Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/10707
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Santos, Otavio Augusto Queiroz dos | |
dc.date.accessioned | 2023-12-22T01:41:29Z | - |
dc.date.available | 2023-12-22T01:41:29Z | - |
dc.date.issued | 2020-10-26 | |
dc.identifier.citation | SANTOS, Otavio Augusto Queiroz dos. Impacto do manejo agrícola em Organossolos no estado do Rio de Janeiro. 2020. 67 f. Dissertação (Mestrado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/10707 | - |
dc.description.abstract | Organossolos são definidos pelo elevado teor de matéria orgânica e são relevantes pelo estoque de carbono e nitrogênio, assim contribuindo para a mitigação de gases de efeito estufa (GEE). O manejo adequado desses solos deve preservar a matéria orgânica, consequentemente, mitigando a produção de GEE. Este estudo objetivou avaliar as seguintes alterações nas propriedades dos Organossolos em função do revolvimento do solo e drenagem artificial: conteúdo de matéria orgânica e de sulfato, estoques de C e N, disponibilidade e conteúdo das frações de P. Foram selecionadas três áreas com diferentes coberturas: mata secundária em regeneração natural, cultivo convencional de mandioca (Manihot sculenta) e cultivo consorciado de coco (Cocos nucifera) com mandioca; nas quais foram abertas trincheiras para descrição de perfis de solo e coleta de amostras. Foram realizadas as seguintes análises: caracterização química, escala de von Post de decomposição da matéria orgânica, porcentagem de fibras esfregadas, conteúdo de matéria orgânica, porcentagem de material mineral, densidade do solo, condutividade elétrica, sulfato solúvel, carbono orgânico total (COT) e nitrogênio total (NT). Foram calculados os estoques de C e N, e realizados o fracionamento da matéria orgânica e fracionamento sequencial de P. Os resultados do capítulo I mostraram que os valores de COT e NT diminuíram 33 e 20%, respectivamente, no horizonte hístico na área com cultivo de mandioca. Na área de coco consorciado com mandioca os valores de COT e NT diminuíram 31 e 18% respectivamente, no horizonte hístico. Verificou-se perdas de carbono orgânico lábil e o processo de sulfurização foi evidenciado nos perfis com uso agrícola. No capítulo II os resultados mostram que na área de cultivo de mandioca houve redução no conteúdo de P total em subsuperfície em 35,6 e 37,9%, quando comparado com a de cultivo de coco consorciado com mandioca e a floresta secundária, respectivamente. Em todas as áreas observou-se o predomínio da fração de P residual altamente recalcitrante (> 70%). O conteúdo de P disponível foi reduzido somente na área de cultivo de mandioca. A drenagem e o revolvimento do solo reduziram dos estoques de C e N do solo e afetou os processos de adsorção e mineralização do P, em todas suas frações inorgânicas. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Uso do solo | por |
dc.subject | Estoques de C e N | por |
dc.subject | Fracionamento sequencial de P | por |
dc.subject | Subsidência | por |
dc.subject | Sulfurização | por |
dc.subject | Land use | eng |
dc.subject | C and N stocks | eng |
dc.subject | P sequential fractionation | eng |
dc.subject | Subsidence | eng |
dc.subject | Sulfurization | eng |
dc.title | Impacto do manejo agrícola em Organossolos no estado do Rio de Janeiro | por |
dc.title.alternative | Impact of agricultural management in Histosols in Rio de Janeiro State | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | Histosols are defined by the high levels of organic matter and they are very important for storing carbon and nitrogen, thus contributing in mitigating greenhouse gases (GHG). Proper management of these soils should preserve organic matter, consequently, mitigating GHG production. This study aimed to evaluate the following changes in the properties of Histosols due to the soil tillage and artificial drainage: organic matter and sulfate content, C and N stocks, availability and content of P fractions. Three areas with different coverages were selected: secondary forest in natural regeneration, conventional cultivation of cassava (Manihot sculenta) and intercropped coconut (Cocos nucifera) with cassava; in which soil pits were opened for profiles description and sampling. The following analyzes were carried out: chemical characterization, von Post scale of decomposition of organic matter, percentage of rubbed fibers, organic matter content, percentage of mineral material, bulk density, electrical conductivity, soluble sulfate, total organic carbon (TOC) and total nitrogen (NT). There were calculated the stocks of C and N, and obtained fractionation of organic matter and sequential fractionation of P. The results of chapter I showed that the values of COT and NT decreased in 33 and 20%, respectively, in the histic horizon of the area with cassava crop. In the area with coconut intercropped with manioc, the TOC and NT values decreased by 31 and 18% respectively, in the histic horizon. There were losses of labile organic carbon and the sulfurization process was evidenced in the profiles with agricultural usage. In the chapter II, the results show that in the cassava cultivation area there was a reduction in the total P content in the subsurface by 35.6 and 37.9%, when compared to the area with coconut intercropped with cassava and the secondary forest, respectively. In all areas, there was predominance of the highly recalcitrant residual P fraction (> 70%). The available P content was reduced only in the cassava cultivation area. Drainage and soil tillage reduced the C and N stocks in the soil, and affected P adsorption and mineralization processes, in all the inorganic fractions. | eng |
dc.contributor.advisor1 | Pereira, Marcos Gervasio | |
dc.contributor.advisor1ID | 874.292.767-68 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/3657759682534978 | por |
dc.contributor.advisor-co1 | García, Andrés Calderín | |
dc.contributor.referee1 | Pereira, Marcos Gervasio | |
dc.contributor.referee2 | Loss, Arcângelo | |
dc.contributor.referee3 | Schiavo, Jolimar Antonio | |
dc.creator.ID | 420.697.918-90 | por |
dc.creator.Lattes | http://lattes.cnpq.br/5893308385515780 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Agronomia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Agronomia - Ciência do Solo | por |
dc.relation.references | ARSENAULT, J.; TALBOT, J.; MOORE, T. R. Environmental controls of C, N and P biogeochemistry in peatland pools. Science of the Total Environment, v. 631-632, p. 714- 722, 2018. ASSAD, E. D.; PINTO, H. S.; MARTINS, S. C.; GROPPO, J. D.; SALGADO, P. R.; EVANGELISTA, B.; MARTINELLI, L. Changes in soil carbono stocks in Brazil due to land use: paired site comparisons and a regional pasture soil survey: Biogeosciences, v. 10, p. 6141-6160, 2013. BATJES, N. H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Sciense, v. 47, p. 151-163, 1996. BEEK, C. L.; EERTWEGH, G. A. P. H.; SCHAIK, F. H.; VELTHOF, G. L.; OENEMA, O. The contribution of dairy farming on peat soil to N and P loading of surface water. Nutrient Cycling in Agroecosystems, v. 70, p. 85-95, 2004. BLAIR, G. J.; LEFROY, R. D. B.; LISLE, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, v. 46, n.7, p. 1459-1466, 1995. BROUNS, K.; KEUSKAMP, J. A.; POTKAMP, G.; VERHOEVEN, J. T. A.; HEFTING, M. M. Peat origin and land use effects on microbial activity, respiration dynamics and exoenzyme activities in drained peat soils in the Netherlands. Soil Biology and Biochemistry. v. 95, p. 144-155, 2016. BRUCE, J. P.; FROME, M.; HAITES, E.; JANZEN, H.; LAL, R.; PAUSTIAN, K.; Carbon sequestration in soils. Journal Soil Water Conservation, v. 54, p. 383-389, 1999. BRUUN, T. B.; ELBERLING, B.; CHRISTENSEN, B. T. Lability of soil organic carbon in tropical soils with different clay minerals. Soil Biology and Biochemistry, v. 42, n. 6, p. 888- 895, 2010. CIPRIANO-SILVA, R.; VALLADARES, G. S.; PEREIRA, M. G., ANJOS, L. H. C. Caracterização de Organossolos em ambientes de várzea no nordeste do Brasil. Revista Brasileira de Ciência do Solo, v. 38, n. 1, p. 26-38, 2014. COUWENBERG, J.; DOMMAIN, R.; JOOSTEN, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Global Change Biology, v.16, n. 6, p. 1715–1732, 2010. CUMMING, G.; FIDLER, F.; VAUX, D. L. Error bars in experimental biology. The Journal of Cell Biology, v. 177, n. 1, p. 7-11, 2007. DANTAS, M. E.; SHINZATO, E.; MEDINA, A. I. D. M.; SILVA, C. R. D.; PIMENTEL, J.; LUMBRERAS, J. F.; CALDERANO, S. B.; CARVALHO FILHO, A. D. Diagnóstico geoambiental do estado do Rio de Janeiro. Brasília, DF, 2001. DUBALL, C.; VAUGHAN, K.; BERKOWITZ, J. F.; RABENHORST, M. C.; VANZOMEREN, C.M. Iron monosulfide indentification: Field techniques to provide evidence of reducing conditions in soils. Soil Society of America Journal, v. 84, n. 2, p. 303- 313, 2020. FANNING, D. S.; RABENHORST, M. C.; FITZPATRICK, R. W. Historical developments in the understanding ofacid sulfate soils. Geoderma, v. 308, p. 191-206, 2017. FERREIRA, T. O.; OTERO, X. L.; VIDAL-TORRADO, P.; MACÍAS, F. Redox Processes in Mangrove Soils under in Relation to Different Environmental Conditions. Soil Science Society of America Journal, v. 71, n. 2, p. 484-491, 2007. FERREIRA, T. O.; VIDAL-TORRADO, P.; OTERO, X. L.; MACÍAS, F. Are mangrove forest substrates sediments or soils? A case study in southeastern Brazil. Catena, v. 70, n. 1, p. 79–91, 2007. GNATOWSKI, T.; SZATYŁOWICZ, J.; BRANDYK, T.; KECHAVARZI, C. Hydraulic properties of fen peat soils in Poland. Geoderma, v. 154, n. 3-4, p. 188–195, 2010. GNIAZDOWSKI, Z. Interpretation of principal components analysis. Zeszyty Naukowe WWSI, v. 11, n. 16, p. 43-65, 2017. GRZYWNA, A. The degree of peatland subsidence resulting from drainage of land. Environmental Earth Sciences, v. 76, n. 16, p. 559, 2017. HERNDON, E. M.; KINSMAN-COSTELLO, L.; DUROE, K. A.; MILLS, J.; KANE, E. S.; SEBESTYEN, S. D.; THOMPSON, A. A.; WULLSCHLEGER, S. D. Iron (oxyhydr)oxides serve as phosphate traps in tundra and boreal peat soils. Journal of Geophysical Research: Biogeosciences, v. 124, n. 2, p. 227-246, 2019. HOLDEN, J.; EVANS, M. G.; BURT, T. P.; HORTON, M. Impact of land drainage on peatland hydrology. Journal Environmental Quality, v. 35, n. 5, p. 1764–1778, 2006. HOYT, A. M.; CHAUSSARD, E.; SEPPALAINEN, S. S.; HARVEY, C.F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nature Geoscience, v. 13, p. 435-440, 2020. HU, J.; LIAO, X.; VARDANYAN, L. G.; HUANG, Y.; INGLETT, K. S.; WRIGHT, A. L.; REDDY, K. R. Duration and frequency of drainage and flooding events interactively affect soil biogeochemistry and N flux in subtropical peat soils. Science of the Total Environment, v. 727, p. 1-11, 2020. HUNGATE, B. A.; DUKES, J. S.; SHAW, M. R.; LUO, Y.; FIELD, C. B.; Nitrogen and climate change. Science, v. 302, n. 5650, p. 1512– 1513, 2003. HUTH, V.; GUNTHER, A.; BARTEL, A.; HOFER, B.; JACOBS, O.; JANTZ, N.; MEISTER, M.; ROSINSKI, E.; URICH, T.; WEIL, M.; ZAK, D.; JURASINSKI, G. Topsoil removal reduced in-situ methane emissions in a temperate rewetted bog grassland by a hundredfold. Science of the Total Environment, v. 721, p. 1-8, 2020. IUSS WORKING GROUP, W. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil ed. Rome: FAO, 2014. JACKSON, R. B.; LAJTHA, K.; CROW, S. E.; HUGELIUS, G.; KRAMER, M. G.; PIÑEIRO, G. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evololtion, and Systematics, v. 48, p. 419–445, 2017. JOOSTEN, H.; TAPIO-BISTRO, M. L.; TOL, S. Peatlands: guidance for climate change mitigation through conservation, rehabilitation and sustainable use. FAO. Available in: http://www.fao.org/3/a-an762e.pdf. Accessed 24 Jun 2020. KAISER, K.; MIKUTTA, R.; GUGGENBERGER, G. Increased stability of organic matter sorbed to ferrihydrite and goethite on aging. Soil Science Society of America Journal, v. 71, n. 3, p. 711–719, 2007. KINDLER, R.; SIEMENS, J.; KAISER, K.; WALMSLEY, D. C.; BERNHOFER, C.; BUCHMANN, N.; CELLIER, P.; EUGSTER, W.; GLEIXNER, G.; GRŬNSWALD, T.; HEIM, A.; IBROM, A.; JONES, S. K.; JONES, M.; KLUMPP, K.; KUTSCH, W.; LARSEN, K. S.; LEHUGER, S.; LOUBET, B.; MCKENZIE, R.; MOORS, E.; OSBORNE, B.; PILEGAARD, K.; REBMANN, C.; SAUNDERS, M.; SCHMIDT, I.; SCHRUMPF, M.; SEYFFERTH, J.; SKIB U.; SOUSSANA, J. F.; SUTTON, M. A.; TEFS, C.; VIWINCKELS, B., ZEEMAN, M.; KAUPENJOHANN, M. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Global Change Biology, v. 17, n. 2, p. 1167–1185, 2011. KLØVE, B.; BERGLUND, K.; BERGLUND, Ö.; WELDON, S.; MALJANEN, M. Future options for cultivated Nordic peat soils: Can land management and rewetting control greenhouse gas emissions? Environmental Science & Policy, v. 69, p. 85-93, 2017. KÖCHY, M.; HIEDERER, R.; FREIBAUER, A. Global distribution of soil organic carbon– part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil, v. 1, n.1, p. 351–365, 2015. KOOIJMAN, A. M.; CUSSEL, C.; HEDENAS, L.; LAMERS, L. P. M.; METTROP, I. S.; NEIJMEIJER, T. Re-assessment of phosphorus availability in fens with varying contents of iron and calcium. Plant and Soil, v. 447, p. 219-239, 2020. LAL, R.; GRIFFIN, M.; APT, J.; LAVE, L.; GRANGER MORGAN, M. G. Managing soil carbon. Science, v. 304, n. 5669, p. 393, 2004. LEIFELD, J.; KLEIN, K.; WUST-GALLEY, C. Soil organic matter stoichiometry as indicator for peatlands degradation. Scientific Reports, v. 10, p. 1-9, 2020. LEIFELD, J.; WÜST-GALLEY, C.; PAGE, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change, v. 9, p. 945-947, 2019. LI, D.; NIU, S.; LUO, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta‐ analysis. New Phytologist, n. 195, v. 1, p. 172-181, 2012. LIIMATAINEN, M.; VOIGT, C.; MARTIKAINEN, P. J.; HYTONEN, J.; REGINA, K.; OSKARSSON, H.; MALJANEN, M. Factors controlling nitrous oxide emissions from managed northern peat soils with low carbon to nitrogen ratio. Soil Biology and Biochemistry, v. 122, p. 186-195, 2018. LOGINOW, W.; WISNIEWSKI, W.; GONET, S.S.; CIESCINSKA, B. Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science, v. 20, n. 1, p. 47-52, 1987. LUMBRERAS, J. F.; GOMES, J. B. V. Mapeamento pedológico e interpretações úteis ao planejamento Ambiental do Município do Rio de Janeiro. Sergipe: Embrapa Tabuleiros Costeiros/Rio de Janeiro: Embrapa Solos, 326p. 2004. LUO, Y.; SU, B.; CURRIE, W. S.; DUKES, J. S.; FINZI, A.; HARTWIG, U.; HUNGATE, B.; MCMURTRIE, R. E.; OREN, R.; PARTON, W. J.; PATAKI, D. E.; SHAW, M. R., ZAK, D. R.; FIELD, C. B. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, v. 54, p. 731– 739, 2004. LYNN, W. C.; MCKINZIE, W. E.; GROSSMAN, R. B. Q. Field laboratory tests for characterizarion of Histosols. In: AANDAHL, A. R. editor. Histosols: their characteristics, classification, and use. Madison: Soil Science Society of America, v. 6, p. 11-20, 1974. MELVILLE, M. D.; WHITE, I.; QUIRK, R. Acid sulfate soils: Management. In Encyclopedia of Soil Science, 3nd Ed.; Lal, R., Ed.; Taylor and Francis: New York, p. 31– 35, 2017. MENDONÇA-SANTOS, M. L.; SILVA, E. F.; LUMBRERAS, J. F.; OLIVEIRA, R. P. Quantificação e distribuição especial de carbono orgânico na paisagem e em perfis de solos no município do Rio de Janeiro. Boletim de Pesquisa e Desenvolvimento. Embrapa Solos, v. 39, p. 1-21, 2003. MINASY, B.; BERGLUND, Ö.; CONNOLLY, H. C.; VRIES, F.; GIMONA, A.; KEMPEN, B.; KIDD, D.; LILJA, H.; MALONE, B.; MCBRATNEY, A. Digital mapping of peatlands – a critical review. Earth – Sciense Reviews, v. 196, p. 102870, 2019. MORRISON, E.; NEWMAN, S.; BAE, H. S.; HE, Z.; ZHOU, J.; REDDY, K. R.; OGRAM, A. Microbial genetic and enzymatic responses to an anthropogenic phosphorus gradient within subtropical peatlands. Geoderma, v. 268, p. 119-127, 2016. MUNIR, T. M.; KHADKA, B.; XU, B.; STRACK, M. Mineral nitrogen and phosphorus pools affected by water table lowering and warming in a boreal forested peatland. Ecohydrology, v. 10, n. 8, p. 1-15, 2017. NEGASSA, W.; MICHALIK, D.; KLYSUBUN, W.; LEINWEBER, P. Phosphorus speciation in long-term drained and rewetted peatlands of Northern Germany. Soil Systems, v. 4, n. 11, p. 1-20, 2020. OLIVEIRA FILHO, J. S.; FERRARI, A. C.; PEREIRA, M. G.; PINTO, L. A. S. R.; ZONTA, E.; MATOS, T. S. Phosphorus accumulation in soil after successive applications of swine manure: a long‑ term study in Brazil. Environmental Earth Sciences, v. 79, n. 62, p. 1-12, 2020. PARVIN, S.; BLAGODATSKAYA, E.; BECKER, J. N.; KUZYAKOV, Y.; UDDIN, S.; DORODNIKOV, M. Depth rather than microrelief controls microbial biomass and kinetics of C-, N-, P- and S-cycle enzymes in peatlands. Geoderma, v. 324, p. 67-76, 2018. PEREIRA, M. G.; ANJOS, L. H. C.; VALLADARES, G. S.; Organossolos: Ocorrência, gênese, classificação, alterações pelo uso agrícola e manejo. In: TORRADO, P.V., ALLEONI, L. R. F.; COOPER, M.; SILVA, A. P.; CARDOSO, E. J. (Eds.), Tópicos em ciência do solo. 4. Sociedade Brasileira de Ciência do Solo, Viçosa, MG, p. 233–276, 2005. PEREIRA, M. G.; LOSS, A.; SCHULTZ, N.; ZONTA, E.; GUARESCHI, R. F.; SANTOS, O. A. Q. Fertilidade de um Organossolo e produtividade do feijoeiro influenciados pela calagem e inoculação. Revista Agrarian, v. 13, n. 48, p. 211-221, 2020. PRIETZEL, J.; THIEME, J.; PATERSON, D. Phosphorus speciation of forest-soil organic surface layers using P K-edge XANES spectroscopy. Journal of Plant Nutrition and Soil Science, v. 173, n. 6, p. 805-807, 2010. RABENHORST, M. C.; MEGONIGAL, J. P.; KELLER, J. Synthetic iron oxides for documenting sulfide in marsh pore water. Soil Sciense Society of America Journal, v. 74, n. 4, p. 1383 – 1388, 2010. RUMPEL, C.; ALEXIS, M.; CHABBI, A.; CHAPLOT, V.; RASSE, D. P.; VALENTIN, C.; MARIOTTI, A.Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma, v. 130, n. 1-2, p. 35–46, 2006. SALES, M. V. S.; ALEIXO, S.; GAMA-RODRIGUES, A. C.; GAMA-RODRIGUES, E. F. Structural equation modeling for the estimation of interconnections between the P cycle and soil properties. Nutrient Cycling Agroecosystems, v. 109, p. 193-207, 2017. SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R.; ALMEIDA, J. A.; CUNHA, T. J. F.; OLIVEIRA, J. B. Sistema Brasileiro de Classificação de Solos. 5. ed. revista e ampliada Brasília, DF: Embrapa, p. 590, 2018. SANTOS, R. D.; LEMOS, R. C.; SANTOS, H. G.; KER, J. C.; ANJOS, L. H. C.; SHIMIZU, S. H. Manual de descrição e coleta de solo no campo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, ed. 7, p. 102, 2015. SAURICH, A.; TIEMEYER, B.; DON, A.; FIEDLER, S.; BECHTOLD, M.; AMELUNG, W.; FREIBAUER, A. Drained organic soils under agriculture - The more degraded the soil the higher the specific basal respiration. Geoderma, v. 355, p. 1-13, 2019. SCHARLEMANN, J. P.; TANNER, E. V.; HIEDERER, R.; KAPOS, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, v. 5, n. 1, p. 81–91, 2014. SCHMIEDER, F.; GUSTAFSSON, J. P.; KLYSUBUN, W.; ZEHETNER, F.; RIDDLE, M.; KIRCHMANN, H.; BERGSTROM, L. Phosphorus speciation in cultivated oganic soils revealed by O K-edge XANES spectroscopy. Journal of Plant Nutrition and Soil Science, v. 183, n. 3, p. 367-381, 2020. SILVA NETO, E. C.; PEREIRA, M. G.; DE ARAUJO CARVALHO, M.; CALEGARI, M. R.; SCHIAVO, J. A.; DE PAULA SÁ, N.; ANJOS, L. H. C.; PESSENDA, L. C. R. Palaeonvironmental records of Histosol pedogenesis in upland area, Espírito Santo State (SE, Brazil). Journal of South American Earth Sciences, v. 95, p. 102301, 2019. SOARES, P. F. C. Variação de atributos e dinâmica de carbono e nitrogênio em Organossolos em função de uso e manejo agrícola no Rio de Janeiro. Dissertação, 2011. SOARES, P. F. C.; ZUCHELLO, F.; ANJOS, L. H. C.; PEREIRA, M. G.; OLIVEIRA, A. P. P. Soil attributes and c and n variation in histosols under different agricultural usages in the state of Rio de Janeiro, Brazil. Bioscience Journal, v. 31, p. 1349-1362, 2015. SOUZA JÚNIOR, V. S.; RIBEIRO, M. R.; OLIVEIRA, L. B. Caracterização e classificação de solos tiomórficos da várzea do rio Coruripe, no Estado de Alagoas. Revista brasileira de ciência do solo, v. 25, n. 4, p. 977-986, 2001a. SOUZA JÚNIOR, V. S.; RIBEIRO, M. R.; OLIVEIRA, L. B. Propriedades químicas e manejo de solos tiomórficos da várzea do Rio Coruripe, Estado de Alagoas. Revista Brasileira de Ciência do solo, v. 25, n. 4, p. 811-822, 2001b. STANEK, W.; SILC, T. Comparisons of four methods for determination of degree of peat humification (decomposition) with emphasis on the von Post method. Canadian Journal of Soil Science, v. 57, n. 2, p. 109-117, 1977. TAFT, H. E.; CROSS, P. A.; EDWARDS-JONES, G.; MOORHOUSE, E. R.; JONES, D. L. Greenhouse gas emissions from intensively managed peat soils in na arable production system. Agriculture, Ecosystems & Environment, v. 237, p. 162-172, 2017. TEAM, R. C. R: a language and environment for statistical computing (version 3.5. 3, Vienna, Austria: R Foundation for Statistical Computing), 2019. TEIXEIRA, L. A. J.; BATAGLIA, O. C.; BUZETTI, S.; FURLANI JUNIOR, E. Fertilizer and lime recommendation for coconut (Cocos nucifera L.) in the state of São Paulo, Brazil. Revista Brasileira de Fruticultura, v. 27, n. 3, p. 519-520, 2005. TEIXEIRA, L. A. J.; SILVA, J. A. A. Mineral nutrition of populations and hybrids of coconuts (Cocos nucifera L.) grown in Bebedouro (SP), Brazil. Revista Brasileira de Fruticultura, v. 25, n. 2, p. 371-374, 2003. TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de métodos de análise de solo. Brasília: Embrapa. 573p, 2017. TER BRAAK, C. J. F.; SMILAUER, P. CANOCO Reference manual and CanoDraw for Windows user's guide: Software for Canonical Community Ordination (version 4.5). Ithaca, Microcomputer Power, 500p, 2002. VALLADARES, G. S.; PEREIRA, M. G.; ANJOS, L. H. C.; BENITES, V. M.; EBELING, A. G.; MOUTA, R. O. Humic substance fractions and atributes of histosols and related highorganic- matter soils from Brazil. Communications in Soil Science and Plant Analysis, v. 38, n. 5-6, p. 763-777, 2007. VALLADARES, G. S.; PEREIRA, M. G.; BENITES, V. M.; ANJOS, L. H. C.; EBELING, A. G.; GUARESCHI, R. F. Carbon and Nitrogen stocks and humic fractions in Brazilian Organosols. Revista Brasileira de Ciência do Solo, v. 40, 2016. VAN RAIJ, B.; ANDRADE, J. C.; CANTARELLA, H.; QUAGGIO, J. A. Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico de Campinas, 285p. 2001. VEGAS-VILARRÚBIA, T.; BARITTO, F.; MELEAN, G. A critical examination of some common field tests to assess the acid-sulphate condition in soils. Soil Use and Management, v. 24, n. 1, p. 60-68, 2008. WANG, G.; BAO, K.; YU, X.; ZHAO, H.; LIN, Q.; LU, X. Forms and accumulation of soil P in a subalpine peatland of Mt. Changbai in Northeast China. Catena, v. 92, p. 22-29, 2012. WANG, J. Y.; SONG, C. C.; WANG, X. W.; SONG, Y. Y. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. Catena, v. 96, p. 83-89, 2012. WANG, L.; AMELUNG, W.; PRIETZEL, J.; WILLBOLD, S. Transformation of organic phosphorus compounds during 1500 years of organic soil formation in Bavarian Alpine forests - A 31P NMR study. Geoderma, v. 340, p. 192-205, 2019. WANG, M. TALBOT, J. MOORE, T. R. Drainage and fertilization effects on nutrient availability in an ombrotrophic peatland. Science of the Total Environment, v. 621, p. 1255- 1263, 2018. WANG, M., MOORE, T. R.; TALBOT, J.; RILEY, J. L. The stoichiometry of carbon and nutrientes in peat formation. Global Biogeochemical Cycles, v. 29, n. 2, p. 113-121, 2015. WANG, M.; MOORE, T. R. Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems, v. 17, p. 673-684, 2014. WANG, Q.; ZHANG, P. J.; LIU, M.; DENG, Z. W. Mineral-associated organic carbon and black carbon in restored wetlands. Soil Biology and Biochemistry, v. 75, p. 300–309, 2014. WANG, Z.; LIU, S.; HUANG, C.; LIU, Y.; BU, Z. Impact of land use change on profile distributions of organic carbon fractions in peat and mineral soils in Northeast China. Catena, v. 152, p. 1–8, 2017. WEISSERT, L. F.; DISNEY, M. Carbon storage in peatlands: a case study on the Isle of Man. Geoderma, v. 204-205, p. 111-119, 2013. WÖSTEN, J. H. M.; ISMAIL, A. B.; VAN WIKJ, A. L. M. Peat subsidence and its practical implications: a case study in Malaysia. Geoderma, v. 78, n. 1-2, p. 25-36, 1997. WÖSTEN, J. H. M.; RITZEMA, H. P. Land and water management options for peatland development in Sarawak, Malaysia. International Pet Journal, v. 11, p. 59-66, 2001. YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, v. 19, p. 1467-1476, 1998. ZAK, D.; WAGNER, C.; PAYER, B.; AUGUSTIN, J.; GELBRECHT, J. Phosphorus mobilization in rewetted fens: the effect of altered peat properties and implications for their restoration. Ecological Applications, v. 20, n. 5, p. 1336-1349, 2010. ZHANG, J. B.; SONG, C. C.; YANG, W. Y. Lang use effects on the distribution of labile organic carbon fractions through soil profiles. Soil Science Society of America Journal, v. 70, p. 660–667, 2006. ZOU, X. M.; RUAN, H. H.; FU, Y.; YANG, X. D.; SHA, L. Q. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure. Soil Biology and Biochemistry, v. 37, p. 1923–1928, 2005. | por |
dc.subject.cnpq | Agronomia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/72176/2020%20-%20Otavio%20Augusto%20Queiroz%20dos%20Santos.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6326 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-02-15T16:00:00Z No. of bitstreams: 1 2020 - Otavio Augusto Queiroz dos Santos.pdf: 5318158 bytes, checksum: f7464ca9a84b8e375538e9cadfd2fb07 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-02-15T16:00:00Z (GMT). No. of bitstreams: 1 2020 - Otavio Augusto Queiroz dos Santos.pdf: 5318158 bytes, checksum: f7464ca9a84b8e375538e9cadfd2fb07 (MD5) Previous issue date: 2020-10-26 | eng |
Appears in Collections: | Mestrado em Agronomia - Ciência do Solo |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2020 - Otavio Augusto Queiroz dos Santos.pdf | 5.19 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.