Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10279
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerreira, Leonardo
dc.date.accessioned2023-12-21T19:00:23Z-
dc.date.available2023-12-21T19:00:23Z-
dc.date.issued2017-12-15
dc.identifier.citationFERREIRA, Leonardo. Polimorfismo em genes candidatos relacionados ao metabolismo de lipídios e sua associação com características de qualidade do leite em caprinos. 2017. 64 f. Tese (Doutorado em Zootecnia) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2017.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10279-
dc.description.abstractNo Brasil, como parte da produção de leite caprino é voltada para a fabricação de derivados lácteos, a avaliação de parâmetros de qualidade, como os teores de proteína e de gordura, são fundamentais. Geralmente, programas de melhoramento que visam um aumento na qualidade do leite se valem apenas de mensurações de fenótipo, porém, esse processo pode ser aprimorado com a utilização de marcadores moleculares. Tendo em vista a busca por novos marcadores deste tipo em caprinos da raças Saanem e Alpina, com o presente trabalho objetivou-se identificar polimorfismos nos genes UCP2, LPL, SCD e PPARG e avaliar sua associação com o valor genético destes animais para características de produção e qualidade do leite. Também objetivou-se avaliar se, em caprinos da raça Alpina, polimorfismos descritos nos genes PPARG, UCP2 e GPAT4 resultam em alterações na sua expressão em células de descamação do epitélio da glândula mamária presentes no leite e se essa expressão varia no decorrer lactação. Para realizar a busca por polimorfismos, fragmentos dos genes UCP2, LPL, SCD e PPARG foram amplificados pela técnica de PCR e submetidos a eletroforese, sequênciamento e PCR-RFLP. Posteriormente, aproximadamente 180 animais foram genotipados para polimorfismos encontrados nos genes UCP2 e PPARG e os valores genéticos destes animais foram estimados a partir de dados de produção e composição do leite, através do modelo unicaracterística. A associação dos genótipos com os valores genéticos foi então avaliada através de análise de variância seguida por teste de Tukey a 5%. Para avaliar se polimorfismos nos genes PPARG, UCP2 e GPAT4 alteram sua expressão em células de descamação do epitélio da glândula mamária presentes no leite e se essa expressão varia no decorrer da lactação, foram realizadas coletas destas tipos celulares em 50 animais da raça Alpina aos 35 dias pós-parto, em 20 destes animais, também foram realizadas coletas aos 10, 50 e 140 dias pós-parto. Como ocorreu a degradação do RNA nestas amostras, não foi possível realizar as análises de expressão gênica neste material, com isso, optamos por utilizar os primers para avaliar a expressão destes genes em amostras de cDNA de músculo Longissimus lumborum provenientes de um outro experimento desta mesma equipe. Neste experimento, também avaliou-se se a expressão destes genes apresenta correlação com as características de peso ao abate, peso da carcaça e força de cisalhamento. Essa correlação foi avaliada através do teste de correlação Pearson seguido pelo teste T. Foram identificados polimorfismos nos genes PPARG, UCP2 e LPL. O polimorfismo identificado no gene PPARG apresentou associação com o valor genético dos animais para as características de produção total de leite, de gordura, de proteína, de extrato seco e de lactose. No gene UCP2, dois polimorfismos, ˗3708G/A e -2569G/A, apresentam associação com o valor genético dos animais para porcentagem de gordura, de proteína e de extrato seco. No músculo longissimus lumborum, a expressão do gene PPARG apresentou correlação positiva com a expressão do gene GPAT4. A partir destes resultados pode-se concluir que, foram identificados potenciais marcadores moleculares para produção e qualidade do leite, que a metodologia utilizada para coleta e armazenamento de células de descamação do epitélio da glândula mamária presentes no leite não é adequada para posterior análise de expressão gênica e que o gene GPAT4 é um provável gene alvo do PPAR-γ músculo longissimus lumborum de caprino.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectexpressão gênicapor
dc.subjectmarcadores molecularespor
dc.subjectvalor genéticopor
dc.subjectgene expressioneng
dc.subjectgenetic meriteng
dc.subjectmolecular markereng
dc.titlePolimorfismo em genes candidatos relacionados ao metabolismo de lipídios e sua associação com características de qualidade do leite em caprinospor
dc.title.alternativePolymorphism in candidates genes related to lipid metabolism and its association with milk quality characteristics in goatseng
dc.typeTesepor
dc.description.abstractOtherIn Brazil, as part of the goat milk produced is destined to the dairy industry, the evaluation of quality parameters, such as protein and fat content, is of great importance. Generally, breeding programs that aim an increase in milk quality, are based only on phenotype measurements, however, this process can be improved with the use of molecular markers. To search for new markers of this type in Saanem and Alpine goats, with this study we aimed to evaluate the association of polymorphisms in the UCP2, LPL, SCD and PPARG genes with dairy goats genetic value for milk production and quality characteristics. We also aimed to evaluate if polymorphisms described in the PPARG, UCP2 and GPAT4 genes results in alterations in its expression in milk mammary gland epithelial cells and if this expression changes during lactation. To search for polymorphisms, fragments of the UCP2, LPL, SCD and PPARG genes were amplified by the PCR technique and submitted to electrophoresis, sequencing and PCR-RFLP. After the identification and characterization of the polymorphisms, approximately 180 animals were genotyped for the polymorphisms found in the UCP2 and PPARG genes and the genetic values of these animals were estimated from milk production and composition data using the univariate model. The evaluation of the association of these polymorphisms with the genetic value of the animals was performed through analysis of variance followed by Tukey test with significance level of 5%. In order to evaluate whether polymorphisms in the PPARG, UCP2 and GPAT4 genes affect its expression in milk mammary gland epithelial cells and if its expression varies during lactation, collections of these cell types were performed in 50 Alpine animals at 35 days post-partum, and in 20 of these animals, samples were also collected at 10, 50 and 140 days post-partum. As RNA degradation occurred in these samples, it was not possible to perform the gene expression analyzes in this material, so we chose to use this primers to evaluate the expression of these genes in cDNA samples of Longissimus lumborum muscle from another experiment of this same team. In this experiment, it was also evaluated whether the expression of these genes correlates with the slaughter weight, carcass weight and shear force characteristics. This correlation was assessed using the Pearson correlation test followed by the T-test. Polymorphisms were identified in the PPARG, UCP2 and LPL genes. The polymorphism identified in the PPARG gene was associated with the genetic value of the animals for total milk production, fat production, protein production, dry extract production and lactose production. In the UCP2 gene, two polymorphisms, ˗3708G/A and ˗2569G/A, are associated with the genetic value of the animals for percentages of fat, protein and dry extract. In the Longissimus lumborum muscle, the expression of the PPARG gene showed a positive correlation with the expression of the GPAT4 gene. From these results, it can be concluded that, potential molecular markers for milk production and quality were identified, that the methodology used for collection and storage of milk mammary gland epithelial cells is not suitable for subsequent gene expression analysis and that the GPAT4 gene is a probable PPAR-γ target gene in the caprine longisimus lumborum muscle.eng
dc.contributor.advisor1Soares, Maria Amélia Menck
dc.contributor.advisor1ID487.620.079-91por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9850186052133290por
dc.contributor.referee1Soares, Maria Amélia Menck
dc.contributor.referee2Gasparino, Eliane
dc.contributor.referee3Araújo, Jean Luiz Simões
dc.contributor.referee4Silva, Heriberto Dias da
dc.contributor.referee5Ribeiro, Marina Mortati Dias
dc.creator.ID066.432.169-07por
dc.creator.Latteshttp://lattes.cnpq.br/1560720950612972por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Zootecniapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Zootecniapor
dc.relation.referencesAFFOURTIT, C.; BRAND, M. D. On the role of uncoupling protein-2 in pancreatic beta cells. Biochimica et Biophysica Acta (BBA) - Bioenergetics, v. 1777, n. 7–8, p. 973–979, jul. 2008. AKIRA, S. Functional Roles of STAT Family Proteins: Lessons from Knockout Mice. Stem Cells, v. 17, n. 3, p. 138–146, maio 1999. ALBERTS, B.; JOHNSON, A.; WALTER, P.; LEWIS, J.; RAFF, M.; ROBERTS, K.; WALTER P. Molecular biology of the cell. 4ª ed. Garland Science, 2004. ALTSCHUL, S. F.; MADDEN, T. L.; SCHÄFFER, A. A. Basic local alignment search tool. Journal of molecular biology, v. 215, n. 3, p. 403–10, 5 out. 1990. ANDERSEN, C. L.; JENSEN, J. L.; ØRNTOFT, T. F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Research, v. 64, n. 15, p. 5245–5250, 1 ago. 2004. ARMONI, M.; HAREL, C.; KARNI, S.; CHEN, H.; BAR-YOSEPH, F.; MAREL R. VER, M. R.; MICHAEL J. QUON, M. J.; KARNIELI, E. FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. The Journal of biological chemistry, v. 281, n. 29, p. 19881–91, 21 jul. 2006. ARSENIJEVIC, D. ONUMA, H.; PECQUEUR, C.; RAIMBAULT, S.; MANNING, B. S.; MIROUX, B.; COUPLAN, E.; ALVES-GUERRA, M.; GOUBERN, M.; SURWIT, R.; BOUILLAUD, F.; RICHARD, D.; COLLINS, S.; RICQUIER, D. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nature Genetics, v. 26, n. 4, p. 435–439, dez. 2000. AUBOEUF, D.; RIEUSSET, J.; FAJAS, L.; VALLIER, P.; FRERING, V.; RIOU, J. P.; STAELS, B.; AUWERX, J.; LAVILLE, M.; VIDAL, H. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes, v. 46, n. 8, p. 1319–27, ago. 1997. BADAOUI, B.; SERRADILLA, J. M.; TOMÀS, A.; URRUTIA, B.; ARES, J. L.; CARRIZOSA, J.; SÀNCHEZ, A.; JORDANA, J.; AMILLS, M. Short communication: Identification of two polymorphisms in the goat lipoprotein lipase gene and their association with milk production traits. Journal of dairy science, v. 90, n. 6, p. 3012–7, 2007. BAGATOLI, A. Polimorfismo e Expressão de Genes Envolvidos com a Mobilização de Gordura no Período do Pós-parto em Cabras Leiteiras. [s.l.] Universidade Federal Rural do Rio de Janeito, 2015. BARAK, Y.; NELSON, M. C.; ONG, E. S.; JONES, Y. Z.; RUIZ-LOZANO, P.; CHIEN, K. R.; KODER, A.; EVANS, R. M. PPAR gamma is required for placental, cardiac, and adipose tissue development. Molecular cell, v. 4, n. 4, p. 585–95, out. 1999. BAUMAN, D. E.; GRIINARI, J. M. Regulation and nutritional manipulation of milk fat: Low-fat milk syndrome. Livestock Production Science, v. 70, n. 1–2, p. 15–29, 2001. BAUMAN, D. E.; HARVATINE, K. J.; LOCK, A. L. Nutrigenomics, rumen-derived 52 bioactive fatty acids, and the regulation of milk fat synthesis. Annual review of nutrition, v. 31, p. 299–319, 21 ago. 2011. BAUMGARD, L. H.; CORL, B. A.; DWYER, D. A.; BAUMAN, D. E. Effects of conjugated linoleic acids (CLA) on tissue response to homeostatic signals and plasma variables associated with lipid metabolism in lactating dairy cows. Journal of animal science, v. 80, n. 5, p. 1285–93, maio 2002. BEIGNEUX, A. P.; VERGNES, L.; QIAO, X.; QUATELA, S.; DAVIS, R.; WATKINS, S. M.; COLEMAN, R. A.; WALZEM, R.L.; PHILIPS, M.; REUE, K.; YOUNG, S. G. Agpat6 - a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium. Journal of Lipid Research, v. 47, n. 4, p. 734–744, abr. 2006. BERNARD, L.; LEROUX, C.; HAYES, H.; GAUTIER, M.; CHILLIARD, Y.; MARTIN, P. Characterization of the caprine stearoyl-CoA desaturase gene and its mRNA showing an unusually long 3’-UTR sequence arising from a single exon. Gene, v. 281, n. 1–2, p. 53–61, 27 dez. 2001. BIKARD, D.; LOOT, C.; BAHAROGLU, Z.; MAZEL, D. Folded DNA in Action: Hairpin Formation and Biological Functions in Prokaryotes. Microbiology and Molecular Biology Reviews, v. 74, n. 4, p. 570–588, 1 dez. 2010. BIONAZ, M.; CHEN, S.; KHAN, M. J.; LOOR, J. J. Functional role of PPARs in ruminants: Potential targets for fine-tuning metabolism during growth and lactation. PPAR Research, v. 2013, 2013. BIONAZ, M.; LOOR, J. J. Gene networks driving bovine milk fat synthesis.pdf. BioMed Central, v. 9, p. 366, 2008. BLECKMANN, S. C.; BLENDY, J. A.; RUDOLPH, D.; MONAGHAN, A. P.; SCHMID, W.; SCHÜTZ, G. Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Molecular and cellular biology, v. 22, n. 6, p. 1919–25, mar. 2002. BOUTINAUD, M.; RULQUIN, H.; KEISLER, D. H.; DJIANE, J.; JAMMES, H. Use of somatic cells from goat milk for dynamic studies of gene expression in the mammary gland. Journal of animal science, v. 80, n. 5, p. 1258–69, maio 2002. BOUTINAUD, M.; GUINARD-FLAMENTA, J.; JAMMES, H. The number and activity of mammary epithelial cells, determining factors for milk production. Reproduction, nutrition, development, v. 44, n. 5, p. 499–508, 2004. BOUTINAUD, M.; JAMMES, H. Potential uses of milk epithelial cells: a review. Reproduction, nutrition, development, v. 42, n. 2, p. 133–47, 2002. BRADLEY, R. L.; FISHER, F. F. M.; MARATOS-FLIER, E. Dietary fatty acids differentially regulate production of TNF-alpha and IL-10 by murine 3T3-L1 adipocytes. Obesity (Silver Spring, Md.), v. 16, n. 5, p. 938–44, maio 2008. BRAND, M. D.; ESTEVES, T. C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metabolism, v. 2, n. 2, p. 85–93, ago. 2005. BRÁZDA, V.; LAISTER, R. C.; JAGELSKÁ, E. B.; ARROWSMITH, C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Molecular Biology, v. 12, n. 1, p. 33, 5 ago. 2011. BUCKLAND, P. R. The importance and identification of regulatory polymorphisms and their 53 mechanisms of action. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, v. 1762, n. 1, p. 17–28, jan. 2006. BURLEY, S. K. The TATA box binding protein. Current opinion in structural biology, v. 6, n. 1, p. 69–75, fev. 1996. BUSIELLO, R. A.; SAVARESE, S.; LOMBARDI, A. Mitochondrial uncoupling proteins and energy metabolism. Frontiers in physiology, v. 6, p. 36, 2015. BUSTIN, S. A.; BENES, V.; GARSON, J. A.; HELLEMANS, J.; HUGGETT, J.; KUBISTA, M.; MUELLER, R.; NOLAN, T.; PFAFFL, M. W.; SHIPLEY, G. L.; VANDESOMPELE, J.; WITTWER, C.T. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry, v. 55, n. 4, p. 611–622, 1 abr. 2009. CÁNOVAS, A.; RINCÓN, G.; BEVILACQUA, C.; ISLAS-TREJO, A.; BRENAUT, P.; HOVEY, RC.; BOUTINAUD, M.; MORGENTHALER, C.; VANKLOMPENBERG, M. K.; MARTIN, P.; MEDRANO, J. F. Comparison of five different RNA sources to examine the lactating bovine mammary gland transcriptome using RNA-Sequencing. Scientific Reports, v. 4, n. 1, p. 5297, 8 maio 2015. CHEN, X.; WANG, K.; CHEN, J.; GUO, J.; YIN, Y.; CAI, X.; GUO, X.; WANG, G.; YANG, R.; ZHU, L.; ZHANG, Y.; WANG, J.; XIANG, Y.; WENG, C.; ZEN, K.; ZHANG, J.; ZHANG, C. Y. In Vitro Evidence Suggests That miR-133a-mediated Regulation of Uncoupling Protein 2 (UCP2) Is an Indispensable Step in Myogenic Differentiation. Journal of Biological Chemistry, v. 284, n. 8, p. 5362–5369, 20 fev. 2009. CHEN, Y. Q.; KUO, M. S.; LI, S.; BUI, H. H.; PEAKE, D. A.; SANDERS, P.E.; THIBODEAUX, S. J.; CHU, S.; QIAN, Y. W.; ZHAO, Y.; BREDT, D. S.; MOLLER, D. E.; KONRAD, R. J.; BEIGNEUX, A. P.; YOUNG, S. G.; CAO, G. AGPAT6 Is a Novel Microsomal Glycerol-3-phosphate Acyltransferase. Journal of Biological Chemistry, v. 283, n. 15, p. 10048–10057, 11 abr. 2008. CHEVILLOTTE, E. C.; GIRALT, M.; MIROUX, B.; RICQUIER, D.; VILLARROYA, F. Uncoupling Protein-2 Controls Adiponectin Gene Expression in Adipose Tissue Through the Modulation of Reactive Oxygen Species Production. Diabetes, v. 56, n. 4, p. 1042–1050, 1 abr. 2007. CIESLAK, J.; MACKOWSKI, M.; CZYZAK-RUNOWSKA, G.; WOJTOWSKI, J.; PUPPEL, K.; KUCZYNSKA, B.; PAWLAK, P. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells. PLoS ONE, v. 10, n. 10, p. e0139688, 5 out. 2015. CLEMPSON, A. M.; POLLOTT, G. E.; BRICKELL, J. S.; BOURNE, N. E.; MUNCE, N.; WATHES, D. C. Polymorphisms in the autosomal genes for mitochondrial function TFAM and UCP2 are associated with performance and longevity in dairy cows. Animal, v. 5, n. 9, p. 1335–1343, 11 ago. 2011. COLEMAN, R. A.; LEE, D. P. Enzymes of triacylglycerol synthesis and their regulation. Progress in lipid research, v. 43, n. 2, p. 134–76, mar. 2004. CRYER, A. Tissue lipoprotein lipase activity and its action in lipoprotein metabolism. International Journal of Biochemistry, v. 13, n. 5, p. 525–541, 1981. D’ALFONSO, S.; RICHIARDI, P. M. A polymorphic variation in a putative regulation box of the TNFA promoter region. Immunogenetics, v. 39, n. 2, p. 150–4, 1994. 54 DEKKERS, J. C. M.; HOSPITAL, F. the Use of Molecular Genetics in the Improvement of Agricultural Populations. Nature Reviews Genetics, v. 3, n. 1, p. 22–32, 2002. DESVERGNE, B.; MICHALIK, L.; WAHLI, W. Transcriptional regulation of metabolism. Physiological reviews, v. 86, p. 465–514, 2006. DIANO, S.; HORVATH, T. L. Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends in Molecular Medicine, v. 18, n. 1, p. 52–58, jan. 2012. DONADELLI, M.; DANDO, I.; FIORINI, C.; PALMIERI, M. UCP2, a mitochondrial protein regulated at multiple levels. Cellular and Molecular Life Sciences, v. 71, n. 7, p. 1171–1190, 27 abr. 2014. DREYER, C.; KREY, G.; KELLER, H.; GIVEL, F.; HELFTENBEIN, G.; WAHLI, W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell, v. 68, n. 5, p. 879–887, 1992. ENOCH, H. G.; CATALÁ, A.; STRITTMATTER, P. Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. The Journal of biological chemistry, v. 251, n. 16, p. 5095–103, 25 ago. 1976. FAJAS, L.; AUBOEUF, D.; RASPÉ, E.; SCHOONJANS, K.; LEFEBVRE, A. M.; SALADIN, R.; NAJIB, J.; LAVILLE, M.; FRUCHART, J. C.; DEEB, S.; VIDAL-PUIG, A.; FLIER, J.; BRIGGS, M. R.; STAELS, B.; VIDAL, H.; AUWERX, J. The organization, promoter analysis, and expression of the human PPARgamma gene. The Journal of biological chemistry, v. 272, n. 30, p. 18779–89, 1997. FAN, Y. Y.; ZAN, L. S.; FU, C. Z.; TIAN, W. Q.; WANG, H. B.; LIU, Y. Y.; XIN, Y. P. Three novel SNPs in the coding region of PPARγ gene and their associations with meat quality traits in cattle. Molecular Biology Reports, v. 38, n. 1, p. 131–137, 21 jan. 2011. FERREIRA, L. Polimorfismo e Expressão do Gene da Ucp2 no Fígado de Cabras em Lactação. [s.l.] Universidade Federal Rural do Rio de Janeiro, 2013. FLEURY, C.; NEVEROVA, M.; COLLINS, S.; RAINBAULT, S.; CHAMPIGNY, O.; MEYRUEIS, L. C.; BOUILLAUD, M. F.; SURWIT, R S.; RICQUIER, D.; WARDEN, C. H. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nature Genetics, v. 15, n. 3, p. 269–272, 1 mar. 1997. FOX, K. E.; FANKELL, D. M.; ERICKSON, P. F.; MAJKA, S. M.; CROSSNO, J. T. JR.; KLEMM, D. J. Depletion of cAMP-response Element-binding Protein/ATF1 Inhibits Adipogenic Conversion of 3T3-L1 Cells Ectopically Expressing CCAAT/Enhancer-binding Protein (C/EBP) α, C/EBP β, or PPARγ2. Journal of Biological Chemistry, v. 281, n. 52, p. 40341–40353, 29 dez. 2006. FUCCI, A.; COLANGELO, T.; VOTINO, C.; PANCIONE, M.; SABATINO, L.; COLANTUONI, V. The role of peroxisome proliferator-activated receptors in the esophageal, gastric, and colorectal cancer. PPAR Research, v. 2012, 2012. GARCÍA-ROJAS, P.; ANTARAMIAN, A.; GONZÁLEZ-DÁVALOS, L.; VILLARROYA, F.; SHIMADA, A.; VARELA-ECHAVARRÍA, A.; MORA, O. Induction of peroxisomal proliferator-activated receptor gamma and peroxisomal proliferator-activated receptor gamma coactivator 1 by unsaturated fatty acids, retinoic acid, and carotenoids in preadipocytes obtained from bovine white adipose tissue1,2. Journal of animal science, v. 88, n. 5, p. 1801–8, maio 2010. 55 GARCIA, O. S. R. Utilização de marcadores moleculares na análise da característica de qualidade da carne em caprino (Capra hircus). [s.l.] Universidade Federal Rural do Rio de Janeiro, 2017. GARLID, K. D.; JABŮREK, M.; JEZEK, P. The mechanism of proton transport mediated by mitochondrial uncoupling proteins. FEBS letters, v. 438, n. 1–2, p. 10–4, 30 out. 1998. GARNEAU, H.; PAQUIN, M. C.; CARRIER, J. C.; RIVARD, N. E2F4 expression is required for cell cycle progression of normal intestinal crypt cells and colorectal cancer cells. Journal of Cellular Physiology, v. 221, n. 2, p. 350–358, nov. 2009. GOLDBERG, I. J.; MERKEL, M. Lipoprotein lipase: physiology, biochemistry, and molecular biology. Frontiers in bioscience: a journal and virtual library, v. 6, p. D388-405, 1 mar. 2001. GRIINARI, J. M.; MCGUIRE, M. A.; DWYER, D. A.; BAUMAN, D. E.; BARBANO, D. M.; HOUSE, W. A. The Role of Insulin in the Regulation of Milk Protein Synthesis in Dairy Cows. Journal of Dairy Science, v. 80, n. 10, p. 2361–2371, out. 1997. GROMMES, C.; LANDRETH, G. E.; HENEKA, M. T. Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. The Lancet Oncology, v. 5, n. 7, p. 419–29, jul. 2004. HAVEL, R. J.; GORDON, R. S. Idiopathic hyperlipemia: metabolic studies in an affected family. The Journal of clinical investigation, v. 39, n. 10, p. 1777–1790, 1960. HE, C.; WANG, C.; CHANG, Z. H.; GUO, B. L.; LI, R.; YUE, X. P.; LAN, X. Y.; CHEN, H.; LEI, C. Z. AGPAT6 polymorphism and its association with milk traits of dairy goats. Genetics and Molecular Research, v. 10, n. 4, p. 2747–2756, 4 nov. 2011. HE, W.; BARAK, Y.; HEVENER, A.; OLSON, P.; LIAO, D.; LE, J.; NELSON, M.; ONG, E.; OLEFSKY, J. M.; EVANS, R. M. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proceedings of the National Academy of Sciences of the United States of America, v. 100, n. 26, p. 15712–7, 23 dez. 2003. HEINEMANN, F. S.; OZOLS, J. Stearoyl-CoA desaturase, a short-lived protein of endoplasmic reticulum with multiple control mechanisms. Prostaglandins, leukotrienes, and essential fatty acids, v. 68, n. 2, p. 123–33, fev. 2003. HEVENER, A. L.; HE, W.; BARAK, Y.; LE, J.; BANDYOPADHYAY, G.; OLSON, P.; WILKES, J.; EVANS, R. M.; OLEFSKY, J. Muscle-specific Pparg deletion causes insulin resistance. Nature medicine, v. 9, n. 12, p. 1491–7, dez. 2003. HU, E.; LIANG, P.; SPIEGELMAN, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. The Journal of biological chemistry, v. 271, n. 18, p. 10697–703, 3 maio 1996. HUA, L.; WANG, J.; CHEN, F.; HU, S.; CHEN, H. The peroxisome proliferators-ativated receptor gamma (PPARG) gene polymorphisms and associations with body measurements of cattle. African Journal of Biotechnology, v. 10, n. 14, p. 2785–2790, 2011. HUANG, P.; CHANDRA, V.; RASTINEJAD, F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annual review of physiology, v. 72, p. 247–72, 2010. HUPPERT, J. L.; BALASUBRAMANIAN, S. Prevalence of quadruplexes in the human 56 genome. Nucleic Acids Research, v. 33, n. 9, p. 2908–2916, 16 maio 2005. HUPPERT, J. L.; BALASUBRAMANIAN, S. G-quadruplexes in promoters throughout the human genome. Nucleic acids research, v. 35, n. 2, p. 406–13, 2007. HURTAUD, C.; GELLY, C.; BOUILLAUD, F.; LÉVI-MEYRUEIS, C. Translation control of UCP2 synthesis by the upstream open reading frame. Cellular and Molecular Life Sciences, v. 63, n. 15, p. 1780–1789, 17 ago. 2006. HURTAUD, C.; GELLY, C.; CHEN, Z.; LÉVI-MEYRUEIS, C.; BOUILLAUD, F. Glutamine stimulates translation of uncoupling protein 2 mRNA. Cellular and Molecular Life Sciences, v. 64, n. 14, p. 1853–1860, 18 jul. 2007. ISSEMANN, I.; GREEN, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature, v. 347, n. 6294, p. 645–650, 18 out. 1990. KADEGOWDA, K.; BIONAZ, M.; PIPEROVA, L. S.; ERDMAN, R. A.; LOOR, J. J. Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. Journal of dairy science, v. 92, n. 9, p. 4276–89, 2009. KANG, Y.; HENGBO, S.; JUN, L.; JUN, L.; WANGSHENG, Z.; HUIBIN, T.; HUAIPING, S. PPARG modulated lipid accumulation in dairy GMEC via regulation of ADRP gene. Journal of Cellular Biochemistry, v. 116, n. 1, p. 192–201, 2015. KAUL, S.; BLACKFORD, J. A. JR.; CHEN, J.; OGRYZKO, V. V.; SIMONS, S. S. JR. Properties of the Glucocorticoid Modulatory Element Binding Proteins GMEB-1 and -2: Potential New Modifiers of Glucocorticoid Receptor Transactivation and Members of the Family of KDWK Proteins. Molecular Endocrinology, v. 14, n. 7, p. 1010–1027, jul. 2000. KAUSHIK, M.; KAUSHIK, S.; ROY, K.; SINGH, A.; MAHENDRU, S.; KUMAR, M.; CHAUDHARY, S.; AHMED, S.; KUKRETI, S. A bouquet of DNA structures: Emerging diversity. Biochemistry and Biophysics Reports, v. 5, p. 388–395, mar. 2016. KHAN, M. J.; HOSSEINI, A.; BURRELL, S.; ROCCO, S. M.; MCNAMARA, J. P.; LOOR, J. J. Change in subcutaneous adipose tissue metabolism and gene network expression during the transition period in dairy cows, including differences due to sire genetic merit. Journal of dairy science, v. 96, n. 4, p. 2171–82, 2013. KIKIN, O.; D’ANTONIO, L.; BAGGA, P. S. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic acids research, v. 34, n. Web Server issue, p. W676-82, 1 jul. 2006. KIM, J. K.; FILLMORE, J. J.; CHEN, Y.; YU, C.; MOORE, I. K.; PYPAERT, M.; LUTZ, E. P.; KAKO, Y.; VELEZ-CARRASCO, W.; GOLDBERG, I. J.; BRESLOW, J. L.; SHULMAN, G. I. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, v. 98, n. 13, p. 7522–7, 19 jun. 2001. KIM, J.; KLOOSTER, S.; SHAPIRO, D. J. Intrinsically bent DNA in a eukaryotic transcription factor recognition sequence potentiates transcription activation. The Journal of biological chemistry, v. 270, n. 3, p. 1282–8, 20 jan. 1995. KLIEWER, S. A.; FORMAN, B. M.; BLUMBERG, B.; ONG, E. S.; BORGMEYER, U.; MANGELSDORF, D. J.; UMESONO, K.; EVANS, R. M. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proceedings of 57 the National Academy of Sciences of the United States of America, v. 91, n. 15, p. 7355–9, 1994. KNIGHT, J. C.; UDALOVA, I.; HILL, A. V.; GREENWOOD, B. M.; PESHU, N.; MARSH, K.; KWIATKOWSKI, D. A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nature Genetics, v. 22, n. 2, p. 145–150, 1 jun. 1999. KRAUSS, S.; ZHANG, C.-Y.; LOWELL, B. B. The mitochondrial uncoupling-protein homologues. Nature Reviews Molecular Cell Biology, v. 6, n. 3, p. 248–261, 1 mar. 2005. KULIG, H.; ŻUKOWSKI K.; KOWALEWSKA-ŁUCZAK I.; ŁAKOMY P. SCD1 POLYMORPHISM AND BREEDING VALUE FOR MILK PRODUCTION TRAITS IN COWS. Bulgarian Journal of Agricultural Science Agricultural Academy, v. 22, n. 1, p. 131–134, 2016. LAMRI, A.; ABI KHALIL, C.; JAZIRI, R.; VELHO, G.; LANTIERI, O.; VOL, S.; FROGUEL, P.; BALKAU, B.; MARRE, M.; FUMERON, F. Dietary fat intake and polymorphisms at the PPARG locus modulate BMI and type 2 diabetes risk in the D.E.S.I.R. prospective study. International Journal of Obesity, v. 36, n. 2, p. 218–224, 3 fev. 2012. LEDESMA, A.; DE LACOBA, M. G.; RIAL, E. The mitochondrial uncoupling proteins. Genome biology, v. 3, n. 12, p. REVIEWS3015, 2002. LEE, J.-Y.; HA, J. J.; PARK, Y. S.; YI, J. K.; LEE, S.; MUN, S.; HAN, K.; KIM, J. J.; KIM, H. J.; OH, D. Y. Relationship between Single Nucleotide Polymorphisms in the Peroxisome Proliferator-Activated Receptor Gamma Gene and Fatty Acid Composition in Korean Native Cattle. Asian-Australasian journal of animal sciences, v. 29, n. 2, p. 184–94, fev. 2016. LEHRKE, M.; LAZAR, M. A. The many faces of PPAR-γ Cell, v. 123, n. 6, p. 993–999, 2005. LI, D.; YU, L.; WU, H.; SHAN, Y.; GUO, J.; DANG, Y.; WEI, Y.; ZHAO, S. Cloning and identification of the human LPAAT-zeta gene, a novel member of the lysophosphatidic acid acyltransferase family. Journal of Human Genetics, v. 48, n. 8, p. 438–442, 1 ago. 2003. LI, M.; PASCUAL, G.; GLASS, C. K. Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene. Molecular and cellular biology, v. 20, n. 13, p. 4699–707, jul. 2000. LI, N.; ZHAO, F.; WEI. C.; LIANG, M.; ZHANG, N.; WANG, C.; LI, Q.; GAO, X.; Function of SREBP1 in the milk fat synthesis of dairy cow mammary epithelial cells. International journal of molecular sciences, v. 15, n. 9, p. 16998–7013, 2014. LIM, D.; KIM, N.K.; PARK, H. S.; LEE, S. H.; CHO, Y. M.; OH, S. J.; KIM, T. H.; KIM, H. Identification of candidate genes related to bovine marbling using protein-protein interaction networks. International journal of biological sciences, v. 7, n. 7, p. 992–1002, 2011. LING, Y.; WANG, K.; YIN, J.; ZHU, L.; ZHANG, X.; HAN, C.; DING, J. Molecular analyses for genetic polymorphisms of the lpl gene and their associations with intramuscular fat content in goats. Journal of Animal and Plant Science, v. 25, n. 5, 2015. LITTLEJOHN, M. D.; TIPLADY, K.; LOPDELL, T.; LAW, T. A.; SCOTT, A.; HARLAND, C.; SHERLOCK, R.; HENTY, K.; OBOLONKIN, V.; LEHNERT, K.; MACGIBBON, A.; SPELMAN, R. J.; DAVIS, S. R.; SNELL R. G. Expression Variants of the Lipogenic AGPAT6 Gene Affect Diverse Milk Composition Phenotypes in Bos taurus. PLoS ONE, v. 58 9, n. 1, p. e85757, 21 jan. 2014. LIU, J.; WANG, Y.; BIRNBAUM, M. J.; STOFFERS, D. A. Three-amino-acid-loop-extension homeodomain factor Meis3 regulates cell survival via PDK1. Proceedings of the National Academy of Sciences, v. 107, n. 47, p. 20494–20499, 23 nov. 2010. LIU, P. H.; CHANG, Y. C.; JIANG, Y. D.; CHEN, W. J.; CHANG, T. J.; KUO, S. S.; LEE, K. C.; HSIAO, P. C.; CHIU, K. C.; CHUANG, L. M. Genetic Variants of TCF7L2 Are Associated with Insulin Resistance and Related Metabolic Phenotypes in Taiwanese Adolescents and Caucasian Young Adults. The Journal of Clinical Endocrinology & Metabolism, v. 94, n. 9, p. 3575–3582, set. 2009a. LIU, Y. CHEN, L.; XU, X.; VICAUT, E.; SERCOMBE, R. Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2. BMC physiology, v. 9, p. 17, 22 set. 2009b. LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, v. 25, n. 4, p. 402–408, dez. 2001. LODHI, M. A.; YE, G.; WEEDEN, N. F.; REISCH, B. I. A simple and efficient method for DNA extraction from grapevine cultivars andVitis species. Plant Molecular Biology Reporter, v. 12, n. 1, p. 6–13, mar. 1994. MAAREK, Y. S.; JACOVI, M.; SHTALHAIM, M.; UR, S.; ZERNIK, D.; BEN-SHAUL, I. Z. WebCutter: a system for dynamic and tailorable site mapping. Computer Networks and ISDN Systems, v. 29, n. 8–13, p. 1269–1279, set. 1997. MACKLE, T. R.; DWYER, D. A.; INGVARTSEN, K. L.; CHOUINARD, P. Y.; ROSS, D. A.; BAUMAN D. E. Effects of Insulin and Postruminal Supply of Protein on Use of Amino Acids by the Mammary Gland for Milk Protein Synthesis. Journal of Dairy Science, v. 83, n. 1, p. 93–105, jan. 2000. MANIATIS, T.; JEFFREY, A.; VAN DESANDE, H. Chain length determination of small double- and single-stranded DNA molecules by polyacrylamide gel electrophoresis. Biochemistry, v. 14, n. 17, p. 3787–94, 26 ago. 1975. MATHELIER, A.; FORNES, O.; ARENILLAS, D. J.; CHEN, C. Y.; DENAY, G.; LEE, J.; SHI, W.; SHYR, C.; TAN, G.; WORSLEY-HUNT, R.; ZHANG, A. W.; PARCY, F.; LENHARD, B.; SANDELIN, A.; WASSERMAN, W. W. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, v. 44, n. D1, p. D110–D115, 4 jan. 2016. MATSUSUE, K.; HALUZIK, M.; LAMBERT, G.; YIM, S. H.; GAVRILOVA, O.; WARD, J. M.; BREWER B. JR.; REITMAN, M. L.; GONZALEZ, F. J. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. The Journal of clinical investigation, v. 111, n. 5, p. 737–47, mar. 2003. MCWILLIAM, H.; LI, W.; ULUDAG, M.; SQUIZZATO, S.; PARK, Y. M.; BUSO, N.; COWLEY, A, P.; LOPEZ, R. Analysis Tool Web Services from the EMBL-EBI. Nucleic acids research, v. 41, n. Web Server issue, p. W597-600, 1 jul. 2013. MEAD, J. R.; IRVINE, S. A.; RAMJI, D. P. Lipoprotein lipase: Structure, function, regulation, and role in disease. Journal of Molecular Medicine, v. 80, n. 12, p. 753–769, 2002. 59 MEDVEDEV, A. V.; SNEDDEN, S. K.; RAIMBAULT, S.; RICQUIER, D.; COLLINS, S. Transcriptional Regulation of the Mouse Uncoupling Protein-2 Gene. Journal of Biological Chemistry, v. 276, n. 14, p. 10817–10823, 6 abr. 2001. MELE, M.; CONTE, G.; CASTIGLIONI, B.; CHESSA, S.; MACCIOTTA, N. P.; SERRA, A.; BUCCIONI, A.; PAGNACCO, G.; SECCHIARI, P. Stearoyl-Coenzyme A Desaturase Gene Polymorphism and Milk Fatty Acid Composition in Italian Holsteins. Journal of Dairy Science, v. 90, n. 9, p. 4458–4465, set. 2007. MERTZ, J. E.; BERG, P. Viable deletion mutants of simian virus 40: selective isolation by means of a restriction endonuclease from Hemophilus parainfluenzae. Proceedings of the National Academy of Sciences of the United States of America, v. 71, n. 12, p. 4879–83, dez. 1974. MISZTAL, REMLF90 Manual. Disponível em: <http://nce.ads.uga.edu/~ignacy/numpub/blupf90/docs/remlf90.pdf> 2002. Acesso em: 13/3/2008. MIYAZAKI, M.; NTAMBI, J. M. Role of stearoyl-coenzyme A desaturase in lipid metabolism. Prostaglandins, Leukotrienes and Essential Fatty Acids, v. 68, n. 2, p. 113–121, fev. 2003. MOIOLI, B.; D’ANDREA, M.; PILLA, F. Candidate genes affecting sheep and goat milk quality. Small Ruminant Research, v. 68, n. 1–2, p. 179–192, 2007. MURA, M. C.; DAGA, C.; BODANO, S.; PALUDO, M.; LURIDIANA, S.; PAZZOLA, M.; DETTORI, M. L.; VACCA, G. M.; CARCANGIU, V. Development of a RNA extraction method from milk for gene expression study in the mammary gland of sheep. Molecular Biology Reports, v. 40, n. 3, p. 2169–2173, 24 mar. 2013. NAGLE, C. A.; VERGNES, L.; DEJONG, H.; WANG, S.; LEWIN, T.M.; REUE, K.; COLEMAN, R. A. Identification of a novel sn-glycerol-3-phosphate acyltransferase isoform, GPAT4, as the enzyme deficient in Agpat6 −/− mice. Journal of Lipid Research, v. 49, n. 4, p. 823–831, abr. 2008. NATIONAL RESEARCH COUNCIL. Nutrient Requirements of Small Ruminants. Washington, D.C.: National Academies Press, 2007. NELSON, D. L.; COX, M. M. Lehninger Principles of Biochemistry. 5th. ed. New York: W. H. Freeman and Company, 2008. NISHIKAWA, J.; AMANO, M.; FUKUE, Y.; TANAKA, S.; KISHI, H.; HIROTA, Y.; YODA, K.; OHYAMA, T. Left-handedly curved DNA regulates accessibility to cis-DNA elements in chromatin. Nucleic acids research, v. 31, n. 22, p. 6651–62, 15 nov. 2003. NTAMBI, J. M.; MIYAZAKI, M.; STOEHR, J. P.; LAN, H.; KENDZIORSKI, C. M.; YANDELL, B. S.; SONG, Y.; COHEN, P.; FRIEDMAN, J. M.; ATTIE, A. D. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proceedings of the National Academy of Sciences of the United States of America, v. 99, n. 17, p. 11482–6, 20 ago. 2002. NTAMBI, J.; MIYAZAKI, M. Regulation of stearoyl-CoA desaturases and role in metabolism. Progress in Lipid Research, v. 43, n. 2, p. 91–104, mar. 2004. O-SULLIVAN, I.; ZHANG, W.; WASSERMAN, D. H.; LIEW, C. W.; LIU, J.; PAIK, J.; DEPINHO R. A.; STOLZ, D. B.; KAHN, C. R.; SCHWARTZ, M. W.; UNTERMAN, T. G. 60 FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nature Communications, v. 6, p. 7079, 12 maio 2015. OH, D.; LEE, Y.; LEE, C.; CHUNG, E.; YEO, J. Association of bovine fatty acid composition with missense nucleotide polymorphism in exon7 of peroxisome proliferator-activated receptor gamma gene. Animal Genetics, v. 43, n. 4, p. 474–474, 1 ago. 2012. OH, D.; LA, B.; LEE, Y.; BYUN, Y.; LEE, J.; YEO, G.; YEO, J. Identification of novel single nucleotide polymorphisms (SNPs) of the lipoprotein lipase (LPL) gene associated with fatty acid composition in Korean cattle. Molecular Biology Reports, v. 40, n. 4, p. 3155–3163, 28 abr. 2013. PARVIN, J. D.; MCCORMICK, R. J.; SHARP, P. A.; FISHER, D. E. Pre-bending of a promoter sequence enhances affinity for the TATA-binding factor. Nature, v. 373, n. 6516, p. 724–727, 23 fev. 1995. PATON, C. M.; NTAMBI, J. M. Biochemical and physiological function of stearoyl-CoA desaturase. AJP: Endocrinology and Metabolism, v. 297, n. 1, p. E28–E37, 1 jul. 2009. PECQUEUR, C.; CASSARD-DOULCIER, A. M.; RAIMBAULT, S.; MIROUX, B.; FLEURY, C.; GELLY, C.; BOUILLAUD, F.; RICQUIER, D. Functional Organization of the Human Uncoupling Protein-2 Gene, and Juxtaposition to the Uncoupling Protein-3 Gene. Biochemical and Biophysical Research Communications, v. 255, n. 1, p. 40–46, 5 fev. 1999. PECQUEUR, C.; ALVES-GUERRA, M. C.; GELLY, C.; LEVI-MEYRUEIS, C.; COUPLAN, E.; COLLINS, S.; RICQUIER, D.; BOUILLAUD, F.; MIROUX, B. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. The Journal of biological chemistry, v. 276, n. 12, p. 8705–12, 23 mar. 2001. PERDIGÃO, N. R. DE O. F.; OLIVEIRA, L. S.; CORDEIRO, A. G. P. C. Sistemas de Produção de Caprinos Leiteiros. Anais do 13o Workshop sobre Produção de Caprinos na Região da Mata Atlântica. Anais. Coronel Pacheco - MG, 2016. PETERS, J. M.; SHAH, Y. M.; GONZALEZ, F. J. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nature Reviews Cancer, v. 12, n. 3, p. 181–195, 2012. PFAFFL, M. W.; TICHOPAD, A.; PRGOMET, C.; NEUVIANS, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters, v. 26, n. 6, p. 509–515, mar. 2004. PI, J.; COLLINS, S. Reactive oxygen species and uncoupling protein 2 in pancreatic β-cell function. Diabetes, Obesity and Metabolism, v. 12, n. s2, p. 141–148, 1 out. 2010. PIRISI, A.; LAURET, A.; DUBEUF, J. P. Basic and incentive payments for goat and sheep milk in relation to quality. Small Ruminant Research, v. 68, n. 1–2, p. 167–178, 1 mar. 2007. QIN, Y.; ZHANG, Y.; YIN, Y.; XU, F.; GAO, B.; SHI, Q.; ZHU, C.; LI, W.; LI, B. Cloning of Xuhuai goat lipoprotein lipase gene and the preparation of transgenic sheep. Molecular Biology Reports, v. 39, n. 8, p. 8439–8446, 19 ago. 2012. RAYNAL-LJUTOVAC, K.; LAGRIFFOUL G.; PACCARD P.; GUILLETA I.; CHILLIARD Y. Composition of goat and sheep milk products: An update. Small Ruminant Research, v. 61 79, n. 1, p. 57–72, set. 2008. RHODES, D.; LIPPS, H. J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Research, v. 43, n. 18, p. 8627–8637, 15 out. 2015. RODRIGUEZ, S.; GAUNT, T. R.; DAY, I. N. M. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. American journal of epidemiology, v. 169, n. 4, p. 505–14, 15 fev. 2009. ROSEN, E. D. SARRAF, P.; TROY. A. E.; BRADWIN, G.; MOORE, K.; MILSTONE, D. S.; SPIEGELMAN, B. M.; MORTENSEN, R. M. PPAR gamma Is Required for the Differentiation of Adipose Tissue in vivo and in vitro Molecular cell. v. 4, p. 611–617, 1999. ROTHSCHILD, M.; SOLLER, M. Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe, v. 8, p. 13–20, 1997. ROUSSET, S.; ALVES-GUERRA, M.; MOZO, J.; MIROUX, B.; CASSARD-DOULCIER, A.; BOUILLAUD, F.; RICQUIER, D. The biology of mitochondrial uncoupling proteins. Diabetes, v. 53 Suppl 1, p. S130-5, fev. 2004. RUPPRECHT, A.; BRÄUER, A. U.; SMORODCHENKO, A.; GOYN, J.; HILSE, K. E.; SHABALINA, I. G.; INFANTE-DUARTE, C.; POHL, E. E. Quantification of Uncoupling Protein 2 Reveals Its Main Expression in Immune Cells and Selective Up-Regulation during T-Cell Proliferation. PLoS ONE, v. 7, n. 8, p. e41406, 3 ago. 2012. RUTTER, G. A. Nutrient-secretion coupling in the pancreatic islet beta-cell: recent advances. Molecular aspects of medicine, v. 22, n. 6, p. 247–84, dez. 2001. SANGER, F.; NICKLEN, S.; COULSON, A. R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, v. 74, n. 12, p. 5463–7, dez. 1977. SCANU, A. Serum high-density lipoprotein: effect of change in structure on activity of chicken adipose tissue lipase. Science, v. 153, n. 3736, p. 640–1, 5 ago. 1966. SHERMAN, E. L.; NKRUMAH, J. D.; MURDOCH, B. M.; LI, C.; WANG, Z.; FU, A.; MOORE, S. S. Polymorphisms and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associations with measures of growth, performance, feed efficiency, and carcass merit in beef cattle. Journal of Animal Science, v. 86, n. 1, p. 1–16, 18 set. 2008. SHI, H.; ZHAO, W.; ZHANG, C.; SHAHZAD, K.; LUO, J.; LOOR, J. J. Transcriptome-Wide Analysis Reveals the Role of PPAR γ Controlling the Lipid Metabolism in Goat Mammary Epithelial Cells. PPAR Research, v. 2016, p. 1–11, 2016. SHI, H. B.; ZHAO, W. S.; LUO, J.; YAO, D. W.; SUN, Y. T.; LI, J.; SHI, H. P.; LOOR, J. J. Peroxisome proliferator-activated receptor γ1 and γ2 isoforms alter lipogenic gene networks in goat mammary epithelial cells to different extents. Journal of Dairy Science, v. 97, n. 9, p. 5437–5447, set. 2014. SILVER, N.; BEST, S.; JIANG, J.; THEIN, S. L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC molecular biology, v. 7, p. 33, 6 out. 2006. SOARES, M. A. M.; RODRIGUES, M. T.; MOGNOL, G. P.; RIBEIRO, L. F. C.; SILVA, J. L. C.; BRANCALHÃO, R. M. C. Polimorfismo do gene da alpha s1 -caseína em um rebanho leiteiro na região sudeste do Brasil. Revista Brasileira de Zootecnia, v. 3598, 2009. 62 SORET, B.; LEE, H. J.; FINLEY, E.; LEE, S. C.; VERNON, R. G. Regulation of differentiation of sheep subcutaneous and abdominal preadipocytes in culture. Journal of Endocrinology, v. 161, n. 3, p. 517–524, 1999. STATISTICAL ANALYSIS SYSTEM - SAS. User's guide. Cary: SAS Institute, 2002. 525p. STELLWAGEN, N. C.; STELLWAGEN, E. Effect of the matrix on DNA electrophoretic mobility. Journal of Chromatography, v. 1216, n. 10, p. 1917–1929, 6 mar. 2009. SUÁREZ-VEGA, A.; GUTIÉRREZ-GIL, B.; KLOPP, C.; ROBERT-GRANIE, C.; TOSSER-KLOPP, G.; ARRANZ, J. J. Characterization and Comparative Analysis of the Milk Transcriptome in Two Dairy Sheep Breeds using RNA Sequencing. Scientific Reports, v. 5, p. 18399, 18 dez. 2015. SUNDVOLD, H.; GRINDFLEK, E.; LIEN, S. Tissue distribution of porcine peroxisome proliferator-activated receptor alpha: detection of an alternatively spliced mRNA. Gene, v. 273, n. 1, p. 105–13, 2001. TAKEUCHI, K.; REUE, K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. AJP: Endocrinology and Metabolism, v. 296, n. 6, p. E1195–E1209, 1 jun. 2009. TANIGUCHI, M.; UTSUGI, T.; OYAMA, K.; MANNEN, H.; KOBAYASHI, M.; TANABE, Y.; OGINO, A.; TSUJI, S. Genotype of stearoyl-coA desaturase is associated with fatty acid composition in Japanese Black cattle. Mammalian genome : official journal of the International Mammalian Genome Society, v. 15, n. 2, p. 142–8, fev. 2004. TODD, A. K.; JOHNSTON, M.; NEIDLE, S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Research, v. 33, n. 9, p. 2901–2907, 16 maio 2005. TONTONOZ, P.; HU, E.; SPIEGELMAN, B. M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell, v. 79, n. 7, p. 1147–56, 30 dez. 1994. TORAL, P. G.; HERVÁS, G.; SUÁREZ-VEGA, A.; ARRANZ, J. J.; FRUTOS, P. Isolation of RNA from milk somatic cells as an alternative to biopsies of mammary tissue for nutrigenomic studies in dairy ewes. Journal of Dairy Science, v. 99, n. 10, p. 8461–8471, out. 2016. TRAYHURN, P.; BEATTIE, J. H. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. The Proceedings of the Nutrition Society, v. 60, n. 3, p. 329–39, ago. 2001. TUDISCO, R.; GROSSI, M.; CALABRÒ, S.; CUTRIGNELLI, M. I.; MUSCO, N.; ADDI, L.; INFASCELLI, F. Influence of pasture on goat milk fatty acids and Stearoyl-CoA desaturase expression in milk somatic cells. Small Ruminant Research, v. 122, n. 1–3, p. 38–43, 1 nov. 2014. TURABELIDZE, A.; GUO, S.; DIPIETRO, L. A. Importance of housekeeping gene selection for accurate reverse transcription-quantitative polymerase chain reaction in a wound healing model. Wound Repair and Regeneration v. 18, n. 5, p. 460–466 , 19 ago. 2010. VANDESOMPELE, J.; DE PRETER, K.; PATTYN, F.; POPPE, B.; VAN ROY, N.; DE PAEPE A.; SPELEMAN, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome biology, v. 3, n. 7, p. 63 RESEARCH0034, 18 jun. 2002. VERBEKE, J.; VAN POUCKE, M.; PEELMAN, L.; DE VLIEGHER, S. Differential expression of CXCR1 and commonly used reference genes in bovine milk somatic cells following experimental intramammary challenge. BMC Genetics, v. 16, n. 1, p. 40, 22 dez. 2015. VERGNES, L.; BEIGNEUX, A. P.; DAVIS, R.; WATKINS, S. M.; YOUNG, S. G.; REUE, K. Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity. Journal of lipid research, v. 47, n. 4, p. 745–54, abr. 2006. WANG, H.; ASTARITA, G.; TAUSSIG, M. D.; BHARADWAJ, K. G.; DIPATRIZIO, N. V.; NAVE, K. A.; PIOMELLI, D.; GOLDBERG, I. J.; ECKEL, R. H. Deficiency of Lipoprotein Lipase in Neurons Modifies the Regulation of Energy Balance and Leads to Obesity. Cell Metabolism, v. 13, n. 1, p. 105–113, jan. 2011. WANG, Y.; YANG, W.; GUI, L.; WANG, H.; ZAN, L. Association and expression analyses of the Ucp2 and Ucp3 gene polymorphisms with body measurement and meat quality traits in Qinchuan cattle. Journal of Genetics, v. 95, n. 4, p. 939–946, 7 dez. 2016. WELCH, J. S.; RICOTE, M.; AKIYAMA, T. E.; GONZALEZ, F. J.; GLASS, C. K. PPARgamma and PPARdelta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages. Proceedings of the National Academy of Sciences of the United States of America, v. 100, n. 11, p. 6712–7, 27 maio 2003. WELLEN, K. E.; HOTAMISLIGIL, G. S. Obesity-induced inflammatory changes in adipose tissue. The Journal of clinical investigation, v. 112, n. 12, p. 1785–8, dez. 2003. WENDEL, A. A.; LEWIN, T. M.; COLEMAN, R. A. Glycerol-3-phosphate acyltransferases: Rate limiting enzymes of triacylglycerol biosynthesis. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, v. 1791, n. 6, p. 501–506, jun. 2009. WICKRAMASINGHE, S.; Wickramasinghe, S.; Rincon, G.; Islas-Trejo, A.; Medrano, J. F. Transcriptional profiling of bovine milk using RNA sequencing. BMC genomics, v. 13, p. 45, 25 jan. 2012. WILLIAMS, J. L. The use of marker-assisted selection in animal breeding and biotechnology. Revue scientifique et technique (International Office of Epizootics), v. 24, n. 1, p. 379–91, 2005. XIE, F.; XIAO, P.; CHEN, D.; XU, L.; ZHANG, B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology, v. 80, n. 1, p. 75–84, set. 2012. YONEZAWA, T.; HAGA, S.; KOBAYASHI, Y.; KATOH, K.; OBARA, Y. Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells. Biochemical and biophysical research communications, v. 367, n. 4, p. 729–35, 21 mar. 2008. ZHANG, C. L.; GAO, X. Y.; SHAO, R. Y.; WANG, Y. H.; FANG, X. T.; CHEN, H. Stearoyl-CoA Desaturase (SCD) Gene Polymorphism in Goat Breeds. Biochemical Genetics, v. 48, n. 9–10, p. 822–828, 14 out. 2010. ZHANG, C. C.; BAFFY, G.; PERRET, P.; KRAUSS, S.; PERONI, O.; GRUJIC, D.; HAGEN, T.; VIDAL-PUIG, A. J.; BOSS, O.; KIM, Y.; ZHENG, X. X.; WHEELER, M. B.; SHULMAN, G. I.; CHAN, C. B.; LOWELL, B. B. Uncoupling protein-2 negatively regulates 64 insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell, v. 105, n. 6, p. 745–55, 15 jun. 2001. ZHANG, Y.; PROENCA, R.; MAFFEI, M.; BARONE, M.; LEOPOLD, L.; FRIEDMAN, J. M. Positional cloning of the mouse obese gene and its human homologue. Nature, v. 372, n. 6505, p. 425–432, 1 dez. 1994. ZHANG, Y.; ZHANG, Y.; ZHANG, X.; LIU, X.; LI, Y.; DING, J.; ZHANG, X.; ZHANG, Y. Reference gene screening for analyzing gene expression across goat tissue. Asian-Australasian journal of animal sciences, v. 26, n. 12, p. 1665–71, dez. 2013. ZHAO, W. S.; ZHAO, W. S.; HU, S. L.; YU, K.; WANG, H.; WANG, W.; LOOR, J.; LUO, J. Lipoprotein Lipase, Tissue Expression and Effects on Genes Related to Fatty Acid Synthesis in Goat Mammary Epithelial Cells. International Journal of Molecular Sciences, v. 15, n. 12, p. 22757–22771, 9 dez. 2014. ZHENG, K.; CHEN, Z.; HAO, Y. H.; TAN, Z. Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA. Nucleic Acids Research, v. 38, n. 1, p. 327–338, jan. 2010. ZHU, M.; ZHAO, S. Candidate gene identification approach: progress and challenges. International journal of biological sciences, v. 3, n. 7, p. 420–7, 25 out. 2007. ZHU, Y.; QI, C.; KORENBERG, J. R.; CHEN, X. N.; NOYA, D.; RAO, M. S.; REDDY, J. K. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proceedings of the National Academy of Sciences of the United States of America, v. 92, n. 17, p. 7921–7925, 1995. ZIDI, A.; FERNÁNDEZ-CABANÁS, V. M.; URRUTIA, B.; CARRIZOSA, J.; POLVILLO, O.; GONZÁLEZ-REDONDO, P.; JORDANA, J.; GALLARDO, D.; AMILLS, M.; SERRADILLA, J. M. Association between the polymorphism of the goat stearoyl-CoA desaturase 1 (SCD1) gene and milk fatty acid composition in Murciano-Granadina goats. Journal of Dairy Science, v. 93, n. 9, p. 4332–4339, set. 2010. ZUKER, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research, v. 31, n. 13, p. 3406–15, 1 jul. 2003.por
dc.subject.cnpqZootecniapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/64845/2017%20-%20Leonardo%20Ferreira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4584
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-04-29T13:53:58Z No. of bitstreams: 1 2017 - Leonardo Ferreira.pdf: 2263466 bytes, checksum: d944bf79febb93fb8c515ac69e506343 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-04-29T13:53:58Z (GMT). No. of bitstreams: 1 2017 - Leonardo Ferreira.pdf: 2263466 bytes, checksum: d944bf79febb93fb8c515ac69e506343 (MD5) Previous issue date: 2017-12-15eng
Appears in Collections:Doutorado em Zootecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2017 - Leonardo Ferreira.pdf2017 - Leonardo Ferreira2.21 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.