Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10567
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Andressa Fabiane Faria de
dc.date.accessioned2023-12-22T01:39:36Z-
dc.date.available2023-12-22T01:39:36Z-
dc.date.issued2018-02-28
dc.identifier.citationSouza, Andressa Fabiane Faria de. Contribuição do transportador OsNRT2.4 para a absorção de nitrato e modulação da arquitetura radicular em arroz sob baixa disponibilidade de nitrogênio. 2018. [64 f.]. Dissertação( Programa de Pós-Graduação em Agronomia - Ciência do Solo) - Universidade Federal Rural do Rio de Janeiro, [Seropédica - RJ] .por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10567-
dc.description.abstractA disponibilidade de nutrientes no solo influencia na modulação do crescimento e arquitetura radicular. O nitrogênio (N) é um dos fatores que mais limita o crescimento e a produtividade, no entanto, plantas sob deficiência de nitrogênio investem mais no aprofundamento radicular e não limitam o alongamento lateral do sistema radicular. Para que ocorra uma absorção eficiente de nutrientes são necessários transportadores específicos de membrana que irão auxiliar na entrada do nutriente para o interior celular, com ênfase nos transportadores de nitrato de alta afinidade (NRT2). Deste modo, plantas silenciando o gene OsNRT2.4, obtidas por meio da técnica de silenciamento gênico por micro RNA artificial, e plantas controle (WT - tipo selvagem) foram submetidas a uma condição de baixo fornecimento de nitrato com o objetivo de investigar o papel do transportador OsNRT2.4 na promoção do estímulo do crescimento radicular. Após o processo de transformação, as plântulas obtidas foram transferidas para casa de vegetação no Departamento de Solos da UFRRJ, para obtenção das sementes de primeira geração (T1). Sementes das linhagens obtidas apresentaram problemas quanto à germinação, por isso, para a superação da dormência das sementes, foi estabelecido um protocolo de quebra de dormência. Posteriormente, foram conduzidos três experimentos em câmara de crescimento (fitotron). O primeiro e o segundo experimento foram realizados com o intuito de selecionar aquelas linhagens silenciando o gene OsNRT2.4. As linhagens e as plantas WT foram cultivadas em solução nutritiva sob baixo fornecimento de nitrato (0,2 mM N-NO3 -) e selecionadas com base na análise de expressão gênica por meio do método do CT comparativo (2-CT) e, pela análise morfológica e parâmetros radiculares, experimentos I e II, respectivamente. O experimento III foi realizado com as linhagens selecionadas previamente, L#5 e L#39, e teve como objetivo analisar o efeito do silenciamento do gene OsNRT2.4 sobre os metabólitos solúveis e sobre o padrão de expressão das enzimas do metabolismo de N e os transportadores de nitrato de alta afinidade, cultivadas em solução nutritiva sob baixo fornecimento de nitrato e ressuprimento (0,1 mM N-NO3 -). Foi observado que o silenciamento do gene OsNRT2.4 induziu uma densidade de raízes laterais semelhantes a WT, porém menor alongamento das raízes laterais, menor área de superfície, menor volume e menor número de pontas, confirmando que o transportador OsNRT2.4 possui um papel na regulação do crescimento radicular, estando especificamente envolvido no crescimento de raízes laterais. O silenciamento também afetou a expressão de outros transportadores de nitrato de alta afinidade (OsNRT2.1 e OsNAR2.1). Além disso, o transportador OsNRT2.4 possui um papel na regulação do fluxo interno de N, atuando no transporte de nitrato da raiz para a parte aérea (efluxo).por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectTransportador de nitrato de alta afinidadepor
dc.subjectRaiz lateralpor
dc.subjectArrozpor
dc.subjectHigh-affinity nitrate transportereng
dc.subjectLateral rooteng
dc.subjectRiceeng
dc.titleContribuição do transportador OsNRT2.4 para a absorção de nitrato e modulação da arquitetura radicular em arroz sob baixa disponibilidade de nitrogêniopor
dc.title.alternativeContribution of transporter OsNRT2.4 in rice for nitrate uptake and regulating root architecture under low nitrogen availabilityeng
dc.typeDissertaçãopor
dc.description.abstractOtherThe availability of nutrients in the soil influences growth modulation and root architecture. Nitrogen (N) is one of the factors that most limits plant growth and productivity, as plants with a nitrogen deficiency invest more in root depth and do not limit lateral elongation of the root system. For efficient nutrient uptake to occur, specific transporters located on the plasma membrane are required to assist in the entry of the nutrient into the cellular interior, with emphasis on high-affinity nitrate transporters (NRT2). Thus, plants silencing the OsNRT2.4 gene, obtained through the gene silencing technique by artificial microRNA (amiRNA), and control plants (WT - wild type) were submitted to a low nitrate dose condition, with the aim of investigating the role of the OsNRT2.4 transporter in the promotion of root growth stimulus. After the process transformation, the seedlings obtained were transferred to greenhouse at the Department of Soils of UFRRJ, to obtain first generation seeds (T1). Seeds of the obtained lines presented problems regarding the germination, so a protocol to break seed dormancy was established to overcome the problem. Subsequently, three experiments were conducted in a growth chamber (fitotron). The first and second experiments were conducted in order to select those lines silencing the OsNRT2.4 gene. The lines and WT plants were grown in nutrient solution under a low nitrate dose (0.2 mM N-NO3 -) and selected based on the analysis of gene expression by the comparative CT method (2-C T) and by the morphology and root parameters analysis, experiments I and II, respectively. Experiment III was carried out with the previously selected lines, L#5 and L#39. The aim was to analyze the effect of the silencing of the OsNRT2.4 gene on the soluble metabolites and on the expression pattern of enzymes of the metabolism of N and the high-affinity nitrate transporters, cultured in nutrient solution under low dose and resupply (0.1 mM N-NO3 -). It was observed that the silencing of the OsNRT2.4 gene induced a WT-like lateral root density, but lower lateral root elongation, smaller surface area, lower volume and fewer tips, confirming that the OsNRT2.4 transporter has a role in the regulation of root growth, being specifically involved in the growth of lateral roots. The silencing also affected the expression of other high-affinity nitrate transporters (OsNRT2.1 e OsNAR2.1). In addition, the OsNRT2.4 transporter has a role in the internal N flux regulation, acting in the nitrate transport from roots to shoot (efflux).eng
dc.contributor.advisor1Souza, Sonia Regina de
dc.contributor.advisor1ID003927487-03por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3312117357555510por
dc.contributor.advisor-co1Bucher, Carlos Alberto
dc.contributor.referee1Santos, Leandro Azevedo
dc.contributor.referee2Cabral, Luiz Mors
dc.creator.ID134305477-09por
dc.creator.Latteshttp://lattes.cnpq.br/4756481537895343por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesAI, T.; ZHANG, L.; GAO, Z.; ZHU, C. X.; GUO, X. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biology, v. 13, p. 304-316, 2011. ARAYA, T.; KUBO, T.; von WIRÉN, N.; TAKAHASHI, H. Statistical modeling of nitrogendependent modulation of root system architecture in Arabidopsis thaliana. Journal of Integrative Plant Biology, v. 58, p. 254-265, 2016. ALBORESI, A.; GESTIN, C.; LEYDECKER, M.-T.; BEDU, M.; MEYER, C.; TRUONG, H.-N. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell and Environment, v. 28, p. 500-512, 2005. ALMAGRO, A.; LIN, S. H.; TSAY, Y. F. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. The Plant Cell, v. 20, p. 3289-3299, 2008. AMARAL, A. S. Aspectos da dormência em sementes de arroz. Lavoura arrozeira, v. 45, p. 3-6, 1992. ANDRIEU, A.; BREITLER, J. C.; SIRÉ, C.; MEYNARD, D.; GANTET, P.; GUIDERDONI, E. An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves. Rice, v. 5, p. 23-34, 2012. ARAKI, R. & HASEGAWA. Expression of rice (Oryza sativa L.) genes involved in highaffinity nitrate transport during the period of nitrate induction. Breeding Science, v. 56, p. 295-302, 2006. ARRUDA, L. N.; BUCHER, C. A.; RANGEL, R. P.; SOUZA, A. F. F.; FERNANDES, M. S.; SOUZA, S. R. Superexpressão do transportador OsNPF4.11 (OsNRT1.2) afeta teor de nitrato, parâmetros radiculares e crescimento de arroz. Revista Brasileira de Ciências Agrárias, v. 13, p. 1-8, 2018. BALDRICH, P. & SAN SEGUNDO, B. MicroRNAs in rice innate immunity. Rice, v. 9, p. 1- 6, 2016. BAO, A.; ZHAO, Z.; DING, G.; SHI, L.; XU, F.; CAI, H. Accumulated expression level of cytosolic glutamine synthetase 1 Gene (OsGS1;1 or OsGS1;2) alter plant development and the carbon–nitrogen metabolic status in rice. PloS One, v. 9, e95581, 2014. BAPTISTA, J. A.; FERNANDES, M. S.; SOUZA, S. R. Cinética de absorção de amônio e crescimento radicular das cultivares de arroz agulha e bico ganga. Pesquisa Agropecuária Brasileira, v. 35, p. 1325-1330, 2000. BASUCHAUDHURI, P. Nitrogen nutrition in rice. Indian Journal of Plant Sciences, v. 4, p. 28-37, 2015. 49 BEEVERS, L. & HAGEMAN, R. H. Nitrate reduction in higher plants. Annual Review of Plant Physiology, v.20, p. 495-522, 1969. BLOOM, A. J. The increasing importance of distinguishing among plant nitrogen sources. Current Opinion in Plant Biology, v. 25, p. 10-16, 2015. BOUGUYON, E.; GOJON, A.; NACRY, P. Nitrate sensing and signaling in plants. Seminars in Cell & Developmental Biology, v. 23, p. 648-654, 2012. BOUGUYON, E.; BRUN, F.; MEYNARD, D.; KUBES, M.; PERVENT, M.; LERAN, S.; LACOMBE, B.; KROUK, G.; GUIDERDONI, E.; ZAŽÍMALOVÁ, E.; HOYEROVÁ, K.; NACRY, P.; GOJON, A. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nature Plants, v. 1, p. 1-8, 2015. BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Mapa/ACS, 399p., 2009. BREDEMEIER, C. & MUNDSTOCK, C. M. Regulação da absorção e assimilação do nitrogênio nas plantas. Ciência Rural, v. 30, p. 365-372, 2000. BUCHER, Carlos Alberto. Avaliação através de RT-PCR da expressão dos genes que codificam para enzimas de assimilação de nitrogênio em variedades de arroz. 2007. 37f. Dissertação (Mestrado em Agronomia – Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. 2007. BUCHER, C. A.; SANTOS, L. A.; NOGUEIRA, E. M.; RANGEL, R. P.; SOUZA, S. R.; FERNANDES, M. S. The transcription of nitrate transporters in upland rice varieties with contrasting nitrate-uptake kinetics. Journal of Plant Nutrition Soil Science, v. 177, p. 395- 403, 2014. BUCHNER, P. & HAWKESFORD, M. J. Complex phylogeny and gene expression patterns of members of the nitrate transporter 1/peptide transporter family (NPF) in wheat. Journal of Experimental Botany, v. 65, p. 5697-5710, 2014. CAI, C.; WANG, J.-Y.; ZHU, Y.-G.; SHEN, Q.-R.; LI, B.; TONG, Y.-P.; LI, Z.-S. Gene structure and expression of the high-affinity nitrate transport system in rice roots. Journal of Integrative Plant Biology, v. 50, p. 443-451, 2008. CARBONELL, A.; FAHLGREN, N.; MITCHELL, S.; COX, K. L. JR, REILLY, K. C.; MOCKLER, T. C. AND CARRINGTON, J. C. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors. The Plant Journal, v. 82, p. 1061-1075, 2015. CHEN, J.; ZHANG, Y.; TAN, Y.; ZHANG, M.; ZHU, L.; XU, G.; FAN, X. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnology Journal, v. 14, p. 1-11, 2016. 50 CHOPIN, F.; ORSEL, M.; DORBE, M. F.; CHARDON, F.; TRUONG, H. N.; MILLER, A. J.; KRAPP, A.; DANIEL-VEDELE, F. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. The Plant Cell, v. 19, p. 1590-1602, 2007. COELHO, C. P.; SANTOS, L. A.; RANGEL, R. P.; SPERANDIO, M. V. L.; BUCHER, C. A.; SOUZA, S. R.; FERNANDES, M. S. Rice varieties exhibit different mechanisms for nitrogen use efficiency (NUE). Australian Journal of Crop Science, v. 10, p. 342-352, 2016. CONAB. Companhia Nacional de Abastecimento. Disponível em: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos. Acessado em: 02 de out. 2018. CONAB, 2018. CRAWFORD, N. M. Nitrate: Nutrient and signal for plant growth. The Plant Cell, v. 7, p. 859-868, 1995. DAVID, L. C.; DECHORGNAT, J.; BERQUIN, P.; ROUTABOUL, J. M.; DEBEAUJON, I.; DANIEL-VEDELE, F.; FERRARIO-MÉRY, S. Proanthocyanidin oxidation of Arabidopsis seeds is altered in mutant of the high-affnity nitrate transporter NRT2.7. Journal of Experimental Botany, v. 65, p. 885-893, 2014. DAVID, L. C.; BERQUIN, P.; KANNO, Y.; SEO, M.; DANIEL-VEDELE, F.; FERRARIOMÉRY, S. N availability modulates the role of NPF3.1, a gibberellin transporter, in GAmediated phenotypes in Arabidopsis. Planta, v. 244, p. 1315-1328, 2016. DRAGIĆEVIĆ, M.; SIMONOVIĆ, A.; BOGDANOVIĆ, M.; SUBOTIĆ, A.; GHALAWENJI, N.; DRAGIĆEVIĆ, I.; TODOROVIĆ, S. Differential regulation of Gs- Gogat gene expression by plant growth regulators in Arabidopsis seedlings. Archives of Biological Sciences, v. 68, p. 399-404, 2016. EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. Disponível em: http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Arroz/ArrozIrrigadoTocantins/adu bacao_calagem.htm. Acessado em: 02 de set. 2016. EMBRAPA, 2004. FAN, X.; NAZ, M.; FAN, X.; XUAN, W.; MILLER, A. J.; XU, G. Plant nitrate transporters: from gene function to application. Journal of Experimental Botany, v. 68, p. 2463-2475, 2017. FAO. Food and Agriculture Organization of the United Nations. Proceedings of the FAO International Symposium on the Role of Agricultural Biotechnologies in Sustainable Food Systems and Nutrition. FAO, 284p., 2016. FELKER, P. Micro determination of nitrogen in seed protein extracts. Analytical Chemistry, v. 49, p. 1080-1080, 1977. FENG, H.; YAN, M.; FAN, X.; LI, B.; SHEN, Q.; MILLER, A. J.; XU, G. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. Journal of Experimental Botany, v. 62, p. 2319-2332, 2011. 51 FERNANDES, M. S. Absorção e metabolismo de nitrogênio em plantas. Boletim Técnico, v. 1, 50 p., 1978. FERNANDES, M. S. N carriers, light and temperature influences on the free amino acid pool composition of rice plants. Turrialba, v. 33, p. 297-301, 1983. FERNANDES, M. S. Efeitos de fontes e níveis de nitrogênio sobre a absorção e assimilação de N em arroz. Revista Brasileira de Fisiologia Vegetal, v. 2, p. 1-6, 1990. FERREIRA, Leandro Martins. Caracterização funcional do transportador de amônio OsAMT1.3 e seu efeito sobre a nutrição nitrogenada em plantas de arroz. 2013. 55f. Dissertação (Mestrado em Agronomia – Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. 2013. FERREIRA, L. M.; SOUZA, V. M.; TAVARES, O. C. H.; ZONTA, E.; SANTACATARINA, C.; SOUZA, S. R.; FERNANDES, M. S.; SANTOS, L. A. OsAMT1.3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnology Reports, v. 9, p. 221-229, 2015. FERREIRA, Leandro Martins. Características morfológicas, fisiológicas e transcriptoma em variedades de arroz (Oryza sativa L.) contrastantes quanto a tolerância ao estresse hídrico. 2017. 110f. Tese (Doutorado em Agronomia – Ciência do Solo). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. 2017. FOLEY, M. E. & FENNIMORE, S. A. Genetic basis for seed dormancy. Seed Science Research, v. 8, p. 173-182, 1998. FORDE, B. G. Nitrogen signalling pathways shaping root system architecture: an update. Current Opinion in Plant Biology, v. 21, p. 30-36, 2014. FREDES, I.; MORENO, S.; DÍAZ, F. P.; GUTIÉRREZ, R. A. Nitrate signaling and the control of Arabidopsis growth and development. Current Opinion in Plant Biology, v. 47, p. 112-118, 2019. GAO, J.; LIU, J.; LI, B.; LI, Z. Isolation and purification of functional total RNA from bluegrained wheat endosperm tissues containing high levels of starches and flavonoids. Plant Molecular Biology Reporter, v. 19, p. 185-186, 2001. GASPARIS, S.; KAŁA, M.; PRZYBOROWSKI, M.; ORCZYK, W.; NADOLSKAORCZYK, A. Artificial microRNA-based specific gene silencing of grain hardness genes in polyploid cereals appeared to be not stable over transgenic plant generations. Frontiers in Plant Science, v. 7, p. 1-13, 2017. GOJON, A.; KROUK, G.; PERRINE-WALKER, F.; LAUGIER, E. Nitrate transceptor(s) in plants. Journal of Experimental Botany, v. 62, p. 2299-2308, 2011. GRiSP. Global Rice Science Partnership. Rice Almanac. GRiSP, 4ed., 283p., 2013. 52 GRUBER, B. D.; GIEHL, R. F. H.; FRIEDEL, S.; von WIRÉN, N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology, v. 163, p. 161-179, 2013. GUAN, M.; MØLLER, I. S.; SCHJOERRING, J. K. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis. Journal Experimental Botany, v. 55, p. 1311-1324, 2014. HAYNES, R. J. & GOH, K. M. Ammonium and nitrate nutrition of plants. Biological Reviews, v. 53, p. 465-510, 1978. HIEI, Y.; OHTA, S.; KOMARI, T.; KUMASHIRO, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, v. 6, p. 271-282, 1994. HIEI, Y.; KOMARI, T.; KUBO, T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Molecular Biology, v. 35, p. 205-218, 1997. HIEI, Y. & KOMARI, T. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nature Protocols, v. 3, p. 824-834, 2008. HIEI, Y.; ISHIDA, Y.; KOMARI, T. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Frontiers in Plant Science, v. 5, p. 628-638, 2014. HIREL, B.; GOUIS, J. L.; NEY, B.; GALLAIS, A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, v. 58, p. 2339- 2358, 2007. HOAGLAND, D. R. & ARNON, D. I. The water-culture method for growing plants without soil. California Agricultural of Experimental Station Bull, v. 347, p.1-32, 1950. HO, C.-H.; LIN, S.-H.; HU, H.-C.; TSAY, Y.-F. CHL1 functions as a nitrate sensor in plants. Cell, v. 138, p. 1184-1194, 2009. HODGE, A.; ROBINSON, D.; FITTER, A. Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science, v. 5, p. 304-308, 2000. HU, M.; ZHAO, X.; LIU, Q.; HONG, X.; ZHANG, W.; ZHANG, Y.; SUN, L.; LI, H.; TONG, Y. Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnology Journal, v. 16, p.1858-1867, 2018. HUARANCCA REYES, T.; SCARTAZZA, A.; POMPEIANO, A.; CIURLI, A.; LU, Y.; GUGLIELMINETTI, L.; YAMAGUCHI, J. Nitrate reductase modulation in response to changes in C/N balance and nitrogen source in Arabidopsis. Plant & Cell Physiology, v. 59, p. 1248-1254, 2018. 53 ISHIDA, Y.; SAITO, H.; OHTA, S.; HIEI, Y.; KOMARI, T.; KUMASHIROT, T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology, v. 14, p. 745-750, 1996. JAIN, M.; NIJHAWAN, A.; TYAGI, A. K.; KHURANA, J. P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, v. 345, p. 646-651, 2006. KADAM, N. N.; TAMILSELVAN, A.; LAWAS, L. M. F.; QUINONES, C.; BAHUGUNA, R. N.; THOMSON, M. J.; DINGKUHN, M.; MUTHURAJAN, R.; STRUIK, P. C.; YIN, X.; JAGADISHA, S.V. K. Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit. Plant Physiology, v. 174, p. 2302-2315, 2017. KANT, S. Understanding nitrate uptake, signaling and remobilization for improving plant nitrogen use efficiency. Seminars in Cell & Developmental Biology, v. 74, p. 89-96, 2018. KAWAHARA, Y.; DE LA BASTIDE, M.; HAMILTON, J. P.; KANAMORI, H.; MCCOMBIE, W. R.; OUYANG, S.; SCHWARTZ, D. C.; TANAKA, T.; WU, J.; ZHOU, S.; CHILDS, K. L.; DAVIDSON, R. M.; LIN H.; QUESADA-OCAMPO, L.; VAILLANCOURT, B.; SAKAI, H.; LEE, S. S.; KIM, J.; NUMA, H.; ITOH, T.; BUELL, C. R.; MATSUMOTO, T. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, v. 6, p. 1-10, 2013. KECHID, M.; DESBROSSES, G.; ROKHSI, W.; VAROQUAUX, F.; DJEKOUN, A.; TOURAINE, B. The NRT2.5 and NRT2.6 genes are involved in growth promotion of arabidopsis by the plant growth-promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM196. New Phytologist, v. 198, p. 514-524, 2013. KETRING, A. L. Germination inhibitors. Seed Science and Technology, v. 1, p. 305-324, 1973. KHRAIWESH, B.; OSSOWSKI, S.; WEIGEL, D.; RESKI, R.; FRANK, W. Specific gene silencing by artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiology, v. 148, p. 684-693, 2008. KIBA, T., FERIA-BOURRELLIER, A. B.; LAFOUGE, F.; LEZHNEVA, L.; BOUTETMERCEY, S.; ORSEL, M.; BRÉHAUT, V.; MILLER, A.; DANIEL-VEDELE, F.; SAKAKIBARA, H.; KRAPP, A. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. The Plant Cell, v. 24, p. 245-258, 2012. KIBA, T. & KRAPP, A. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant and Cell Physiology, v. 57, p. 707-714, 2016. KICHEY, T.; HIREL, B.; HEUMEZ, E.; DUBOIS, F.; LE GOUIS, J. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilization to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crop Research, v. 102, p. 22-32, 2007. 54 KOEVOETS, I. T.; VENEMA, J. H.; ELZENGA, J. T. M.; TESTERINK, C. Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Frontiers in Plant Science, v. 7, p. 1335-1354, 2016. KONISHI, M. & YANAGISAWA, S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nature Communications, v. 4, p. 1-9, 2013. KOTUR, Z.; MACKENZIE, N.; RAMESH, S.; TYERMAN, S. D.; KAISER, B. N.; GLASS, A. D. M. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1. New Phytologist, v. 194, p. 724-731, 2012. KOTUR, Z. & GLASS, A. D. M. A 150 kDa plasma membrane complex of AtNRT2.5 and AtNAR2.1 is the major contributor to constitutive high‐ affinity nitrate influx in Arabidopsis thaliana. Plant, Cell and Environment, v. 38, 1490-1502, 2015. KRAPP, A.; DAVID, L. C.; CHARDIN, C.; GIRIN, T.; MARMAGNE, A.; LEPRINCE, A. S.; CHAILLOU, S.; FERRARIO-MÉRY, S.; MEYER, C.; DANIEL-VEDELE, F. Nitrate transport and signaling in Arabidopsis. Journal of Experimental Botany, v. 65, p. 789-798, 2014. KRAPP, A. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Current Opinion in Plant Biology, v. 25, p. 115-122, 2015. KRONZUCKER, H. J.; GLASS, A. D. M.; SIDDIQI, M. Y.; KIRK, G. J. D. Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potential. New Phytologist, v. 145, p. 471-476, 2000. KROUK, G.; LACOMBE, B.; BIELACH, A.; PERRINE-WALKER, F.; MALINSKA, K.; MOUNIER, E.; HOYEROVA, K.; TILLARD, P.; LEON, S.; LJUNG, K.; ZAZIMALOVA, E.; BENKOVA, E.; NACRY, P.; GOJON, A. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell, v. 18, p. 927-937, 2010. KURATA, N.; NONOMURA, K.-I.; HARUSHIMA, Y. Rice Genome Organization: the Centromere and Genome Interactions. Annals of Botany, v. 90, p. 427-435, 2002. LAM-SÁNCHEZ, A.; SANTOS, J. E.; TAKAMURA, K.; TREPTOW, R. M. O.; OLIVEIRA, J. E. D. Estudos Nutricionais com arroz (Oryza sativa, L.). Alimentos e Nutrição, v. 5, p. 37-48, 1994. LAUGIER, E.; BOUGUYON, E.; MAURIÈS, A.; TILLARD, P.; GOJON, A.; LEJAY, L. Regulation of high-affinity nitrate uptake in roots of arabidopsis depends predominantly on posttranscriptional control of the NRT2.1/NAR2.1 transport system. Plant Physiology, v. 158, p. 1067-1078, 2012. LÉRAN, S.; VARALA, K.; BOYER, J.-C.; CHIURAZZI, M.; CRAWFORD, N.; DANIELVEDELE, F.; DAVID, L.; DICKSTEIN, R.; FERNANDEZ, E.; FORDE, B.; GASSMANN, W.; GEIGER, D.; GOJON, A.; GONG, J.-M.; HALKIER, B. A.; HARRIS, J. M.; HEDRICH, R.; LIMAMI, A. M.; RENTSCH, D.; SEO, M.; TSAY, Y.-F.; ZHANG, M.; CORUZZI, G.; 55 LACOMBE, B. A unified nomenclature of nitrate transporter1/peptide transporter family members in plants. Trends in Plant Science, v. 19, p. 5-9, 2014. LEZHNEVA, L.; KIBA, T.; FERIA-BOURRELLIER, A. B.; LAFOUGE, F.; BOUTETMERCEY, S.; ZOUFAN, P.; SAKAKIBARA, H.; DANIEL-VEDELE, F.; KRAPP, A. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. The Plant Journal, v. 80, p. 230-241, 2014. LI, H.; HU, B.; CHU, C. Nitrogen use effciency in crops: lessons from Arabidopsis and rice. Journal of Experimental Botany, v. 68, p. 2477-2488, 2017. LI, M. G.; VILLEMUR, R.; HUSSEY, P. J.; SILFLOW, C. D.; GANTT, J. S.; SNUSTAD, D. P. Differential expression of six glutamine synthetase genes in Zea mays. Plant Molecular Biology, v. 23, p. 401-407, 1993. LI, W.; YAN, M.; HU, B.; PRIYADARSHANI, S. V. G. N.; HOU, Z.; OJOLO, S. P.; XIONG, J.; ZHAO, H.; QIN, Y. Characterization and the expression analysis of nitrate transporter (NRT) gene family in pineapple. Tropical Plant Biology, v. 11, p. 177-191, 2018 (a). LI, Y.; XIAO, J.; CHEN, L.; HUANG, X.; CHENG, Z.; HAN, B.; ZHANG, Q.; WU, C. Rice Functional Genomics Research: Past Decade and Future. Molecular Plant, v. 11, p. 359-380, 2018 (b). LIVAK, K. J. & SCHMITTGEN, T. D. Analysis of relative gene expression data using realtime quantitative PCR and the 2–ΔΔC T method. Methods, v. 25, p. 402-408, 2001. LÓPEZ-BUCIO, J.; CRUZ-RAMÍREZ, A.; HERRERA-ESTRELLA, L. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, v. 6, p. 280- 287, 2003. LOTHIER, J.; GAUFICHON, L.; SORMANI, R.; LEMAÎTRE, T.; AZZOPARDI, M.; MORIN, H.; MASCLAUX-DAUBRESSE, C. The cytosolic glutamine synthetase GLN1;2 plays a role in the control of plant growth and ammonium homeostasis in Arabidopsis rosettes when nitrate supply is not limiting. Journal Experimental Botany, v. 62, p. 1375-1390, 2011. MARCHESAN, E.; GROHS, M.; SANTOS, D. S.; FORMENTINI, T. C.; SILVA, L. S.; SARTORI, G. M. S.; FERREIRA, R. B. Fontes alternativas à ureia no fornecimento de nitrogênio para o arroz irrigado. Ciência Rural, v. 41, p. 2053-2059, 2011. MARCHIVE, C.; ROUDIER, F.; CASTAINGS, L.; BRÉHAUT, V.; BLONDET, E.; COLOT, V.; MEYER, C.; KRAPP, A. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nature Communications, v. 4, p. 1-9, 2013. MARTIN, A.; LEE, J.; KICHEY, T.; GERENTES, D.; ZIVY, M.; TATOUT, C.; DUBOIS, F.; BALLIAU, T.; VALOT, B.; DAVANTURE, M.; TERCÉ-LAFORGUE, T.; QUILLERÉ, I.; COQUE, M.; GALLAIS, A.; GONZALEZ-MORO, M.-B.; BETHENCOURT, L.; 56 HABASH, D. Z.; LEA, P. J.; CHARCOSSET, A.; PEREZ, P.; MURIGNEUX, A.; SAKAKIBARA, H.; EDWARDS, K. J.; HIREL, B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. The Plant Cell, v. 18, p. 3252-3274, 2006. MASCLAUX-DAUBRESSE, C.; REISDORF-CREN, M.; ORSEL, M. Leaf nitrogen remobilization for plant development and grain filling. Plant Biology, v. 10, p. 23-36, 2008. MASCLAUX-DAUBRESSE, C.; DANIEL-VEDELE, F.; DECHORGNAT, J.; CHARDON, F.; GAUFICHON, L.; SUZUKI, A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, v. 105, p. 1141-1157, 2010. MENEZES, N. L.; FRANZIN, S. M.; BORTOLOTTO, R. P. Dormência em sementes de arroz: causas e métodos de superação. Revista de Ciências Agro-Ambientais, v. 7, p. 35-44, 2009. MILLER. A. J.; FAN, X.; ORSEL, M.; SMITH, S. J.; WELLS, D. M. Nitrate transport and signaling. Journal of Experimental Botany, v. 58, p. 2297-2306, 2007. MIRANDA, K. M.; ESPEY, M. G.; WINK, D. A. A rapid simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, v. 5, p. 62-71, 2001. MORÈRE-LE PAVEN, M.-C.; VIAU, L.; HAMON, A.; VANDECASTEELE, C.; PELLIZZARO, A.; BOURDIN, C.; LAFFONT, C.; LAPIED, B.; LEPETIT, M.; FRUGIER, F.; LEGROS, C.; LIMAMI, A. M. Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula. Journal of Experimental Botany, v. 62, p. 5595-5605, 2011. NACRY, P.; BOUGUYON, E.; GOJON, A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil, v. 370, p. 1-29, 2013. NESTER, E. W. Agrobacterium: nature’s genetic engineer. Frontiers in Plant Science, v. 5, p. 730-745, 2015. NEVES, Marcela Jacques de Lemos. Silenciamento gênico por amiRNA do transportador OsAMT1.3 e seu efeito sobre a eficiência de absorção de amônio em arroz (Oryza sativa L.). 2014. 34f. Dissertação (Mestrado em Agronomia, Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2014. O’BRIEN, J. A.; VEGA, A.; BOUGUYON, E.; KROUK, G.; GOJON, A.; CORUZZI, G.; GUTIÉRREZ, R. A. nitrate transport, sensing, and responses in plants. Molecular Plant, v. 9, p. 837-856, 2016. OKAMOTO, M.; VIDMAR, J. J.; GLASS, A. D. M. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant and Cell Physiology, v. 44, p. 304-317, 2003. 57 OSSOWSKI, S.; SCHWAB, R.; WEIGEL, D. Gene silencing in plants using artificial microRNAs and other small RNAs. The Plant Journal, v. 53, p. 674-690, 2008. PATEL, M.; DEWEY, R. E.; QU, R. Enhancing Agrobacterium tumefaciens-mediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection. Plant Cell Tissue and Organ Culture, v. 114, p. 19-29, 2013. PELLIZZARO, A.; CLOCHARDA, T.; PLANCHETA, E.; LIMAMIA, A. M.; MORÈRE-LE PAVEN, M.-C. Identification and molecular characterization of Medicago truncatula NRT2 and NAR2 families. Physiologia Plantarum, v. 154, p. 256-269, 2015. PELLIZZARO, A.; ALIBERT, B.; PLANCHET, E.; LIMAMI, A. M.; MORÈRE-LE PAVEN, M.-C. Nitrate transporters: an overview in legumes. Planta, v. 246, p. 585-595, 2017. PEOPLES, M. B.; HERRIDGE, D. F.; LADHA, J. K. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant and Soil, v. 174, p. 3-28, 1995. PRINSI, B.; NEGRI, A. S.; PESARESI, P.; COCUCCI, M.; ESPEN, L. Evaluation of protein pattern changes in roots and leaves of Zea mays plants in response to nitrate availability by two-dimensional gel electrophoresis analysis. BioMed Central Plant Biology, v. 9, p. 1-17, 2009. PRINSI, B. & ESPEN, L. Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize. BioMed Central Plant Biology, v. 15, p. 1-13, 2015. RAHAYU, Y. S.; WALCH-LIU, P.; NEUMANN, G.; RÖMHELD, V.; von WIRÉN, N.; BANGERTH, F. Root-derived cytokinins as long-distance signals for NO3 - induced stimulation of leaf growth. Journal of Experimental Botany, v. 56, p. 1143-1152, 2005. RANGEL, Rafael Passos. Morfologia, arquitetura radicular e metabolismo de nitrogênio em variedades de arroz sob baixa disponibilidade de amônio. 2014. 49f. Dissertação (Mestrado em Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2014. RANGEL, Rafael Passos. Arquitetura radicular e tolerância à seca em plantas de arroz com elevada expressão de citocinina oxidase nas raízes. 2018. 49f. Tese (Doutorado em Ciência do Solo). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. 2018. RASHID, M.; BERA, S.; MEDVINSKY, A. B.; SUN, G.-Q.; LI, B.-L.; CHAKRABORTY, A. Adaptive regulation of nitrate transceptor NRT1.1 in fluctuating soil nitrate conditions. iScience, v. 2, p. 41-50, 2018. 58 REMANS, T.; NACRY, P.; PERVENT, M.; FILLEUR, S.; DIATLOFF, E.; MOUNIER, E.; TILLARD, P.; FORDE, B. G.; GOJON, A. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proceedings of the National Academy of Sciences of the United States of America, v. 103, p. 19206- 19211, 2006. ROSSIELLO, R. O. P.; ARAÚJO, A. P.; MANZATTO, C. V.; FERNANDES, M. S. Comparação dos métodos fotoelétrico e da interseção na determinação de área, comprimento e raio médio radicular. Pesquisa Agropecuária Brasileira, v. 30, p. 633-638, 1995. SABLOK, G.; PÉREZ-QUINTERO, Á. L.; HASSAN, M.; TATARINOVA, T. V.; LÓPEZ, C. Artificial microRNAs (amiRNAs) engineering - On how microRNA-based silencing methods have affected current plant silencing research. Biochemical and Biophysical Research Communications, v. 406, p. 315-319, 2011. SAHOO, K. K.; TRIPATHI, A. K.; PAREEK, A.; SOPORY, S. K.; PAREEK, S. L. S. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods, v. 7, p. 49-59, 2011. SAMARAPPULI, D. P.; JOHNSON, B. L.; KANDEL, H.; BERTI, M. T. Biomass yield and nitrogen content of annual energy/forage crops preceded by cover crops. Field Crops Research, v. 167, p. 31-39, 2014. SANTOS, L. A.; BUCHER, C. A.; SOUZA, S. R.; FERNANDES, M. S. Metabolismo de nitrogênio em arroz sob níveis decrescentes de nitrato. Agronomia, v. 39, p. 28-33, 2005. SANTOS, A. M.; BUCHER, C. A.; STARK, E. M. L. M.; FERNANDES, M. S.; SOUZA, S. R. Efeito da disponibilidade de nitrato em solução nutritiva sobre a absorção de nitrogênio e atividade enzimática de duas cultivares de arroz. Bragantia, v. 68, p. 215-220, 2009 (a). SANTOS, L. A.; BUCHER, C. A.; SOUZA, S. R.; FERNANDES, M. S. Effects of Nitrogen Stress on Proton-Pumping and Nitrogen Metabolism in Rice. Journal of Plant Nutrition, v. 32, p. 549-564, 2009 (b). SANTOS, Leandro Azevedo. Efeito da superexpressão dos fatores de transcrição ZmDof1 e OsDof25 sobre a eficiência de uso de nitrogênio em Arabidopsis. 2009. 81f. Tese (Doutorado em Agronomia, Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2009. SCHMID, M.; DAVISON, T. S.; HENZ, S. R, PAPE, U. J.; DEMAR, M.; VINGRON, M.; SCHÖLKOPF B, WEIGEL, D, LOHMANN, J. U. A gene expression map of Arabidopsis thaliana development. Nature Genetics, v. 37, p. 501-506, 2005. SCHWAB, R.; OSSOWSKI, S.; RIESTER, M.; WARTHMANN, N.; WEIGEL, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. The Plant Cell, v. 18, p. 1121-1133, 2006. SHIMAMOTO, K. & KYOZUKA, J. Rice as a model for comparative genomics of plants. Annual Review of Plant Biology, v. 53, p. 399-419, 2002. 59 SHRI, M.; RAI, A.; VERMA, P. K.; MISRA, P.; DUBEY, S.; KUMAR, S.; VERMA, S.; GAUTAM, N.; TRIPATHI, R. D.; TRIVEDI, P. K.; CHAKRABARTY, D. An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars. Protoplasma, v. 250, p. 631–636, 2013. SMITH, S. & DE SMET, I. Root system architecture: insights from Arabidopsis and cereal crops. Philosophical Transactions of the Royal Society of London, v. 367, p. 1441-1452, 2012. SOUZA, Sonia Regina de. Efeito da aplicação foliar de nitrogênio pós-antese sobre as enzimas de assimilação de N e acúmulo de proteína em grãos de arroz. 1995. 178f. Tese de Doutorado. (Doutorado em Agronomia – Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 1995. SOUZA, S. R.; STARK, E. M. L.; FERNANDES, M. S. Nitrogen remobilization during the reproductive period in two Brazilian rice varieties. Journal of Plant Nutrition, v. 21, p. 2049-2063, 1998. SOUZA, S. R.; STARK, E. M. L.; FERNANDES, M. S.; MAGALHÃES, J. R. Effects of supplemental nitrogen on nitrogen-assimilation enzymes, free amino nitrogen, soluble sugars and crude protein of rice. Communication in Soil Science and Plant Analysis, v.30, p. 711- 724, 1999. SOUZA, S. R. & FERNANDES, M. S. Nitrogênio. In: FERNANDES, M. S.; SOUZA, S. R.; SANTOS, L. A. (Ed). Nutrição Mineral de Plantas. 2. ed. Viçosa: Sociedade Brasileira de Ciência do Solo, cap. 9, p. 309-375, 2018. SPERANDIO, Marcus Vinícius Loss. Análise da expressão dos genes OsNRT1.1 (A, B e C) e efeito do silenciamento das isoformas OsA2 e OsA7 de PM H+-ATPases na absorção de nitrogênio em arroz. 2015. 121f. Tese de Doutorado. (Doutorado em Agronomia – Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2015. SUN, L.; LIN, C.; DU, J.; SONG, Y.; JIANG, M.; LIU, H.; ZHOU, S.; WEN, F.; ZHU, C. Dimeric artificial microRNAs mediate high resistance to RSV and RBSDV in transgenic rice plants. Plant Cell, Tissue and Organ Culture, v. 126, p. 127-139, 2016. TABUCHI, M.; SUGIYAMA, K.; ISHIYAMA, K.; INOUE, E.; SATO, T.; TAKAHASHI, H.; YAMAYA, T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase 1;1. The Plant Journal, v. 42, p. 641-651, 2005. TABUCHI, M.; ABIKO, T.; YAMAYA, T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental Botany, v. 58, p. 2319-2327, 2007. THE WORLD BANK. Disponível em: http://data.worldbank.org/topic/agriculture-and-ruraldevelopment? end=2013&start=2002. Acessado em: 03 de set. THE WORLD BANK, 2016. 60 TILMAN, D. Global environmental impacts of agriculture expansion; the need for sustainable and efficient practices. Proceedings of the National Academy of Sciences, v. 96, p. 5995- 6000, 1999. TILMAN, D.; FARGIONE, J.; WOLFF, B.; D'ANTONIO, C.; DOBSON, A.; HOWARTH, R.; SCHINDLER, D.; SCHLESINGER, W. H.; SIMBERLOFF, D.; SWACKHAMER, D. Forecasting agriculturally driven global environmental change. Science, v. 292, p. 281-284, 2001. TIWARI, M.; SHARMA, D.; TRIVEDI, P. K. Artifcial microRNA mediated gene silencing in plants: progress and perspectives. Plant Molecular Biology, v. 86, p. 1-18, 2014. TREVISAN, S.; MANOLI, A.; QUAGGIOTTI, S. NO signaling is a key component of the root growth response to nitrate in Zea mays L. Plant Signaling & Behavior, v. 9, e28290, 2014. TOKI, S.; HARA, N.; ONO, K.; ONODERA, H.; TAGIRI, A.; OKA, S.; TANAKA, H. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. The Plant Journal, v. 47, p. 969-976, 2006. USDA. United States Department of Agriculture. Disponível em: https://apps.fas.usda.gov/psdonline/circulars/production.pdf. Acessado em: 02 de out. 2018. USDA, 2018. WANG, Y. Y.; HSU, P. K.; TSAY, Y. F. Uptake, allocation and signaling of nitrate. Trends in Plant Science, v.17, p. 458-467, 2012. WANG, C.; CHEN, X.; LI, H.; WANG, J.; HU, Z. Artificial miRNA inhibition of phosphoenolpyruvate carboxylase increases fatty acid production in a green microalga Chlamydomonas reinhardtii. Biotechnology for Biofuels, v. 10, p. 1-11, 2017. WARTHMANN, N.; CHEN, H.; OSSOWSKI, S.; WEIGEL, D.; HERVÉ, P. Highly specific gene silencing by artificial miRNAs in rice. PLoS One, v. 3, e1829, 2008. WEI, J.; ZHENG, Y.; FENG, H.; QU, H.; FAN, X.; YAMAJI, N.; MA, J. F.; XU, G. OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. Journal of Experimental Botany, v. 69, p. 1095- 1107, 2018. WEN, Z. & KAISER, B. N. Unraveling the functional role of NPF6 transporters. Frontiers in Plant Science, v. 9, p. 1-8, 2018. WINRHIZO ARABIDOPSIS. Régent Instruments, Quebec, Canadá Inc., 2012 (b). XIA, X.; FAN, X.; WEI, J.; FENG, H.; QU, H.; XIE, D.; MILLER, A. J.; XU, G. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. Journal of Experimental Botany, v. 66, p. 317-331, 2014. 61 XUAN, W.; BEECKMAN, T.; XU, G. Plant nitrogen nutrition: sensing and signaling. Current Opinion in Plant Biology, v. 39, p. 57-65, 2017. YAN, M.; FAN, X.; FENG, H.; MILLER, A. J.; SHEN, Q.; XU, G. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant, Cell and Environment, v. 34, p. 1360-1372, 2011. YANAGISAWA, S. Transcription factors involved in controlling the expression of nitrate reductase genes in higher plants. Plant Science, v. 229, p. 167-171, 2014. YAO, M.; AI, T.-B.; MAO, Q.; CHEN, F.; LI, F.-S.; TANG, L. Downregulation of OsAGO17 by artificial microRNA causes pollen abortion resulting in the reduction of grain yield in rice. Electronic Journal of Biotechnology, v. 35, p. 25-32, 2018. YEMM, E. W. & COCKING, E. C. The determination of amino-acid with ninhydrin. Analyst, v. 80, p. 209-213, 1955. YEMM, E. W. &WILLIS, A. J. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, v. 57, p. 508-514, 1954. YUAN, S.; ZHANG, Z.-W.; ZHENG, C.; ZHAO, Z.-Y.; WANG, Y.; FENG, L.-Y.; NIU, G.; WANG, C.-Q.; WANG, J.-H.; FENG, H.; XU, F.; BAO, F.; HU, Y.; CAO, Y.; MA, L.; WANG, H.; KONG, D.-D.; XIAO, W.; LIN, H.-H.; HE, Y. Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Proceedings of the National Academy of Sciences of the United States of America, v. 113, p. 7661-7666, 2016. ZHANG, H. & FORDE, B. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, v. 279, p. 407-409, 1998. ZHANG, H. & FORDE B. G. Regulation of arabidopsis root development by nitrate availability. Journal of Experimental Botany, v. 51, p. 51-59, 2000. ZHANG, N.; ZHANG, D.; CHEN, S. L.; GONG, B.-Q.; GUO, Y.; XU, L.; ZHANG, X.-N.; LI, J.-F. Engineering artificial microRNAs for multiplex gene silencing and simplified transgenic screen. Plant Physiology, v. 178, p. 989-1001, 2018. ZHENG, D.; HAN, X.; AN, Y. I.; GUO, H.; XIA, X.; YIN, W. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant, Cell & Environment, v. 36, p. 1328-1337, 2013. ZHU, J.; INGRAM, P. A.; BENFEY, P. N.; ELICH, T. From lab to field, new approaches to phenotyping root system architecture. Current Opinion in Plant Biology, v. 14, p. 310-317, 2011.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/64501/2018%20-%20Andressa%20Fabiane%20Faria%20de%20%20Souza1.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4502
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-04-05T13:41:01Z No. of bitstreams: 1 2018 - Andressa Fabiane Faria de Souza1.pdf: 1296398 bytes, checksum: 0ab238e1fcd22badc26ae28df2145db0 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-04-05T13:41:01Z (GMT). No. of bitstreams: 1 2018 - Andressa Fabiane Faria de Souza1.pdf: 1296398 bytes, checksum: 0ab238e1fcd22badc26ae28df2145db0 (MD5) Previous issue date: 2018-02-28eng
Appears in Collections:Mestrado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Andressa Fabiane Faria de Souza1.pdf2018 - Andressa Fabiane Faria de Souza1.27 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.