Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10571
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRibeiro, Thiago Gonçalves
dc.date.accessioned2023-12-22T01:39:38Z-
dc.date.available2023-12-22T01:39:38Z-
dc.date.issued2017-02-23
dc.identifier.citationRIBEIRO, Thiago Gonçalves. Filogenia de Rizóbios do feijoeiro com base no sequenciamento do gene 16S rRNA e na análise de sequenciamento multilocus. 2017. 63 f. Dissertação (Mestrado em Agronomia, Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2017.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10571-
dc.description.abstractA caracterização genotípica dos rizóbios é fundamental para sua definição taxonômica e para o conhecimento de sua biodiversidade. Dentro desse contexto, o presente trabalho teve cometivo caracterizar uma coleção de 139 estirpes de rizóbio isoladas de nódulos de feijoeiro e realizar inferências filogenéticas com base na análise de sequenciamento multilocus de modo a definir o seu posicionamento taxonômico. Essas estirpes foram isoladas de diferentes localidades do Brasil e do mundo e depositadas na coleção de Culturas de Bactérias Diazotróficas (CCBD) da EMBRAPA Agrobiologia. As ferramentas utilizadas foram a análise de BOX-PCR e a inferência filogenética com base em sequências dos genes 16S rRNA, recA, dnaK e glnII. A análise de BOX-PCR mostrou que existe uma grande diversidade genotípica entre as estirpes, com 63 grupos formados a 85% de similaridade. O sequenciamento do gene 16S rRNA revelou que 87% delas pertencem ao gênero Rhizobium, principalmente às espécies R. phaseoli, R. laguerrae e R. tropici. As árvores filogenéticas revelaram a existência de dois grandes clados: um deles foi formado pelo grupo R. phaseoli-R. etli-R. leguminosarum e o outro pelo R. tropici e espécies relacionadas. Os grupos formados nas árvores individuais de cada gene mostraram-se coesos, porém algumas estirpes apresentaram resultados incongruentes. O gene recA apresentou o maior número de sinais filogenéticos conflitantes indicando possível evento de recombinação entre as espécies, especialmente dentro do clado R. phaseoli-R. etli-R. leguminosarum.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectTaxonomiapor
dc.subjectRhizobiumpor
dc.subjectMLSApor
dc.subjectTaxonomyeng
dc.titleFilogenia de Rizóbios do feijoeiro com base no sequenciamento do gene 16S rRNA e na análise de sequenciamento multilocuspor
dc.title.alternativePhylogeny of bean rhizobia based on 16S rRNA Gene sequencing and multilocus sequencing analysiseng
dc.typeDissertaçãopor
dc.description.abstractOtherThe genotypic characterization of rhizobia is fundamental for their taxonomic definition and to improving knowledge about their biodiversity. In this context, the present work aimed to characterize a collection of 139 rhizobium strains isolated from common bean nodules and to make phylogenetic inferences based on multilocus sequencing analysis in order to define their taxonomic positioning. These strains were isolated from different locations in Brazil and worldwide, and deposited in the Culture Collection of Diazotrophic Bacteria (CCBD) of EMBRAPA Agrobiologia. Those strains were examined with BOX-PCR analysis and phylogenetic inference based on 16S rRNA, recA, dnaK and glnII gene sequences. BOX-PCR analysis showed that there is a great genotypic diversity among the strains, with 63 groups formed at the level of 85% similarity. Sequencing of the 16S rRNA gene revealed that 87% belong to the genus Rhizobium, mainly to the species R. phaseoli, R. laguerrae, and R. tropici. Phylogenetic trees revealed the existence of two major clades: one of them was formed by the group R. phaseoli-R. Etli-R. leguminosarum and the other by R. tropici and related species. The groups formed in the individual trees of each gene were shown to be cohesive, but the results were incogruent for some of the strains. The recA presented the highest number of conflicting phylogenetic signs, indicating a possible recombination event among species, especially within the clade R. phaseoli-R. etli-R. leguminosarum.eng
dc.contributor.advisor1Jesus, Ederson da Conceição
dc.contributor.advisor1IDCPF: 084.646.497-70por
dc.contributor.referee1Berbara, Ricardo Luis Louro
dc.contributor.referee2Moreira, Fatima Maria de Souza
dc.creator.IDCPF: 101.725.257-21por
dc.creator.Latteshttp://lattes.cnpq.br/3096879049686449por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesABRIL, A.; ZURDO-PIÑEIRO,L.;PEIX, A.; RIVAS, R.& VELÁZQUEZ. Solubilization of phosphate by a strain of Rhizobium leguminosarum bv. Trifolii isolated from Phaseolus vulgaris in El Chaco arido soil (Argentina). First international meeting on Microbial phosphate solubilizations 135-138. 2003. AGUILAR, O. M.; LOPEZ, M. V.; RICCILLO, P. M.; GONZALEZ, R. A.; PAGANO, M.; GRASSO, D. H.; PUHLER, A.; FAVELUKES, G. Prevalence of the Rhizobium etli like allele in genes coding for 16s rRNA among the indigenous rhizobial populations found associated with wild beans from the Southern Andes in Argentina. Applied Environmental Microbiology, Reading, v. 64, p. 3520-3524, 1998. AGUILAR, O. M.; RIVA, O.; PELTZER, E. Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proceedings of the National Academy of Sciences of U.S.A, Washington, v. 101, n. 37, p. 13548-13553, 2004. ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W. E LIPMAN, D. J. Basic Local Alignment Search Tool. Journal of Molecular Biology 215:403-410. 1990. AMARGER, N. Rhizobia in the field. Advances in Agronomy, v. 73, p.109–168, 2001. AMARGER, N.; BOURS, M.; REVOY, F.; ALLARD, M. R.; LAGUERRE, G. Rhizobium tropici nodulates field-grown Phaseolus vulgaris in France. Plant and Soil, Dordrecht, v. 161, p. 147-156, 1994. AMARGER, N.; GENIAUX, E.; LAGUERRE, G. 1995. Rhizobium associated with fieldgrown Phaseolus vulgaris. In: International Symposium On Microbial Ecology, 7., 1995, Santos. Abstracts. São Paulo: SBM, 1995. Abst. P2-14.1. AMARGER, N.; MACHERET, V.; LAGUERRE, G. Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. International Journal of Systematic Bacteriology, Washington, v. 47, p. 996-1006, 1997. AMARGER, N.; MAZURIER, S.I.; GENIAUX, E.; LAGUERRE, G. Indigenous populations of Rhizobium nodulating Phaseolus vulgaris. In: PALACIOS, R.; MORA, J.; NEWTON, W.E., eds. New horizons in nitrogen fixation. Dordrecht: Kluwer Academic Publishers, 1993. p.593. ANTUNES, J.E.L. Diversidade genética e eficiência simbiotica de isolados de rizóbios nativos em feijão-fava (phaseolus lunatus L.) Dissertação (mestrado em Agronomia – Produção vegetal) Universidade Federal do Piauí, Piauí, maio, 2010. ARAUJO, R.S.; HENSON, RA. Fixação biológica de nitrogênio In: ZIMMERMANN, M.J.O.; ROCHA, M., YAMADA, T. (eds). Cultura do feijoeiro: fatores que afetam a produtividade. Piracicaba: POTAFOS, 1988. p. 213-227. AYANANGO, B.; WILSON, K.J.; BEYMON, J.L.; GILLER, K.E. Diversity of rhizobia nodulating Phaseolus vulgaris L. in Kenyan soils with contrasting pHs. Applied and Environmental Microbiology, Washington, v.61, p.4016-4021, 1995. BAI, Y., D'AOUST, F., SMITH, D.L., DRISCOLL, B.T. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol. 2002 Mar;48(3):230-8. BEEBE, S.; RENGIFO, J.; GAITAN, E.; DUQUE, M. C.; TOHME, J. Diversity and origin of Andean Landraces of common bean. Crop Sciences, Madison, v.41, n.3, p.854-862, 2001. BERNAL, G., GRAHAM, P.H., Diversity in the rhizobia associated with Phaseolus vulgaris L. in Ecuador, and comparisons with Mexican bean rhizobia. Can. J. Microbiol. 47, 526e534.2001. BINDE, D.R, MENNA, P., BANGEL, E.V., BARCELLOS, F.G., HUNGRIA, M. rep-PCR fingerprinting and taxonomy based on the sequencing of the 16S rRNA gene of 54 elite commercial rhizobia strains. Appl Microbiol Biotechnol (2009) 83:897–908. BLISS, F.A. Breeding common bean for improvement of biological nitrogen fixation. Plan and Soil, Dordrecht, v. 152, n.1,p.71-79, 1993. BOREM, A.; SANTOS, F.R. Biotecnologia Simplificada. 2. Ed Viçosa. UFV, 2004. BROWN, E.W., KOTEWICZ, M.L., CEBULA, T.A., Detection of recombination among Salmonella enterica strains using the incongruence length difference test. Mol. Phylogenet. Evol. 24, 102–120. 2002. BULL, J.J.; HUELSENBECK, J.P.; CUNNINGHAM, C.W.; SWOFFORD, D.; WADDELL, P.J. Partitioning and combining data in phylogenetic analysis. Systematic Biology 42: 384- 397;1993. BURLE, M.L.; FONSECA, J.R.; KAMI, J.A.; GEPTS, P. Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theoretical and Applied Genetics, v.121, p.801-813, 2010. CASSETARI, A. DE S. Diversidade de bactérias diazotróficas nodulífera na mata Atlântica. Dissertação (Mestrado). Escola Superior de Agricultura “Luiz de Queiroz”. 2010. CHEN, W. M.; JAMES, E. K.; COENYE, T.; CHOU, J. H.; BARRIOS, E.; DE FARIA, S. M.; ELLIOTT, G. N.; SHEU, S. Y.; SPRENT, J. I.; VANDAMME, P. Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. International Journal of Systematic and Evolutionary Microbiology, Spencers Wood, v. 56, n. 8, p. 1847-1851, Aug. 2006. CHEN, W. X.; TAN, Z. Y.; GAO, J. L.; LI, Y.; WANG, E. T. Rhizobium hainanense sp. nov., isolated from tropical legumes. International Journal of Systematic Bacteriology, Washington, v.47, n. 3, p. 870-873, July 1997. CHEN, W.-M.; LAEVENS, S.; LEE, T.-M.; COENYE, T.; DE VOS, P.; MERGEAY, M.; VANDAMME, P. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. International Journal of Systematic and Evolutionary Microbiology, v.51, p.1729-1735, 2001. CHEN, W-M.; WU, C.H.; JAMES, E. K.; CHANG, J-S. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. Journal of Hazardous Materials, Amsterdam, v. 151, n. 2-3, p. 364-371, Mar. 2008. COENYE, T.; GEVERS D.; Van de PEER Y.; VANDAMME, P.; SWINGS, J. Towards a prokaryotic genomic taxonomy. FEMS Microbiology Reviews, v. 29, 147–167. 2005. CONAB. Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira: grãos. Brasília: Conab, 2015. CONAB. Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira: grãos, décimo levantamento, julho de 2012. Brasília: Conab, 2012. COUTINHO, H. L. C. 2003. Biodiversidade: perspectivas e oportunidades biotecnológicas. Disponível em <http//www.bdtfat.org.br/publicações/padct/bio/cap9/1/>Acesso em: 12 junho de 2015. DALL‘AGNOL R.F., RIBEIRO R.A., ORMEÑO-ORRILLO E., ROGEL M.A., DELAMUTA J.R.M., ANDRADE D.S., MARTÍNEZ-ROMERO E., HUNGRIA M. Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. International Journal of Systematic and Evolutionary Microbiology, v. 63, p.4167-4173, 2013. DALL'AGNOL, R. F.; PLOTEGHER, F.; SOUZA, R. C.; MENDES, I. de C.; REIS JUNIOR, F. B. dos; BÉNA, G.; MOULIN, L.; HUNGRIA, M. Paraburkholderia nodosa is the main N2-fixing species trapped by promiscuous common bean (Phaseolus vulgaris L.) in the Brazilian 'Cerradão'. FEMS Microbiology Ecology, 2016, v. 92, n. 8, 14 p., nov. 2016. DE BRUIJIN, F.J. Use of repetitive (repetitive extragenic palindormic and enterobacterial repetitive intergenic consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacterial. Applied Environmental Microbiology, v. 58, p. 2180-2187, 1992. DE LAJUDIE, P.; WILLEMS, A.; NICK, G.; MOREIRA, F.; MOLOUBA, F.; HOSTE, B.; TORCK, U.; NEYRA, M.; COLLINS, M.D.; LINDSTRÖM, K.; DREYFUS, B.; GILLIS, M. Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. International Journal of Systematic Bacteriology, v. 48, p. 369-382, 1998. DE QUEIROZ, A.; DONOGHUE, M.J.; KIM, J. 1995. Separate versus combined analysis of phylogenetic evidence. Annual Review of Ecology and Systematics 26: 657-681. DELAMUTA J.R.M., RIBEIRO R.A., ORMEÑO-ORRILLO E., MELO I.S., MARTÍNEZROMERO E., HUNGRIA, M. Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. International Journal of Systematic and Evolutionary Microbiology. v.63, p.3342-3351, 2013. DENG, Z., S., ZHAO, L. F., KONG, Z. Y., YANG, W. Q., LINDSTRÖM, K WANG, E. T.& WEI, G. H. Diversityof endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol Ecol 76 (2011) 463–475. DICE, L. R. Measures of the amount of ecologic association between species. Ecology. v. 26, n. 3, p. 297–302, 1945. DRANCOURT, M.; ROUX, V.; FOURNIER, P.E.; RAOULT, D. rpoB gene sequencebased identification of aerobic Gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella. Journal of Clinical Microbiology, v.42, p.497- 504, 2004. DREYFUS, B.; GARCIA, J. L.; GILLIS, M. Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. International Journal of Systematic Bacteriology, v. 38, p. 89-98, 1988. DYKHUIZEN, D.E., GREEN, L., Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 173, 7257–7268. 1991. EADY, R.R. The Mo-, V-, and Fe- based nitrogenase systems of Azotobacter. Advances in Inorganic Chemistry , San Diego, v.36, p.77-102, 1991. EDGAR, ROBERT C. MUSCLE. A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004 Aug 19;5:113. ESCOBAR-PÁRAMO, P., SABBAGH, A., DARLU, P., PRADILLON, O., VAURY, C., DENAMUR, E., LECOINTRE, G., Decreasing the effects of horizontal gene transfer on bacterial phylogeny: the Escherichia coli case study. Mol. Phylogenet. Evol. 30, 243–250. 2004. FALKOW, S. The evolution of pathogenicity in Escherichia, Shigella and Salmonella. In.: NEIDHARDZ, F., C. (Ed.) Escherichia coli and Salmonella: Cellular and Molecular Biology. Washington: American Society for Microbiology Press, 1996, p. 2723-2729. FARRIS, .S., ALLERS O , ., L GE, A.G., B LT, C., Testing significance of congruence. Cladistics 10, 315–319.1995. FERNANDES JUNIOR, P.I., REIS, V. M. Algumas limitações à fixação Biológica de Nitrogênio em leguminosas. Seropédica Embrapa agrobiologia (Embrapa CNPAB. Documentos, 252). 2008. FERNANDES, M. F.; FERNANDES, R. P. M.; HUNGRIA, M. Seleção de rizóbios nativos para guandu, caupi e feijão-de-porco nos tabuleiros costeiros de Sergipe. Pesquisa Agropecuária Brasileira, Brasília, v. 38, n. 7, July 2003. FLORENTINO, L. A.; GUIMARAES, A. P.; RUFINI, M.; SILVA, K.; MOREIRA, F. M. S. Sesbania virgata stimulates the occurrence of its microsymbiont in soils but does not inhibit microsymbionts of other species. Scientia Agricola, Piracicaba, v. 66, n. 5, p. 667-676, Sept. 2009. FRANK, B. Ueber dies pilzsymbiose der leguminosen. Berichte der Deutschen Botanischen Gesellschaft, Berlin, v. 7, p. 332-346, 1889. FRED, E.B., BALDWIN, I.L. AND MCCOY, E. Root Nodule Bacteria of Leguminous Plants. University of Wisconsin Press, Madison, USA. 1932. FREIRE, J. Microbiologia do solo. Porto Alegre: UFRGS, 1975. GATESY, J., O'GRADY, P., BAKER, R.H. Corroboration among data sets in simultaneous analysis: Hidden support for phylogenetic relationships among higher level Artiodactyla taxa. Cladistics 15: 271-313. 1999. GAUNT, M.W.; TURNER, S.L.; RIGOTTIER-GOIS, L.; LLOYD-MACGILP, S.A; YOUNG, J.P. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. International Journal Systematic and Evolutionary Microbiology, 51, 2037-2048, 2001. GENIAUX, E.; FLORES, M.; PALACIOS, R.; MARTÍNEZ, E. Presence of megaplasmids in Rhizobium tropici and further evidence of differences between the two R. tropici subtypes. International Journal of Systematic Bacteriology, London, v.45, p.392-394, 1995. GEVERS D., COHAN F.M., LAWRENCE J.G., SPRATT B.G., COENYE T., FEIL E.J., STACKEBRANDT E., VAN DE PEER Y., VANDAMME P., THOMPSON F.L., SWINGS J. Opinion: Re-evaluating prokaryotic species. Nature Reviews Microbiology, v.3, p.733- 739, 2005. GRAHAM PH, VANCE CP, 2000, “Nitrogen fixation in perspective: an overview of research and extension needs”, Field Crops Research, 65, n.2-3, 93-106, 2000. GRANGE, L. & HUNGRIA, M. Genetic diversity of indigenous common bean (Phaseolus vulgaris) rhizobia in two Brasilian ecosystems. Soil Biology & Biochemistry, Oxford, v.36, p.1389-1398, 2004. GU, C. T., WANG, E. T., TIAN, C. F., HAN, T. X., CHEN, W. F., SUI, X. H. & CHEN, W. X. Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int J Syst Evol Microbiol 58, 1364–1368. 2008. HALL, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl.Acids. Simp. Ser. 41:95-98. 1999. HAN, T. X., WANG, E. T., WU, L. J., CHEN, W. F., GU, J. G., GU, C. T., TIAN, C. F. & CHEN, W. X. Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58, 1693–1699. 2008. HARRIS, J. K.; KELLEY, S. T.; SPIEGELMAN, G. B.; PACE, N. R. The genetic core of the universal ancestor. Genome Research, v.13, p.407-412, 2003. HERNANDEZ-LUCAS, I.; SEGOVIA, L.; MARTÍNEZROMERO, E. & PUEPPKE, S.G. Phylogenetic relationships and host range of Rhizobium spp. That nodulates Phaseolus vulgaris L. Appl. Environ. Microbiol., 61:2775-2779, 1995. HIDALGO, R. CIAT’s World Phaseolus Collection. In: SCHOONHOVEN, A van, VOYSEST, O. (ed.) Common Beans: research for crop improvement. Wallingford: CAB International, p. 163-198, 1991. HIRCH, A.M.; LUM, M.R.; DOWNIE, J.A. What makes the rhizobia-legume sysmbiosis so special? Plant Physiology, v127(4), p.1484-1492, 2001. HUNGRIA M.; VARGAS M.A.T.; ARAUJO R.S. Fixação biológica do nitrogênio em feijoeiro. In: VARGAS, M.A.T.; HUNGRIA, M. (Ed.) Biologia dos solos dos Cerrados. Planaltina: EMBRAPA-CPAC, 1997, p.189-295. HUNGRIA, M., VARGAS, M. A. T. Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res. v.65, n.2, p.151-164, mar. 2000. HUNGRIA, M.; ANDRADE, D.S.; CHUEIRE, L.M.O.; PROBANZA, A.; GUTTIERREZMAÑERO, F.J.; MEGÍAS, M. Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brasil. Soil Biology & Biochemistry, Oxford, v.32, p.1515-1528, 2000. HUNGRIA, M.; ANDRADE, D.S.; COLOZZI-FILHO, A.; BALOTA, E.L.; SANTOS, J.C.F. Ecologia microbiana em solos sob cultivos na Região Sul do Brasil. In: HUNGRIA, M.; BALOTA, E.L.; COLOZZI-FILHO, A.; ANDRADE, D.S. (Ed.) Microbiologia do solo: desafios para o século XXI. Londrina: IAPAR/EMBRAPA-CNPSo, p.234- b270. 1995. HUNGRIA, M.; CAMPO, R. J.; MENDES, I. C. A importância do processo de fixação biológica do nitrogênio para a cultura da soja: componente essencial para a competitividade do produto brasileiro, Londrina: Embrapa Soja, 2007. 80p. (Embrapa Soja. Documentos, 283). HUNGRIA, M.; NEVES, M.C. Efeito da manipulação de fotossintatos na fixação biológica de nitrogênio em feijoeiro. Pesquisa Agropecuária Brasileira, Brasília, v. 21, n. 1, p. 9-24, 1986. HUNGRIA, M.; VARGAS, M. A. T.; ARAÚJO, R. S. Fixação biológica do nitrogênio em feijoeiro. In: VARGAS, M. A. T.; HUNGRIA, M., (Ed.). Biologia dos solos dos cerrados. Planaltina: EMBRAPA-CPAC, p. 188-294. 1997. HUNGRIA, M.; VARGAS, M.A.T.; SUHET, A.R.; PERES, J.R.R. Fixação biológica do nitrogênio em soja. In. ARAUJO, R.S.; HUNGRIA, M. (eds). Microrganismos de importância agrícola. Brasília: CNPAFCNPSo/EMBRAPA, p. 9-89. 1994. HUNGRIA, Mariangela; STACEY, Gary. Molecular signals exchanged between host plants and rhizobia: basic aspects and potential application in agriculture. Soil Biology & Biochemistry, Oxford, v.29, p.819-830, 1997. HUSON, D.H.,. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73. 1998. JAIN, R.; RIVERA, M. C.; LAKE, J.A. Horizontal gene transfer among genomes: the complexity hypothesis. Proceedings of the National. Academy of Sciencies of U.S.A., v. 96, p.3801–3806, 1999. JARVIS, B. D. W.; VAN BERKUM, P.; CHEN, W. X.; NOUR, S. M. FERNANDEZ, M. P.; CLEYET-MAREL, J. C.; GILLIS, M. Transfer of Rhizobium mediterraneum, and Rhizobium tianshanense to Mesohizobium gen. nov. International Journal of Systematic Bacteriology, v.47, p.895-898, 1997. JORDAN, D. C. Rhizobium. In: RIEG, N. R. e HOLT, . G. Bergey’s Manual of Systematic Bacteriology. Baltimore: Williams and Wilkins, p. 235-242. 1984. JORDAN, D.C. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. International Journal of Systematic Bacteriology, v.32, p.136-139, 1982. JORGE, J.A. Solo: manejo e adubação. 2a ed. São Paulo. Nobel, 1988. KONSTANTINIDIS K.T., TIEDJE J.M. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Current Opinion in Microbiology, v.10, p.504-509, 2007. KONSTANTINIDIS, K. T., RAMETTE, A., TIEDJE, J. M. Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Applied Environmental Microbiology, v. 72, p. 7286–7293, 2006. LAGUERRE, G.; FERNANDEZ, M. P.; EDEL, V.; NORMAND, P.; AMARGER, N. Genomic heterogeneity among French Rhizobium strains isolated form Phaseolus vulgaris. International Journal of Systematic Bacteriology, Washington, v. 43, p. 761-767, 1993. LAWRENCE, J. G. & ROTH, J. R. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics, Pittsburgh, v. 143, p.1843–1860, 1996. LEWIS G, SCHRIRE B, MACKINDER B & LOCK M 2005. Legumes of the world. Kew publishing 592p; LLORET, L.; ROMERO, E.M. Evolución y filogenia de Rhizobium. Revista latinoamericana de Microbiologia, 47, 43-60, 2005. LÓPEZ-GUERRERO, M.G.; ORMEÑO-ORRILLO, E.; VELÁZQUEZ, E.; ROGEL, M.A.; ACOSTA, J.L.; GÓNZALEZ, V.; MARTÍNEZ, J.; MARTÍNEZ-ROMERO, E. Rhizobium etli taxonomy revised with novel genomic data and analyses. Systematic and Applied Microbiology, v.35, p.353-358, 2012b. LÓPEZ-LÓPEZ A., ROGEL M.A., ORMEÑO-ORRILLO E., MARTÍNEZ-ROMERO J., MARTÍNEZ- ROMERO E.. Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst. Appl. Microbiol. 33: 322-327. 2010. LUDWIG, W.; STRUNK, O.; WESTRAM, R.; RICHTER, L.; MEIER, H.; YADHUKUMA; BUCHNER, A.; LAI, T.; STEPPI, S.; JOBB, G.; FÖRSTER, W.; BRETTSKE, I.;, GERBER, S.; GINHART, A. W.; GROSS, O.; GRUMANN, S.; HERMANN, S.; JOST R.; KÖNIG, A.; LISS, T.; LÜßMANN, R.; MAY, M.; NONHOFF, B.; REICHEL, ROBERT STREHLOW, ALEXANDROS STAMATAKIS, NORBERT STUCKMANN, B.; VILBIG, A.; LENKE, M.; LUDWIG, T.; BODE A. & SCHLEIFER, K.-H. ARB: a software environment for sequence data. Nucleic Acids Research. v. 32, n. 4,, p.1363-1371, 2004. MACIEL F.L, ECHEVERRIGARAY S, GERALD L.T.S, GRAZZIOTIN F.B Genetic relationships and diversity among Brazilian cultivars and landraces of common beans (Phaseolus vulgaris L.) revealed by AFLP markers. Genet Res Crop Evol 50:887–893. 2003. MAIDEN, M. C. J.; BYGRAVES, J. A. B.; FEIL, E; MORELLI, G.; RUSSELL, J.E.; URWIN, R.; ZHANG, Q.; ZHOU, J.; ZURTH, K.; CAUGANT, D.A.; FEAVERS, I. M.; ACHTMAN, M.; SPRATT, B.G. Multilocus sequence typing:a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences v.95, p.140–3145, 1998. MAPA (Ministério da Agricultura, Pecuária e Abastecimento). Perfil do feijão no Brasil. Disponível em . Acesso em 25 de outubro de 2012. MARTENS M, DAWYNDT P, COOPMAN R, GILLIS M, DE VOS P AND WILLEMS A Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200-214. 2008. MARTENS M.; DELAERE, M.; COOPMAN, R.; DE VOS, P.; GILLIS, M.; WILLEMS, A. Multilocus sequence analysis of Ensifer and related taxa. International Journal of Systematic and Evolutionary Microbiology, v. 57, p. 489-503, 2007. MARTÍNEZ, E.; PALACIOS, R.; SÁNCHEZ, F. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens, harboring Rhizobium phaseoli plasmids. Journal of Bacteriology, Washington, v.169, p.2828-2834, 1987. MARTÍNEZ-ROMERO, E.; SEGOVIA, E.; MERCANTE, F.M.; FRANCO, A.A.; GRAHAM, P.H.; PARDO, M.A. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. International Journal of Systematic Bacteriology, Washington, v.41, p.417-426, 1991. MARTÍNEZ-ROMERO, E.; SEGOVIA, E.; MERCANTE, F.M.; FRANCO, A.A.;GRAHAM, P.H.; PARDO, M.A. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. International Journal of Systematic Bacteriology, Washington, v.41, p.417-426, 1991. MENNA, P.;PEREIRA, A.A.;BANGEL, E.V.; HUNGRIA, M. repPCR of tropical rhizobia for strain fingerprinting, biodiversity appraisal and as a taxonomic and phylogenetic tool. Sysmbiosis, Netherlands, v.48, p. 1-3, 2009. MERCANTE, F. M. M.; CUNHA, C. O.; STRALIOTTO, R.; RIBEIRO- JÚNIOR, W. Q.; VANDERLEYDEN, J.; FRANCO, A. A. Leucaena leucocephala as a trap host for Rhizobium tropici strains from the brazilian “Cerrado” region. Revista de Microbiologia, São Paulo, v. 29, p. 49-58, 1998. MERCANTE, F. M.; GOI, S. R.; FRANCO, A. A. Importância dos compostos fenólicos nas interações entre espécies leguminosas e rizobio. Revista Universidade Rural, Rio de Janeiro, v. 22, n.1, p. 65-81, 2002. MERCANTE, F.M.; OTSUBO, A.A. & LAMAS, F.M. Inoculação de Rhizobium tropici e aplicação de adubo nitrogenado na cultura do feijoeiro. In: REUNIÃO BRASILEIRA DE FERTILIDADE DE SOLO E NUTRIÇÃO DE PLANTAS, 27.; REUNIÃO BRASILEIRA SOBRE MICORRIZAS,11.; SIMPÓSIO BRASILEIRO DE MICROBIOLOGIA DO SOLO, 9.; REUNIÃO BRASILEIRA DE BIOLOGIA DO SOLO, 6., 2006, Bonito, MS. Fertbio 2006: A busca das raízes. Dourados, Embrapa Agropecuária Oeste, 2006. CD-ROM. (Documentos, 82). MICHIELS, J., DOMBRECHT, B., VERMEIREN, N., XI, C., LUYTEN, E., VANDERLEYDEN, J. Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiology Ecology, v. 26, p. 193-205, 1998. MOREIRA, F. M. S.; SIQUEIRA, J. O. Microbiologia e Bioquimica do solo. 2.ed. atual. E ampl., Lavras: Editora UFLA, 2006. MOSTASSO, L.; MOSTASSO, F., L.; VARGAS, M., A., T.; HUNGRIA, M. Selection of bean (Phaseolus vulgaris) rhizobial strains for the Brasilian Cerrados. Field Crops Research, v. 73, n. 2, p. 121–132, 2002. MOULIN L.; MUNIVE A.; DREYFUS B. E BOIVIN-MASSON C. Nodulation of legumes by members of the b-subclass of Proteobacteria. Nature, v. 411, p. 948-950. 2001. MOUSAVI, S.A., OSTERMAN, J., WAHLBERG, N., NESME, X., LAVIRE, C., VIAL, L., PAULIN, L., DE LAJUDIE, P., LINDSTROM, K. Phylogeny of the Rhizobium– Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst. Appl. Microbiol. 37, 208–215. 2014. MRABET M.; MNASRI, B.; ROMDHANE, S. B.; LAGUERRE, G.; AOUANI, M. E.; MHAMDI, R. Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum. FEMS Microbiology Ecology n. 56, p. 304–309, 2006. NASER, S. M., THOMPSON, F. L., HOSTE, B., GEVERS, D., DAWYNDT, P., VANCANNEYT, M., SWINGS, J. Application of multilocus sequence analysis (MLSA) for rapid identication of Enterococcus species based on rpoA and pheS genes. Microbiology, 151: 2141 2150. 2005. NEVES, M.C.P.; RUMJANECK N. G. Bioquímica e fisiologia da fixação de nitrogênio. In: CARDOSO, E.J.B.N.; TSAI, S.M.; NEVES, M.C.P. Microbiologia do solo. Campinas: SBCS, p. 141-155. 1992. OLIVEIRA, I.P.; THUNG,M.D.T. Nutricão mineral in: ZIMMERMANN, M.J.O.; ROCHA , M.’YAMADA, T (eds). Cultura do feijoeiro: Fatores que afetam a produtividade. Piracicaba: POTAFOS, P. 175-212. 1988. PARRA, M.S. Nutrição e Adubação. In: IAPAR. O feijão no Paraná. Londrina: IAPAR, 1989. P.79-100. PEIX, A., MATEOS, P.F., RODRIGUES-BARRUECO, C., MARTINEZ-MOLINA, E., VELAZQUE, E. Growth promotion of commom bean (phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chambre conditions. Soil Biology & Biochemistry 33 1927-1935, 2011. PERIN, L.; MARTÍNEZ-AGUILAR, L.; PAREDES-VALDEZ, G.; BALDANI, J. I.; ESTRADA-DE LOS SANTOS, P.; REIS, V. M.; CABALLERO- MELLADO, J. Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. International Journal of Systematic and Evolutionary Microbiology, Spencers Wood, v. 56, n. 8, p. 1931-1937, Aug. 2006. PERRET, X., STAHELIN, C.; BROUGTON, W.J. Molecular basis of symbiotic promiscuity. Microbiology and Molecular Biology Reviews. v. 64: 180 – 201, 2000. PRUESSE, E., PEPLIES, J. AND GLÖCKNER, F.O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Opens external link in new window Bioinformatics, 28, 1823-1829. 2012. RADEMAKER, J. L. W.; de BRUIJN, F. J. Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis. In: CAETANOANOLLE, G.; GRESSHOFF, P. M. DNA Markers: Protocols, Applications and Overviews, pp. 151–171. New York : John Wiley, 1997. RADEMAKER, J. L. W.; HOSTE, B.; LOUWS, F. L.; KERSTERS, K.; SWINGS, J.; VAUTERIN, L.; VAUTERIN, P.; de BRUIJN, F. J. Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. International Journal of Systematic and Evolutionary Microbiology, v. 50, p. 665-677, 2000. RAMOS, P.L. Taxonomia do gênero Stenotrophomonas através de Multi locus sequence Analysis (MLSA). Tese de doutorado. USP – São Paulo, 2007. REIS, V. M.; ESTRADA-DE LOS SANTOS, P.; TENORIO-SALGADO, S.; VOGEL, J.; STOFFELS, M.; GUYON, S.; MAVINGUI; P.; BALDANI, V. L. D.; SCHMID, M.; BALDANI, J. I.; BALANDREAU, J.; HARTMANN, A.; CABALLERO-MELLADO, J. Burkholderia tropica sp. nov., a novel nitrogen- fixing, plant-associated bacterium. International Journal of Systematic and Evolutionary Microbiology, Spencers Wood, v. 54, n. 6, p. 2155-2162, Nov. 2004. RIBEIRO R.A., ROGEL M. A., LÓPEZ-LÓPEZ A., ORMEÑO-ORRILLO E., BARCELLOS, F.G., MARTÍNEZ J., THOMPSON F.L., MARTÍNEZ-ROMERO E., HUNGRIA M. Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. International Journal of Systematic and Evolutionary Microbiology, v.62, p.1179-1184, 2012. RIBEIRO, R.A.; BARCELLOS, F.G.; THOMPSON, F.L.; HUNGRIA, M. Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus Vulgaris L.) Reveals unexpected taxonomic diversity. Research in Microbiology, 160 p. 297-306. 2009. RIBEIRO, R.A.; ORMEÑO-ORRILLO, E.; DALL’AGNOL, R.F.; GRAHAM, P.H.; MARTINEZ-ROMERO, E.; HUNGRIA, M. Novel Rhizobium lineages isolated from root nodules of the common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Research in Microbiology 164 (2013) 740-748. RICHETTI, A.; DE MELO, C. L. P.; DE SOUSA, J. P. B. Viabilidade Econômica da Cultura do Feijão Comum, Safra 2012, em Mato Grosso do Sul. Dourados-MS: Embrapa Agropecuária oeste, 2011. 9p. (Comunicado Técnico). RIVERA, M.C.; JAIN, R.; MOORE, J.E.; LAKE, J.A. Genomic evidence for two functionally distinct gene classes. Proceedings of the National Academy of Sciences of U.S.A., Washington, v. 95, p.6239–6244, 1998. RODRIGUES, T.B. Diversidade metagenômica microbiana de biomas terrestres e marinhos. 2011. 250 p. Tese (Doutorado em Ciências Biológicas – Genética) Universidade Federal do Rio de Janeiro, Rio de Janeiro, ago. 2011. ROSOLEN, C.A.; MARUBAYASHI, O.M. Seja o doutor do seu Feijoeiro. Arquivo do agrônomo, n. 7, Piracicaba: POTAFOS, 1994. ROSSELÓ-MORA, R.; AMANN, R. The species concept for prokaryotes. FEMS Microbiology Reviews, v.25, p.39-67, 2001. RUMJANEK, N.G. & XAVIER, G.R. Inoculação do feijão-caupi: uma tecnologia que garante aumento real na produtividade. Disponível em: http://www.portaldoagronegocio.com.br/index.php?p=texto&idT=883. Acesso em: 01 out. 2015. SALLE, R.; BROWER, A.V.Z. Process partitions, congruence, and the independence of characters: Inferring relationships among closely related Hawaiian Drosophila from multiple gene regions. Systematic Biology 46: 751-764. 1997. SALVADOR, CARLOS A. Análise da conjuntura agropecuária safra 2011/12.SEAB, 2011.Disponível em: Acesso em 30 de abril de 2014. SAMBROOK, J. & RUSSELL, D. W. Molecular cloning: a laboratory manual. 3. ed. New York: Cold Spring Harbor Laboratory Press, 2001. 745 p. SANTILLANA, N.; RAMÍREZ-BAHENA, M. H.; GARCÍA-FRAILE, P.; VELÁZQUEZ, E.; ZÚÑIGA, D. Phylogenetic diversity based on rrs, atpD, recA genes and 16S– 23S intergenic sequence analyses of rhizobial strains isolated from Vicia faba and Pisum sativum in Peru. Archives of Microbiology, Berlin, v. 189, p. 239–247, 2008. SAVELKOUL, P. H. M.; AARTS, H. J. M.; de HASS, J.; DIJKSHOORN, L.; DUIM, B.; OTSEN, M.; RADEMAKER, J. L. W.; SCHOULS, L.; LENSTRA, J. A. Amplified-fragment length polymorphism analysis: the state of an art. Journal of Clinical Microbiology, v. 37, n. 10, p. 3083-3091, 1999. SAWADA H, SUZUKI F, MATSUDA I AND SAITOU N. Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. J Mol Evol 49:627- 644. 1999. SCHLEIFER K.H. Classification of Bacteria and Archaea: Past, present and future. Systematic and Applied Microbiology. v.32, p.533-542, 2009. SCHMIDT, SOUZA, E.M.; BAURA, V.; WASSEM, R.; YATES, M.G.; PEDROSA, F.O.; MONTEIRO, R.A. Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae. Brazilian Journal of Medical and Biological Research, v.44, p. 182-185, 2011. SEGOVIA, L.; YOUNG, J.P.W.; MARTÍNEZ-ROMERO, E. Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. International Journal of Systematic Bacteriology, Washington, v.43, p.374-377, 1993. SHIMODAIRA, H.; HASEGAWA, M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution, v. 16, n. 8, p. 1114-1116. 1999. SHIRAISHI, A.; MATSUSHITA, N.; HOUGETSU, T. Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Systematic and Applied Microbiology, v. 33, p. 269-274, 2010. SILVA, C.; VINUESA, P.; EGUIARTE, L.E.; MARTÍNEZ-ROMERO, E.; SOUZA, V. Rhizobium etli and Rhizobium gallicum Nodulate Common Bean (Phaseolus vulgaris) in a traditionally managed Milpa plot in México: population genetics and biogeographic implications. Applied and Environmental Microbiology, Washington, v. 69, p. 884-893, 2003. SILVEIRA, J.A.G. DA; COSTA, R.C.L. DA; OLIVEIRA, J.T.A. Drought-induced effects and recovery of nitrate assimilation and nodule activity in cowpea plants inoculated with Bradyrhizobium spp. under moderate nitrate level. Brazilian Journal of Microbiology, v. 32, p. 187-194, 2001. SIQUEIRA, J O. Biologia do solo. Lavras: ESAL/FAEPE, 1993. SKERMAN, V.B.D.; MCGOWAN, V.; SNEATH, P.H.A. Approved lists of bacterial names. International Journal of Systematic Bacteriology, Washington, v.30, p.225-420, 1980. SØRENSEN, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskabs. Biologiske Skrifter, v.5, p.1-34, 1948. SPAINK, H. P.; KONDOROSI, A.; HOOYKAAS, P. J. J. The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht, The Netherlands. 1998. STACKEBRANDT E., FREDERIKSEN W., GARRITY G.M., GRIMONT P.A.D., KÄMPFER P., MAIDEN M.C.J., NESME X., ROSSELLÓ-MORA R., SWINGS J. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. International Journal of Systematics and Evolutionary Microbiology, v.52, p.1043-1047, 2002. STEPKOWSKI T., L. MOULIN, A. KRZYZANSKA, A. MCINNES, I. J.LAW, J. HOWIESON. European Origin of Bradyrhizobium Populations Infecting Lupins and Serradella in Soils of Western Australia and South Africa. Applied Environmental Microbiology, v.71, p.7041–7052, 2005. STEPKOWSKI, T.; CZAPLINSKA, M.; MIEDZINSKA, M.; MOULIN, L. The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria. Systematic and Applied Microbiology, v.26, p.483-494, 2003. STOCCO, P., DO SANTOS, J.C.P., VARGAS, V.P. HUNGRIA, M. Avaliação da biodiversidade de rizóbios simbiontes do feijoeiro (Phaseolus vulgaris L.) Em Santa Catarina. R. Bras. Ci. Solo, 32:1107-1120, 2008. STRALIOTTO, R. A importância da inoculação com rizóbio na cultura do feijoeiro. EMBRAPA-Agrobiologia, 2002. Disponível em: <http://www.cnpab.embrapa.br/publicacoes/ artigos/fbnl_inocula_feijoeiro.html>. Acessado em: 10 de julho de 2015. STRALIOTTO, R.; RUMJANEK, N. G. Biodiversidade do rizobio que nodula o feijoeiro (Phaseolus vulgaris L.) e os principais fatores que afetam a simbiose. Seropedica: Embrapa Agrobiologia, 51p. (Embrapa CNPAB. Documentos, 94). 1999. SULLIVAN, J. T.; EARDLY, B. D.; VAN BERKUM, P.; RONSON, C. W. (1996). Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus. Appl Environ Microbiol v. 62, p. 2818-2825, 1996. SWOFFORD, D. PAUP*. Phylogenetic analysis using parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. 2002. TALBI, C., DELGADO, M. J., GIRARD, L. RAMÍREZ-TRUJILLO, A., CABALLEROMELLADO, J., AND BEDMAR, E. J. Burkholderia phymatum Strains Capable of Nodulating Phaseolus vulgaris Are Present in Moroccan Soils. Applied And Environmental Microbiology, July 2010, p. 4587–4591. TAMURA, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution 9: 678- 687. 1992. TAMURA, K.; STECHER, G.; PETERSON, D.; FILIPSKI, A.; AND KUMAR S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution:30 2725-2729. 2013. TANURA K. AND NEI M. Estimation of the number of nucleotide substitutions in the control regions of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512-526. 1993. TEREFEWORK, Z., LORTET, G., SUOMINEN, L. AND LINDSTRÖM, K. Molecular evolution of interactions between rhizobia and their legume hosts. In.: TRIPLETT, E.W. Prokaryotic nitrogen fixation. Wymondham: Horizon Scientific Press, p.187-206. , 2000. THOMPSON, F.L.; GEVERS, D.; THOMPSON, C.C.; DAWYNDT,P.; NASER, S.; HOSTE, B.; MUNN, C.B.; SWINGS, J. Phylogeny and molecular identification of vibrios on the basis of Multilocus Sequence Analysis. Applied and Enviromental Microbiology, v.71, p.5107- 5115, 2005. TOHME, J.; GONZÁLEZ, D.O.; BEEBE, S.; DUQUE, M.C. AFLP analysis of gene pools of a wild bean core collection. Crop Science, Madison, v. 36, p. 1375-1384, 1996. VALVERDE, A., VELÁZQUEZ, E. GUTIÉRREZ, C., CERVANTES, E., VENTOSA, A., AND IGUAL, J. M. Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. International Journal of Systematic and Evolutionary Microbiology (2003), 53, 1979–1983. VAN BERKUM, P., Z.; TEREFEWORK, L.; PAULIN, S.; SUOMALAINEN, K.; LINDSTRO¨M.; EARDLY, B. D. 2003. Discordant phylogenies within the rrn loci of rhizobia. J. Bacteriol. v. 185, p. 2988–2998, 2003. VANDAMME, P.; POT, B.; GILLIS, M.; de VOS, P.; KERSTERS, K.; SWINGS, J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiological Reviews, v. 60, n. 2, p. 407-438, 1996. VARGAS, A.A.T.; SILVEIRA, J.S.M.; ATHAYDE, J.T.; ATHAYDE, A.; PACOVA, B.E.V. Comparação entre genótipos de feijão quanto à capacidade nodulante e à produtividade com inoculação com rizóbios e/ou adubação de N-Mineral. Revista Brasileira de Ciência do Solo, Campinas, v. 15, p 267-272, 1991. VARGAS, M.A.T.; HUNGRIA, M. Fixação biológica do nitrogênio na cultura da soja. In: VARGAS, M. A. T.; HUNGRIA, M. (Ed.) Biologia dos solos dos Cerrados. Planaltina: Embrapa-CPAC, 1997, 524p. VÁSQUEZ, M.; DÁVALOS, A.; DE LAS PEÑAS, A.; SÁNCHEZ, F.; QUINTO, C.Novel organization of the common nodulation genes in Rhizobium leguminosarum bv. phaseoli strains. Journal of Bacteriology, Washington, v.173, p.1250-1258, 1991. VERSALOVIC, J., KOEUTH, T. AND LUPSKI, J.R. Distribution of repetitive DNA sequence in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research, v. 19, p.6823-6831, 1991. VERSALOVIC, J., SCHNEIDER, M., DE BRUIJN, F. J. & LUPSKI, J. R. 1994 Genomic fingerprinting of bacteria using repetitive sequence based polymerase chain reaction. Methods Mol. Cell. Biol. 5, 25–40. VIEIRA, C. Cultura do Feijão, 2ª ed. Viçosa, ufv 1983. VINUESA P., M. LEÓN-BARRIOS, C. SILVA, A. WILLEMS, A. JARABO-LORENZO, R. PÉREZ- GALDONA, D. WERNER, E. MARTÍNEZ-ROMERO. Bradyrhizobium canariense sp. nov., an acid tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int. J. Syst. Evol. Microbiol. 55: 569-575. 2005. VINUESA, P. (1998). Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rDNA (16S rDNA) and 16S-23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16 rDNA sequecing. Appl. Environ. Microbiol.v. 64, p. 2096-2104, 1998. VINUESA, P.; SILVA, C.; WERNER, D.; MARTINEZ-ROMERO, E. Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Molecular Phylogenetics and Evolution, 34, p. 29-54, 2005. VOSS, M.; FREIRE, J.R.J.; SELBACH, P.A. Seleçao de Rhizobium phaseoli, de regiões produtoras de feijão do Rio Grande do Sul. Porto Alegre: UFRGS, Faculdade de Agronomia, 1981. 75p. WANG, Q., GARRITY, G.M., TIEDJE, J.M., AND COLE, J.R. Naive Bayesian Classifier for Rapid Assignment of rRNA sequences into the new bacterial taxonomy. Appl. and Environ. Microbiol. 73: 5261-5267. 2007. WARD, D.M.; BATESON, M.M.; WELLER, R.; RUFFROBERTS, A.L. Ribosomal-RNA analysis of microorganisms as they occur in nature. Advances in Microbial Ecology, v.12, p.219-286, 1992. WARD, D.M.; WLLER, R.; BATESON, M.M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural comunity. Nature, London, v.345, p.63-65, 1990. WEISBURG, W.G.; BARNS, S.M.; PELLETIER, D.J. 16S ribosomal DNA amplification for philogenetic study . J.Bacteriol.,v. 173, p. 697-703,1991. WOESE, C.R. Bacterial Evolution. Microbiological Reviews, v. 51, p 221-271, 1987. YAP, W.H.; ZHANG, Z.; WANG, Y. Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. Journal of Bacteriology, v.181, p.5201-5209, 1999. YARZA P1, RICHTER M, PEPLIES J, EUZEBY J, AMANN R, SCHLEIFER KH, LUDWIG W, GLÖCKNER FO, ROSSELLÓ-MÓRA R.., The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol. 2008 Sep; 31(4):241-50. doi: 10.1016/j.syapm.2008.07.001. Epub 2008 Aug 9. YIN, J., HE, D., LI, X., ZENG, X., TIAN, M., CHENG, G. Paenibacillus enshidis sp. nov., Isolated from the Nodules of Robinia pseudoacacia L. Curr Microbiol (2015) 71:321–325. YOUNG, J.M.; KUYKENDALL, L.D.; MARTINEZ-ROMERO, E.; KERR, A.; SAWADA, H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis, Int. J. Syst. Evol. Microbiol. 51 (2001) 89–103. ZEIGLER, D.R. Gene sequences useful for predicting relatedness of whole genomes in bacteria. International Journal Systematic and Evolutionary Microbiology, v.53, p.1893- 1900, 2003. ZHOU, J., BOWLER, L.D., SPRATT, B.G., Interspecies recombination, and phylogenetic distortions, within the glutamine synthetase and shikimate dehydrogenase genes of Neisseria meningitidis and commensal Neisseria species. Mol. Microbiol. 23, 799–812. 1997.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/67794/2017%20-%20Thiago%20Gon%c3%a7alves%20Ribeiro.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5297
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2021-12-28T00:58:01Z No. of bitstreams: 1 2017 - Thiago Gonçalves Ribeiro.pdf: 1790541 bytes, checksum: 858ecda8ca1d0b4fa9cdc0654522afa3 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-12-28T00:58:01Z (GMT). No. of bitstreams: 1 2017 - Thiago Gonçalves Ribeiro.pdf: 1790541 bytes, checksum: 858ecda8ca1d0b4fa9cdc0654522afa3 (MD5) Previous issue date: 2017-02-23eng
Appears in Collections:Mestrado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2017 - Thiago Gonçalves Ribeiro.pdf1.75 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.