Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10284
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMachado, Noedson de Jesus Beltrão
dc.date.accessioned2023-12-21T19:00:24Z-
dc.date.available2023-12-21T19:00:24Z-
dc.date.issued2019-10-11
dc.identifier.citationMACHADO, Noédson de Jesus Beltrão. Xilanase e probiótico em dietas para frangos de corte. 2019. 67 f. Tese (Doutorado em Zootecnia, Produção Animal). Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10284-
dc.description.abstractAs dietas de frangos de corte são em geral constituídas por ingredientes de origem vegetal, que podem apresentar elevada quantidade de polissacarídeos não amiláceos, que são considerados fatores antinutricionais na nutrição de frangos. Dessa forma, o uso de enzimas e probióticos podem assegurar maiores disponibilidades de nutrientes de origem vegetal minimizando os efeitos dos PNA’s. Foram realizados dois experimentos com o objetivo de estudar a suplementação de xilanase e probiótico em dietas para frangos corte. O experimento I foi realizado no IFAM/Parintins, em galpão experimental, conduzido em um delineamento inteiramente casualizado, com quatro tratamentos, com seis repetições de sete aves cada. Para a composição dos tratamentos foram uasados os produtos comerciais Colostrum Mix para a fonte do probiótico e a Smyzime Xylanase para a fonte enzimática, sendo realizada valorização da enzima em 150 kcal/kg de ração. Os tratamentos consistiram em: dieta referência; dieta referência com adição de probiótico; dieta basal com adição de xilanase e dieta basal com adição de xilanase e probiótico. A dieta referência atendia todas as exigências nutricionais dos frangos, enquanto a dieta basal foi formulada com menos 150 kcal de energia metabolizável por quilo de ração. Foram avaliados desempenho, carcaterísticas de carcaça e viscosidade intestinal. Já o experimento II, foi realizado em gaiolas metálicas, na UFAM/Manaus, conduzido em delinemanto e com tratamentos semelhantes ao descrito anteriormente, sendo que todas as dietas foram suplementadas com farelo de trigo e as aves desafiadas via oral com vacina comercial de Eimeria administrada 10x acima da recomendação. Foram avaliados, desempenho, carcaça, viscosidade e pH intestinal e microbiota ileal. No experimento I, os tratamentos influenciaram o ganho de peso e consumo de ração, em que a suplementação isolada ou combinada dos aditivos não diferiram, porém conduziram a maiores ganhos em relação a dieta sem suplementação no período de 1 a 35 dias de idade. A viscosidade intestinal foi significativamente menor no tratamento com xilanase fornecida isoladamente (1,01 cP). No experimento II, no período de 10 a 35 dias de idade as deitas com xilanase e probiótico de maneira isoladas proporcionaram maior ganho de peso. O tratamento referência apresentou maior viscosidade no duodeno (1,42 cP) e íleo (1,21 cP), e maior valor de pH duodenal (6,54), sendo a dieta com probiótico resultando em menor valor de pH no ceco (6,11). A microbiota ileal foi influenciada pelos tratamentos, em que os frangos alimentados com a dieta contendo probiótico isoladamente apresentaram maior frequência do gênero Lactobacillus (94,20%). A suplementação com xilanase e probiótico proporcionaram melhorias no desempenho animal, viscosidade intestinal e modularam a microbiota ileal. Os aditivos fonecidos combinados na ração proprocionaram melhorias semelhantes ao fornecimento isolado, tão logo, não exerceram efeitos associativos.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectAditivopor
dc.subjectEnzimapor
dc.subjectMicrobiotapor
dc.subjectViscosidadepor
dc.subjectAdditiveeng
dc.subjectEnzymeeng
dc.subjectMicrobiotaeng
dc.subjectViscosityeng
dc.titleXilanase e probiótico em dietas para frangos de cortepor
dc.title.alternativeXylanase and probiotic in broiler dietseng
dc.typeTesepor
dc.description.abstractOtherBroiler diets are generally composed of ingredients of plant origin, which may have high amounts of non-starch polysaccharides, which are considered antinutritional factors in broiler nutrition. Thus, the use of enzymes and probiotics can ensure greater availability of nutrients of plant origin minimizing the effects of NSP. Two experiments were carried out to study xylanase and probiotic supplementation in diets for broilers. Experiment I was carried at IFAM/Parintins, in an experimental shed, conducted in a completely randomized design with four treatments, with six replications of seven birds each. For the composition of the treatments, Colostrum Mix commercial products were used for the probiotic source and Smyzime Xylanase for the enzymatic source, and the enzyme was valued at 150 kcal/kg of feed. The treatments consisted of: reference diet; reference diet with probiotic addition; basal diet with xylanase addition and basal diet with xylanase addition and probiotic. The reference diet met all the nutritional requirements of the chickens, while the basal diet was formulated with 150 kcal/kg less metabolizable energy. Performance, carcass characteristics and intestinal viscosity were evaluated. Experiment II was performed in metal cages at UFAM/Manaus, conducted in a design and with treatments similar to that described above, and all diets were supplemented with wheat bran and birds challenged orally with commercial Eimeria vaccine administered 10x above recommendation. Performance, carcass, intestinal viscosity and pH and ileal microbiota were evaluated. In experiment I, the treatments influenced weight gain and feed intake, in which the isolated or combined supplementation of the additives did not differ, but led to greater gains in relation to the diet without supplementation from 1 to 35 days of age. Intestinal viscosity was significantly lower in treatment with xylanase alone (1.01 cP). In experiment II, from 10 to 35 days of age, isolated xylanase and probiotic bedding provided greater weight gain. The reference treatment presented higher viscosity in duodenum (1.42 cP) and ileum (1.21 cP), and higher duodenal pH value (6.54), with the probiotic diet resulting in lower pH value in the cecum (6 , 11). The ileal microbiota was influenced by the treatments, in which broilers fed the diet containing probiotic alone presented higher frequency of the genera Lactobacillus (94.20%). Xylanase and probiotic supplementation provided improvements in animal performance, intestinal viscosity and modulated the ileal microbiota. Combined feed additives in feed provided similar improvements to the isolated feed, so they had no associative effects.eng
dc.contributor.advisor1Lima, Cristina Amorim Ribeiro de
dc.contributor.advisor1IDCPF: 449.983.176-87por
dc.contributor.referee1Curvello, Fernando Augusto
dc.contributor.referee2Vieites, Flávio Medeiros
dc.contributor.referee3Lima, Marcos Fábio de
dc.contributor.referee4Cardoso, Verônica da Silva
dc.creator.IDCPF: 003.386.952-90por
dc.creator.Latteshttp://lattes.cnpq.br/7502454937805863por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Zootecniapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Zootecniapor
dc.relation.referencesABDEL-HAFEEZ, H. M.; SALEH, E. S.E.; TAWFEEK, S.S. et al. Effects of probiotic, prebiotic, and synbiotic with and without feed restriction on performance, hematological indices and carcass characteristics of broiler chickens. Asian-Australasian Journal of Animal Sciences, v. 30, n. 5, p. 672-682, 2017. ALLEN, H.K.; STANTON, T.B. Altered egos: antibiotic effects on food animal microbiomes. Annual Review of Microbiology, v. 68, p. 297– 315, 2014. ANAL, A.K.; SINGH, K. Recents advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology, v.18, p.240-251, 2007. APAJALAHTI, J. Comparative gut microflora, metabolic challenges, and potential opportunities. Journal of Applied Poultry Research, v.14, p.444-453, 2005. APAJALAHTI, J.; KETTUNEN, A.; GRAHAM, H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poultry Science Journal, v. 60, n. 2, p. 223–32, 2004. ARAÚJO, J. A.; SILVA, J. H. V.; AMÂNCIO, A. L. L.; LIMA, M. R.; LIMA, C. B. Uso de Aditivos na alimentação de aves. Acta Veterinária Brasílica, v. 1, n. 3, p. 69-77, 2007. ARCZEWSKA-WLOSEK, A.; SWIATKIEWICZ, S.; BEDERSKA-LOJEWSKA, D. et al. The Efficiency of Xylanase in Broiler Chickens Fed with Increasing Dietary Levels of Rye. Animals, n.9, v. 2, p. 46, 2019. ARISTIDES, L.G.A.; PAIAO, F.G.; MURATE, L.S.; OBA, A; The effects of biotic additives on growth performance and meat qaulities in broiler chickens. International Journal of Poultry Science, v.11, n.9, p.599-604, 2012. AWAD, W. A.; GHAREEB, K.; ABDEL-RAHEEM, S.; BÖHM, J. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Science, v. 88, p. 49–55, 2009. BAO, Y. M.; CHOCT, M. Dietary NSP nutrition and intestinal immune system for broiler chickens. World's Poultry Science Journal, v.66, n. 3. p. 511-518, 2010. BARBARA, P. S.; BRINK, G. R. V.; ROBERTS, D. J. Development and differentiation of the intestinal epithelium. Cellular and Molecular Life Sciences, v. 60, n. 7, p. 1322–1332, 2003. BARBOSA, N. A. A.; BONATO, M. A.; SAKOMURA, N. K. et al. Digestibilidade ileal de frangos de corte alimentados com dietas suplementadas com enzimas exógenas. Comunicata Scientiae, v 5, n. 4 p. 361-369, 2014. BARBOSA, N. A. A.; SAKOMURA, N. K.; BONATO, N. A.; HAUSCHILD, L.; OVIEDO-RONDON, E. Enzimas exógenas em dietas de frangos de corte: desempenho. Ciência Rural, v.42, n.8, p.1497-1502, 2012. BASTAWDE, K. B. Xylan structure,microbial xylanases, and their mode of action. World Journal of Microbiology and Biotechnology, v. 8, n. 4, p. 353-368, 1992. BEDFORD, M,R.; CLASSEN, H. L. An in-vitro assay for prediction of broiler intestinal viscosity and growth when fed rye based diets in the presence of exogenous enzymes. Poultry Science, v. 72, p. 137-143, 1993. BEDFORD, M. R. Exogenous enzymes in monogastric nutrition: their current value and future benefits. Animal Feed Science and Technology, v. 86, n. 1, p. 01-13, 2000. BEDFORD, M.R.; SCHULZE, H. Exogenous enzymes for pigs and poultry. Nutrition Research Reviews, v. 11, p. 91–114, 1998. BIELY, P. Microbial xylanolytic systems. Trends in Biotechnology, v. 3, n. 11, p. 286-290, 1985. BJERRUM, L.; PEDERSEN, K.; ENGBERG, R. M. The influence of whole wheat feeding on Salmonella infection and gut flora composition in broilers. Avian Diseases, v. 49, n.1, p. 9 – 15, 2005. BOGUHN, J.; RODEHUTSCORD, M. Effects of non-starch polysaccharide-hydrolyzing enzymes on performance and amino acid digestibility in turkeys. Poultry Science, v. 89, n. 3, p. 505-513, 2010. BRASIL, Ministério da Agricultura e Abastecimento. Instrução Normativa nº. 13, de 30 de novembro de 2004. Aprova o Regulamento Técnico sobre Aditivos para Produtos Destinados à Alimentação Animal.Brasília, DF. Disponível em: < http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-pecuarios/alimentacao-animal/arquivos-alimentacao-animal/legislacao/instrucao-normativa-no-13-de-30-de-novembro-de-2004.pdf/view> Acesso em: 15/04/2017. BRASIL, Ministério da Agricultura e Abastecimento. Instrução Normativa nº 44, de 15 de dezembro de 2015. Altera os anexos I, II e III da Instrução Normativa nº 13, de 30 de novembro de 2004. Brasília, DF. Disponível em: < http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-pecuarios/produtos-veterinarios/legislacao-1/instrucoes-normativas/instrucao-normativa-sda-mapa-ndeg-44-de-15-12-2015.pdf/view > Acesso em 17/04/2017. BRASIL, R. J. M.; LIMA, C. A. R.; MACHADO, N. J. B.; QUARESMA, D. V.; VIEITES, F. M.; SOUZA, F. D. R. Digestible Lysine Requirements the Performance, Carcass Traits and Breast Meat Quality of Slow-Growing Broilers. Brazilian Journal of Poultry Science, v. 20, n. 3, p. 555 – 564, 2018. BRODA, D.M.; SAUL, D.J.; LAWSON, P.A.; BELL, R.G.; MUSGRAVE, D.R. Clostridium gasigenes sp. nov., a psychrophile causing spoilage of vacuum-packed meat. International Journal of Systematic and Evolutionary Microbiology, v. 1, p. 107–118, 2000. BURGAIN, J.; GAIANI, C.; LINDER, M.; CHER, J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, v. 104, n. 4, p. 467- 483, 2011. CAFÉ, M. B.; BORGES, C. A.; FRITTS, C.A.; WALDROUP, P.W. Avizyme improves performance of broilers fed corn-soybean meal-based diets. Journal of Applied Poultry Research, v. 11, n. 1, p. 29-33, 2002. CALDAS, J.V.; SABIR, M. A.; PUTSAKUM, M. ENGLAND, J.A.; COON, C. N. Effect of an Exogenous Protease in Association with Carbohydrases in Broilers Infected with Coccidia. International Journal of Poultry Science, v. 15, n. 12, p. 475-486, 2016. CAO, G.T.; ZENG, X. F.; CHEN, A. G. et al. Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and caecal microflora in broiler 12 chickens challenged with Escherichia coli K88. Poultry Science, v. 92, n. 11, p. 2949- 2955, 2013. CAPELA, P.; HAY, T. K. C.; SHAH, N. P. Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, v. 39, n. 2, p. 203-211, 2006. CASTEELE, S. V.; VANHEUVERZWIN. T.; RUYSSEN, T. et al. Evaluation of culture media for selective enumeration of probiotic strains of lactobacilli and bifidobacteria in combination with yoghurt or cheese starters. International Dairy Journal, v. 16, n. 12, p. 1470-1476, 2006. CHAMPE, P.C.; HARVEY, R.A.; FERRIER, D.R. Bioquímica Ilustrada. 3. ed. Porto Alegre: Artmed, 2006. 533 p. CHAPMAN, H. D.; CHERRY, T. E.; DANFORTH, H. D.; RICHARDS, G.; SHIRLEY, M. W.; WILLIAMS, R. B. Sustainable coccidiosis control in poultry production: the role of live vaccines. International Journal for Parasitology, v. 32, p. 617–629, 2002. CHEN, C.; HAN, K.; XIAO, F.; ZHANG, W.J. Effects of compound xylanase and celluloses on the growth and slaughter performance of 43~65 days Guangxi partridge chicken. Feed Industry, v. 4, p. 38–41, 2018. CHEN, M.J.; CHEN, K. N. Applications of probiotic encapsulation in dairy foods. In: Lakkis JM, editor. Encapsulation and Controlled Release Technologies in Food Systems,. p. 83-107, 2007. CHENG, G.; HAO, H.; XIE, S. et al. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Frontiers in microbiology, v. 5, p, 1-15, 2014. CHOCT, M. Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling International. P. 13-26, 1997. CLAVIJO, V.; FLÓREZ, M. J. V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, v. 97, n. 3, p. 1006–1021, 2018. COCKBURN, D.; W.; KOROPATKIN, N. M. Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. Jornual of Molecular Biology, v. 428, n. 16, p. 3230-3252, 2016. COUDEYRAS, C.; FORESTIER, C. Microbiota and probiotics: effects on human health. Canadian Journal of Microbiology, v. 56, n. 8, p. 611-650, 2010. DEC, M.; PUCHALSKI, A.; NOWACZEK, A.; WERNICK, A. Antimicrobial activity of Lactobacillus strains of chicken origin against bacterial pathogens. International Microbiology, v. 9, n, 1, p. 57-67, 2016. DEL PIANO, M.; CARMAGNOLA, S.; ADORNO, S. et al. Evaluation of the intestinal colonization by microencapsulated probiotic bacteria in comparison with the same uncoated strains. Journal of Clinical Gastroenterology, v. 44, p. S42-S46, 2010. DESSIMONI, G.V. ; SAKOMURA, N. K.; DONATO, D.C.Z.; SOARES, L.; SARCINELLI, M.F.; MALHEIROS, E. B.; DALÓLIO, F.S. Growth performance and carcass yield of broiler chickens in response to carbohydrases and its association with phytase. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v.71, n.3, p.983-989, 2019. DEY, P.; ROY, A. Molecular structure and catalytic mechanism of fungal family G acidophilic xylanases. 3 Biotech, v. 8, n. 2, p. 78, 2018. DIBNER, J. J.; RICHARDS, J. D. The Digestive System: Challenges and Opportunities. Journal of Applied Poultry Research, v.13,n. 1, p.86–93, 2004. DING, W.K.; SHAH, N.P. An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage. Journal of Food Science, v. 74, n. 2, M53-61, 2009. DUNNINGTON, E. A.; SIEGEL, P. B. Long-term divergent selection for eight-week body weight in White Plymouth Rock chickens. Poultry Science, v. 75, p. 10, p. 1168 – 1179, 1996. FALAKI, M.; SHARGH, M. S.; DASTAR, B.; ZREHDARAN, S. Effects of different levels of probiotic and prebiotic on performance and carcass characteristics of broiler chickens. Journal of Animal and Veterinary Advances, v. 9, n. 18, p. 2390 – 2395, 2010. FERREIRA. D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039-1042, 2011. FERREIRA, F.A.B.; KUSSAKAWA, K.C.K. Probióticos. Biotecnologia Ciência e Desenvolvimento, n. 16, p. 40-43, 2002. FASINA, Y. O.; NEWMAN, M. M.; STOUGHT, J. M.; LILES, M. R. Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poultry Science, v. 95, n. 2, p. 247–260, 2016. FETISSOV, S. O. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behavior. Nature Reviews | Endocrinology, v. 13, n. 1, p. 11-25, 2016. FOOKS, L. J.; GIBSON, G.R. In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiology Ecology, v.39, p. 67–75, 2002. FREEMAN, B. M., VINCE, R. L. Development of the Avian Embryo. Chapman and Hall, London, 1974. FUJISAWA, T.; SHIRASAKA, S.; WATABE, J.; MITSUOKA, T. Lactobacillus aviarius sp. nov.: A new species isolated from the intestine of chickens. Systematic and Applied Microbiology v. 5, n. 3, p. 414-420, 1984. FULLER, R. Probiotics in man and animals. Journal Applied of Poultry Research, v. 66, p. 365-378, 1989. GADDE, U. D.; O, S. T.; LEE, Y.S. et al. The Effects of Direct-fed Microbial Supplementation, as an Alternative to Antibiotics, on Growth Performance, Intestinal Immune Status, and Epithelial Barrier Gene Expression in Broiler Chickens. Probiotics and Antimicrobial Proteins, v. 9, n. 4, p. 397-405, 2017. GALDEANO, C.M.; PERDIGÓN, G. Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation. Journal of Applied Microbiology, 97, 673–681, 2004. GBASSI, G. K.; VANDAMME, T. Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics, v. 4, n. 1, p. 149-63, 2012. GERARD, P.; BREZILLON, C.; QUERE, F.; SALMON, A.; RABOT, S. Characterization of cecal microbiota and response to an orally administered Lactobacillus probiotic strain in the broiler chicken. Molecular Microbiology, v. 14, n. 1-3, p. 115–122, 2008. GEWEHR, C. E.; ROSNIECEK, M.; FOLLMANN, D. D. et al. Complexo multienzimático e probióticos na dieta de frangos de corte. Revista Brasileira de Saúde e Produção Animal, v.15, n.4, p.907-916, 2014. GIBSON, G. R. In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiology Ecology, v.39, p. 67–75, 2002. GOHL, B.; GOHL, I. The effect of viscous substances on the transit time of barley digesta in rats. Journal of the Science of Food and Agriculture, v. 28, p. 911–915, 1977. GONZÁLEZ, L.; SANDOVAL,H.; SACRISTÁN, N.; CASTRO, J. M.; FRESNO, J. M.; TORNADIJO, M. E. Identification of lactic acid bacteria isolated from Genestoso cheese throughout ripening and study of their antimicrobial activity. Food Control, v. 18, p. 716–722, 2007. GRACIA, M. T.; LÁZARO, R. LATORRE, M. A.; MEDEL, P.; ARANÍBAR, M. J.; JIMÉNEZ-MORENO, E.; MATEOS, G. G. Influence of enzyme supplementation of diets and cooking–flaking of maize on digestive traits and growth performance of broilers from 1 to 21 days of age. Animal Feed Science and Technology, v. 150, p. 303–315, 2009. GROBOILLOT, A.F.; CHAMPAGNE, C. P.; DARLING, G. D. Membrane formation by interfacial cross-linking of chitosan for microencapsulation of Lactococcus lactis. Biotechnology and Bioengineering, v. 42, n. 10, p. 1157-1163, 1993. GRZEŚKOWIAK, Ł.; ISOLAURI, E.; SALMINEN, S. et al. Gueimonde Manufacturing process influences properties of probiotic bacteria. British Journal of Nutrition, 2010, pp. 1-8, 2010. HALTRICH, D.; NIDETZKY, B.; KULBE, K.D; STEINER, W.; ZUPANIC, S. Production of fungal xilanases. Bioresource Technology, v. 58, p. 137-161, 1996. HAN, W.; ZHANG, X. L.; WANG, D. W. Effects of microencapsulated Enterococcus fecalis CG1.0007 on growth performance, antioxidation activity, and intestinal microbiota in broiler chickens. Journal of Animal Science, v. 91, n. 9, p. 4374-7382, 2013. HASSAN, H. M. A.; SAMY, A.; AMANI, W. Youssef and M.A. Mohamed. Using Different Feed Additives as Alternative to Antibiotic Growth Promoter to Improve Growth Performance and Carcass Traits of Broilers. International Journal of Poultry Science, v. 17, n. 6, p. 255-261, 2018. HECK, J. X.; SOARES, L. H. B.; HERTZ, P. F.; AYUB, M. A Z. Purification and properties of a xylanase produced by Bacillus circulans BL53 on solid-state cultivation. Biochemical Engineering Journal, v. 32, n. 3, p. 179-184, 2006. HERAVI, R. M.; KERMANSHAHI, H.; SANKIAN, M.; NASSIRI, M. R.; MOUSSAVI, A. H.; NASIRAII, L. R.; VARASTEH, A. R.. Screening of lactobacilli bacteria isolated from gastrointestina,l tract of broiler chickens for their use as probiotic. African Journal of Microbiology Research, v. 5, p. 1858-1868, 2011. HILL, C.; GUARNER, F.; REID, G. et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, v. 11, n. 8, p. 506-514, 2014. HINTON JR, A.; CORRIER, D. E.; SPATES, G. E.; NORMAN, J. O.; ZIPRIN, R. L.; BEIER, R. C.; DELOACH, J. R. Biological control of Salmonella typhimurium in young chickens. Avian Diseases, v.34, p.626–633, 1990. HIRAMATSU, H.; YASUGI, S. Molecular analysis of the determination of developmental fate in the small intestinal epithelium in the chicken embryo. The International Journal of Developmental Biology, v. 48, n. 10, p. 1141 - 1148, 2004. HOLZAPFEL, W. H.; HABERER, P.; GEISEN, R. et al. Taxonomy and important features of probiotic microorganisms in food and nutrition. American Journal of Clinical Nutrition, v. 73, n. 2, p. 365-373, 2001. HUANG, L.; LUO, L.; ZHANG, Y. et al. Effects of the Dietary Probiotic, Enterococcus faecium NCIMB11181, on the Intestinal Barrier and System Immune Status in Escherichia coli O78-Challenged Broiler Chickens. Probiotics and Antimicrobial Proteins, v. 11, n. 3, p. 946-956, 2018. HUBALEK, Z. Protectants used in the cryopreservation of microorganisms. Cryobiology, v. 46, p. 205–229, 2003. HÜBENER, K.; VAHJEN, W.; SIMON, O. Bacterial responses to different dietary cereal types and xylanase supplementation in the intestine of broiler chicken. Archives of Animal Nutrition, v. 56, p.167–187, 2002. INATOMI, T.; OTOMARU, K. Effect of dietary probiotics on the semen traits and antioxidative activity of male broiler breeders. Scientific Reports, v. 8, n. 5874, 2017. ITO, N. M. K.; MIYAJI C.I.; LIMA E.A. et al. 2004. Saúde gastrointestinal, manejo e medidas para controlar as enfermidades gastrointestinais. In: Mendes A. A. Nääs I. A. Macari M. Produção de Frangos de Corte (Campinas: FACTA). p. 205-260, 2004. JASEK, A, LATHAM, R, E.; MAÑÓN, A.; LLAMAS-MOYA, S.; ADHIKARI, R.; POURESLAMI, R.; LEE, J. T. Impact of a multicarbohydrase containing α-galactosidase and xylanase on ileal digestible energy, crude protein digestibility, and ileal amino acid digestibility in broiler chickens. Poultry Science, v. 97, n. 9, p. 3149–3155, 2018. JIN, L. Z.; HO, Y. W.; ABDULLAH, N.; JALALUDIN, S. Probiotics in poultry: modes of action. World's Poultry Science Journal, v. 53, n. 4, p. 351-368, 1997. JUMPERTZ, R.; LE, D. S.; TURNBAUGH, P. J. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. The American Journal of Clinical Nutrition, v. 94, n. 1, p. 58-65, 2011. KALAVATHY, R.; ABDULLAH, N.; JALALUDIN, S.; HO, Y. W. Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. Brazilian Journal of Poultry Science, v. 44, p. 139–144, 2003. KERS, J.; VELKERS, F. C.; FISCHER, E. A. J.; HERMES, G. D. A.; STEGEMAN, J. A.; SMIDT, H. Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens. Frontiers in Microbiology, v. 9, n. 235, 2018. KIM, B.H.; KIM, S.; KIM, H. G.; LEE, J.; LEE, I. S.; PARK, Y. K. The formation of cyclopropane fatty acids in Salmonella enterica serovar Typhimurium. Microbiology, v. 151: 209–218, 2005. KING, A. H. Encapsulation of food ingredients: a review of available technology, focusing on hydrocolloids. S.J. Risch, G.A. Reineccius (Eds.), Encapsulation and controlled release of food ingredients, American Chemical Society, Washington DC pp. 213-220, 1995. KOSIN, B.; RAKSHIT, K. Microbial and Processing Criteria for Production of Probiotics: A Review. Food Technology Biotechnology, v. 44, n.3, p. 371–379, 2006. KRASAEKOOPT, W.; BHANDARI, B.; DEETH, H. Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal, v. 13, n. 1, p. 3-13, 2003. LAN, P. T. N.; HAYASHI, H.; SAKAMOTO, M.; BENNO, Y. Phylogenetic analysis of cecal microbiota in chicken by the use of 16S rDNA clone libraries. Microbiology and Immunology, v. 46, p. 371–382, 2002. LAN, P. T. N.; SAKAMOTO, M.; BRENNO, Y. Effects of Two Probiotic Lactobacillus Strains on Jejunal and Cecal Microbiota of Broiler Chicken under Acute Heat Stress Condition as Revealed by Molecular Analysis of 16S rRNA Genes. Microbiology and Immunology, v. 48, n. 12, p. 917–929, 2004. LAN, R.; LI, T.; KIM, L. Effects of xylanase supplementation on growth performance, nutrient digestibility, blood parameters, fecal microbiota, fecal score and fecal noxious gas emission of weaning pigs fed corn‐soybean meal‐based diet. Animal Science Journal, v. 88, n. 9, p. 1398-1405, 2017. LATORRE, J.D.; HERNANDEZ-VELAZCO, X.; KUTTAPPAN, V. A.; WOLFENDEN, R.; VICENTE, J. L.; WOLFENDEN, A.; BIELKE, L.; PRANDO, O.; MORALES, E.; HARGIS, B.M. & TELLEZ, G. Selection of Bacillus spp. for Cellulase and Xylanase Production as Direct-Fed Microbials to Reduce Digesta Viscosity and Clostridium perfringens Proliferation Using an in vitro Digestive Model in Different Poultry Diets. Frontiers in Veterinary Science, v. 2, p. 1-8, 2015a. LATORRE, J.D.; HERNANDEZ-VELAZCO.; BIELKE, J. L. et al. Evaluation of a Bacillus direct-fed microbial candidate on digesta viscosity, bacterial translocation, microbiota composition and bone mineralisation in broiler chickens fed on a ryebased diet. British Poultry Science, v. 56, n. 6, p.723 – 732, 2015b. LAURENTI, E. Materiais encapsulantes naturais na obtenção de esfera de S, cerevisiae para incorporação em ração extrusada de frangos de corte. 2011. Dissertação (Mestre em Ciências de Alimentos) - Universidade Estadual de Londrina, Londrina, 2011. LEE, S. A.; APAJALAHTI, J.; VIENOLA, K. et al. Age and dietary xylanase supplementation affects ileal sugar residues and short chain fatty acid concentration in the ileum and caecum of broiler chickens. Animal Feed Science and Technology, v. 234, ,p. 29-42, 2017. LEE, S. H.; LILLEHOJ, H. S.; DALLOUL, R. A.; PARK, D. W.; HONG, Y. H.; LIN, J. J. Influence of Pediococcus-Based Probiotic on Coccidiosis in Broiler Chickens. Poultry Science, v. 86, n. 1, p. 63–66, 2007. LEEDLE, J. Probiotics and DFMs - mode of action in the gastrointestinal tract. In: SIMPÓSIO SOBRE ADITIVOS ALTERNATIVOS NA NUTRIÇÃO ANIMAL, 2000, Campinas. Anais... Campinas: Colégio Brasileiro de Nutrição Animal, 2000. p. 25-40. LEI, K.; LI, Y. L.; YU, D. Y. et al. Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens. Poultry Science, v. 92, p. 2389–2395, 2013. LI, K.; AZADI, P.; COLLINS. R.; TOLAN, J.; KIM, J.S.; ERIKSSON K.E.L. Relationships between activities of xilanases and xylan structures. Enzyme Microbiol Technology, v. 27, n. 1-2, p. 89-94, 2000. LODDI, M.M.; MARAES, V.M.B.; NAKAGHI, I.S.O. et al. Mannan oligosaccharide and organic acids on performance and intestinal morphometric characteristics of broiler chickens. In: Proceedings of the 20th Annual Symposium on Computational Geometry; June 2004; Brooklyn, NY, USA. p. 45. LU, J.; IDRIS, U.; HARMON, B.; HOFACRE, C.; MAURER, J.; J.; LEE, M. D. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Applied and Environmental Microbiology, v.69, p.6816–6824, 2003. LUEGAS, J. A. P.; ALBINO, J. T.; TABERNARI, F. et al. Efeito da adição de probióticos na dieta sobre digestibilidade ileal da materia seca e da proteína de frangos de corte. Archivos de Zootecnia, v. 64, n. 247, p. 1-5, 2015. MAIORKA, A.; BOLELI, I. C.; MACARI, M. Desenvolvimento e reparo da mucosa intestinal. Fisiologia aviária aplicada a frangos de corte. Campinas: FACTA, Fundação Apinco de Ciências e Tecnologia Avícolas, p. 113-124, 2002. MAJIDI-MOSLEH, A. SADEGHI, A. A.; MOUSAVI, S. N. et al. Ileal MUC2 gene expression and microbial population, but not growth performance and immune response, are influenced by in ovo injection of probiotics in broiler chickens. Journal British Poultry Science, v. 58, n. 1, p. 40-45, 2017. MANAFI, M.; HAEDAYATI, M.; MIRZAIE, S. Probiotic Bacillus species and Saccharomyces boulardii improve performance, gut histology and immunity in broiler chickens. South African Journal of Animal Science, v. 48, n. 2, 2018. MANNION, P. F., Enzyme supplementation of barley based diets for broiler chickens. Australian Journal of Experimental Agriculture and Animal Husbandry, v.21, n. 110, p. 296-302, 1981. MANSOUB, N. H. Effect of probiotic bacteria utilization on serum cholesterol and triglycerides contents and performance of broiler chickens. Global Veterinary, v. 5, p. 184-186, 2010. MARCON, M. E. Desenvolvimento de um meio de cultivo economico para a produção de probióticos como aditivos zootécnicos. Mestrado. 124p. (Mestre em Microbiologia). Universidade estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto, São Paulo, 2010. MATIAS, C. F. Q.; ROCHA, J. S. R.; POMPEU, M. A. et al. Efeito da protease sobre o coeficiente de metabolizabilidade dos nutrientes em frangos de corte. Arquivos Brasileiro de Medicina Veterinária e. Zootecnia, v.67, n.2, p.492-498, 2015. MOFTAKHARZADEH, S. A.; MORAVEJ, H.; SHIVAZAD, M. Effect of using the Matrix Values for NSP-degrading enzymes on performance, water intake, litter moisture and jejunal digesta viscosity of broilers fed barley-based diet. Acta Scientiarum. Animal Sciences, v. 39, n. 1, p. 65-72, 2017. MORETTI, A. GAMBA, R. R.; PUPPO, J. et al. Incorporation of Lactobacillus plantarum and zeolites in poultry feed can reduce aflatoxin B1 levels. Journal of Food Science and Technology, v. 55, n.1, p. 431-436, 2018. MORGADO, H. S. Produção e caracterização de amilase do fungo aspergillus awamori e sua utilização em dietas para frangos de corte. Tese (Doutorado em Ciência Animal). Universidade Federal de Goiás. 2013. MORISHITA, Y.; MITSUOKA, T.; KANEUCHI, C.; YAMAMOTO, S.; OGATA, M. Specific establishment of lactobacilli in the digestive tract of germ-free chickens. Japanese Journal of Microbiology, v. 15, n. 6, p. 531 – 538, 1971. MUDROŇOVÁ, D.; NEMCOVÁ, R.; LAUKOVÁ, A. et al. Effect of Lactobacillus fermentum alone, and in combination with zinc (II) propionate on Salmonella enterica serovar Düsseldorf in Japanese quails. Biologia, v. 61, n. 6, p.797–801, 2006. MUJNISA, A.; GUSTINA, L.; NATSIR, A.; HASAN, S. Dosage Effects of Lactococcus lactis ssp. lactis 2 as a Probiotic on the Percentage of Carcass, Abdominal Fat Content and Cholesterol Level in Broilers. International Journal of Poultry Science, v. 17 n. 2, p. 100-105, 2018. NAHASHON, S.N.; NAKAUE, H. S; MIROSH, L.W. Effect of direct-fed microbials on nutrient retention and production parameters of Single Comb White Leghorn pullets. Poultry Science, v.72 (Suppl. 2): 87, 1993. NAYEBPOR, M. Effects of different levels of direct fed microbial (Primalac) on growth performance and humoral immune response in broiler chickens. Journal of Animal and Veterinary Advances, v. 6, p. 1308–1313, 2007. NAZZARO, F.; ORLANDO, P.; FRATIANNI, F.; COPPOLA, R. Microencapsulation in food science and biotechnology. Current Opinion in Biotechnology. v. 23, n. 2, p. 182-186, 2012. NIVOLIEZ, A.; CAMARAES, O.; PAQUET-GACHIMAT, M. et al. Influence of manufacturing processes on in vitro properties of the probiotic strain Lactobacillus rhamnosus Lcr35®. Journal of Biotechnology, v. 160, n. 3-4, p. 236-241, 2012. NUSAIRAT, B.; MCNAUGHTON, J.; TYUS, JAMES.; WANG, JENG-JIE. Combination of Xylanase and Bacillus Direct-fed Microbials, as an Alternative to Antibiotic Growth Promoters, Improves Live Performance and Gut Health in Subclinical Challenged Broilers. International Journal of Poultry Science, v. 17, n. 8, p. 362-366, 2018. O’SHEA, C. J.; MC ALPINE, P. O.; SOLAN, P. et al. The effect of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower–finisher pigs. Animal Feed Science and Technology, v. 189, 88-97, 2014. OAKLEY, B. B.; LILLEHOJ, H. S.; KOGUT, M. H.; KIM, W. K.; MAURER, J. J.; PEDROSO, A.; LEE, M. D.; COLLETT, S. R.; JOHNSON, T. J.; COX, N. A. The chicken gastrointestinal microbiome. FEMS Microbiology Letters, v. 360, n. 2. p. 100–112, 2014. OH, J. K.; PAJARILLO, E. A. B.; CHAE, J. P. et al. Effects of Bacillus subtilis CSL2 on the composition and functional diversity of the faecal microbiota of broiler chickens challenged with Salmonella Gallinarum. Journal of Animal Science and Biotechnology, v. 8, n.1, 2017. OHIMAIN, E. I.; OFONGO, R. T. S. The effect of probiotic and prebiotic feed supplementation on chicken health and gut microflora: A review. International Journal of Animal and Veterinary Advances, v. 4, p. 135-143, 2012. OLIVEIRA, E. E.; SILVA, E. E.; JUNIOR, T, N,. GOMES, M. C.; AGUIAR, L. M.; MARCELINO, H. R.; ARAÚJO, I. B.; BAYER, M. P.; RICARDO, N. M.; OLIVEIRA, A. G.; EGITO, E. S. Xylan from corn cobs, a promising polymer for drug delivery: Production and characterization. Bioresource Technology, v. 101, n. 14. p. 5402–5406, 2010. PACK, M.; BEDFORD, MM.; WYATT, C. Feed enzymes may improve corn sorghum diets. Feedstuffs, v. 2, p. 18-19, 1998. PÄES, G.; BERRIN, J.; BEAUGRAND, J. GH11 xylanases: Structure/function/properties relationships and applications. Biotechnology Advances, v. 30, n. 3, p. 564 – 592, 2012. PELICANO, E. G. L., SOUZA, P.A.; SOUZA, H. A. A. et al. Morfometria e Ultra-Estrutura da Mucosa Intestinal de Frangos de Corte alimentados com Dietas contendo diferentes Probióticos. Revista Portuguesa de Ciências veterinárias, v. 98, n. 547, p. 122-134, 2003. PONCELET, D.; DREFFIER, C. Les méthodes de microencapsulation de A à Z (ou presque) T. Vandamme, D. Poncelet, P. Subra-Paternault (Eds.), Microencapsulation: des Sciences aux Technologies, Ed. Tec & doc, Paris, pp. 23-33, 2007. PRADO-REBOLLEDO, O.F.; DELGADO-MACHUCA, J. J.; MACEDO-BARRAGAN. et al. Evaluation of a selected lactic acid bacteriabased probiotic on Salmonella enterica serovar Enteritidis colonization and intestinal permeability in broiler chickens. Journal Avian Pathology, v. 46, n. 1, 2017. PRAES, M. F. F. M.; LUCAS JUNIOR, J.; ORRICO, A. C. A. et al. Biogas production: litter from broilers receiving direct-fed microbials and an enzyme blend. Scientia Agricola, v. 73, n. 5, 2016. PRAES, M. F. F. M. Probiótico e enzimas em dietas de frangos de corte: desempenho, características da cama e excretas e produção de biogás. 2013. 168 f. Tese (Doutorado em Zootecnia) - Universidade Estadual Paulista, Jaboticabal, 2013. PRAES, M. F. F. M.; LUCAS JUNIOR, J.; DUARTE, K. F. et al. Reduced Nutrient Excretion and Environmental Microbial Load with the Addition of a Combination of Enzymes and Direct-Fed Microbials to the Diet of Broiler Chickens. Revista Brasileira de Ciência Avícola, v. 18, n.1, 2016. QU, A.; BRULC, J. M.; WILSON, M. K.; LAW, B. F.; THEORET, J. R.; JOENS, L. A.; KONKEL, M. E.; ANGLY, F.; DINSDALE, E. A.; EDWARDS, R. A.; Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One, 3: e2945, 2008. RAFAEL, J. M. Efeitos de níveis de treonina e aditivo fitogênico na ração sobre o desempenho e saúde intestinal de frangos desafiados com Eimeria spp. Dissertação. 68p. (Mestrado em Ciência Animal e Pastagens). Universidade de São Paulo, Piracicaba, 2015. RAMOS, L. S. N.; LOPES, J. B.; SILVA, S. M. M. S. S. et al. Desempenho e histomorfometria intestinal de frangos de corte de 1 a 21 dias de idade recebendo melhoradores de crescimento. Revista Brasileira de Zootecnia, v.40, n.8, p.1738-1744, 2011. RAVN, J. L.; GLITSØ, V.; PETERSSON D. et al. Combined endo-β-1,4-xylanase and α-l-arabinofuranosidase increases butyrate concentration during broiler cecal fermentation of maize glucurono-arabinoxylan. Animal Feed Science and Technology, v. 236, p. 159-169, 2018. REIS, M. P.; FASSANI, E. J.; JUNIOR GARCIA, A. A. P.; RODRIGUES, P. B.; BERTECHINI, A. G.; BARRET, N.; PERSIA, M. E.; SCHIMIDT C. J. Effect of Bacillus subtilis (DSM 17299) on performance, digestibility, intestine morphology, and pH in broiler chickens. The Journal of Applied Poultry Research, v. 26, n. 4, p.573–583, 2017 RENNIE, E. A.; SCHELLER, H. V. Xylan biosynthesis. Current Opinion in Biotechnology, v. 26, p. 100–107, 2014. RIDLON, J.M. KANG, D. J.; HYLEMON, P. B. Bile salt biotransformations by human intestinal bacteria. The Journal of Lipid Research, v. 47, n. 2, p. 241-259, 2006. RINTTILÄ, T.; APAJALAHTI, J. Intestinal microbiota and metabolites—Implications for broiler chicken health and performance. The Journal of Applied Poultry Research, v.22, n. 3, p. 647–658, 2013. RODKLONGTAN, A.; LA-ONGKHAM, O.; NITISINPRASERT, S.; CHITPRASERT, P. Enhancement of Lactobacillus reuteri KUB-AC5 survival in broiler gastrointestinal tract by microencapsulation with alginate-chitosan semi-interpenetrating polymer networks. Journal of Applied Microbiology, v. 117, n. 1, p. 227-38, 2014. ROTH, F. X.; KIRCHGESSNER, M. Organic acids as feed additives for Young pigs: nutritional and gastrintestinal effects. Journal of Animal and Feed Science, n.8, p. 25-33, 1998. ROSTAGNO, H. S.; ALBINO, L. F. T.; HANNAS, M. I.; DONZELE, J. L.; SAKOMURA, N. K.; PERAZZO, F. G.; SARAIVA, A.; ABREU, M. L. T.; RODRIGUES, P. B.; OLIVEIRA, R. F.; BARRETO, S. L. T.; BRITO, C. O. Tabelas Brasileiras para aves e suínos: composição de alimentos e exigências nutricionais. 4a Ed, 2017. RYBKA, S.; KAILASAPATHY, K. The survival of culture bacteria in fresh and freeze-dried AB yoghurt. Australian Journal of Dairy Technology, v. 50, p. 51-57, 1995. SALIH, M. E.; CLASSEN, H. L.; CAMPBELL, G. L. Response of chickens fed on hull-less barley to dietary β-glucanase at different ages. Animal Feed Science and Technology, v. 33, p. 139–149, 1991. SAMUEL, B.S.; SHAITO, A.; MOTOIKE, T. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of National Academy of Sciences of the United States of America, v. 105, p. 16767-16772, 2008. SANTOS, I. I.; CORÇÃO, G.; KESSIER, A. M. et al. Microbiota ileal de frangos de corte submetidos a diferentes dietas. Revista Brasileira de Zootecnia, v. 41, n. 3, 2012. SANTOSO, U.; TANAKA, K.; OHTANIA, S. Effect of dried Bacillus subtilis culture on growth, body composition and hepatic lipogenic enzyme activity in female broiler chicks. British Journal of Nutrition, v. 74, p. 523–529, 1995. SELMER-OLSEN, E; SØRHAUG, T.; BIRKELAND, S.E.; PEHRSON, R. Survival of Lactobacillus helveticus entrapped in Ca-alginate in relation to water content, storage and rehydration. Journal of Industrial Microbiology & Biotechnology, v. 23, p. 79-85, 1999. SHAH, M.; ZANEB, H.; MASOOD, S. et al. Effect of Dietary Supplementation of Zinc and Multi-Microbe Probiotic on Growth Traits and Alteration of Intestinal Architecture in Broiler. Probiotics and Antimicrobial Proteins, v. 11, n. 3, p. 931-937, 2019. SHEU, T.Y.; MARSHALL, R.T.Improving culture viability in frozen dairy desserts by microencapsulation. Journal of Dairy Science, v. 74, p. 107, 1991. SIEO, C. C.; ABDULLAH, N.; TAN, W. A.; HO, Y.W.Influence of β-Glucanase-Producing Lactobacillus Strains on Intestinal Characteristics and Feed Passage Rate of Broiler Chickens. Poultry Science, v. 84, p. 734–741, 2005. SKLAN, D.; NOY, Y. Catabolism and deposition of amino acids in growing chicks: effect of dietary suplly. Poultry Science, v. 83, n. 6, p. 952 – 961, 2004. SOUZA, L. F. A.; ARAÚJO, D. N.; STEFANI, L. M. et al. Probiotics on performance, intestinal morphology and carcass characteristics of broiler chickens raised with lower or higher environmental challenge. Austral Journal of Veterinary Sciences, v. 50, p. 35-41, 2018. STEF, L.; CEAN, A.; JULEAN, C.; ELIZA, S. Influence of Additional Level of Probiotics on Intestinal Microbiota in Broiler Chickens. Scientific Papers: Animal Science and Biotechnologies, v. 50, n.2, p. 34-40, 2017. SUN, Y.; RAJUPT, I. R.; ARAIN, M. A. et al. Oral administration of Saccharomyces boulardii alters duodenal morphology, enzymatic activity and cytokine production response in broiler chickens. Animal Science Journal, v. 88, n. 8, p. 1204-1211, 2016. TOROK, V. A.; HUGHES, R. J.; OPHEL-KELLER, K.; ALI, M.; MACALPINE, R. Influence of different litter materials on cecal microbiota colonization in broiler chickens. Poultry Science,v. 88, n. 12, p. 2474–81, 2009. TURNBAUGH, P.J.; LEY, R.E.; MAHOWALD, M.A.; MAGRINI, V.; MARDIS, E.R.; GORDON, J.I. An obesity‐associated gut microbiome with increased capacity for energy harvest. Nature, v. 444, p. 1027– 1031, 2006. UNI, Z.; TAKO, E.; GAL-GARBER, O; SKLAN, D. Morphological, molecular and functional changes in the chicken small intestine of the late term embryo. Poultry Science, v. 82, n. 11. p. 1747 - 1754, 2003. VALADARES, C. G.; SANTOS, J. S.; LÜDKE, M.CM.M. et al. Determinação da energia metabolizável do farelo residual do milho com e sem enzima em dietas para frangos de corte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 68, n. 3, p. 748-754, 2016. VANDEPLAS, S. et al. Efficiency of a Lactobacillus plantarum-xylanase combination on growth performances, microflora populations, and nutrient digestibilities of broilers infected with Salmonella Typhimurium. Poultry Science, v. 88, n.8, p. 1586–1593, 2009. VINDEROLA, C.G.; REINHEIMER, J.; BAILO, N. Survival of probiotic microflora in Argentinian yogurths during refrigerated storage. Food Research International, v. 33, p. 97-102, 2000. WAKABAYASHI, K. Changes in Cell Wall Polysaccharides During Fruit Ripening. Journal of Plant Research, v. 113, n. 3, p. 231-237, 2000. WANG, H.; NI, X.; QING, X. et al. Probiotic Lactobacillus johnsonii BS15 Improves Blood Parameters Related to Immunity in Broilers Experimentally Infected with Subclinical Necrotic Enteritis. Frontiers in Microbiology, v. 9, n. 49, 2018a. WANG, Y.; DONG, Z.; SONG, D. et al. Effects of microencapsulated probiotics and prebiotics on growth performance, antioxidative abilities, immune functions, and caecal microflora in broiler chickens. Food and Agricultural Immunology, p. 1-13, 2018b. WEI, S.; MORRISON, M.; YU, Z. Bacterial census of poultry intestinal microbiome. Poultry Science, v.92, n. 3, p. 671 – 683, 2013. WEN-CHAO, L.; I KIM, IN-HO. Effects of dietary xylanase supplementation on performance and functional digestive parameters in broilers fed wheat-based diets. Poultry Science, v. 96, n. 3, 1, p. 566–573, 2017. WISHART, D.S. Metabolomics:a complementary tool in renal transplantation. Contributions to Nephrology, v. 160, p. 76-87, 2008. YEOMAN, C.J.; CHIA, N.; JERALDO, P.; SIPOS, M.; GOLDENFELD, N. D.; WHITE, B. A. The microbiome of the chicken gastrointestinal tract. Animal Health Research Reviews, v. 13, n. 1, p. 89 – 99, 2012. YNTEMA, C.; HAMMOND, W. S. The origin of intrinsec ganglia of trunk viscera from vagal neural crest in the chick embryo. Journal of Comparative Neurology, v. 101, n. 12, p. 515–541, 1954. YU, B.; LIU, J.R.; HSIAO, F. S.; CHIOU, P. W. S. Evaluation of Lactobacillus reuteri Pg4 strain expressing heterologous -glucanase as a probiotic in poultry diets based on barley. Animal Feed Science and Technology, v. 141, p. 82–91, 2008. ZHANG, L.; L. ZHANG, X.; Zeng, L.; Zhou, G.; C.; YANG, C. Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88. Journal of Animal Science and Biotechnology, v. 26, n. 7, p. 3. 2016. ZHOU, M.; ZENG, D.; NI, X. et al. Effects of Bacillus licheniformis on the growth performance and expression of lipid metabolism-related genes in broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Lipids Health Disease, v.8, p. 15-48, 2016.por
dc.subject.cnpqZootecniapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/67420/2019%20-%20No%c3%a9dson%20de%20Jesus%20Beltr%c3%a3o%20Machado.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5209
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2021-10-31T00:21:37Z No. of bitstreams: 1 2019 - Noédson de Jesus Beltrão Machado.pdf: 1614934 bytes, checksum: 603244563f28b5c73b98a337a5039fd8 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-10-31T00:21:37Z (GMT). No. of bitstreams: 1 2019 - Noédson de Jesus Beltrão Machado.pdf: 1614934 bytes, checksum: 603244563f28b5c73b98a337a5039fd8 (MD5) Previous issue date: 2019-10-11eng
Appears in Collections:Doutorado em Zootecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Noédson de Jesus Beltrão Machado.pdf1.58 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.