acoplamento, que foi comparado ao resultado experimental disponível na literatura. Os valores de energia de interação dissacarídeo- protótipo de membrana fosfolipídica não mostraram concordância com o comportamento do sinal correspondente ao estiramento assimétrico do grupo fosfato, isso considerando os sistemas interagentes de mais baixa energia, sem correção de ponto zero. Tal resultado foi compreendido como sendo um forte indício de que as interações com grupos trimetil-amônio também precisam ser consideradas nessa avaliação. Já o valor médio obtido para a constante de acoplamento de spin heteronuclear, comparou-se muito bem ao valor experimental disponível na literatura, sendo um indicativo de que os valores dos ângulos glicosídicos da trealose presentes nos sistemas interagentes obtidos teoricamente comparam-se àqueles assumidos pelo dissacarídeo em sistemas interagentes reais, de forma que o método PM6, utilizado para a modelagem dos sistemas interagentes, pode ser apontado como um método computacional capaz de descrever adequadamente os efeitos estabilizantes da ligação glicosídica da trealose nesse tipo de sistema.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectConformação de fosfolipídiospor
dc.subjectMembrana fosfolipídicapor
dc.subjectInteração dissacarídeo-membranapor
dc.subjectPhospholipid conformationeng
dc.subjectPhospholipid membraneeng
dc.subjectDissaccharide- membrane interactioneng
dc.titleAbordagem teórica das interações dissacarídeo-protótipo de membrana fosfolipídicapor
dc.title.alternativeTheoretical approach of dissaccharide-phospholipid membrane interactionseng
dc.typeTesepor
dc.description.abstractOtherThe main objective of this thesis was to study the interactions between a disaccharide molecule and a phospholipid membrane prototype, formed by a dimeric system composed of two phospholipid molecules. This study was carried out theoretically, using quantum methods to model the molecular systems of interest: a method based on the Density Functional Theory (B97-D/6-31G(d,p)) and a semi- empirical method (PM6). The disaccharides considered were trehalose, maltose and cellobiose. The phospholipid considered was dioctanoyl-phosphatidylcholine. The study of such interactions involved the construction of the phospholipid membrane prototype and the creation of a protocol for the approximation of the disaccharides to the prototype. Based on geometric criteria, two types of interactions were identified between all disaccharides and the phospholipid membrane prototype: interactions with phosphate groups and with trimethyl-ammonium groups. Infrared absorption spectra were obtained for the isolated phospholipid membrane prototype and for all interacting systems - four for trehalose, three for maltose and two for cellobiose, in order to compare the behavior of the signal corresponding to the asymmetric stretching of the phosphate group for dry phospholipid aggregates and phospholipid aggregates in the presence of different carbohydrates, indicated in the literature as differently affected by the presence of different carbohydrates. Using an equation that relates the value of the heteronuclear spin coupling constant 3JC1,H1' to the value of the dihedral angle defined by the sequence of atoms C1–O–C1'–H1', along the glycosidic bond of trehalose, the respective values of 3JC1,H1' were calculated for all four interacting systems obtained. From the calculation of the Boltzmann population for the interacting systems, an average value for the coupling constant was obtained, which was compared to the experimental result available in the literature. The values of disaccharide-prototype phospholipid membrane interaction energy did not show agreement with the behavior of the signal corresponding to the asymmetric stretching of the phosphate group, considering the lowest energy interacting systems, without zero point correction. This result was understood as a strong indication that interactions with trimethyl-ammonium groups also need to be considered in this evaluation. The average value obtained for the heteronuclear spin coupling constant, compared very well to the experimental value available in the literature, being an indication that the values of the glycosidic angles of trehalose present in the interacting systems theoretically obtained are compared to those assumed by the disaccharide in real interacting systems, so that the PM6 method, used to model the interacting systems, can be pointed out as a computational method capable of adequately describing the stabilizing effects of the trehalose glycosidic bond in this type of system.eng
dc.contributor.advisor1Silva, Clarissa Oliveira da
dc.contributor.advisor1ID014.109.957-71por
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-5640-5387por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3211933004567550por
dc.contributor.advisor-co1Bauerfeldt, Glauco Favilla
dc.contributor.advisor-co1ID069.023.487-23por
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0001-5906-7080por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1876040291299143por
dc.contributor.referee1Silva, Clarissa Oliveira da
dc.contributor.referee1ID014.109.957-71por
dc.contributor.referee1IDhttps://orcid.org/0000-0002-5640-5387por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3211933004567550por
dc.contributor.referee2Riger, Cristiano Jorge
dc.contributor.referee2IDhttps://orcid.org/0000-0002-7579-5958por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8756160468801705por
dc.contributor.referee3Pereira, Márcio Soares
dc.contributor.referee3IDhttps://orcid.org/0000-0002-7579-5958por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8756160468801705por
dc.contributor.referee4Magalhães, Camila Silva de
dc.contributor.referee4ID077.313.237-65por
dc.contributor.referee5Baptista, Leonardo
dc.contributor.referee5ID053.120.556-89por
dc.contributor.referee5IDhttps://orcid.org/0000-0001-9433-3313por
dc.contributor.referee5Latteshttp://lattes.cnpq.br/2182432135517042por
dc.creator.ID099.709.887-27por
dc.creator.Latteshttp://lattes.cnpq.br/8630162009799406por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesJAIN, M. K.; VAGNER, R. C. Introduction to Biological Membranes. John Wiley & Sons, 1980. 2 LODISH, H.; BERK, A.; MATSUDAIRA, P.; KAISER, C. A.; KRIEGER, M.; SCOTT, M. P.; ZIPURSKY, L.; DARNELL, J. Molecular Cell Biology. 5th ed. W. H. Freeman and Company, 2005. 3 BERG, J. M.; CLARKE, N.N.; STRYER, L.; TYMOCZKO, J. L. Biochemistry. W. H. Freeman and Company, 2002. 4 ALBERTS, B.; JOHNSON, A.; LEWIS, J.; RAFF, M.; ROBERTS, K.; WALTER, P. Molecular Biology of the Cell. 4th ed. Garland Science, 2002. 5 ZHANG, M.; OLDENHOF , H.; SYDYKIV, B.; BIGALK, J.; SIEME, H.; WOLKERS, W. F. Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Scientific Reports, v. 7, p. 6198. 2017. 6 TERO, R.; FUKUMOTO, K.; MOTEGI, T.; YOSHIDA, M.; NIWANO, M.; HIRANO-IWATA, A. Formation of Cell Membrane Component Domains in Artifcial Lipid Bilayer. Scientific Reports, v. 7, p. 17905. 2017. 7 DANIELLI, J.F.; DAVSON, H. A contribution to the theory of permeability of thin films. Journal of Cellular Physiology, v. 5, p. 495˗508. 1935. 8 SINGER, S. J.; NICOLSON, G. L. The Fluid Mosaic Model of the Structure of Cell Membranes: Cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids. Science, v. 175, p. 720˗731. 1972. 9 SIMONS, K.; IKONEN, E. Functional rafts in cell membranes. Nature, v. 387, p. 569˗572. 1997. 10 BROWN, D. A.; LONDON, E. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochemical and Biophysical Research Communications, v. 240, p. 1˗7. 1997. 11 LINGWOOD, D.; SIMONS, K. Lipid rafts as a membrane-organizing principle. Science, v. 327, p. 46˗50. 2010. 125 12 NELSON, D. L.; COX, M. M. Principles of Biochemistry. 6th ed. W. H. Freeman and Company, 2012. 13CASARES, D.; ESCRIBÁ, P. V.; ROSSELLÓ, C. A. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. International Journal of Molecular Sciences, v. 20, p. 2167. 2019. 14KOYNOVA, R.; TENCHOV, B. Phase Transitions and Phase Behavior of Lipids. In: ROBERTS, G. C. K. Encyclopedia of Biophysics. Springer, 2013, 1841˗1854. 15 MUELLER, P.; RUDIN, D. O.; TIEN, H. T.; WESCOTT, W. C. Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System. Nature, v. 194, p. 979˗980. 1962. 16 METZLER, D. E. Biochemistry: The Chemical Reactions of Living Cells. 2nd ed. Academic Press, 2003. 17 VANCE, J. E.; VANCE, D. Biochemistry of Lipids, Lipoproteins and Membranes. 4th ed. Elsevier, 2002. 18 ROTHMAN J. E.; LENARD, J. Membrane asymmetry. Science, v. 195, p. 743˗753. 1977. 19 WIENER, M. C.; WHITE, S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophysical Journal, v. 61, p. 434˗447. 1992. 20 KARPLUS, M. J. Contact Electron‐Spin Coupling of Nuclear Magnetic Moments. The Journal of Chemical Physics, v. 30, p. 11. 1959. 126 21 RAMSEY, N. F. Electron Coupled Interactions between Nuclear Spins in Molecules. Physical Review, v. 91, p. 303. 1953. 22 COXON, B. Model parameters for the analysis of skew conformations of carbohydrates by p.m.r. spectroscopy. Carbohydrate Research, v. 13, p. 321˗330. 1970. 23 GUSCHLBAUER, W. Conformational analysis of ribonucleosides from proton- proton coupling constants. Biochimica et Biophysica Acta, v. 610, p. 47˗55. 1980. 24 LÖHR, F.; BLÜMEL, M.; SCHMIDT, J. M.; RÜTERJANS, H. Application of H(N)CA,CO-E.COSY experiments for calibrating the φ angular dependences of vicinal couplings J(C′i−1,Hi α), J(C′i−1,Ci β) and J(C′i−1,C′i) in proteins. Journal of Biomolecular NMR, v. 10, 107˗118. 1997. 25 PASSEY, R. F.; FAIRBAIRN, D. The conversion of fat to carbohydrate during embryonation os ascaris eggs. Canadian Journal of Biochemistry and Physiology, v. 35, p. 511˗525. 1957. 26 SUSSMAN, A. S.; LINGAPPA, B. T. Role of Trehalose in Ascosporos of Neurospora Tetrasperma. Science, v.130, p. 1343. 1959. 27 DUTRIEU, J. Variations du trehalose au cours de Lembryogenese Chez Bombyx Mori et de la metamorphose Chez Calliphora Erythrocephala. Comptes Rendus Hebdomadairesdes Seances de l’AcadémiedesSciences, v. 252, p. 347. 1961. 28 MADIN, K. A. C.; CROWE, J. H. Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. Journal of Experimental Zoology, v. 193, p. 335˗342. 1975. 29 CLEGG, J. S. Free glycerol in dormant cysts of the brine shrimp Artemia salina, and its disappearance during development. The Biological Bulletin, v. 123, p. 295˗301. 1962. 30 DUTRIEU, J. Observations biochimiques et physiologiques sur le développement d’Artemiasalina Leach. Archives de Zoologie Expérimentale et Générale, v. 99, p. 3˗128. 1960. 127 31 CROWE, J. H. Anhydrobiosis: An Unsolved Problem. The American Naturalist, v. 105, p. 563˗573. 1971. 32 CROWE, J. H.; CROWE, L. M.; JACKSON, S. A. Preservation of Structural and Functional Activity in Lyophilized Sarcoplasmic Reticulum. Archives of Biochemistry and Biophysics, v. 220, p. 477˗484. 1983. 33 CROWE, J. H.; CROWE, L. M.; MOURADIAN, R. Stabilization of Biological Membranes at Low Water Activities. Cryobiology, v. 20, p. 346˗356. 1983. 34 CROWE, J. H.; CROWE, L. M.; CHAPMAN, D. Preservation of Membranes in Anhydrobiotic Organisms: the Role of Trehalose. Science, v. 223, p. 701˗703. 1984. 35 CROWE, L. M.; MOURADIAN, R.; CROWE, J. H.; JACKSON, S. A.; WOMERSLEY, C. Effects of carbohydrates on membrane stability at low water activities. Biochimica et Biophysica Acta, v. 769, 141˗150. 1984. 36 LUZZATI, V.; HUSSON, F. The structure of the liquid-crystalline phases of lipid-water systems. The Journal of Cell Biology, v. 12, p. 207˗219. 1962. 37 CROWE, L. M.; CROWE, J. H. Hydration-Dependent Hexagonal Phase Lipid in a Biological Membrane. Archives of Biochemistry and Biophysics, v. 217, p. 582˗587. 1982. 38 CROWE, L. M.; CROWE, J. H.; CHAPMAN, D. Interaction of carbohydrates with dry dipalmitoylphosphatidylcholine. Archives of Biochemistry and Biophysics, v. 236, p. 289˗296. 1985. 39 GREEN, J. L.; ANGELL, C. A. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. The Journal of Physical Chemistry, v. 93, p. 2880˗2882. 1989. 40 KOSTER, K. L.; WEBB, M. S.; BRYANT, G.; LYNCH, D. V. Interactions between soluble sugars and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) during dehydration: vitrification of sugars alters the phase behavior of the phospholipid. Biochimica et Biophysica Acta, v. 1193, p. 143˗150. 1994. 128 41 CROWE, J. H.; LESLIE, S. B.; CROWE, L. M. Is vitrification sufficient to preserve liposomes during freeze-drying? Cryobiology, v. 31, p. 355˗366. 1994. 42 CROWE, L. M.; REID, D. S.; CROWE, J. H. Is Trehalose Special for Preserving Dry Biomaterials? Biophysical Journal, v. 71, p. 2087˗2093. 1996. 43 ALBERTORIO, F.; CHAPA, V. A.; CHEN, X.; DIAZ, A. J.; CREMER, P.S. The α,α-(1→1) Linkage of Trehalose Is Key to Anhydrobiotic Preservation. Journal of the American Chemical Society, v. 129, p. 10567˗10574. 2007. 44 KAPLA, J.; ENGSTRÖM, O.; STEVENSSON, B.; WOHLERT, J.; WIDMALM, G.; MALINIAK, A. Molecular dynamics simulations and NMR spectroscopy studies of trehalose˗lipid bilayer systems. Physical Chemistry and Chemical Physics, v. 17, p. 22438˗22447. 2015. 45 CRAMER, C. J. Essentials of Computational Chemistry: Theories and Models. 2nd ed. John Wiley & Sons, 2004. 46 SZABO, A.; OSTLUND, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, 1996. 47 ATKINS, P. W.; FRIEDMAN, R. S. Molecular Quantum Mechanics. 5th ed. Oxford University Press, 2010. 48 LEACH, A. R. Molecular Modelling: Principles and Applications. 2nd ed. Prentice Hall, 2001. 49 DEWAR, M. J. S.; THIEL, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, v. 99, p. 4899-4907. 1977. 50 STEWART, J. J. P. Optimization of parameters for semi-empirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, v. 13, p. 1173˗1213. 2007. 51 TSCHUMPER, G.S.; LEININGER, M. L.; HOFFMAN, B. C.; VALEEV, E. F.; SCHAEFER, H. F.; QUACK, M. Anchoring the water dimer potential energy surface 129 with explicitly correlated computations and focal point analyses. Journal of Chemical Physics, v. 116, p. 690˗701. 2002. 52 JENSEN, F. Introduction to Computational Chemistry. John Wiley & Sons, 1999. 53 KOHN, W.; SHAM, L. S. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Reviews, v. 140, p. A1133˗A1138. 1965. 54 GRIMME, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, v. 25, p. 1463˗1473. 2004. 55 GRIMME, S. Semiempirical GGA-type density functional constructed with a long- range dispersion correction. Journal of Computational Chemistry, v. 27, p. 1787˗1799. 2006. 56 BECKE, A. D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. Journal of Chemical Physics, v. 107, p. 8554˗8560. 1997. 57 BECKE, A. D. Correlation energy of an inhomogeneous electron gas: A coordinate- space model. Journal of Chemical Physics, v. 88, p. 1053˗1062. 1988. 58 DIRAC, P. A. M. Exchange phenomena in the Thomas atom. Proceedings of the Cambridge Philosophical Society, v. 26, p. 376˗385. 1930. 59 STOLL, H.; GOLKA, E.; PREUSS, H. Correlation energies in the spin-density functional formalism. Theoretica Chimica Acta, v. 55, p. 29˗41. 1980. 60 VOSKO, S. H.; WILK, L.; NUSAIR, M. Accurate spin-dependent electron liquid correlation energies from local spin density calculations: a critical analysis. Canadian Journal of Physics, v. 58, p. 1200˗1211. 1980. 61 PERDEW, J. P.; WANG, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, v. 45, p. 13244˗13249. 1992. 62 ALEM, M.; TOZER, D. J. Helium dimer dispersion forces and correlation potentials in density functional theory. Journal of Chemical Physics, v. 117, p. 11113˗11120. 2002. 130 63 ZIMMERLI, U.; PARRINELLO, M.; KOUMOUTSAKOS, P. Dispersion corrections to density functionals for water aromatic interactions. Journal of Chemical Physics, v. 120, p. 2693˗2699. 2004. 64 TSUZUKI, S.; LUETHI, H. P. Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model. Journal of Chemical Physics, v. 114, p. 3949˗3957. 2001. 65 WU, Q.; YANG, W. Empirical correction to density functional theory for van der Waals interactions. Journal of Chemical Physics, v. 116, p. 515˗524. 2002. 66 WU, X.; VARGAS, M. C.; NAYAK, S.; LOTRICH, V.; SCOLES, G. Towards extending the applicability of density functional theory to weakly bound systems. Journal of Chemical Physics, v. 115, p. 8748˗8757. 2001. 67 DA SILVA, C. O.; MENEZES, A. O.; COELHO, A. V.; DE OLIVEIRA, V. P.; SOARES, C. S. Quantum mechanical calculations on carbohydrates: What they can tell us? In: VERLI, H. Strategies for the Determination of Carbohydrates Structure and Conformation. Transworld Research Network, 2010. 68 HAUSER, H.; PASCHER, I.; PEARSON, R. H.; SUNDELL, S. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochimica et Biophysica Acta, v. 650, p. 21˗51. 1981. 69 BARTLETT, R. J. Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry. Journal of Physical Chemistry, v. 93, p. 1697˗1708. 1989. 70 MOLLER, C.; PLESSET, M. S. Note on an Approximation Treatment for Many- Electron Systems. Physical Review, v. 46, p. 618˗622. 1934. 71 HOHENBERG, P.; KOHN, W. Inhomogeneous Electron Gas. Physical Reviews, v. 136, p. B864˗B871. 1964. 72 BAUSCHLICHER, C. W., Jr.; RICCA, A.; PARTRIDGE, H.; LANGHOFF, S. R. Chemistry by Density Functional Theory. In: CHANG, D. P. Recent Advances in Density Functional Methods, part II. World Scientific, 1997. 131 73 MARTIN, J. M. L. Some observations and cases studies on basis set convergence in Density Functional Theory. In: GEERLINGS, P.; DEPROFT, F.; LANGENAEKER, W. Density Functional Theory: a bridge between Chemistry and Physics. Vrije Universiteit Brussel, 2000. 74 JOHNSON, E. R.; WOLKOW, R. A.; DILABIO, G. A. Application of 25 density functionals to dispersion-bound homomolecular dimers. Chemical Physics Letters, v. 394, p. 334˗338. 2004. 75 PEVERATI, R.; BALDRIDGE, K. K. Implementation and performance of DFT-D with respect to basis set and functional for study of dispersion interactions in nanoscale aromatic hydrocarbons. Journal of Chemical Theory and Computation, v. 4, p. 2030˗2048. 2008. 76 DITCHFIELD, R.; HEHRE, W. J.; POPLE, J. A. Self Consistent Molecular Orbital Methods. IX. An Extended Gaussian Type Basis for Molecular Orbital Studies of Organic Molecules. Journal of Chemical Physics, v. 54, p. 724˗728. 1971. 77 HEHRE, W. J.; DITCHFIELD, R.; POPLE, J. A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. Journal of Chemical Physics, v. 56, p. 2257˗2261. 1972. 78 SOARES, C. S.; da SILVA, C. O. Conformational study of methylphosphocholine: a prototype for phospholipid headgroups in membranes. Journal of Molecular Graphs and Modelling, v. 29, p. 82˗92. 2010. 79 KRISHNAMURTY, S.; STEFANOV, M.; MINEVA, T.; BÉGU, S.; DEVOISSELLE, J. M.; GOURSOT, A.; ZHU, R.; SALAHUB, D. R. Density Functional Theory-Based Conformational Analysis of a Phospholipid Molecule (Dimyristoyl Phosphatidylcholine). Journal of Physical Chemistry B, v. 112, p. 13433˗13442. 2008. 80 TVAROŠKA, I.; TARAVEL, F. R.; UTILLE, J. P.; CARVER, J. P. Quantum mechanical and NMR spectroscopy studies on the conformations of the hydroxymethyl and methoxymethyl groups in aldohexosides. Carbohydrate Research, v. 337, p. 353˗367. 2002. 132 81 HARMON, K. H.; GENNICK, I.; MADEIRA, S. L. Hydrogen bonding. IV. Correlation of infrared spectral properties with C-H...X hydrogen bonding and crystal habit in tetramethylammonium ion salts. Journal of Physical Chemistry, v. 78, p. 2585˗2591. 1974. 82 KABISCH, G. Raman spectra and crystal structure of polycrystalline tetramethylammonium salts. Journal of Raman Spectroscopy, v. 9, p. 279˗285. 1980. 83 GRDADOLNIK, J.; HADŽI, D. FT infrared and Raman investigation of saccharide-phosphatidylcholine interactions using novelstructure probes. Spectrochimica Acta Part A, v. 54, p. 1989˗2000. 1998.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/73869/2022%20-%20Cinthia%20Santos%20Soares.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6732
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2023-07-14T11:51:43Z No. of bitstreams: 1 2022 - Cinthia Santos Soares.pdf: 2995100 bytes, checksum: 45eb6cda77e7db0d56e6a4c20745b2f5 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-07-14T11:51:43Z (GMT). No. of bitstreams: 1 2022 - Cinthia Santos Soares.pdf: 2995100 bytes, checksum: 45eb6cda77e7db0d56e6a4c20745b2f5 (MD5) Previous issue date: 2022-07-06eng
Appears in Collections:Doutorado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Cinthia Santos Soares.pdf2022 - Cinthia Santos Soares2.92 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.