Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10640
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGomes, Ernane Tarcisio Martins
dc.date.accessioned2023-12-22T01:40:29Z-
dc.date.available2023-12-22T01:40:29Z-
dc.date.issued2016-08-17
dc.identifier.citationGOMES, Ernane. Caracterização química e estrutural de ácidos húmicos em solos de três sistemas de manejo. 2016. 33 f. Dissertação (Mestrado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10640-
dc.description.abstractA matéria orgânica do solo pode ser oriunda da decomposição de animais ou vegetais. A maioria das culturas comerciais apresentam mecanismos fotossintéticos C3 ou C4, que fixam diferentes isótopos de carbono C12 ou C13. Através de análises isotópicas é possível determinar a origem e predominância do tipo de carbono que compõem a matéria orgânica do solo (MOS) em determinada área. Em função do fracionamento químico a MOS ainda pode ser dividida nas frações FAF, FAH e FHU, estas frações apresentam características especificas em função da sua origem de formação e condições ambientes. O objetivo deste trabalho foi avaliar a influência da origem vegetal C3 ou C4 na formação da estrutura química e molecular das substancias húmicas extraídas de quatro áreas com cobertura diferentes vegetais, porém submetidas ao manejo agroecológico. Para averiguar esta influência foram extraídas as substancias húmicas (SH) destes solos, sendo realizado o fracionamento químico e caracterização química através de análises de RMN, FTIR, quantificação de isótopos 13C e15N na fração de AH, 13C-CP/MAS NMR e a determinação elementar. A partir dos resultados obtidos a partir dessas análises foi possível concluir que a origem vegetal não influencia em diferenças qualitativas e sim em quantitativas entre os componentes químicos das substancias húmicas (SH), o tipo de ciclo fotossintético não parece ser um fator determinante na formação e incorporação dos tipos de estruturas nos AH, mas sim nas quantidades destas estruturas e na sua distribuição organizacional húmica. As análises teóricas quimiométricas indicam que a incorporação e preservação de MO humificada nestes solos pode ser possível em sistemas de manejo intensivo como a rotação, mediante aplicações de fontes exógenas de SH estabilizada, assim como também o favorecimento dos processos de humificação em sistemas menos manejados como pastagem e SAF. Neste estudo foi comprovado mediante caraterização e quimiometria aplicadas aos AH de um sistema agroecológico, o estado atual da MOS em termos de estabilidade e enriquecimento estrutural e sendo propostas possíveis vias para a recuperação e preservação das SH em solos minerais que possam contribuir ao aumento das condições de fertilidade e consequentemente da produção agrícola.por
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectagro-ecological managementeng
dc.subjectHumic Fractionseng
dc.subjectisotopic characterizationeng
dc.subjectchemometricseng
dc.subjectManejo agroecológicopor
dc.subjectFrações Húmicaspor
dc.subjectCaracterização isotópicapor
dc.subjectQuimiometriapor
dc.titleCaracterização química e estrutural de ácidos húmicos em solos de três sistemas de manejopor
dc.title.alternativeChemical and structural characterization of humic acids in soils of three management systemseng
dc.typeDissertaçãopor
dc.description.abstractOtherSoil organic matter can be derived from the decomposition of animal or vegetable. Most commercial crops show photosynthetic mechanisms C3 and C4, which set different carbon isotopes C12 or C13. Through isotopic analysis can determine the origin and prevalence of type of carbon that make up the soil organic matter (SOM) in a given area. Depending on the chemical fractionation MOS can also be divided into fractions FAF, FAH and FHU, these fractions have specific characteristics depending on their origin training and ambient conditions. The objective of this study was to evaluate the influence of plant origin C3 or C4 in the formation of the chemical and molecular structure of humic substances extracted from four areas with different vegetation cover, but submitted to agroecological management. To investigate this influence were extracted humic substances (HS) of these soils, being held chemical fractionation and chemical characterization by NMR analysis, FTIR, quantification and 13C e 15N isotopes in the AH fraction, 13 C-CP / MAS NMR and elemental determination. From the results obtained from these analyzes it was concluded that the plant does not influence qualitative differences, but in quantitative between the chemical components of humic substances (HS), the type of photosynthetic cycle does not seem to be a determining factor in the formation and incorporation of the types of structures in HA, but rather the quantities of these structures and their humic organizational distribution. The chemometric theoretical analyzes indicate that the development and preservation of humic these soils may be possible in intensive management systems such as rotation upon application of exogenous sources of stabilized SH, as well as favoring the humidification process in less managed systems as pasture and SAF. In this study it was demonstrated by characterization and chemometrics applied to AH of an agro-ecological system, the current state of MOS in terms of stability and structural enrichment and being proposed possible avenues for recovery and preservation of SH in mineral soils that may contribute to the increase in conditions fertility and thus agricultural production.eng
dc.contributor.advisor1Berbara, Ricardo Luiz Louro
dc.contributor.advisor1ID483.564.257-00por
dc.contributor.advisor-co1García, Andrés Calderín
dc.contributor.advisor-co1ID061.145.927-27por
dc.contributor.referee1García, Andrés Calderín
dc.contributor.referee2Pereira, Marcos Gervasio
dc.contributor.referee3Araújo, Ednaldo da Silva
dc.creator.ID084.577.136-12por
dc.creator.Latteshttp://lattes.cnpq.br/6443805133773523por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesALVES, B.J.R.; CAMPOS, D. V. B. de; P.; S.; M. Emprego do isótopo estável 13 C para o estudo da dinâmica da matéria orgânica do solo. In: Renato Roscoe, Fábio Martins Mercante, Júlio Cesar Salton. (Org.). Dinâmica da matéria orgânica do solo em sistemas conservacionais (Modelagem matemática e métodos auxiliares. Dourados - MS: Embrapa Agropecuária Oeste, v., p. 133-161, (2006). ALVES, B. J. R, ZOTARELLIL, JANTALIA CP, BODDEY RM, URQUIAGA S Emprego de isótopos estáveis para o estudo do carbono e do nitrogênio no sistema solo planta. In: Aquino, A.M.& Assis, R.L., eds. Processos biológicos no sistema solo-planta: Ferramentas para uma agricultura sustentável. Brasília, Embrapa-SCT, 2005.p.343-350. (2005). AMIR S, JOURAIPHY A, MEDDICH A, GHAROUS M, WINTERTO P, HAFIDI M Structural study of humic acids during composting of activated sludge-green waste: elemental analysis, FTIR and 13C NMR. J Hazard Mater 177:524-529. doi:10.1016/j.jhazmat.2009.12.064. (2010). ANGELINI, G. A. R. LOSS, A.; PEREIRA, A.C.C.; TORRES, J.L.F.; SAGGIN JÚNIOR, O. J. Colonização micorrízica, densidade de esporos e diversidade de fungos micorrízicos arbusculares em solo de Cerrado sob plantio direto e convencional Semina: Ciências Agrárias, Londrina, v. 33, n. 1, p. 115-130, jan./mar. (2012). ANGULO, R.J.; ROLOFF, G. & SOUZA, M.L.P. Relações entre a erodibilidade e agregação, granulometria e características químicas de solos brasileiros. R. Bras. Ci. Solo, 8:133-138, (1984). ANGELOV, M. N.; SUN, J.; BYRD, G. T.; BROWN, R. H.; BLACK, C. C. Novel characteristics of cassa, Manihot esculenta Crantz, a reputed C3-C4 intermediate photosynthesis species. Photosynthesis Research, Doedrecht, v. 38, p. 61-72, (1993). ARAÚJO, E. A.; KER, C. J.; MENDONÇA, E. S.; SILVA, I. R; OLIVEIRA, E. K. Impacto da conversão floresta - pastagem nos estoques e na dinâmica do carbono e substâncias húmicas do solo no bioma Amazônico. Acta Amazônica, v. 41, n. 1, p 103-114, (2014) BAIGORRI R, FUENTES M, GON L - AITAN , ARC A-MINA M, ALM NDR S , N L -VILA FJ. Complementary multianalytical approach to study the distinctive structural features of the main humic fractions in solution: gray humic acid, brown humic acid, and fulvic acid. J Agri Food Chem 57:3266-3272. Doi: 10.1021/jf8035353. (2009). BASKARAN, M. Handbook of environmental isotope geochemistry. Advances in isotope geochemistry. 1a. ed. Ed. New York: Springer, 951 p, (2011). BRAND, W. A. High precision isotope ratio monitoring techniques in mass spectrometry. Journal of Mass Spectrometry, v. 31, n. 3, p. 225-235, (1996). BENSON, S. et al. Forensic applications of isotope ratio mass spectrometry - A review. Forensic Science International, v. 157, n. 1, p. 1-22, (2006). 27 BENITES, V.M.; MADARI, B.; MACHADO, P.L.O. A. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado de baixo custo. (Comunicado Técnico, 16). Rio de Janeiro: Embrapa Solos, 7p. (2003). BOUTTON, T. W. Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. In: BOUTTON, T. W.; YAMASAKI, SI. Mass Spectrometry of Soils. New York: Marcel Dekker, cap. 2, p. 47-82 (1996). CAPPUYNS, V.; SWENNEN, R.J. The application of pHstat leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials. Journal of Hazardous Materials, v.158, p.185-195, (2008). CARTER, M. R. Organic matter and sustainability. In: REES, B. C.; BALL, B. C.; CAMPBELL, C. D.; WATSON, C. A. (Ed.). Sustainable management of soil organic. Wallingford: CAB International. p. 9-22, (2001). CANELLAS LP, SANTOS GA Humosfera: tratado preliminar sobre a química das substâncias húmicas Campos dos Goytacazes. 309 p.: il (2005). CANELLAS, L.P.; FAÇANHA, A.R. Chemical nature of soil humified fractions and their bioactivity. Pesquisa Agropecuária Brasileira, 39: 233-240, (2004). CANELLAS, L P.; OLIVARES, F.L.; FAÇANHA, A.L.O. & FAÇANHA, A.R. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol., 130:1951-1957, (2002). CHANEY, K., & SWIFT, R. S. Studies on aggregate stability. 11. The effect of humic substances on the stability of re‐formed soil aggregates. Journal of soil science, 37(2), 337-343. . (1986) CRUZ, C. D.; REGAZZY, A J.; CARNEIRO, P. C. S. Modelos biométricos aplicados ao melhoramento genético. 4. Ed. Viçosa: Editora UFV. 514p, (2012). DANIELS, B.A SKIPPER, H.D. Methods for the recovery and quantitative estimation of propagules from soil. In: Schenk, N.C. (Ed.). Methods and principles of mycorrhizal research. St. Paul: The American Phytopathological Society, p.29-35, (1982). DAY, P. R. Particle frationation and particle size analysis. In: Black, C. A. Ed., methods soil analysis. Madyson, Amarican Society of Agronomy, n.1 p 545-66, (1965). DR USSI , D’ RA I V, HAFIDI M, Ouatmane A Elemental and spectroscopic characterization of humic-acid-like compounds during composting of olive mill byproducts. J Hazard Mater 163:1289-1297. doi: 10.1016/j.jhazmat.2008.07.136. (2009) EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Manual de métodos de análise de solo. 2.ed. Rio de Janeiro: Centro Nacional de Pesquisa de Solos, 212p, (1997). EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Sistema Brasileiro de Classificação de Solos. EMBRAPA/CNPS. Rio de Janeiro. 305p, (2006). EKREM LUTFI AKSAKAL, SERDAR SARI, ILKER ANGIN. Effects of Vermicompost Application on Soil Aggregation and Certain Physical Properties. Land Degrad. Develop. 27: 983–995 (2016). Façanha, A.R.; Façanha, A.R.; Olivares, F.L.; Velloso, A.C.X.; Braz-filho, R.; Santos, G.A. & Canellas, L.P. Bioatividade de ácidos húmicos: efeitos sobre o desenvolvimento de prótons. Pesq. Agropec. Bras., 37:1301-1310, (2002). FELLET, G.; MARMIROLI, M.; MARCHIOL, L. Elements uptake by metal accumulator pecies grown on mine tailings amended with three types of biochar. Science of the Total Environment, v.468, p.598-608, (2014). Gerdemann, J. W.; Nicholson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, v.46 p. 235-244, (1963). Goto, B. T. & Maia, L. C. Glomerospores: a new denomination for the spores of Glomeromycota, a group molecularly distinct from the Zygomycota. Mycotaxon 96, 129- 132, (2006). González-Pérez JA, González-Vila FJ, Almendros G, Knicker H. The effect of fire on soil organic matter-a review. Environ Int 30:855-870. doi:10.1016/j.envint.2004.02.003. (2004) Gouveia SEM, Pessenda LCR, Aravena R, Boulet R, Scheel-Ybert R, Bendassoli JA, Ribeiro AS, Freitas HA. Carbon isotopes in charcoal and soils in studies of paleovegetation and climate changes during the late Pleistocene and the Holocene in the southeast and centerwest regions of Brazil Global and Planetary Change. 33:95–106, (2005) GOUVEIA SEM and PESSENDA LCR. Datation par le 14C de charbons inclus dans le sol pour l’étude du rôle de la remontée biologique de matière et du colluvionnement dans la formation de latosols de l’état de São Paulo. Brésil. C. R. Acad. Sci. Paris Serie 2A 330: 133-138, (2000). GRASSINEAU, N. V. High-precision EA-IRMS analysis of S and C isotopes in geological materials. Applied Geochemistry, v. 21, n. 5, p. 756-765, (2006). Hayes, K.R. Ecological risk assessment for ballast water introductions: a suggested approach. ICES Journal of Marine Science 55, 201–212, (1998). HAYES, T.M.; HAYES, M.H.B.; SKJEMSTAD, J.O.; SWIFT, R.S. & MALCOLM, R.L. Isolation of humic substances from soil using aqueous extractants of different pH andXAD resins, and their characterization by 13C-NMR.. In: CLAPP, C.E., ed. Humic substances and organic matter in soil and water environments: Characterization, transformations and interactions. Birmingham, IHSS, p.13-24, (1996). HMID, A.; AL CHAMI, Z.; SILLEN, W.; DE VOCHT, A.; VANGRONSVELD, J.Olive mill waste biochar: a promising soil amendment for metal immobilization in contaminated soils. Environmental Science and Pollution Research, v.22,p.1444-1456, (2015). IHSS, 2013. International Humic Substances Society. Disponível em: http://www.humicsubstances.org/. Acesso em: 15 04 2014. KABATA-PENDIAS, A. Trace elements in soils and plants, 4. ed, CRC Press, Boca Raton, 520 p. (2011). Keeler, C.; Kelly, E.F.; Maciel, G.E. Chemical–structural information from solid-state 13C NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA. Geoderma, v.130, p.124-140, (2006). KELLY, S. D.; RHODES, C. Emerging techniques in vegetable oil analysis using stable isotope ratio mass spectrometry. Grasas Y Aceites, v. 53, n. 1, p. 34-44, (2002). KHATTREE, R. & NAIK, D.N. Multivariate data reduction and discrimination with SAS software. Cary, NC, USA: SAS Institute Inc. 558 p.(2000). Kögel-Knabner, I., de Leeuw, J. W., & Hatcher, P. G. Nature and distribution of alkyl carbon in forest soil profiles: implications for the origin and humification of aliphatic biomacromolecules. Science of the Total Environment, 117, 175-185, (1992). Kumar MS, Rajiv P, Rajeshwari S, Venckatesh R. Spectroscopic analysis of vermicompost for determination of nutritional quality. Spectrochim Acta 135:252-255, (2015). Lal, R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degradation & Development, 17(2), 197- 209, (2006) LAL, R. Enhancing crop yields in the developing countries, (2006). LI X, MEIYAN X, JIAN Y, ZHIDONG H. Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung. J Hazard Mater 185:740-748. doi:10.1016/j.jhazmat.2010.09.081, (2011). LOSS, Arcangelo. Frações orgânicas e agregação do solo em diferentes sistemas de produção orgânico. Seropédica, 2008. 62 p. Dissertação (Mestrado em Agronomia/ Ciencias do Solos) - Programa de Pós-Graduação em Agronomia-Ciências do Solos - CPGACS, Universidade Federal Rural do Rio de Janeiro. MAMEDOV, A. I., BAR‐YOSEF, B., LEVKOVICH, I., ROSENBERG, R., SILBER, A., FINE, P., & LEVY, G. J. Amending Soil with Sludge, Manure, Humic Acid, Orthophosphate and Phytic Acid: Effects on Infiltration, Runoff and Sediment Loss. Land Degradation & Development. (2016). MAR MONTIEL‐ROZAS, M., PANETTIERI, M., MADEJÓN, P., & MADEJÓN, E. Carbon Sequestration in Restored Soils by Applying Organic Amendments.Land Degradation & Development. (2015). MARTINELLI, L. A. et al. Desvendando questões ambientais com isótopos estáveis. 1a. ed. ed. São Paulo: Oficina de Textos, 144 p, (2009). MEIER-AUGENSTEIN, W. Applied gas chromatography coupled to isotope ratio mass spectrometry. Journal of Chromatography A, v. 842, n. 1-2, p. 351-371, (1999). MENDONÇA, E.S. & ROWELL, D.L. Dinâmica do alumínio e de diferentes frações orgânicas de um Latossolo argiloso sob cerrado e soja. R. Bras. Ci. Solo, 18:295-303, (1994). MOREIRA, F.M.S. SIQUEIRA, J.O. Microbiologia e bioquímica do solo. 2ª ed. Lavras: Editora UFLA, 729p, (2006). MORSOMME, P.; BOUTRY, M. The plant plasma membrane H+-ATPase: structure, function and regulation. Biochimica et Biophysica Acta, Amsterdam, v. 1465, n. 1/2, p. 1- 16, (2000). MUSCOLO A, SIDARI M, ATTINÁ E, FRANCIOSO O, TUGNOLI V, NARDI S. Biological activity of humic substances is related to their chemical structure. Soil Sci Soc Am J 71:75-85. doi:10.4161/psb.5.6.11211, (2007). NANNIPI RI, P., R , S., D LL’A N LA, ., NARDI, S. Proprietà biochimiche e fisiologiche della sostanza organica. In: Nannipieri, P (ed.): Ciclo della sostanza organica nel suolo: aspetti agronomici, chimici, ecologici, ecologici e selvicolturali. Bologna: Patron Editore, p.67-78, (1993). NARDI, S.; PIZZEGHELLO, D.; MUSCOLO, A. & VIANELLO, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem., 34:1527-1536, (2002). NOVOTNY, E. H., KNICKER, H., MARTIN‐NETO, L., AZEREDO, R. B. V., & HAYES, M. H. B. Effect of residual vanadyl ions on the spectroscopic analysis of humic acids: a multivariate approach. European journal of soil science, 59(3), 439-444, (2008). NOVOTNY, E. H. Estudos espectroscópicos e cromatográficos de substâncias húmicas de solos sob diferentes sistemas de preparo. Instituto de Química de São Carlos, da Universidade de São Paulo, 231p. Tese (Doutorado em Ciências - Físico Química). (2004). ORLOV, D.S. Humic substances of soils and general theory of humification. A.A. Balkema, Rotterdam, (1995). ORLOV, D.S. Humus Acids of Soils. Moscow University Press. Translated from Russian. TAN, K.H (Ed.). Amerind Publ. New Delhi, India, (1985). PARKER, T. W. A classification of kaolinites by infrared spectroscopy.Clay Minerals, 8(2), 135-141, (1969). PAZ-FERREIRO, J.; LU, H.; FU1, S.; MÉNDEZ, A.; GASCÓ, G. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, v.5, p.65-75, (2014). PEREIRA, M.G.; ANJOS, L.H.C.; VALLADARES, G.S. Organossolo: Ocorrência, gênese, classificação, alterações pelo uso agrícola e manejo. In: VIDAL-TORRADO, P.; ALLEONI, L.R.F.; COOPER, M.; SILVA, Á.P.; CARDOSO, E.J. (Org.). Tópicos em Ciência do Solo. 4.ed. Viçosa, v.4, p.233-276, (2005). PESSENDA LCR, GOUVEIA SEM, ARAVENA R. Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal. Radiocarbon 43(2B): 595-601, (2001). PIAN, L. B. Fungos Micorrízicos Arbusculares e Matéria Orgânica do solo de um Módulo de Cultivo Intensivo de Hortaliças Orgânicas. Seropédica, 2015. 69 p. Dissertação (Mestrado em Agronomia/ Ciencias do Solos) - Programa de Pós-Graduação em Agronomia-Ciências do Solos - CPGACS, Universidade Federal Rural do Rio de Janeiro. PICOLLO, A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Adv. Agron, 75:57- 134, (2002). PICCOLO, A., CONTE, P., & COZZOLINO, A. Effects of mineral and monocarboxylic acids on the molecular association of dissolved humic substances. European Journal of Soil Science, 50(4), 687-694, (1999). PICCOLO, A., & MBAGWU, J. S. Role of hydrophobic components of soil organic matter in soil aggregate stability. Soil Science Society of America Journal, 63(6), 1801- 1810, (1999). PICCOLO, A., & MBAGWU, J. S. C. Exogenous humic substances as conditioners tor the rehabilitation of degraded soils. Carbon, 36, 62-9, (1997) PICCOLO, A., STEVENSON, F.J. Infrared spectra of Cu2+, Pb2+ and Ca2+ complexes of soil humic substances. Geoderma v.27, p.195-208, (1982). PRIMO. D. C., R, MENEZES S. C., SILVA T. O; Substâncias húmicas da matéria orgânica do solo: uma revisão de técnicas analíticas e estudos no nordeste brasileiro: SCIENTIA PLENA VOL. 7, Num. 5 (2011). PIZZEGHELLO, D., COCCO, S., FRANCIOSO, O., FERRARI, E., CARDINALI, A., NARDI, S., & CORTI, G. Snow vole (Chionomys nivalis Martins) affects the redistribution of soil organic matter and hormone‐like activity in the alpine ecosystem: ecological implications. Ecology and evolution, 5(20), 4542-4554, (2015). REZVANI, M.; ZAEFARIAN, F.; MIRANSARI, M.; NEMATZADEH, G.A. Uptake and translocation of cadmium and nutrients by Aelorupus littoralis. Archives of Agronomy and Soil Science, v.2, p.114-119, (2011). RIBEIRO, Antonio Carlos. Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5. Aproximação. Comissão de fertilidade do solo do estado de Minas Gerais, 1999. RICE, J. Humim. Soil Science, 166:848-857, (2001). RILLIG, M. C.; WRIGHT, S. F.; NICHOLS, K. A.; SCHMIDT, W. F.; TORN, M. S. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, The Hague, v. 233, n. 2, p. 167-177, (2001). ROSCOE, R.; MACHADO, P.L.O.A. Fracionamento físico do solo em estudos da matéria orgânica. Dourados: Embrapa Agropecuária Oeste, 86p, (2002). ROSSMANN, A. Determination of stable isotope ratios in food analysis. Food Reviews International, v. 17, n. 3, p. 347-381, (2001). RUSSELL, J. D., FRASER, A. R., & WILSON, M. J. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Chapman Hall, London, UK, 11-67, (1994). SANTOS, F.S.; AMARAL SOBRINHO, N.M.B.; MAZUR, N. Mecanismo de tolerância de plantas a metais pesados. In: FERNANDES, M.S. Nutrição mineral de plantas. Viçosa: Sociedade Brasileira de Ciência doSolo, p.419-432, (2006). SANTOS GA, CAMARGO FAO (1999) Fundamentos da matéria orgânica do solo: ecosistemas tropicais e subtropicais. Porto Alegre: Genesis, 293-298p, (1999). SCHMIDT MWI, TORN MS, ABIVEN S, DITTMAR T, GUGGENBERGER G, JANSSENS IA, KLEBER M, KOGEL-KNABNER I, LEHMANN J, MANNING DAC, NANNIPIERI P, RASSE DP, WEINER S, TRUMBORE SE. Persistence of soil organic matter as an ecosystem property. Nature 478:49-56, (2011). SCHNITZER, M. Organic matter characterization. 2.ed. In: PAGE, A.L., ed. Methods of soil analysis. Part 2. Chemical and microbiological properties. Madison, ASA/SSSA, p.581- 593, (1982). SENESI, N., & PLAZA, C. Role of humification processes in recycling organic wastes of various nature and sources as soil amendments. Clean–Soil, Air, Water, 35(1), 26-41, (2007). SENESI, N., & PLAZA, C. Role of humification processes in recycling organic wastes of various nature and sources as soil amendments. Clean–Soil, Air, Water, 35(1), 26-41, (2007) SHIRSHOVA LT, GHABBOUR EA, DAVIES G. Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures. Geoderma 133:204-216. doi:10.1016/j.geoderma.2005.07.007, (2006). SILVA, I.R. & MENDONÇA, E.S. Matéria orgânica do solo. In: Novais, R.F.; Alvarez V., V.H.; Barros, N.F.; Fontes, R.L.F.; Cantarutti, R.B. & Neves, J.C.L. Fertilidade do solo. Viçosa, MG, Sociedade Brasileira de Ciência do Solo, p.275-374, (2007). SPACCINI, R.; PICCOLO, A.; Molecular Characterization of Compost at Increasing Stages of Maturity. 1. Chemical Fractionation and Infrared Spectroscopy. Journal of Agricultural and Food Chemistry, v.55, p.2293-2302, (2007). SONG, G., NOVOTNY, E. H., SIMPSON, A. J., CLAPP, C. E., & HAYES, M. H. B. Sequential exhaustive extraction of a Mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. European journal of soil science, 59(3), 505-516, (2008). STEINBERG, P.D.; RILLIG, M.C.; Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biology & Biochemistry (35), 191-194, (2003). STEVENSON, J.F. Humus chemisthy, gênesis, composition, reactions. 2.ed. New York, John Wiley,496p, (1994). SWIFT, R.S. Organic matter characterization. In: Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. (Eds.) Methods of soil analysis: chimical methods. Vol. 3. Soil Science Society of America; American Society of Agronomy, Madison. (SSSA. Book Series, 5). p. 1011-1020, (1996). TAN, K. H. Humic matter in soil and the environment: principles and controversies. CRC Press. ((2014). TEDESCO, Marino José, et al. "Análise de solo, plantas e outros materiais. Porto Alegre, Universidade Federal do Rio Grande do Sul, 1995. 174p."Boletim técnico 5. TINSLEY, J. Determination of organic carbon in soils by dichromate mixtures. In: International congress of soil science, 4. Amsterdam 1950. Transactions. Amsterdam, v.1. p.161-164.j (1950). VAUGHAN, D.; MALCOLM, R. E. Influence of humic substances on growth and physiological process. In: VAUGHAN, D.; MALCOLM, R. E. (Ed.). Soil organic matter and biological activity. Dordrecht: Kluwer Academic, p. 37-75, (1985). VENEGAS, A.; RIGOL, A.; VIDAL M. Viability of organic wastes and biochars asamendmentsfor the remediation of heavy metal-contaminated soils. Chemosphere, v.119, p.190-198, (2015). WATSON, J. T. Introduction to mass spectrometry. 3rd. ed. Philadelphia: Lippincott- Raven Publishers, 496 p, (1997). WERNER, R. A.; BRAND, W. A. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry, v. 15, n. 7, p. 501-519, (2001). WU, Z., MCGROUTHER, K., HUANG, J., WU, P., WU, W., WANG, H. Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: Field experiment. Soil Biology & Biochemistry. (68), 283-290, (2014). VAUGHAN, D.; MALCOM, R.E. & Ord, B.G. Influence of humic substances on biochemical processes in plants. In: Vaughan, D. & Malcom, R.E. Soil organic matter and biological activit. Dordrecht, Martinus Nijhoff/Junk W, p.77-108. (1985). YOEMANS, J.C.; BREMNER, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal, 19(13): 1467-1476, (1988). ZECH, W.; SENESI, N.; GUGGENBERGER, G.; KAISER, K.; LEHMANN, J.; MIANO, T.M.; MILTNER, A. & SCHROTH, G. Factor controlling humification and mineralization of soil organic matter in the tropics. Geoderma, 79:117-161, (1997).por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/6133/2016%20-%20Ernane%20Tarcisio%20Martins%20Gomes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/20940/2016%20-%20Ernane%20Tarcisio%20Martins%20Gomes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/27257/2016%20-%20Ernane%20Tarcisio%20Martins%20Gomes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/33704/2016%20-%20Ernane%20Tarcisio%20Martins%20Gomes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/40050/2016%20-%20Ernane%20Tarcisio%20Martins%20Gomes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/46466/2016%20-%20Ernane%20Tarcisio%20Martins%20Gomes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/52848/2016%20-%20Ernane%20Tarcisio%20Martins%20Gomes.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/59322/2016%20-%20Ernane%20Tarcisio%20Martins%20Gomes.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/2098
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2017-10-17T17:35:44Z No. of bitstreams: 1 2016 - Ernane Tarcisio Martins Gomes.pdf: 1573845 bytes, checksum: 78069c6459bd2b6aba951ba371ae74fd (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-10-17T17:35:44Z (GMT). No. of bitstreams: 1 2016 - Ernane Tarcisio Martins Gomes.pdf: 1573845 bytes, checksum: 78069c6459bd2b6aba951ba371ae74fd (MD5) Previous issue date: 2016-08-17eng
Appears in Collections:Mestrado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2016 - Ernane Tarcisio Martins Gomes.pdfDocumento principal1.54 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.