Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10651
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLisboa, Francy Junio Gonçalves
dc.date.accessioned2023-12-22T01:40:38Z-
dc.date.available2023-12-22T01:40:38Z-
dc.date.issued2012-02-28
dc.identifier.citationLISBOA, Francy Junio Gonçalves. Vínculos entre variáveis de solo, plantas e ambiente em áreas de mineração na Amazônia. 2012. 48 f. Dissertação (Mestrado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2012.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10651-
dc.description.abstractO objetivo do estudo foi detectar e investigar a natureza dos padrões de relacionamento entre a vegetação e a variação químico-microbiológica em substrato recuperado com diferentes estratégias de manejo após atividade de mineração na Amazônia. Três sítios: R2 (Topsoil), R3 (Oficina), e R6 (CCI); inicialmente recuperados sob o mesmo tipo de substrato, o rejeito de estéril de ferro, além de um sítio de floresta primária (Ref), foram os alvos do presente estudo. Para acessar os relacionamentos foi utilizada a abordagem conhecida como sobreposição Procrusteana seguida de teste de significância denominado PROTEST. Os resultados apontaram que o relacionamento entre vegetação e o ambiente químico do substrato foi significativo; porém contrastante quanto a sua natureza. Os resultados mostraram que no sítio R6 (CCI), onde se caracterizou o domínio de leguminosas associado à menor diversidade e equitabilidade vegetal, a interação entre a vegetação e o ambiente químico do substrato foi mais íntima do que nos outros sítios investigados. Com base na observação de que essa associação foi significativamente relacionada à biomassa (MBC) e eficiência metabólica (qCO2), e considerando a hipótese de que o sítio R6 (CCI) teria a condição mais homogênea quanto a qualidade do litter aportado por sua vegetação do que nos outros sítios, foi levantada a suspeita de que essa associação mais íntima esteja vinculada às espécies leguminosas dominantes no R6 (CCI), Senna Sylvestris e Mimosa acutistipula. Nesse cenário, uma vez que a biomassa microbiana e sua atividade se relacionam com as respostas funcionais do substrato, o presente estudo dá suporte, mesmo que de forma localizada, à hipótese de massa, preconizando que espécies ou grupos botânicos dominantes são os principais moderadores das respostas funcionais dos ecossistemas terrestres.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectProcrustespor
dc.subjectRelacionamentopor
dc.subjectLeguminosaspor
dc.subjectRDApor
dc.subjectComunidadepor
dc.subjectEcologiapor
dc.subjectProcrusteseng
dc.subjectRelationshipeng
dc.subjectLegumeseng
dc.subjectRDAeng
dc.subjectCommunityeng
dc.subjectEcologyeng
dc.titleVínculos entre variáveis de solo, plantas e ambiente em áreas de mineração na Amazônia.por
dc.title.alternativeLinks between variables of soil, plants and environment in mining areas in the Amazôniaeng
dc.typeDissertaçãopor
dc.description.abstractOtherThis study aimed to investigate the relationship between vegetation and properties of an iron mine substrate undergoing recovery in the Brazilian Amazon. Vegetation structure, the physical and chemical properties of the substrate, microbial biomass, baseline respiration, total enzymatic activity and the activity of -glucosidase, laccase and acid phosphatase were measured in three sites undergoing recovery by 3 different strategies (R2, Topsoil, R3, “Oficina”, and R6, CCI), and in a nearby forest site. The data was analyzed with ANOVA and with a Procrustes analysis followed by significance tests known as PROTEST in order to measure the correlation between the vegetation structure and the variables measures for the substrate. The results indicated contrasting relationships between the nature of the relationship of vegetation with chemical and microbiological variables, both at the level of sites and sampling points. A higher interaction was observed in site R6 (CCI), which was characterized by a dominance of legumes, associated to lower diversity and equitability. This association favored the microbial biomass and its metabolic efficiency, raising the hypothesis that the effect of vegetation on site R6 was due to the dominance of Senna sylvestris e Mimmosa acutistipula through changes in the chemical environment of the substrate. Since the microbial biomass and its activity are related to the functional state of the substrate, this study supports the mass hypothesis, which says that dominant botanical groups are the major drivers of the functional responses of terrestrial environments.eng
dc.contributor.advisor1Berbara, Ricardo Luiz Louro
dc.contributor.advisor1ID483.564.257-00por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8529910145308595por
dc.contributor.advisor-co1Faria, Sergio Miana de
dc.contributor.referee1Balieiro, Fabiano de Carvalho
dc.contributor.referee2Lima, Eduardo
dc.creator.ID107.717.807-70por
dc.creator.Latteshttp://lattes.cnpq.br/8408464564110393por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesANDRADE, G.; MIHARA, K. L.; LINDERMAN, R. G.; BETHLENFALVAY, G. J. Bacteria from rhizosphere and hyphosphere soils of different arbuscular mycorrhizal fungi. Plant and Soil, v. 192, p. 71-79, 1997. AKALA, V. A.; LAL, R. Soil organic carbon pools and sequestration rates in reclaimed minesoils in Ohio. J. Environmental Quality, v. 30, p. 2098-2104, 2001. ALIASGHARZAD, N.; MÅRTENSSON, L. M.; OLSSON, P. A. Acidification of a sandy grassland favours bacteria and disfavours fungal saprotrophs as estimated by fatty acid profiling. Soil Biology & Biochemistry, v. 42, p. 1-7, 2010. ALVAREZ, V. H.; NOVAIS, R. F.; DIAS, L. E.; OLIVEIRA, J. A. Determinação e uso do fósforo remanescente. Boletim Informativo. SBCS, v. 23, p. 27-32, 2000. ANDERSON, J. D.; INGRAM, L. J.; STAHL, P. D. Influence of reclamation management practices on microbial biomass carbon and soil organic carbon accumulation in semiarid mined lands of Wyoming. Applied Soil Ecology, v. 40, p. 387-397, 2008. BALIEIRO, F. C.; FRANCO, A. A.; FONTES, R.L.F.; DIAS, L.E.;CAMPELLO, E.F.C. Accumulation and distribution of aboveground biomass and nutrients under pure and mixed stands of Pseudosamanea guachapele Dugand and Eucalyptus grandis W. Hillex Maiden. Journal of Plant Nutrition, v.25, p.2639-2654, 2002. BARDGETT, R. D. The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford. 242p, 2005. BÅÅTH, E. The use of Neutral Lipids Fatty Acid to Indicate the Physiological Conditions of Soil Fungi. Microbial Ecology, v. 45, p. 373-383, 2003. BALDRIAN, P. Fungal laccases-occurrence and properties. FEMS Microbiology Review, v. 30, p. 215-242, 2006. BALDRIAN, P.; TROGL, J.; FROUZ, J.; SNAJDR, J.; VALASKOVÁ, V.; MERHAUTOVÁ, V.; CAJTHAML, T.; HERINKOVÁ, J. Enzyme activity and soil microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brow coal mining. Soil Biology & Biochemistry, v. 40, p. 2107-2115, 2008. BALVANERA, P.; PFISTERER, A. B; BUCHMAM, N.; HE, J. S.; NAKASHIZUKA, T.; RAFFAELLI, D.; SCHIMID, B. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, v. 97, p. 603-608, 2006. BARTLETT, R.J.; ROSS, D.S. Colorimetric determination of oxidizable carbon in acid soil solutions. Soil Science Society of America Journal, v. 52, p. 1191-1192, 1988. 39 BEAUREGARD, M. S.; HAMEL, C.; ATUL-NAYYAR.; ST-ARNAUD, M. Long-Term Phosphorus Fertilization Impacts Soil Fungal and Bacterial Diversity but not AM Fungal Community in Alfalfa. Microbial Ecology, v. 59, p. 379-389, 2010. BERG, G.; SMALLA, K. Plant species and soil type cooperatively shape structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, v. 68, p. 1-13, 2009. BLANCHET, F. G.; LEGENDRE, P.; BORCARD, D. Forward selection of explanatory variables. Ecology, v. 89, p. 2623-2632, 2008. BODELIER, P. L. E.; GILLISEN, M. –J. B.; HORDIJK, K.; SINNINGHE, D.; RIJPSTRA, W. I. C.; GEENEVASEN, J. A. L.; DUNFIELS, P. F. A reanalysis of phospholipids fatty acid as ecological biomarkers for methanotrophic bacteria. International Society for Microbial Ecology, v. 3, p. 606-617, 2009. BURNS, R. G. Enzyme activity in soil: location and possible role in microbial activity. Soil Biology & Biochemistry, v. 14, p.423-427, 1982. CHAER, G. M.;. RESENDE, A. S.; CAMPELLO, E.F.; de FARIA, S. M.; BOODEY, R. M. Nitrogen fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiology, v.31, p.139-149, 2011. CHAER, G. M.; FERNANDES, M. F.; MYROLD, D. D.; BOTTOMLEY, P. J. Shifts in microbial community composition and physiological profiles across a gradient of induced soil degradation. Soil Science Society America, v. 73, p. 1327-1334, 2009a. CHAER, G.; FERNANDES, M.; MYROLD, D.; BOOTOMLEY. Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils. Microbial Ecology, v. 58, p. 414-424, 2009b. CHEN, J.; FERRIS, H.; SCOW, K. M.; GRAHAM, K. J. Fatty acid composition and dynamics of selected fungal-feeding nematodes and fungi. Comparative Biochemistry and Physiology, v. 130, p. 135-144, 2001. CHODAK, M.; NIKLINSKA, M. Effect of texture and tree species on microbial properties of mine soils. Applied Soil Ecology. V. 46, p. 268-275, 2010. CHODAK, M.; PIETRZYKOWSKI, M.; NIKLÍNSKA, M. Development of microbial properties in a chronosequence of Sandy mine soils. Applied Soil Ecology, v. 24, p. 259-268, 2009. CLAASSENS, S.; JANSEN VAN RENSBURG, P. J.; VAN RENSBURG, L. Soil microbial community function and structure in a post-mining chronosequence. Water, Air & Soil Polluition, v. 194, p. 315-329, 2008. CLAASSENS, S.; VAN RENSBURG, P. J.; VAN RENSBURG, J. Soil microbial community structure of coal mine discard under rehabilitation. Water, Air, & Soil Pollution, v. 174, p. 355-366, 2006b. 40 COX, T. F.; COX, M. A. A. Monographs on statistics and applied probability. Multidimensional Scaling. Vol. 88. 2 Ed. CHAPMAN & HALL/CRC: Boca Raton. 2001, 328p. DE VRIES, F.T.; HOFFLAND, E.; VAN EEKEREN, N.; BRUSSAARD, L.; BLOEM, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology & Biochemistry, v. 38, p. 2092–2103, 2006. DINESH, R.; CHAUDHURI, S. G.; SHEEJA, T. E.; SHIVA. Soil microbial activity and biomass is stimulated by leguminous cover crops. Journal of Plant Nutrition and Soil Science, v. 172, p. 288-296, 2009. DOWLING, N. J. E.; WIDDEL, F.; WHITE, D. C. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria. Journal of General Microbiology, v. 132, p. 1815-1825, 1986. DUNGAIT, J. A. J.; KEMMITT, S. J.; MICHALLON. L.; GUO, S.; WEN, Q.; BROOKES, P. C.; EVERSHED, R. P. Variables responses of the soil microbial biomass to trace concentrations of 13C-labelled glucose, using 13C-PLFA. European Journal of Soil Science, v. 62, p. 117-126, 2011. DUNSTAM, G. A.; VOLKMAN, J. K.; BARRETT, S. M.; LEROI J.-M.; JEFFREY, S. W. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry p. 35, v. 155-161, 1994. EISENHAUER, N.; BE LER, H.; ENGELS, C.; GLEIXNER, G.; HABEKOST, M.; MILCU, A.; PARTSCH, S.; SABAIS, A. C. W.; SCHERBER, C.; STEINBEISS, S.; WEIGELT, A.; WEISSER, W. W.; SCHEU, S. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology, v. 91, p. 485-496, 2010. EIVAZI, F.; TABATABAI, M. A. Glucosidases and galactosidases in soils. Soil Biology & Biochemistry, v. 20, p. 601-606, 1988. EMBRAPA - Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo / Centro Nacional de Pesquisa de Solos. 2 edição. Rio de Janeiro, 212p, 1997. FARIA, S. M. de.; CAMPELLO, E. F. C. Algumas leguminosas fixadoras de nitrogênio recomendadas para áreas degradadas. Seropédica: Embrapa Agrobiologia, 1999. 4p. (Embrapa-CNPAB. Recomendação Técnica, 7). FONTAINE, S.; HENAULT, C.; AAMOR, A.; BDIOUI, N.; BLOOR, J.M.G.; MAIRE, V.; MARY, B.; REVAILLOT, S.; MARON, P. A. Fungi mediate long term sequestrion of carbon and nitrogen in soil through their priming effect. Soil Biology & Biochemistry, v. 43, p. 78- 85, 2011. FREEMAN, C.; OSTLE, N. J.; FENNER, N.; KANG, H. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology & Biochemistry, v. 36, p. 1663- 1667, 2004 41 FROSTEGÅRD, A.; BÅÅTH, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology Fertility Soils, v. 22, p. 59-65, 2001. FROUZ, J.; PIZL, V.; CIENCIALA, E.; KALCIK, J. Carbon storage in post-mining Forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry, v. 94, p. 11-121, 2009. GAIL, W. T. W.; RICE, C. W.; RILLIG, M. C.; SPRINGER, A.; HARTNETT, D. C. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters, 12: 452:461, 2009. GARCÍA-PALACIOS, P.; MAESTRE, F. T.; GALLARDO, A. Soil nutrient heterogeneity modulates ecosystem responses to changes in the identity and richness of plant functional groups. Journal of Ecology, v. 99, p. 551-562, 2010. GEISSELER, D.; HORWATH, W. R.; SCOW, K. M. Soil moisture and plant residue addition interact in their effect on extracellular enzyme activity. Pedobiologia, v. 54, p. 71-78, 2011. GRIME, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, v. 86, p. 902-910, 1998. GUCKERT, J. B.; RINGELBERG, D. B.; WHITE, D. C.; HANSON, R. S.; BRATINA, B. J. Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the Proteobacteria. Journal of General Microbiology, v. 137, p. 2631-2641, 1991. HARRIS, J. A. Measurements of the soil microbial community for estimating the success of restoration. Europeun Journal of Soil Science, v. 54, p. 801-808, 2003. HARRIS, J. Soil Microbial Communities and Restoration Ecology: Facilitators or Followers? Science, v. 325, p. 573-574, 2009. HARRISON, K. A.; BARDGETT, R. D. Influence of plant species and soil conditions on plant-soil feedback in mixed grassland communities. Journal of Ecology, v. 98, p. 384-395, 2010. HEIL, M. Plant mediated interactions between above- and below-ground communities at multiple trophic levels. Journal of Ecology, v. 99, p. 3-6, 2010. HELINGEROVÁ, M.; FROUZ, J.; SANTRUCKOVÁ, H. Microbial activity in reclaimed and unreclaimed post-mining sites near Sokolov (Czech Republic). Ecological Engineering, v. 36, p. 768-776, 2010. HINOJOSA, M. B.; CARREIRA, J. A.; GARCÍA-RUIZ, R.; DICK, R. P. Soil moisture pretreatment effects on enzyme activities as indicator of heavy metal-contaminated and reclaimed soils. Soil Biology & Biochemistry, v. 36, p. 1559-1568, 2004. HOOPER, D. U.; CHAPIN, F. S.; EWEL, J. J.; HECTOR, A.; INCHAUSTI, P.; LAVOREL, S.; LAWTON, J. H.; LODGE, D. M.; LOREAU, M.; NAEEM, S.; SCHIMID, B.; SETALA, H.; SYMSTAD, A. J.; VANDAMEER, J.; WARDLE, D. A. Effects of biodiversity on 42 ecosystem functioning: A consensus of current knowledge. Ecological Monographs, v. 75, p. 3-35, 2005. JIN, HONGMEI.; SUN, O. J.; LIU, J. Changes in soil microbial biomass and community structure with addition of contrasting types of plant litter in a semiarid grassland ecosystem. Journal of Plant Ecology, v. 3, p. 209-217, 2010. KANDELER, E.; TSCHERKO, D.; BRUCE, K. D.; STEMMER, M.; HOOBS, P. J.; BARDGETT, R. D.; AMELUNG, W. The structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biology and Fertility of Soils, v. 32, p. 390-400, 2000. KELLNER, H.; LUIS, P.; ZINDARS, B.; KIESEL, B.; BUSCOT, F. Diversity of bacterial lacase-like multicopper oxidase genes in forest and grassland Cambisol soil samples. Soil Biology & Biochemistry, v. 40, p. 638-648, 2008. KERGER, B. D.; NICHOLS, P. D.; ANTWORTH, C. P.; SAND, W.; BOCK, E.; COX, J. C; LANGWORTHY, T. A.; WHITE, D. C. Signature fatty acids in the polar lipids of acidproducing Thiobacillus spp.: methoxy, cyclopropyl, alpha-hydroxy-cyclopropyl, branched and normal monoenoic fatty acids. FEMS Microbiology Ecology, v. 38, p. 67-77, 1986. KINDT, R.; COE, R. Tree diversity analysis. A manual and software for common statistical methods and biodiversity studies. Word Agroforesty Centre. (ICRAF): Nairobi. 207p, 2005. KLIRONOMOS J.N.; MCCUNE J.; HART M.; NEVILLE J. The influence of arbuscular mycorrizae on the relationship between plant diversity and productivity. Ecology Letters, v.3, p. 137-141, 2000. KORANDA, M.; SCHNECKER, J.; KAISER, C.; FUCHSLUEGER, L.; KITZLER, B.; STANGE, C. F.; SESSITSCH, A.; ZECHMEISTER-BOLTENSTERN, S.; RICHTER, A. Microbial process and community composition in the rhizosphere of European beech – The influence of plant C exudates. Soil Biology & Biochemistry, v.43, p. 551-558, 2011. LAMB, E.G.; KENNEDY, N.; SICILIANO, S. D. Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil, v. 338, p. 483- 495, 2011. LANGER, U.; RINKLEBE, J. Priming effect after glucose amendment in two different soil evaluated by SIR-and PLFA-technique. Ecological Engineering, v. 37, p. 465-473, 2011. LEE, A. K. Y.; CHAN, C. K.; FANG, M.; LAU, A. P. S. The 3-hydroxy fatty acids as biomarkers for quantification and characterization of endotoxins and Gram-negative bacteria in atmospheric aerosols in Hong Kong. Atmospheric Environment, p. 38, p. 6307-6317, 2004. LEGENDRE, P.; LEGENDRE, L. Numerical ecology. 2 Ed. Elsevier Science BV. Amsterdam. 1998. 577 p. 43 LOVIENO, P.; ALFANI, A.; BAATH, E. Soil microbial community structure and biomass as affected by Pinus pinea plantation in two Mediterranean areas. Applied Soil Ecology, v. 45, p. 56-63, 2010. MADAN, R.; PANKHURST, C.; HAWKE, B.; SMITH, S. Use of fatty acid for identification of AM fungi and estimation of the biomass of spores in soil. Soil Biology & Biochemistry, v. 34, p. 125-128, 2002. MARINARI, S.; MASCIANDARO, G.; CECCANTI, B.; GREGO, S. Kinetics of acid phosphatase in calcium chloride extractable soil organic matter. Soil Biology & Biochemistry, v. 40, p. 2076-2078, 2008. MARSHALL, C. B.; MCLAREN, J. R.; TURKINGTON, R. Soil microbial communities resistant to changes in plant functional group composition. Soil Biology & Biochemistry, v. 43, p. 78-85, 2011. MARX, M. C.; KANDELER, E.; WOOD, M.; WERMBTER, N.; JARVIS, S. C. Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biology & Biochemistry, v. 37, p. 35-48, 2005. MILLER, R, M.; CARNES, B. A.; MOORMAN, T. B. Factors influencing survival of vesicular-arbuscular mycorrhizal during topsoil storage. Journal of Applied Ecology, v. 22, p. 259-266, 1985. MUYZER, G.; de WAAL, E. C.; UITTERLINDEN, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis and polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, v. 59, p. 695-700, 1993. MCLAREN, J, R. TURKINGTON, R. Ecosystem properties determined by plant functional group identify. Journal of Ecology, v. 98, p. 459-469, 2010. MESQUITA, R. C. G.; WORKMAN, S. W.; NEELY C. L. Slow litter decomposition in a Cecropia-dominated secondary forest of central Amazonia, Soil Biology & Biochemistry, v. 30, p. 167-175, 1998. MERILÄ, P.; LÄMSA-, M, M.; SPETZ, P.; STARK, S.; VIERIKKO, K.; FRITZE, H. Soil organic matter quality as a link between microbial community structure and vegetation composition along a sucessional gradient in a boreal forest. Applied Soil Ecology, v. 46, p. 259-267, 2010. MIRZA, M. S.; JANSE, J. D.; HAHNN, D.; AKKERMANS, A. D. L. Identification of atypical Frankia strains by fatty acid analysis. FEMS Microbiology Letters, v. 83, p. 91-98, 1991 MONTECCHIA, M. S.; CORREA, O. S.; SORIA, M. A.; FREY, S. D.; GARCÍA, A. F.; GARLAND, J. L. Multivariate approach to characterizing soil microbial communities in pristine and agriculture sites in Northwest Argentina. Applied Soil Ecology, v 47, p. 176-183, 2011. 44 MUKHOPADHYAY, S.; JOY, V. C. Influence of leaf litter on microbial functions and nutrient status of soil: Ecological suitability of Forest trees for afforestation in tropical laterite wastelands. Soil Biology & Biochemistry, v. 42, p. 2306-2315, 2010. MULLER-DOMBOIS, D.; ELLEMBERG, H. Aims and methods of vegetation ecology. New York: Wiley, 547 p. 1974. MUMMEY, D. L.; STAHL, P. D.; BUYER, J. S. Soil microbiological properties 20 years surface mine reclamation spatial of reclaimed and undisturbed sites. Soil Biology & Biochemistry, v. 34, p. 1717-1725, 2002. NETER, J.; KUTNER, M. H.; NATCHSHEIM, C. J.; WASSREMAN, W. Applied linear statistical models. 4 Ed. Irwin, Chicago, Illinois, USA, 1408p, 1996. OLIVEIRA, P. C.; CARVALHO, C. J. R. Phosphorus, nitrogen, lignin, cellulose and poliphenols in samples of leaf litter in Neea macrophylla, Cecropia palmata and Casearia arborea in north-eastern of Pará. Revista Brasileira de Agroecologia, v. 3, p. 20-28, 2009. OKSANEN, J. KINDT, R.; LEGENDRE, P.; O´HARA, R. B. Vegan: Community Ecology Package version 1.17-11, http://cran-r-project.org, 2007. Acesso em 5 de maio de 2011. OLSSON, P. A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology, v. 29, p. 303-310, 1999. OLSSON, P. A.; RAHM, J.; ALIASGHARZAD, N. Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiology Ecology, v.72, p. 123-131, 2010. ORWIN, K. H.; WARDLE, D. A. Ecological consequences of carbon substrate identify and diversity in a laboratory study. Ecology, v. 87, p. 580-593, 2006. ORWIN, K. H.; BUCKLAND, S. M;. JOHSON, D.; TURNER, B. L.; SMART, S.; OAKLEY, S.; BARDGETT, R. D. Linkages of plants traits to soil properties and the functioning of temperate grassland. Journal of Ecology, v. 98, p. 1074-1083, 2010. PASCUAL, J. A.; GARCIA, C.; HERNANDEZ, T.; MORENO, J. L.; ROS, M. Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biology & Biochemistry, v. 32, p. 1877-1883, 2000. PERES-NETO, P. R.; JACKSON, D. A. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia, v. 129, p. 169-178, 2001. PINKART, H.C.; RINGELBERG, D.B.; PICENO, Y.M.; MACNAUGHTON, S.J.; WHITE, D.C. Biochemical approaches to biomass measurements and community structure analysis, in: HURST, C.J.; CRAWFORD, R.L.; KNUDSEN, G.R.; MCINERNEY, M.J.; STETZENBACH, L.D. (Eds.), Manual of Environmental Microbiology. Washington DC: American Society for Microbiology Press, p. 101–113. 2002. 45 QUIQUAMPOIX, H. Mechanisms of protein adsorption on surfaces and consequences for extracellular enzyme activity in soil, in: BOLLAG, J. –M.; STOTSKY, G (Eds), Soil Biochemistry, v. 10. Marcel Dekker, New York, p. 171-206, 2000. R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Austria. ISBN 3-900051-07-0, http//www.Rproject. org, 2011. Acesso em 20 de janeiro de 2011. REICH, P. B.; TILMAN, D.; NAAEM, S.; ELLSWORTH, D. S.; KNOPS, J.; CRAINE, J.; WEDIN, D.; TROST, J. Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proceedings of the National Academy of Sciences, p. 10101-10106, 2004. RILLIG M. C.; MUMMEY D. L. Mycorrhizas and soil structure. New Phytologist, p. 41–53, 2006. RINGELBERG, D. B.; DAVIS, J. D.; SMITH, G. A.; PFIFFNER, S. M.; NICHOLS, P. D.; NICKELS, J. S.; HENSON, J. M.; WILSON, J. T.; YATES, M.; KAMPBELL, D. H.; READ, H. W.; STOCKSDALE, T. T.; WHITE, D. C. Validation of signature polar lipid fatty acid biomarkers for alkane-utilizing bacteria in soils and subsurface aquifer materials. FEMS Microbiology Ecology, v. 62, p. 39-50, 1989. RINKLEBE, J.; LUNGER, U. Relationship between soil microbial biomass determined by SIR and PLFA analysis in floodplain soils. Journal Soil Sediments, v. 10, p. 4-8, 2010. RINNAN, R.; BÅÅTH, E. Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Applied and Environmental Microbiology, v. 75, p. 3611-3620, 2009. ROBERTS, D. W. labdsv: Laboratory for Dynamic Synthetic Vegephenomenology. R package version 1.7-5, http://ecology.msu.montana.edu/labdsv/R, 2006. Acesso em 5 de maior de 2011. RUESS, L.; CHAMBERLAIN, P. M. The fat that matters: Soil food web analysis using fatty acid and their carbon stable isotope signature. Soil Biology & Biochemistry, v. 42, p. 1898- 1910, 2010. RUESS, L.; GARCÍA ZAPATA, E. J.; DIGHTON, J. Food preferences of a fungal-feeding Aphelenchoides species. Nematology, v. 2, p. 223-230, 2000. RUESS, L.; SCHÜTZ, K.; MIGGE-KLEIAN, S.; HÄGGBLOM, M. M.; KANDELER, E.; SCHEU, S. Lipid composition of Collembola and their food resources in deciduous forest stands - implications for feeding strategies. Soil Biology & Biochemistry, v. 39, p. 1990- 2000, 2007. RUIZ, H. A. Incremento da exatidão da análise granulométrica do solo por meio da coleta da suspensão (silte + argila). Revista Brasileira de Ciência do Solo, v. 29, p.297-300, 2005. SAHOO, P. K.; BHATTACHARYYA, P.; TRIPATHY, S.; EQUEENUDDIN, S. M.; PANIGRAHI, M. K. Influence of different forms of acidities on soil microbiological 46 properties and enzyme activities at an acid mine drainage contaminated site. Journal of Hazardous Materials, v. 179, p. 966-975, 2010. SAKAMOTO, K.; LIJIMA, T.; HIGUCHI, R. Use of specific phospholipid fatty acid for identifying and quantifying the external hyphae of the arbuscular mycorrhizal fungus Gigaspora rosea. Soil Biology & Biochemistry, v. 36, p. 1827-1834, 2004. SCNHÜRER, J.; ROSSWALL, T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology, v. 43, p. 1256-1261, 1982. SESSITSCH, A.; WEILHARTER, A.; GERZABEK, M. H.; KIRSCHMANN, H.; KANDELER, E. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Applied and Environmental Microbiology, v. 67, p. 4215-4224, 2001. SINGH, B. K.; TATE, K.; THOMAS, N.; ROSS, D.; SINGH, J. Differential effects of afforestation on nitrogen-fixing ad denitrifying communities and potential implications for nitrogen cycling. Soil Biology & Biochemistry, v. 43, p. 1426-1433, 2011. SINGH,B. K.; NUNAN, N.; RIDGWAY, K. P.; MCNICOL, J.; YOUNG, J. P. W.; DANIELL,T. J.; PROSSER, J. I.; MILLARD, P. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. Environmental Microbiology, v. 10, p. 534- 542, 2008. SINSABAUGH, R. L.; KLUG, M. J.; COLLINS, H. P.; YEAGER, P. E.; PETERSON, S.O. Characterizing soil microbial communities. In: ROBERTSON, G.P; COLEMAN, D.C; BLEDSOE, C.S; SOLLINS, P (Eds), Standard soil Methods for Long-term Ecological Research. Oxford University Press, New York, p. 318-348, 1999. SMITH, S.E.; READ, D.J. Mycorrhizal symbiosis. 2 Ed. New York: Academic Press. 605p, 1997. ŠNAJDR, J.; VALÁŠKOVA, V.; MERHAUTOVÁ, V.; HERINKOVÁ, J.; CAJTHAML, T.; BALDRIAN, P. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology & Biochemistry, v. 40, p. 2068-2075, 2008. ŠTURSOVÁ, M.; BALDRIAN, P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant and Soil, v. 338, p. 99-110, 2011. TABATABAI, M. A. Soil enzymes. In: CHAIR, R. W. W.; ANGLE, S.; BOTTOMLEY, P.; BENZDICEK, D.; SMITH, S.; TABATABAI, A.; WOLLUM, A. (Ed.). Methods of soil analysis: microbiological and biochemical properties. Madison: Soil Science Society of America, p. 775-834, 1994. TAYLOR, J. P.; WILSON, B.; MILLS, M. S.; BURNS, R, G. Comparison of microbial number and enzymatic activities in surface soil and subsoils using various techniques. Soil Biology & Biochemistry, v. 34, p. 387-4001, 2002. 47 TURNER, B. L. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Applied and Environmental Microbiology, v. 76, p. 6485-493, 2010. VAN DER HEIJDEN, M. G. A.; STREITWOLF-ENGEL, R.; RIEDL, R.; SIEGRIST, S.; NEUDECKER, A.; INEICHEN, K.; WIEMKEN, A.; SANDERS, I. R. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist, v. 172, p. 739-752, 2006. VAN DER HEIJDEN, M. G. A.; BARDGETT, R. D.; VAN STRAALEN, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, v. 11, p. 296-310, 2008. VAN DER HEIJDEN, M. G. A.; KLIRONOMOS, J. N.; URSIC, M.; MOUTOGLIS, P.; STREITWOLF-ENGEL, R.; BOLLER, T.; WIEMKEN, A.; SANDERS, I. R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, v. 396, p. 72–75, 1998a. VAN GROENIGEM, K. J.; BLOEM, J.; BAATH, E.; BOECKX, P.; ROUSK, J.; BODÉ, S.; FORRISTAL, D.; JONES, M. B. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biology & Biochemistry, v. 42, p. 48- 55, 2010. VANCE, E. D.; BROOKES, P. C.; JENKINSON, D. S. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, v. 32, p. 703-707, 1987. WAKEHAM, S. G.; PEASE, T. K.; BENNER, R. Hydroxy fatty acids in marine dissolved organic matter as indicators of bacterial membrane material. Organic Geochemistry, v. 34, p. 857-868, 2003. WARDLE, D. A.; BARDGETT, R. D.; KLIRONOMOS, J. N.; SCTALA, H.; VAN DER PUTTEN, W. H.; WALL, D. H. Ecological linkage between aboveground and belowground biota. Science, v. 304, p. 433-441, 2004. WESTHUIZEN VAN DER, J. P. J.; KOCK, J. L. F.; BOTHA, A.; BOTES, P. J. The distribution of the u3 and u6 series of cellular long-chain fatty acids in fungi. Systematic Applied Microbiology, v. 17, p. 327-345, 1994. WRIGHT, S. F.; UPADHYAYA, A. A survey of soils for aggregate stability and glomalina, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil, v.198, p. 97-107, 1998. ZAADY, E.; BEN-DAVID, E. A.; SHER, Y.; TZIRKIN, R.; NEJIDAT, A. Inferring biological soil crust sucessional stage using combined PLFA, DGGE, physical and biophysiological analyses. Soil Biology & Biochemistry, v. 42, p. 842-849, 2010. ZELLES, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biology Fertility and Soils, v.29, p. 111-129, 1999. 48 ZELLES, L. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere, v. 35, p. 275-294, 1997. ZHANG, C. B.; LIU, W.; WANG, J.; CHEN, T.; YUAN, Q.; HUANG, C.; GE, Y.; CHANG, S.; CHANG, J. Plant functional group richness-affected microbial community structure and function in a full-scale constructed wetland. Ecological Engineering, v. 37, p. 1360-1368, 2011. ZHANG, H.; CHU, L. M. Plant community structure, soil properties and microbial characteristics in revegeted quarries. Ecological Engineering, v. 37, p. 1104-1111, 2011. ZORNOZA, R.; GUERRERO, C.; MATAIX-SOLERA, J.; SCOW, K. M.; ARCENEGUI, V.; MATAIX-BENEYTO, J. Changes in soil microbial community structure following the abandonment of agricultural terraces in mountainous areas of Eastern Spain. Applied Soil Ecology, v. 42, p. 315-323, 2009.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/60492/2012%20-%20Francy%20Junio%20Gon%c3%a7alves%20Lisboa.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3616
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-06-10T23:10:23Z No. of bitstreams: 1 2012 - Francy Junio Gonçalves Lisboa.pdf: 862784 bytes, checksum: d4a8b74e0eb57f98698702192a92269f (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-06-10T23:10:23Z (GMT). No. of bitstreams: 1 2012 - Francy Junio Gonçalves Lisboa.pdf: 862784 bytes, checksum: d4a8b74e0eb57f98698702192a92269f (MD5) Previous issue date: 2012-02-28eng
Appears in Collections:Mestrado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2012 - Francy Junio Gonçalves Lisboa.pdf2012 - Francy Junio Gonçalves Lisboa842.56 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.