Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10575
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSperandio, Marcus Vinícius Loss
dc.date.accessioned2023-12-22T01:39:40Z-
dc.date.available2023-12-22T01:39:40Z-
dc.date.issued2011-02-22
dc.identifier.citationSPERANDIO, Marcus Vinicius Loss. Expressão gênica de transportadores de nitrato e amônio, proteínas reguladoras NAR e bombas de prótons em arroz (Oryza sativa L.) e seus efeitos na eficiência de absorção de nitrogênio. 2011. 69 f. Dissertação (Mestrado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2011.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10575-
dc.description.abstractNeste trabalho a principal meta foi avaliar a eficiência de uso de nitrogênio (EUN) de plantas para uma agricultura de baixos insumos, um passo fundamental no desenvolvimento da agricultura tropical. O objetivo foi avaliar os efeitos de deficiência e ressuprimento de nitrogênio na expressão de dez isoformas PM H+-ATPases em arroz e dos transportadores de NO3 - e NH4 +. Dois experimentos foram feitos: um com a variedade Nipponbare para avaliar a expressão das PM H+-ATPases e outro com as variedades IAC-47 (melhorada) e Piauí (tradicional) para estudar os efeitos das PM H+-ATPases em variedades contrastantes no uso de N, assim como transportadores de nitrato. A absorção aparente de ambas as formas de NNO3 - e N-NH4 + foi maior com seu ressuprimento. O ressuprimento de NO3 - após três dias de deficiência de N resultou na indução das isoformas de PM H+-ATPases OsA1, OsA2, OsA5 e OsA7 na parte aérea e OsA2, OsA5, OsA7 e OsA8 nas raízes. O ressuprimento de NH4 + resultou na indução das isoformas OsA1, OsA3 e OsA7 nas raízes, enquanto OsA1 foi induzida na parte aérea. O aumento observado na absorção de NO3 - e NH4 + resultou em maior atividade das PM H+-ATPases. Nas raízes, os transportadores de NO3 - OsNRT2.1 e OsNRT2.2 foram induzidos pelo ressuprimento com NO3 -, enquanto os transportadores de NH4 + OsAMT1.1 e OsAMT1.2 foram induzidos pela deficiência de NH4 +. Os resultados mostram que a expressão das isoformas de PM H+-ATPases está relacionada aos transportadores de NO3 - e NH4 + e em qual parte da planta é considerada. O conhecimento da interação entre transportadores de N e expressão de isoformas específicas de PM H+-ATPases é relevante para o entendimento da eficiência de absorção de N em plantas. As isoformas de PM H+- ATPases OsA2 e OsA7 por terem sido as mais induzidas com o ressuprimento de N podem ser consideradas como genes candidatos a afetar a eficiência de absorção de N em arroz. No segundo experimento conduzido com as variedades de arroz IAC-47 (melhorada) e Piauí (local) mostrou que essas duas variedades diferem quanto ao uso de N. A variedade Piauí apresentou maiores teores de NO3 - e N-amino livre e menores de NH4 +. Ainda, essa variedade apresentou maior atividade da PM H+-ATPase no tempo de 24 horas após o ressuprimento com 0,2 mM de N-NO3 -, assim como maior expressão das isoformas de PM H+-ATPase OsA2 e OsA7. A variedade Piauí apresentou maior influxo de NO3 - no ressuprimento (0,2 e 5,0 mM de N-NO3 -), assim como maior expressão dos genes OsNRT2.1, OsNRT2.2 e OsNAR2.1 nesses tratamentos. Esses resultados sugerem que a maior absorção de NO3 - com o ressuprimento na variedade Piauí pode estar relacionada à maior expressão de genes que codificam para transportadores de NO3 - e PM H+-ATPases.por
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectPM H+-ATPasepor
dc.subjectNutrição mineralpor
dc.subjectPCR em tempo realpor
dc.subjectPM H+-ATPaseeng
dc.subjectMineral nutritioneng
dc.subjectReal time PCReng
dc.titleExpressão gênica de transportadores de nitrato e amônio, proteínas reguladoras NAR e bombas de prótons em arroz (Oryza sativa L.) e seus efeitos na eficiência de absorção de nitrogêniopor
dc.title.alternativeExpression of nitrate and ammonium transporters, NAR protein regulator and proton pumps in rice (Oryza sativa L.), and the effect on nitrogen uptake efficiencyeng
dc.typeDissertaçãopor
dc.description.abstractOtherThe main goal of this study was to evaluate the nitrogen usage efficiency (NUE) of plants for a low input agriculture, as a fundamental step for tropical agriculture development. The objective was to evaluate the effect of N deficiency and resupply on expression of ten PM H+- ATPase isoforms, and NO3 - and NH4 + transporters in rice. Two experiments were set, one with the Nipponbare variety, to evaluate expression of PM H+-ATPase; and the other with IAC47 (improved) and Piaui (traditional) varieties, to study how PM H+-ATPase and NO3 - transporters behaved in varieties with contrasting N-use efficiency. The NO3 - and NH4 + uptake were highest under N-resupply. The NO3 --N resupply after 3 days of N-deficiency resulted in induction of OsA1, OsA2, OsA5 and OsA7 PM-H+-ATPases in the shoot, and of OsA2, OsA5, OsA7 and OsA8 in the roots. NH4 +-N resupply resulted in induction of the OsA1, OsA3, and OsA7 isoforms in roots and OsA1 in the shoots. A correlation was observed between nitrate and ammonium uptake, and an increase in the PM H+-ATPases. In the roots, the NO3 - transporters OsNRT2.1 and OsNRT2.2 had higher induction under NO3 - resupply, while the NH4 + transporter OsAMT1.1 and OsAMT1.2 were induced by NH4 +-N starvation. These results showed that the expression of PM H+-ATPases isoforms is related to both NO3 - and NH4 + transporters and in which plant part it takes place. The knowledge of the interaction between N-transporters and PM H+-ATPases specific isoforms is important for understanding NUE in plants. Two H+-ATPases isofoms OsA2 e OsA7 that were most induced under Nressuply can be thought as the most probable genes to affect N-uptake efficiency in rice. The second experiment showed that the varieties IAC-47 and Piaui differ widely about the N usage. The Piaui variety showed the highest level of nitrate and free Amino-N, and the lowest levels of NH4 +. Also, this variety had the highest PM H+-ATPase activity 24 hs after resupply with 0.2 mM NO3 --N, as well as the highest expression of the PM H+-ATPase OsA2 and OsA7. The Piaui variety showed the highest nitrate influx under N-resupply (0.2 and 5.0 mM NO3 --N) as well as higher expression of OsNRT2.1, OsNRT2.2 and OsNAR2.1 under those treatments. These results suggest that the highest NO3 - uptake of Piaui variety under Nresupply may be related to the highest expression of genes that code for nitrate transporters and PM H+-ATPases.eng
dc.contributor.advisor1Souza, Sonia Regina de
dc.contributor.advisor1ID983.907.835-68por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3312117357555510por
dc.contributor.advisor-co1Santos, Leandro Azevedo
dc.contributor.referee1Cabral, Luiz Mors
dc.contributor.referee2Lima, Marcelo de Freitas
dc.creator.ID106.990.517-89por
dc.creator.Latteshttp://lattes.cnpq.br/4157291425794314por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesALMAGRO, A.; LIN, S.; TSAY, Y. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. The Plant Cell, v. 20, p. 3289–3299, 2008. ARAKI, R. & HASEGAWA, H. Expression of Rice (Oryza sativa L.) Genes Involved in High- Affinity Nitrate Transport during the Period of Nitrate Induction. Breeding Science, v. 56, p. 295-302, 2006. ARANGO, M.; GE´VAUDANT, F; OUFATTOL, M; BOUTRY, M. The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta, 216: 355–365, 2003. ASLAM, M.; TRAVIS, R. L. & HUFFAKER, R. C. Comparative induction of nitrate and nitrite uptake and reduction systems by ambient nitrate and nitrite in intacts roots of barley (Hordeum vulgare L.) seedlings. Plant Physiology, v.102, p.811-819, 1993. ASLAM, M.; TRAVIS, R. L.; HUFFAKER, R. C. Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (hordeumvulgare l) seedlings. Plant Physiology, v.99, n.3, p.1124-1133, 1992. BAXTER, I.; TCHIEU, J.; SUSSMAN, M. R.; BOUTRY, M.; PALMGREN, M. G.; GRIBSKOV, M.; HARPER, J. F.; AXELSEN, K. B. Genomic comparison of P-type ATPase ion pump in Arabidopsis and rice. Plant Physiology, v.132, p.618-628, 2003. BI, Y.M., ZHANG, Y., SIGNORELLI, T., ZHAO, R., ZHU, T., ROTHSTEIN, S. Genetic analysis of Arabidopsis gata transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. The Plant Journal, v. 44, p. 680-692. 2005. BOBIK, K.; DUBY, G.; NIZET, Y.; VANDERMEEREN, C.; STIERNET, P.; KANCZEWSKA, J.; BOUTRY, M. Two widely expressed plasma membrane H+-ATPase isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine. The Plant Journal, v. 62, p. 291-301, 2010. BRADFORD, M. M. Rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry, v. 72, p. 248-254. 1976. BRITTO, D. T.; SIDDIQI, M. Y.; GLASS, A. D. M.; KRONZUCKER, H. J. Futile transmembrane NH4 + cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proceedings of the National Academy of Sciences of the United States of America, v. 98, p. 4255-4258, 2001. BUCHER, C. A. Avaliação através de RT-PCR da expressão dos genes que codificam para enzimas de assimilação de nitrogênio em variedades de arroz. 2007. 50f. Dissertação de Mestrado. (Curso de Pós-Graduação em Agronomia – Ciência do Solo). Universidade Federal Rural do Rio de Janeiro, Seropédica, 2007. BUCHER, C. A.; SOUZA, S. R.; FERNANDES, M. S. Effects of fusicoccin and vanadate on proton extrusion and potassium uptake by rice. Journal of Plant Nutrition, v. 29(3), p. 485- 496, 2006. 46 CATALDO, D.; HARRON, M.; SCHARADER, L. E. & YOUNGS, V. L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communication in Soil Science and Plant Analysis, New York, US., v.6, p.853-855, 1975. CHANG, C.; HU, Y.; SUN, S.; ZHU, Y.; MA, G.; XU, G. Proton pump OsA8 is linked to phosphorus uptake and translocation in rice. Journal of Experimental Botany, v. 60, p. 557– 565, 2009. CHEN, Y. F.; WANG, Y.; WU, W.H. Membrane transporters for nitrogen, phosphate and potassium uptake in plants. Journal of Integrative Plant Biology, v. 50, p. 835–848, 2008. CHIU, C.-C.; LIN, C.-S.; HSIA, A.-P.; SU, R.-C.; LIN, H.-L.; TSAY, Y.-F. Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiology, v. 45, p. 1139–1148, 2004. CHOPIN, F.; WIRTH, J.; DORBE, M.F.; LEJAY, L.; KRAPP, A.; GOJON, A.; DANIELVEDELE, F. The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane. Plant Physiology and Biochemistry, v. 45, p. 630-635, 2007. CONAB. Acompanhamento de safra brasileira: grãos, Quarto levantamento, janeiro 2011. Companhia Nacional de Abastecimento. – Brasília: Conab, 2011. 41p. DE ANGELI, A.; MONACHELLO, D.; EPHRITIKHINE, G.; FRACHISSE, J. M.; THOMINE, S.; GAMBALE, F.; BARBIER-BRYGOO, H. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature, v. 442, p. 939-942, 2006. DUAN, Y. H., ZHANG, Y. L., YE, L. T., FAN, X. R., XU, G. H., SHEN, Q. R. Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Annals of Botany, v.99, p.1153–1160, 2007. DUBY, G.; BOUTRY, M. The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. European Journal of Physiology, v.457, p. 645-655, 2009. EWING, R. M.; KAHLA, A. B.; POIROT, O.; LOPEZ, F.; AUDIC, S.; CLAVERIE, J. M. Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Research, v. 9, p. 950-959, 1999. FAÇANHA, A. R.; DE MEIS, L. Inhibition of maize root H+-ATPase by fluoride and fluoroaluminate complexes. Plant Physiology, v. 108, p. 241-246, 1995. FAN, S.-C.; LIN, C.-S.; HSEU, P.-K.; LIN, S.-H.; TSAY, Y.-F. The arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. The Plant Cell, v. 21(9), p. 2750-2761, 2009. FELKER, P. Micro determination of nitrogen in seed protein extracts. Analytical Chemistry, v.49, p.1980, 1977. FERNANDES, M. S. N-carriers, light and temperature influences on uptake and assimilation of nitrogen by rice. Turrialba, San Jose, CR, v.34, p.9-18, 1984. FERNANDES, M. S.; SOUZA, S. R. Absorção de nutrientes. In: FERNANDES M. S. (Org.). Nutrição Mineral de Plantas. 1 ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2006, v. 1, p. 115-152. FERREIRA, D. F. Análises estatísticas por meio do Sisvar para Windows versão 4.0. In.: 45a Reunião Anual da Região Brasileira da Sociedade internacional de Biometria, UFSCar, São Carlos – SP, pp. 255-258, 2000. 47 FORDE, B. G. Nitrate transporters in plants: structure, function and regulation. Biochimica et Biophysica Acta, v.1465, p.219-235, 2000. FUGLSANG, A. T.; GUO, Y.; CUIN, T. A.; QIU, Q.; SONG, C.; KRISTIANSEN, K. A.; BYCH, K.; SHULZ, A.; SHABALA, S.; SCHUMAKER, K. S.; PALMGREN, M. G.; ZHU, J.-K. Arabidopsis Protein kinase PKS5 inhibits the plasma membrane H1-ATPase by preventing interaction with 14-3-3 protein. The Plant Cell, v. 19, p. 1617-1634, 2007. GANSEL, X.; MUÑOS, S.; TILLARD, P.; GOJON, A. Differential regulation of the NO3 - and NH4 + transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. The Plant Journal, v. 26(2), p.143-155, 2001. GAO, J.; LIU. J.; LI, B.; LI, Z. Isolation and purification of functional total RNA from bluegrained wheat endosperm tissuescontaning high levels of starches and flavonoids. Plant Molecular Biology Reporter, v. 19, p. 185 – 185, 2001. GARNETT, T.; CONN, V.; KAISER, B. N. Root based approaches to improving nitrogen use efficiency in plants. Plant, Cell and Environment, v. 32, p. 1272-1283, 2009. GAXIOLA, R. A., PALMGREN, M .G., SCHUMACHER, K. Plant proton pumps. FEBS Letters, v. 581, p.2204 – 2214, 2007. GÉVAUDANT, F.; DUBY, G.; STEDINGK, E. V.; ZHAO, R.; MORSOMME, P.; BOUTRY, M. Expression of a constitutively activated plasma membrane H1-ATPase alters plant development and increases salt tolerance. Plant Physiology, v. 144, 1763-1776, 2007. GIRIM, T., LEJAY, L., WIRTH, J., WIDIEZ, T., PALENCHAR, P. M., NAZOA, P., TOURAINE, B., GOJON, A., LEPETIT, M. Identification of a 150 bp cis-activing element of the AtNRT2.1promoter involved in the regulation of gene expression by the N and C status in the plant. Plant, Cell and Environment, v. 30 p. 1366-1380, 2007. GLASS, A. D. M. Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Critical Reviews in Plant Sciences, v. 22, p. 453–470, 2003. GLASS, A. D. M. Nitrate uptake by plant roots. Botany, v. 87, p. 659–667, 2009. GRAFF, L.; OBRDLIK, P.; YUAN, L.; LÓQUE, D.; FROMMER, W. B.; VON WIRÉN, N. N-terminal cysteines affect oligomer stability of the allosterically regulated ammonium transporter LeAMT1;1. Journal of Experimental Botany, v. 62, n. 4, p. 1361–1373, 2011. HAGER, A. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. Journal of Plant Research, v. 116, p. 483–505. 2003. HARPER, J. F.; MANNEY, L.; SUSSMAN, M. R. The plasma membrane H+-ATPase gene family in Arabidopsis: genomic sequence of AHA10 whichis expressed primarily in developing seeds. Molecular Genetic Genetics, v. 244, p. 572–587, 1994. HARUTA, M.; BURCH, H. L.; NELSON, R. B.; BARRET-WILT, G.; KLINE, K. G.; MOHSIN, S. B.; YOUNG, J. C.; OTEGUI, M. S.; SUSSMAN, M. R. Molecular characterization of mutant arabidopsis plants with reduced plasma membrane proton pump activity. The Journal of Biological Chemistry, v. 285 (23), p. 17918–17929, 2010. HERDER, G. D.; ISTERDAEL, G. V.; BEECKMAN, T.; SMET, I, D.; The roots of a new green revolution. Trend in Plant Science, v.15, p. 600-607, 2010. HIREL, B.; BERTIN, P.; QUILLERÉ, I.; BOURDONCLE, W.; ATTAGNANT, C.; DELLAY, C.; GOUY, A.; CADIOU, S.; RETAILLIAU, C.; FALQUE, M. & GALLAIS, A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiology, v.125, p.1258-1270, 2001. 48 HIREL, B.; LEGOUIS, J.; NEY, B.; GALLAIS,A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, v. 58, p. 2369– 2387, 2007. HO, C. H.; LIN, S. H.; HU, H. C.; TSAY, Y. F. CHL1 functions as a nitrate sensor in plants. Cell, v.138, p. 1184–1194. 2009. HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil. California Agricultural of Experimental Stn. Bull, v.347, p.1-32, 1950. HOQUE, M. S.; MASLE, J.; UDVARDI, M. K.; RYAN, P. R.; UPADHYAYA, N. M. Overexpression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Functional Plant Biology, v. 33, p. 153-163, 2006. HU, H. C., WANG, Y. Y., TSAY, Y. F. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. The Plant Journal, v. 57, p. 264–278, 2009. HUANG, N. C.; LIU, K. H.; LO, H. J.; TSAY, Y. F. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of lowaffinity uptake. The Plant Cell, v. 11, p. 1381–1392, 1999. JAIN, M.; NIJHAWAN, A.; TYAGI, A. K.; KHURANA, J. P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, v. 345, p. 646-651, 2006. JAMPEETONG, A.; BRIX, H. Effects of NH4 + concentration on growth, morphology and NH4+ uptake kinetics of Salvinia natans. Ecological Engineering, v.35, p.695-702, 2009. JAWORSKI, E. G. Nitrate reductase assay in intact plant tissues. Biochemical Biophysical Research Communication, v.43, n.6, p.1274-1279, 1971. KAISER, B. N.; RAWAT, S. R.; SIDDIQI, M. Y.; MASLE, J.; GLASS, A. D. M. Functional analysis of an arabidopsis T-DNA ‘knockout’ of the high-affinity NH4+ transporter AtAMT1;1. Plant Physiology, v.130, p.1263–1275, 2002. KALAMPANAYIL, B. D, WIMMER, L. E. Identification and characterization of salt-stressinduced plasma membrane H+-ATPase in tomato. Plant Cell and Environment, v.24, p.999- 1005, 2001. KANT, S.; BI, Y. M.; WERETILNYK, E.; BARAK, S.; ROTHSTEIN, S. J. The arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation. Plant Physiology, v. 147, p. 1168- 1180, 2008. KATAYAMA, H.; MORI, M.; KAWAMURA, Y.; TANAKA, T.; MORI, M.; HASEGAWA, H. Production and characterization of transgenic plants carrying a high-affinity nitrate transporter gene (OsNRT2.1). Breeding Science, v. 59, p. 237-243, 2009. KAWACHI, T.; SUNAGA, Y.; EBATO, M. Repression of nitrate uptake by replacement of asp105 by asparagine in Atnrt3.1 in Arabidopsis thaliana L. Plant And Cell Physiology, v. 47, i. 10, p.1437-1441, 2006. KRAISER, T.; GRAS, D. E.; GUTIÉRREZ, A. G.; GONZÁLEZ, B.; GUTIÉRREZ, R. A. A holistic view of nitrogen acquisition in plants. Journal of Experimental Botany, v. 62, n. 4, p. 1455–1466, 2011. 49 KREBS, M.; BEYHL, D.; GÖRLICH, E.; AL-RASHEID, K. A. S.; MARTEN, I.; STIERHOF, Y.-D.; HEDRICH, R.; SCHUMACHER, K. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proceedings of the National Academy of Sciences of the United States of America, v. 107(7), p. 3251-3256, 2010. KROUK, G.; LACOMBE, B.; BIELACH, A.; PERRINE-WALKER, F.; MALINSKA, K.; MOUNIER, E.; HOYEROVA, K.; TILLARD, P.; LEON, S.; LJUNG, K.; ZAZIMALOVA, E.; BENKOVA, E.; NACRY, P.; GOJON, A. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell, v. 18, p. 927–937, 2010. LANQUAR, V.; LOQUÉ, D.; HORMANN, F.; YUAN, L.; BOHNER, A.; ENGELSBERGER, W. R.; LALONDE, S.; SCHULZE, W. X.; VON WIRÉN, N.; FROMMER, W. B. Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. The Plant Cell, v. 21, p. 3610-3622, 2009. LEJAY, L., GANSEL, X., CEREZO, M., TILLARD, P., MULLER, C.,KRAPP, A., VON WIREN, N., DANIEL-VEDELE, F. & GOJON, A. Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. The Plant Cell, v.15, 2218–2232, 2003. LI, B.; XIN, W.; SUN, S.; SHEN, Q.; XU, G. Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources. Plant Soil, v. 287, p. 145–159, 2006. LI, J.-Y.; FU, Y.-L.; PIKE, S. M.; BAO, J.; TIAN, W.; ZHANG, Y.; CHEN, C.-Z.; ZHANG, Y.; LI, H.-M. HUANG, J.; LI, L.-G.; SCHROEDER, J. I.; GASSMANN, W.; GONG, J.-M. The arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. The Plant Cell, v. 22(5), p. 1633-1646, 2010. LI, J; YANG, H; PEER, W. A.; RICHTER, G.; BLASKELEE, J.; BANDYOPADHYAY, A.; TITAPIWANTAKUN, B.; UNDURRAGA, S.; KHODAKOVSKAYA, M.; RICHARDS, E. L.; KRIZEK, B.; MURPHY, A. S.; GILROY, S; GAXIOLA, R. Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science, v. 310, p. 121-125, 2005. LI, W.; WANG, Y.; OKAMOTO, M.; CRAWFORD, N. M.; SIDDIQI, Y.; GLASS, A. D. M. Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiology, v. 143, p. 425-433, 2007. LIAN X.; WANG, S.; ZHANG, J.; FENG, Q.; ZHANG L.; FAN, D.; LI, X.; YUAN D.; HAN. B.; ZANG, Q. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Molecular Biology, v. 60, p. 617–631, 2006. LIMA, J. E.; KOJIMA, S.; TAKAHASHI, H.; VON WIRÉN, N. Ammonium triggers lateral root branching in arabidopsis in an AMMONIUM TRANSPORTER1;3-dependent manner. The Plant Cell, v. 22(11), p. 3621-3633, 2010. LIN, S. H.; KUO, H. F.; CANIVENC, G.; LIN, C.-S.; LEPETIT, M.; HSU, P.-K.; TILLARD, P.; LIN, H.-L.; WANG, Y.-Y.; TSAI, C.-B.; GOJON, A.; TSAY, Y.-F. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. The Plant Cell, v. 20, p. 2514–2528, 2008. LIU, J.; CHEN, F.; OLOKHNUUD, C.; GLASS, A. D. M.; TONG, Y.; ZHANG, F.; MI, G. Root size and nitrogen-uptake activity in two maize (Zea mays) inbred lines differing in 50 nitrogen-use efficiency. Journal of Plant Nutrition and Soil Science, v. 172, p. 230-236, 2009. LIU, J.; HAN, L.; CHEN, F.; BAO, J.; ZHANG, F.; MI, G. Microarray analysis reveals early responsive genes possibly involved in localized nitrate stimulation of lateral root development in maize (Zea mays L.). Plant Science, v. 175, p. 272-282, 2008. LIU, K. H., AND TSAY, Y. F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. Embo Journal, v. 22, p. 1005–1013, 2003. LIVAK, K. J. & SCHMITTGEN, T. D. Analysis of relative gene expression data using realtime quantitative PCR and the 2- C method. Methods, v. 25, p. 402-408, 2001. LOQUE, D.; LALONDE, S.; LOOGER, L. L.; WIREN, N.; FROMMER, W. B. Acytosolic trans-activation domain essential for ammonium uptake. Nature, v. 446, p. 195-198, 2007. MAATHUIS, F. J. M. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, v. 12, p.250-258, 2009. MASCLAUX-DAUBRESSE, C.; DANIEL-VEDELE, F.; DECHORGNAT, J.; CHARDON, F.; GAUFICHON, L.; SUZUKI, A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, v.105(7), p. 1141-1157, 2010. MILLER, A. J.; CRAMER, M. D. Root nitrogen acquisition and assimilation. Plant and Soil, v. 274, p. 1-36, 2004. MILLER, A. J.; FAN, X.; ORSEL, M.; STITH, S. J.; WELLS, D. M. Nitrate transport and signalling. Journal of Experimental Botany, v. 58, n. 9, p. 2297- 2306, 2007. MILLER, A. J.; FAN, X.; SHEN, Q.; SMITH, S. J. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. Journal of Experimental Botany, v. 59, p. 111–119, 2008. MŁODZINSKA, E.; WDOWIKOWSKA, A.; KŁOBUS, G. Identification and characterization of two genes encoding plasma membrane H+-ATPase in Cucumis sativus L. Acta Plant Physiology Plant, v. 32, p. 1103-1111, 2010. NAZOA, P.; VIDMAR, J. J.; TRANBARGER, T. J.; MOULINE, K.; DAMIANI, I.; TILLARD, P.; ZHUO, D.; GLASS, A. D. M. & TOURAINE, B. Regulation of the nitrate transporter gene AtNRT2.1 in Arabisopsis thaliana: response to nitrate, amino acids and development stage. Plant Molecular Biology, v.52, p.689-703, 2003. OKAMOTO, M.; VIDMAR, J. J. & GLASS, A. D. M. Regulation of NRT1 and NRT2 genes families of Arabidopsis thaliana: responses to nitrate provision. Plant and Cell Physiology, v.44, n.3, p.304-317, 2003. ORSEL, M.; CHOPIN, F.; LELEU, O.; SMITH, S. J.; KRAPP, A.; DANIEL-VEDELE, F.; MILLER.; A. Characterization of a two-component hight-affinity nitrate uptake system in arabidopsis. Physiology and protein-protein interaction. Plant Physiology, v. 142, p. 1304- 1317, 2006. ORSEL, M.; FILLEUR, S.; FRAISIER, V. & DANIEL-VEDELE, F. Nitrate transport in plants: which gene and which crontrol? Journal of Experimental Botany, v.53, n.370, p.825-833, 2002. OTTMANN, C.; MARCO, S.; JASPERT, N.; MARCON, C.; SCHAUER, N.; WEYAND, M.; VANDERMEEREN, C.; DUBY, G.; BOUTRY, M.; WITTINGHOFER, A.; RIGAUD, J.-L.; OECKING, C. Structure of a 14-3-3 coordinated hexamer of the plant plasma 51 membrane H1-ATPase by combining X-ray crystallography and electron cryomicroscopy. Molecular Cell, v. 25, p. 427–440, 2007. OUFATTOLE, M.; ARANGO M. & BOUTRY, M. Identification and expression of three new Nicotiana plumbaginifolia genes which encode isoforms of a plasma-membrane H+- ATPase, and one of which is induced by mechanical stress. Planta, v. 210, p. 715-722, 2000. PATTERSON, K.; CAKMAK, T.; COOPER, A.; LAGER, I.; RASMUSSON, A. L.; ESCOBAR, M. A. Distinct signalling pathways and transcriptome response signatures differentiate ammonium and nitrate-supplied plants. Plant, Cell and Environment, v. 33, p. 1486–1501, 2010. PFAFFL, M. W. A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Research, v. 29, p. 2003 – 2009, 2001. PIFAFFL, M. W., HAGELEIT, M. Validations of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-times RT-PCR. Biotechnology Letters, v 23, p. 275–282, 2001. QUAGGIOTTI, S.; RUPERTI, B.; BORSA, P.; DESTRO, T. & MALAGOLI, M. Expression of a putative high-affinity NO3 - transporter and of an H+-ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. Journal of Experimental Botany, v.54, n.384, p.1023-1031, 2003. QUAGGIOTTI, S.; RUPERTI, B.; PIZZEGHELLO, D.; FRANCIOSO, O.; TUGNOLI, V.; NARDI, S. Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). Journal of Experimental Botany, v.55, n.398, p.803-813, 2004. RUDD, S. Expressed sequence tags: alternative or complement to whole genome sequences? Trends in Plant Science, v. 8, p. 321-329, 2003. SAHU, B. B.; SHAW, B. P. Salt-inducible isoform of plasma membrane H+-ATPase gene in rice remains constitutively expressed in natural halophyte, Suaeda maritima. Jounal of Plant Physiology, v. 166, p. 1077-1089, 2009. SAMBORSKI, S., KOZAK, M., AZEVEDO, R. A. Does nitrogen uptake affect nitrogen uptake efficiency, or vice versa? Acta Physiol Plant, v.30, p. 419–420, 2008. SANTI, S.; CESCO, S.; VARANINI, Z.; PINTON, R. Two plasma membrane H+-ATPase genes are differentially expressed in iron-deficient cucumber plants. Plant Physiology and Biochemistry, v. 43p. 287–292, 2005. SANTI, S.; LOCCI, G.; MONTE, R.; PINTON, R.; AND VARANINI, Z. Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. Journal of Experimental Botany, v. 54, n. 389, p. 1851- 1864, 2003. SANTI, S.; LOCCI, G.; PINTON, R; CESCO, S.; VARANINI, Z. Plasma membrane H+- ATPase in maize roots induced for NO3 - uptake. Plant Physiology, v. 109, p. 1277-1283, 1995. SANTOS, L. A., BUCHER, C. A., SOUZA, S. R., FERNANDES, M. S. Effects of nitrogen stress on proton-pumping and nitrogen metabolism in rice. Journal of Plant Nutrition, v. 32, p. 549 – 564, 2009. SHEN, H.; CHEN, J.; WANG, Z.; YANG, C.; SASAKI, T.; YAMAMOTO, Y.; MATSUMOTO, H.; YAN, X. Root plasma membrane H+-ATPase is involved in the 52 adaptation of soybean to phosphorus starvation. Journal of Experimental Botany, v. 57(6), p. 1353-1362, 2006. SIDDIQI, M. Y.; GLASS, A. D. M.; RUTH, T. J. & RUFTY, T. Studies of the uptake of nitrate in barley: I. Kinetics of 13NO3- influx. Plant Physiology, v.93, p.1426-1432, 1990. SONDERGAARD, T. E.; SCHULZ, A.; PALMGREN, M. G. Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiology, v.136, p.2475-2482, 2004. SONODA, Y.; IKEDA, A.; SAIKI, S.; WIRÉN, N. V.; YAMAYA, T.; YAMAGUCHI, J. Distinct expression and function of three ammonium transporter genes (OsAMT1;1 – 1;3) in rice. Plant Cell Physiology. v. 44, p. 726-734, 2003. SOUZA, S. R.; FERNANDES, M. S. Nitrogen-acquisition by plants in a sustainable environment. In: SINGH, R.P.; JAIWAL P.K. (Org.). Biotechnological approaches to improve nitrogen use efficiency in plants. 1 ed. India: Studium Press, LLC, Houston, Texas, USA., v. 1, p. 41-62, 2006a. SOUZA, S. R.; FERNANDES, M. S. Nitrogênio. In: FERNANDES, M. S. (Org.). Nutrição Mineral de Plantas. 1 ed. Viçosa: Sociedade Brasileira de Ciência do Solo, v. 1, p. 215-252, 2006b. SOUZA, S. R.; STARK, E. M. L. M. & FERNANDES, M. S. Nitrogen remobilization during the reproductive period in two brazilian rice varieties. Journal of Plant Nutrition, v.21, n.10, p.2049-2063, 1998. THIBAUD, J. B.; GRIGNON, C. Mechanism of nitrate uptake in corn roots. Plant Science, v. 22, p. 279-289,1981. TSAY, Y. F.; CHIU, C. C.; TSAI, C. B.; HO, C. H.; HSU, P. K. Nitrate transporters and peptide transporters. FEBS Letters, v. 581, p. 2290–2300, 2007. VITART, V; BAXTER, I.; DOERNER, P.; HARPER, J. F. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant Journal, v. 27, p. 191–201, 2001. WIRTH, J.; CHOPIN, F.; SANTONI, V.; VIENNOIS, G.; TILLARD, P.; KRAPP, A.; LEJAY, L.; DANIEL-VEDELE, F.; GOJON, A. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. Journal of Biological Chemistry, v. 282, n. 32, p. 23541-23552, 2007. YANAGISAWA, S.; AKIYAMA, A.; KISAKA, H.; UCHIMIYA, H.; MIWA, T. Metabolic engineering with DOF1 transcription factor in plants: improved nitrogen assimilation and growth under low nitrogen conditions. Proceedings of the National Academy of Sciences of the United States of America, v. 101, p. 7833–7838, 2004. YEMM, E. W. AND COCKING, E. C. The determination of animo-acid with ninhydrin. Analytical Biochemical, v.80, p.209-213, 1955. YI-BO, T.; YA-JUAN, L.; PING, F.; GUI-XIAO, L. Characterization of nitrogen metabolism in the low-nitrogen tolerant lnt1 mutant of Arabidopsis thaliana under nitrogen stress. Pedosphere, v. 20(5), p. 623–632, 2010. YIN, L.-P.; LI, P.; WEN, B.; TAYLOR, D.; BERRY, J. O. Characterization and expression of a high-affinity nitrate system transporter gene (TaNRT2.1) from wheat roots, and its evolutionary relationship to other NTR2 genes. Plant Science, v. 172, p. 621–631, 2007. 53 YONG, Z.; KOTUR, Z.; GLASS, A. D. M. Characterization of an intact two-component high-affinity nitrate transporter from arabidopsis roots. The Plant Journal, v. 63, p. 739–748, 2010. YUAN, L., LOQUE, D., YE, F., FROMMER, W. B., WIRÉN, N. V. Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1. Plant Physiology, v. 143, p. 732-744, 2007. ZHANG, H.; FORDE, B. G. Regulation of Arabidopsis root development by nitrate availability. Journal of Experimental Botany, v.51, n.342, p.51-59, 2000. ZHAO R. M., DIELEN V., KINET J. M., BOUTRY, M. Cosuppression of a plasma membrane H+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. Plant Cell, v.12, v.4, p.535-546, 2000. ZHOU, J. J.; TRUEMAN, L. J.; BOORER, K. J. A high affinity fungal nitrate carrier with two transport mechanisms. Journal of Biological Chemistry, v. 275, i. 51, p. 39894-39899, 2000.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/10003/2011%20-%20Marcus%20Vinicius%20Loss%20Sperandio.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/16092/2011%20-%20Marcus%20Vinicius%20Loss%20Sperandio.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/22402/2011%20-%20Marcus%20Vinicius%20Loss%20Sperandio.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/28774/2011%20-%20Marcus%20Vinicius%20Loss%20Sperandio.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/34698/2011%20-%20Marcus%20Vinicius%20Loss%20Sperandio.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/41328/2011%20-%20Marcus%20Vinicius%20Loss%20Sperandio.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/47730/2011%20-%20Marcus%20Vinicius%20Loss%20Sperandio.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/54166/2011%20-%20Marcus%20Vinicius%20Loss%20Sperandio.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/2743
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2019-06-12T13:45:29Z No. of bitstreams: 1 2011 - Marcus Vinicius Loss Sperandio.pdf: 1632142 bytes, checksum: 048312c96197527c0c8373673d0611bb (MD5)eng
dc.originais.provenanceMade available in DSpace on 2019-06-12T13:45:29Z (GMT). No. of bitstreams: 1 2011 - Marcus Vinicius Loss Sperandio.pdf: 1632142 bytes, checksum: 048312c96197527c0c8373673d0611bb (MD5) Previous issue date: 2011-02-22eng
Appears in Collections:Mestrado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2011 - Marcus Vinicius Loss Sperandio.pdf2011 - Marcus Vinicius Loss Sperandio1.59 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.