Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10761
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Elaine Rodrigues Miranda Nery da
dc.date.accessioned2023-12-22T01:42:50Z-
dc.date.available2023-12-22T01:42:50Z-
dc.date.issued2020-11-30
dc.identifier.citationSILVA, Elaine Rodrigues Miranda Nery da. Influência da densidade populacional de larvas no conteúdo de triacilglicerol, fecundidade e tamanho de fêmeas em Aedes aegypti (Linnaeus) (Díptera: Culicidae). 2020. 41 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10761-
dc.description.abstractDada a importância do mosquito Aedes aegypti como vetor de arboviroses emergentes, é fundamental compreender o impacto de fatores abióticos, como a densidade populacional na criação larval durante o seu desenvolvimento, para melhorar os métodos de controle. Os objetivos deste trabalho foram analisar os efeitos da densidade populacional nas reservas de triacilglicerol (TAG), fecundidade e tamanho dos mosquitos. Para avaliar a influência da densidade na quantidade de triacilglicerol nos diferentes estágios de desenvolvimento de A. aegypti, as larvas foram criadas nas seguintes densidades: 0,04, 0,32 e 0,8 larva / ml, representadas por D1, D2 e D3, respectivamente. Observou-se que nas diferentes criações larvais a quantidade de triacilglicerol, nos diferentes estágios de desenvolvimento desse inseto, foi afetada. O grupo criado em alta densidade populacional (D3) apresentou maior armazenamento de triacilglicerol, exceto ao analisar a quantidade de triacilglicerol μg / proteína do corpo gordo em fêmeas alimentadas com sangue. Além disso, foi possível observar maior resistência ao jejum, maior quantidade de ovos postos e que os insetos criados em D2 e D3 eram maiores que em D1. Este estudo forneceu dados que contribuirão para futuras investigações sobre como a densidade da criação larval afeta o metabolismo lipídico em relação à síntese e mobilização do estoque de triacilglicerol em A. aegypti e como isso influencia seu tamanho e a reprodução.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectAedes aegyptipor
dc.subjecttriacilglicerolpor
dc.subjectdensidadepor
dc.subjectmosquitospor
dc.subjecttriacylglyceroleng
dc.subjectdensityeng
dc.subjectmosquitoeseng
dc.titleInfluência da densidade populacional de larvas no conteúdo de triacilglicerol, fecundidade e tamanho de fêmeas em Aedes aegypti (Linnaeus) (Díptera: Culicidae)por
dc.title.alternativeInfluence of the population density of larvae on the content of triacylglycerol, fecundity and size of females in Aedes aegypti (Linnaeus) (Díptera: Culicidae)eng
dc.typeDissertaçãopor
dc.description.abstractOtherGiven the importance of the Aedes aegypti as arboviroses vector, understanding the impact of abiotic factors, such as population density in the larval rearing s, during larval development, is fundamental to improve control methods. The aims of this work were to analyze the effects of population density on the triacylglycerol (TAG) reserves, fecundity and the size of mosquitos. To evaluate the influence of density on the amount of triacylglycerol in the different stages of development of A. aegypti, the larvae were reared in the following densities 0.04, 0.32 and 0.8 larvae / ml, represented by D1, D2 and D3, respectively. It was observed that different larval rearing affected the amount of triacylglycerol on the different development stages of this insect. The group reared in a high population density (D3) presented greater storage of triacylglycerol, except when analyzing the amount of triacylglycerol μg/protein of fat body in blood-fed females. In addition, it was possible to observe a higher resistance to fasting, higher amount of laid eggs. Insects reared on D2 and D3 were larger than D1. This study provided interesting data for future investigations as to how densitiy of larval rearing affect the lipid metabolism concerning to synthesis and mobilization of triacylglycerol store in A. aegypti and how does it influences it size and the reproduction.eng
dc.contributor.advisor1Pontes, Emerson Guedes
dc.contributor.advisor1ID045.534.107-96por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1562085358907265por
dc.contributor.referee1Pontes, Emerson Guedes
dc.contributor.referee2Mallet, Jacenir Reis dos Santos
dc.contributor.referee3Oliveira, Marise Maleck de
dc.contributor.referee4Silva, Julia dos Santos
dc.creator.ID147.655.907-47por
dc.creator.Latteshttp://lattes.cnpq.br/6683860713209935por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesALTO B. W.; MUT, E. J AND LAMPMAN, R. L. Effects of nutrition and density in Culex pipiens. Medical and Veterinary Entomology, v. 7200, p. 396–406. 2012. ARRESE, E. L.; SOULAGES, J. L. Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology, v. 55, n. 87, p. 207–225. 2010. BALDAL, E. A.; LINDE, K. VAN DER; ALPHEN, J. J. M. VAN. The effects of larval density on adult life-history traits in three species of Drosophila. Mechanisms of Ageing and Development 126 v. 126, p. 407–416. 2005. BALEBA, S. B. S., MASIGA, D., TORTO, B., WELDON, C. W., & GETAHUN, M. N.. Effect of larval density and substrate quality on the wing geometry of Stomoxys calcitrans L. (Diptera: Muscidae). Parasites & Vectors, 12(1), 222. 2019. BARLETTA, A. B. F. et al. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus. Scientific Reports, v. 6, n. September 2015, p. 1–13. 2016. BESERRA, E. B.; FERNANDES, C. R. M.; RIBEIRO, P. S. Relação entre densidade larval e ciclo de vida, tamanho e fecundidade de Aedes (Stegomyia) aegypti (l.) (Diptera: Culicidae) em laboratório. Neotropical Entomology, v. 38, n. 6, p. 847–852. 2009. BORASH, D. J.; HO, G. T. Patterns of selection: Stress resistance and energy storage in density-dependent populations of Drosophila melanogaster. Journal of Insect Physiology, v. 47, n. 12, p. 1349–1356. 2001. BRIEGEL, H. Metabolic relationship between female body size, reserves, and fecondity of Aedes aegypti. J.Insect.Physiol., v. 36, n. 3, p. 165–172. 1990. BRIEGEL, H. Physiological bases of mosquito ecology. Journal of Vector Ecology. p. 1–11. 2003. BRIEGEL, H.; HEFTI, M.; DIMARCO, E. Lipid metabolism during sequential gonotrophic cycles in large and small female Aedes aegypti. Journal of Insect Physiology.v. 48, p. 547–554. 2002. BROWN, J. E.; EVANS, B. R.; ZHENG, W.; OBAS, V.; MARTINEZ, L. B.; EGIZI, A.; ZHAO, H.; CACCONE, A.; POWELL, J. R.et al. Human impacts have shaped historical and recent evolution in Aedes aegypti , the dengue and yellow fever mosquito. The Society for the Study of Evolution . p. 514–525. 2013. CHUNG, H.-N. et al. Fat Body Organ Culture System in Aedes Aegypti, a Vector of Zika Virus. Journal of Visualized Experiments, n. 126, p. 1–8. 2017. CLIFTON, M. E.; NORIEGA, F. G. The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. Journal of Insect Physiology, v. 58, n. 7, p. 1007–1019. 2012. COSTA, F. S. et al. Dinâmica populacional de Aedes aegypti (L) em área urbana de alta incidência de dengue. Revista da Sociedade Brasileira de Medicina Tropical, v. 41, n. 3, p. 309–312. 2008. COURET, J.; BENEDICT, M. Q. A meta-analysis of the factors influencing development rate variation in Aedes aegypti ( Diptera : Culicidae ). BMC Ecology, 2014,p. 1–15. 2014. COURET, J.; DOTSON, E.; BENEDICT, M. Q. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLOS ONE, 9(2). 2014. DICKENS, B. L. et al. Determining environmental and anthropogenic factors which explain the global distribution of Aedes aegypti and Ae. albopictus. BMJ Global Health, v. 3, n. 4, p. 2018. FARNESI, L. C. et al. Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors. PLoS Neglected Tropical Diseases, v. 11, n. 10, p. 1– 20. 2017. FARNESI, L. C. et al. The influence of a light and dark cycle on the egg laying activity of Aedes aegypti ( Linnaeus , 1762 ) ( Diptera : Culicidae ). Mem Inst Oswaldo Cruz. v. 113, n. 4, p. 4–9. 2018. FIOCRUZ. Dengue. Instruções para Pessoal de Combate ao Vetor. Manual de Normas Ténicas. FUNASA. 2001. ATTARDO, G. M.; HANSEN, I. A. S. H. S.; RAIKHEL, A. S Identification of two cationic amino acid transporters required for nutritional signaling during mosquito reproduction. Journal of Experimental Biology, v. 209, n. 16, p. 3071–3078. 2006. GIBBONS, G. F.; ISLAM, K.; PEASE, R. J. Mobilisation of triacylglycerol stores. Biochimica et biophysica acta v. 1483. 2000. GILBERT, L. I.; CHINO, H. Transport of lipids in insects. J. Lipid Res., v. 15, n. 5, p. 439– 456, set. 1974. GILLES, J. R. L. et al. Density-Dependent Effects in Experimental Larval Populations of Anopheles arabiensis (Diptera: Culicidae) Can Be Negative, Neutral, or Overcompensatory Depending on Density and Diet Levels. Journal of Medical Entomology, v. 48, n. 2, p. 296–304. 2011. GONDIM, K; ATELLA, G, PONTES, E; MAJEROWICZ, D. Lipid metabolism in insect disease vectors. Insect Biochemistry and Molecular Biology, 101, 108–123. 2018. HEINISCH E SILVA, M. R. et al. Seasonal and spatial distribution of Aedes aegypti and Aedes albopictus in a municipal urban park in São Paulo, SP, Brazil. Acta Tropica. 2018. HURD, H. Manipulation of medically important insect vectors by their parasites. Annual Review of Entomology, v. 48, n. 1, p. 141–161, 2003. IMAM, H.; SOFI, G.; AZIZ, S. The basic rules and methods of mosquito rearing (Aedes aegypti). Tropical Parasitology. v. 4, n. 1, p. 53–55. 2014. JIRAKANJANAKIT, N. et al. Influence of larval density or food variation on the geometry of the wing of Aedes ( Stegomyia ) aegypti. Tropical Medicine and International Health. volume v. 12, n. 11, p. 1354–1360. 2007. JUNJHON, J. et al. Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. Journal of Virology. 88, 4687–4697. 2014. KABA, D., BERTE, D., Ta Bi Tra, D., TELLER´ ıa, J., SOLANO, P., DUJARDIN, J.-P., The wing venation patterns to identify single tsetse flies. 2016. doi:10.1016/j.meegid.2016.10.008 KANTOR, I. N. Dengue, Zika and Chikungunya. Medicina, p. 1–5. 2016. KRAEMER, M. U. G. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae . albopictus. p. 1–18. 2015. doi: 10.7554/eLife.08347 LEHMANN, T.. DALTON, R; KIM, E. H.; DAHL, E.; DIABATE, A.; DABIRE, R; DUJARDIN, J. P. Genetic contribution to variation in larval development time , adult size , and longevity of starved adults of Anopheles gambiae. Infection, Genetics and Evolution. v. 6, p. 410–416. 2006. LING, L.; KOKOZA, A. V.; ZHANG, C.; ARKZOY, E.; RAIKHEL, A. S. MicroRNA-277 targets insulin-like peptides 7 and 8 to control lipid metabolism and reproduction in Aedes aegypti mosquitoes. Proceedings of the National Academy of Sciences, v. 114, n. 38, p. E8017–E8024. 2017. LONG, K. C. et al. Experimental Transmission of Mayaro Virus by Aedes aegypti. v. 85, n. 4, p. 750–757. 2011. doi: https://doi.org/10.4269/ajtmh.2011.11-0359 LORENZ, C.; ALMEIDA, F.; LOPES, F. A.; LOUISE, C; PEREIRA, S. N.; PETERSEN, V.; VIDAL, P. O.; SUESDEK , F. V. L.; Geometric morphometrics in mosquitoes: What has been measured?. Infection, Genetics and Evolution. 2017. doi: 10.1016/j.meegid.2017.06.029 LOUNIBOS, L P;NISHIMURA, N; CONN, J;OLIVEIRA, R. Life history correlates of adult size in the Malaria Vector Anopheles darlingi. Mémórias Instituto Oswaldo Cruz, vol 90 (6): 769 - 774. 1995. MARTINS, R. et al. Hypometabolic strategy and glucose metabolism maintenance of Aedes aegypti egg desiccation. Comparative Biochemistry and Physiology, Part B, p. 2018. MENDES, A. M. et al. Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa. PLoS Pathogens, v. 4, n. 5. 2008. MOORE, C. G AND FISHER, B. R. Competition in Mosquitoes. Density and Secies Ratio Effects on Gronwth, Mortaity, Fecundity, and Production of Growth Retardant. Annals of the entomological society of America, v. 62, n. 6. 1969. MOSTOWY, W. M.; FOSTER, W. A. Antagonistic effects of energy status on meal size and egg-batch size of Aedes aegypti ( Diptera : Culicidae ). Journal of Vector Ecology. p. 84–93. 2004. NATTERO, J.; PICCINALI, R. V.; LOPES, C. M.; HERNÁNDEZ, M. L.; ABRAHAN, L.; LOBBIA, P. A.; RODRÍGUEZ, C. S.; FUENTE, A. L. C. Morphometric variability among the species of the Sordida subcomplex ( Hemiptera : Reduviidae : Triatominae ): evidence for differentiation across the distribution range of Triatoma sordida. Parasites & Vectors p. 1–14. 2017. PERERA R, RILEY C, ISAAC G, HOPF-JANNASCH AS, MOORE RJ, et al. Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells. PLoS Pathogens 8(3): e1002584. 2012. doi:10.1371/journal.ppat.1002584 PETERSON, G. L. A Simplification of the Protein Assay Method of Lowry et al . Analytical Biochemistry. Which is More Generally Applicable. v. 356, p. 346–356. 1977. PRICE, D. P. et al. Small mosquitoes, large implications: crowding and starvation affects gene expression and nutrient accumulation in Aedes aegypti. Parasites & vectors, v. 8, n. 1, p. 252. 2015. QUARESMA, M. A. Avaliação da implantação do componente controle vetorial do Programa de Controle da Dengue em Porto Seguro-BA/Brasil. [s.l.] FIOCRUZ. 2017. REZENDE, G. L. et al. Embryonic desiccation resistance in Aedes aegypti: Presumptive role of the chitinized Serosal Cuticle. BMC Developmental Biology, v. 8, p. 1–14. 2008. ROWLAND, M.; BOERSMA, E. Changes in the spontaneous flight activity of the mosquito Anopheles stephensi by parasitization with the rodent malaria Plasmodium yoelii. Parasitology, v. 97, n. 2, p. 221–227. 1988. ROY, S. et al. Regulation of Reproductive Processes in Female Mosquitoes. In: Advances in Insect Physiology. [s.l: s.n.]. v. 51p. 115–144. 2016 SANTOS, C.; LEITE, G.; FALQUETO, A. Does native bromeliads represent important breeding sites for Aedes aegypti (L.) (Diptera: Culicidae) in urbanized areas? Neotropical Entomology, v. 40, n. 2, p. 278–281, 2011. SOULAGES, J. L.; ARRESE. E. L. Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol. 55: 207–225. 2011. doi:10.1146/annurev-ento-112408-085356. TELANG, A. AND WELLS, M. A. The effect of larval and adult nutrition on successful autogenous egg production by a mosquito. Journal of Insect Physiology. v. 50, p. 677– 685. 2004. TELANG, A.; FRAME, L.; BROWN, M. R. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti ( Diptera : Culicidae ). The Journal of Experimental Biology. p. 854– 864. 2007. WANG, X. et al. Hormone and receptor interplay in the regulation of mosquito lipid metabolism. PNAS. e2709–e2718. 2017. WEAVER, S. C. COSTA, F., et al. Zika Virus: History, Emergence, Biology, and Prospects for Control. Antiviral research. p. 69–80. 2017. WILKE, A. B. B. et al. Ornamental bromeliads of Miami-Dade County, Florida are important breeding sites for Aedes aegypti (Diptera: Culicidae). Parasites & Vectors, v. 11, n. 1, p. 283. 2018. YOSHIOKA, M. et al. Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera : Culicidae). Parasites & Vectors. p. 1–11. 2012. ZARA, L. S. A. SANTOS, M.; OLIVEIRA, S. F. Estratégias de controle do Aedes aegypti: uma revisão. Epidemiologia e Serviços de Saúde, v. 25, n. 2, p. 1–2, 2016. ZHOU, G.; PENNINGTON, J. E.; Ã, M. A. W. Utilization of pre-existing energy stores of female Aedes aegypti mosquitoes during the first gonotrophic cycle. Insect Biochemistry and Molecular Biology, v. 34, p. 919–925, 2004. ZIEGLER, R.; ANTWERPEN, R. VAN. Lipid uptake by insect oocytes. Insect Biochemistry and Molecular Biology. 36 (2006) 264–272. 2006. SECRETARIA DE ESTADO DE SAÚDE DO RIO DE JANEIRO. Boletim epidemiológico arboviroses. Nº 004. n. 85, p. 1–17. 2018. ZIRBEL, K.; EASTMOND, B.; ALTO, B. W. Parental and offspring larval diets interact to influence life-history traits and infection with dengue virus in Aedes aegypti. R. Soc. open sci. 5: 180539. 2018.por
dc.subject.cnpqBioquímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/71356/2020%20-%20Elaine%20Rodrigues%20Miranda%20Nery%20da%20Silva.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6129
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-12-12T20:28:50Z No. of bitstreams: 1 2020 - Elaine Rodrigues Miranda Nery da Silva.pdf: 1037971 bytes, checksum: 920ba00caa550ba2451864808c3f175c (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-12-12T20:28:50Z (GMT). No. of bitstreams: 1 2020 - Elaine Rodrigues Miranda Nery da Silva.pdf: 1037971 bytes, checksum: 920ba00caa550ba2451864808c3f175c (MD5) Previous issue date: 2020-11-30eng
Appears in Collections:Mestrado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Elaine Rodrigues Miranda Nery da Silva.pdf1.01 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.