Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/10812
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVentura, Adriana
dc.date.accessioned2023-12-22T01:43:17Z-
dc.date.available2023-12-22T01:43:17Z-
dc.date.issued2013-02-18
dc.identifier.citationVENTURA, Adriana. A expressão da proteína p53 na morfogênese da mucosa gastroesofágica de Gallus gallus (Linnaeus, 1758). 2013. 2013. 85 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2013.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/10812-
dc.description.abstractA ontogênese da mucosa gastroesofágica envolve alterações morfológicas de acordo com a sua estrutura e função de cada órgão, orquestrados por eventos como a proliferação, diferenciação e apoptose. A proposta deste estudo foi descrever a morfogênese da mucosa gastroesofágica de G. gallus, identificar as alterações no padrão de secreção de glicosaminoglicanas (GAGs), analisar a expressão da proteína p53 e correlacioná-la às alterações morfológicas durante o desenvolvimento. Foram utilizados 38 embriões de galinha, classificados nos estádios 37 a 45, segundo Hamburger e Hamilton (1951). O material coletado foi processado segundo rotina histológica e submetidos às técnicas de coloração pela hematoxilina-eosina para análise da estrutura tecidual e tricrômico de Gomori para identificação do tecido conjuntivo e sobre tudo as fibras colágenas; e às técnicas histoquímicas do PAS e AB pH 2,5 para análise de GAGs neutros e ácidos, respectivamente. Para técnica de imunohistoquímica foram utilizados 26 espécimes, sendo 24 embriões e o timo de 2 animais adultos. O epitélio de revestimento da mucosa gastroesofágica foi identificado como mucossecretor, sendo no esôfago principalmente nos estádios iniciais, decrescendo com o desenvolvimento. As glândulas esofágicas e proventriculares começam a se formar nos estádios iniciais do desenvolvimento (estádio 37), quanto na moela às glândulas tubulares iniciam a sua formação somente após o 15º dia de incubação (estádio 41). A proteína p53 é expressa em momentos cruciais do desenvolvimento, no esôfago (durante a remodelação das células para formar as glândulas esofágicas, estádio 42 até 45), no proventrículo (enquanto o epitélio da mucosa se diferencia (estádio 39 ao 45) e na moela (durante a formação das glândulas tubulares, estádio 42 ao 45). A expressão da p53 na mucosa gastroesofágica ocorre principalmente nos estádios que iniciam a remodelação tecidual e acompanham a diferenciação destas células até a formação de estruturas glandulares com características semelhantes às observadas no animal adulto. As diferenças na produção de GAGs nessas regiões do trato digestório estão relacionadas aos avanços do desenvolvimento nos estádios de desenvolvimento, às funções e necessidades fisiológicas de cada segmento e à adaptação progressiva do organismo à vida pós-eclosão.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectEmbriões de galinhapor
dc.subjectglicosaminoglicanaspor
dc.subjectproteína p53por
dc.subjectChicken embryoseng
dc.subjectglycosaminoglycanseng
dc.subjectprotein p53eng
dc.titleA expressão da proteína p53 na morfogênese da mucosa gastroesofágica de Gallus gallus (Linnaeus, 1758)por
dc.title.alternativeThe expression. of protein p53 in the morphogenesis of the gastroesophageal mucosa of Gallus gallus (Linnaeus, 1758)eng
dc.typeDissertaçãopor
dc.description.abstractOtherThe ontogenesis of the gastroesophageal mucosa involves morphological changes that very according to the structure and function of each organ and events such as cell proliferation, differentiation and apoptosis. The aim of this study was to describe the histogenesis of the gastroesophageal mucosa of G. gallus, identify the alterations in the secretion pattern of glycosaminoglycans (GAGs), analyze the expression of protein p53 and correlate it with the morphological changes during development. Thirty-eight chicken embryos were used, classified as in stages 37 to 45 according to Hamburger and Hamilton (1951). The material collected was processed according to routine histological techniques and stained with hematoxylin-eosin for analysis of the tissue structure, with Gomori’s trichrome for identification of the conjunctive tissue and mainly collagen fibers, as well as with the histochemical techniques PAS and AB pH 2.5 for analysis of neutral and acid GAGs, respectively. For the immunohistochemical technique, 26 specimens were used, 24 embryos and the thymus of 2 adult animals. The epithelium covering the gastroesophageal mucosa was found to secrete mucus, while in the esophagus, the mucosa only secreted mucus in the initial stages of development. The esophageal and proventricular glands start to form in the initial stages of development (stage 37), while in the gizzard the tubular glands start to form only after the 15th day of incubation (stage 41). The differences in production of GAGs in these regions of the digestive tract are related to the advancement of morphogenesis in the developmental stages, the functions and physiological needs of each segment and the progressive adaptation of the organism to life after hatching. Protein p53 was expressed at crucial moments of development, in the esophagus (during remodeling of the cells to form the esophageal glands, stage 42 to 45), in the proventriculus (during differentiation of the mucosal epithelium, stage 39 to 45) and in the gizzard (during formation of the tubular glands, stage 42 to 45). The expression of p53 in the gastroesophageal mucosa occurs mainly in the stages when tissue remodeling starts and accompanies the differentiation of these cells until formation of glandular structures with characteristics similar to those in the adult bird. The differences in the production of GAGs in these regions of the gastroesophageal tract are related to development stages, functions, and physiological requirements of each segment, and to the gradual adjustment of the body to the post-hatching life.eng
dc.contributor.advisor1Pinheiro, Nadja Lima
dc.contributor.advisor1ID093.401.577-53por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2704840396057478por
dc.contributor.advisor-co1Nascimento, Aparecida Alves
dc.contributor.referee1Chagas, Walker André
dc.contributor.referee2Mendes, Rosa Maria Marcos
dc.creator.ID306.846.988-03por
dc.creator.Latteshttp://lattes.cnpq.br/2808781795007792por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesAKSOY, A.; CINAR, K. Distribution and ontogeny of gastrin- and serotonin-immunoreactive cells in the proventriculus of developing chick, Gallus gallus domestica. Journal of Veterinary Science, v.10, n.1, p. 9-13, 2009. ALMOG, N.; ROTTER, V. Involvement of p53 in cell differentiation and development. Biochimica et Biophysica Acta, v. 1333, n. 1, p. F1-27, 1997. BAI, L.; ZHU, W. p53: Structure, Function and Therapeutic Applications. Journal Cancer Molecular, v. 2, n. 4, p. 141-153, 2006. CHÈNE, P. Inhibiting the p53-mdm2 interaction: an important target for cancer therapy. Nature, v. 3, n. February, p. 102-109, 2003. CHIPUK, J. E.; KUWANA, T.; BOUCHIER-HAYES, L.; DROIN, N. M.; NEWMEYER, D. D.; SCHULER, M.; GREEN, D. R. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science, v. 303, n. 5660, p. 1010-1014, 2004. CRAWFORD, L. V.; PIM, D. C.; BULBROOK, R. D. Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. International Journal of Cancer, v. 30, p. 403–408, 1982 apud SOUSSI, T.; MAY, 1986, P. Structural aspects of the p53 protein in relation to gene evolution: a second look. Journal of Molecular Biology, v. 260, n. 5, p. 623-37, 1996. DANIAL, N. N.; KORSMEYER, S. J. (2004). Cell Death: Critical Control Points Cell, v. 116, n. 2, p. 205-219. DELEO, A.B.; JAY, G.; APPELLA, E., DUBOIS, G. C.; LAW, L.W., OLD, L.J. Detection of a transformation-related antigen in chemically inducedsarcomas and other transformed cells of the mouse. PNAS - Proceedings of the National Academy of Sciences, v. 76, p. 2420- 2424, 1979 apud BAI, L.; ZHU, W, 2006. p53: Structure, Function and Therapeutic Applications. Journal Cancer Molecular, v. 2, n. 4, p. 141-153, 2006. ENTEZARI, M.; ZAKERI, Z.; LOCKSHIN, R. A. Apoptosis in Developmental Processes. eLS, 2010. FADOK, V., BRATTON, D. L., FRASCH, S. C., WARNER, M. L., HENSON, P. M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death and Differentiation, v. 5, n. 7, p. 551-62, 1998. FUKUDA, K.; YASUGI, S. The molecular mechanisms of stomach development in vertebrates. Development, growth e differentiation, v. 47, n. 6, p. 375-382, 2005. 75 GLUCKSMAN, A. Cell deaths in normal vertebrate ontogeny. Biological Review, v. 26, p. 59-86, 1951 apud JACOBSON M. D.; WEIL M.; RAFF M. C. Programmed Cell Death in Animal Development. Cell, v. 88, n. 3, p. 347-354, 1997. HENGARTNER, M. O. Genetic control of programmed cell death and aging in the nematode Caenorhabditis elegans. Experimental Gerontology, v. 32, n. 4-5, p. 363-74, 1997. HYTTEL, P.; SINOWATZ, F.; VEJSTED, M. Embriologia Veterinária. 1ª ed., Elsevier, 383 p., 2012. HU, WU; FENG, Z.; ATWAL, G. S.; LEVINE, A. J. p53: a new player in reproduction. Cell Cycle, v. 7, p. 848–852, 2008. JACOBSON M. D., WEIL M., RAFF M. C. Programmed Cell Death in Animal Development. Cell, v. 88, n. 3, p. 347-354, 1997. JOZA N.; KROEMER G.; PENNINGER J. M. Genetic analysis of the mammalian cell death machinery. Trends in Genetics, v. 18, n. 3, p. 142-149, 2002. KERR, J. F. R. History of the events leading to the formulation of the apoptosis concept. Toxicology, v. 182, p. 471-474, 2002. KERR, J. F. R.; WYLLIE, A. H.; CURRIE, A. R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinectcs. British. Journal of Cancer, v. 26, n. 4, p. 239-257, 1972. KLASING, K. C. Avian gastrointestinal anatomy and physiology. Seminars in Avian and Exotic Pet Medicine, v. 8, n. 2, p. 42-50, 1999. KRINKA, D.; RAID, R.; PATA, I.; KÄRNER, J.; MAIMETS, T. In situ hybridisation of chick embryos with p53-specific probe and their immunostaining with anti-p53 antibodies. Anatomy and embryology, v. 204, n. 3, p. 207-15, 2001. LANE, D. P. p53, guardian of the genome. Nature, v. 358, p. 15-16, 1992. LANE, D. P.; BENCHIMOL, S. P53: Oncogene or Anti-Oncogene? Genes & Development, v. 4, n. 1, p. 1-8, 1990. LEKSRISOMPONG, N.; ROMERO-SANCHEZ, H.; PLUMSTEAD, P. W.; BRANNAN, K. E.; BRAKE, J. Broiler incubation. 1. Effect of elevated temperature during late incubation on body weight and organs of chicks. Poultry science, v. 86, n. 12, p. 2685-2691, 2007. LEVINE, A. J.; FINLAY, C. A.; HINDS, P. W.; DRIVE, M.; CAROLINA, N. P53 is a Tumor Suppressor Gene. Cell, v. 116, n. 2, p. S67-69, 2004. LEVINE, A. J.; MOMAND, J.; FINLAY, C. A. The p53 tumour suppressor gene. Nature, v. 351, p. 453-456, 1991. 76 LEVINE, A. J.; OREN, M. The first 30 years of p53: growing ever more complex. Nature Reviews Cancer, v. 9, n. 10, p. 749-58, 2009. LU, W.-J.; AMATRUDA, J. F.; ABRAMS, J. M. P53 Ancestry: Gazing Through an Evolutionary Lens. Nature Reviews Cancer, v. 9, n. 10, p. 758-62, 2009. MEIER, P., FINCH, A, EVAN, G. Apoptosis in development. Nature, v. 407, n. 6805, p. 796-801, 2000. MOLCHADSKY, A.; RIVLIN, N.; BROSH, R.; ROTTER, V.; SARIG, R. P53 Is Balancing Development, Differentiation and De-Differentiation To Assure Cancer Prevention. Carcinogenesis, v. 31, n. 9, p. 1501-8, 2010. MOLCHADSKY, A.; SHATS, I.; GOLDFINGER, N.; PEVSNER-FISCHER, M.; OLSON, M.; RINON, A.; TZAHOR, E., LOZANO; G.; ZIPORI, D.; SARING, R.; ROTTER, V. P53 Plays a Role in Mesenchymal Differentiation Programs, in a Cell Fate Dependent Manner. PloS one, v. 3, n. 11, p. e3707, 2008. NAGATA, S.; GOLSTEIN, P. The fas death fator. Science, v. 267, p. 1449-1456, 1995. PINHEIRO, N. L.; GEORGE, L. L.; MOTA, D. L. Histogenesis and histochemistry of the secretion plate: detection of glycans and neutral glycoproteins synthetized by epithelial components of the gizzard mucosa of Gallus gallus. Gegenbaurs morphologisches Jahrbuch, v.135, n. 3, p. 385-395, 1989. PINTUS, S. S., FOMIN, E. S., OSHURKOV, I. S., IVANISENKO, V. A. Phylogenetic analysis of the p53 and p63/p73 gene families. In Silico Biology, v. 7, n. 3, p. 319-32, 2007. RINON, A.; MOLCHADSKY, A.; NATHAN, E.; YOVEL, G.; ROTTER, V.; SARIG, R.; TZAHOR, E. p53 coordinates cranial neural crest cell growth and epithelial-mesenchymal transition / delamination processes. Development, v. 138, p. 1827–1838, 2011. ROBERTS, D. J.; SMITH, D. M.; GOFF, D. J.; TABIN, C. J. Epithelial-mesenchymal signaling during the regionalization of the chick gut. Development (Cambridge, England), v. 125, n. 15, p. 2791-801, 1998. ROUCOU, X.; ANTONSSON, B.; MARTINOU, J. C. Involvement of mitochondria in apoptosis. Cardiology clinics, v. 19, n. 1, p. 45-55, 2001. SAUNDERS, J. W. Death in embryonic systems. Science, v. 154, n. 3749, p. 604-12, 1966. SAVILL, J., FADOK, V. Corpse clearance defines the meaning of cell death. Nature, (407):784-788, 2000. SGAMBATI E.; BRYK, S. G.; GHERI, G. Histochemical study of the epithelial mucins in the gizzard of the chick embryo. Italian Journal of Anatomy and Embryology, v. 101, n. 3, p. 173-185, 1996. 77 SGAMBATI, E., BRYK, S. G., GHERI, G. Histochemical characterization of the mucins of the epithelial cells in the chick embryo proventriculus. Italian Journal of Anatomy and Embryology, v. 100, n. p. 83-97, 1995. SHIN, M.; WATANUKI, K.; YASUGI, S. Expression of Fgf10 and Fgf receptors during development of the embryonic chicken stomach. Gene expression patterns: GEP, v. 5, n. 4, p. 511-516, 2005. SOUSSI, T.; MAY, P. Structural aspects of the p53 protein in relation to gene evolution: a second look. Journal of Molecular Biology, v. 260, n. 5, p. 623-37, 1996. STIEWE, T. The p53 family in differentiation and tumorigenesis, Nature Review Cancer, v. 7, p. 165–168, 2007. TAKIGUCHI, K.; YASUGI, S.; MIZUNO, T. Developmental changes in the ability to express embryonic pepsinogen in stomach epithelia of chick embryos. Roux’s Archives of Developmental Biology, v. 9, n. 1, p. 56-62, 1988. TONER, P. G. Development of the acid secretary potential in the chick embryo proventriculus. Journal Anatomy, v. 99, n. 2, p 389-398, 1965. TORNER, P. G. Ultrastructure of the developing gizzard epithelium in the chick embryo. Zeitschrift für Zellforschung und Mikroskopische Anatomie, v. 73, n. 2, p. 220-233, 1966. VAUX, D. L. Apoptosis Timeline. Cell Death and Differentiation, v.9, n. 4, p. 349-354, 2002. VERGARA, M. N.; CANTO-SOLER, M. V. Rediscovering the chick embryo as a model to study retinal development. Neural development, v. 7, n. 1, p. 22, 2012. VOUSDEN, K. H.; LU, X. Live or let die: the cell’s response to p53. Nature, v. 2, p 594-604, 2002. WADE, M., WANG, Y. V., WAHL, G. M. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends in Cell Biology, v. 20, n. 5, p. 299-309, 2010. WALLINGFORD, J. B.; SEUFERT, D. W.; VIRTA V. C.; VIZE, P. D. (1997). p53 activity is essential for normal development in Xenopus. Current Biology, v. 7, n. 10, p. 747-757, 1997. WANG, C.; YOULE, R. J. The role of mitochondria in apoptosis. Annual Review of Genetics, v. 43, p. 95-118, 2009. WANG, X.; JIANG, X. Mdm2 and MdmX partner to regulate p53. FEBS letters, v. 586, n. 10, p. 1390–1396, 2012. WYLLIE, A. H. “Where, O Death, Is Thy Sting?” A Brief Review of Apoptosis. Molecular Neurobiology, v. 42, p. 4-9, 2010. 78 WYLLIE, A. H. Death in normal and neoplastic cells. Journal Clinical Pathology, v. 7, p. 35-42, 1974. XU, J.; DELPROPOSTO, Z.; ZHOU, Z.; SHEN, H.; XUAN, S. Y.; LI, Q. H.; HAACKE, E. M.; HU, J. In ovo monitoring of smooth muscle fiber development in the chick embryo: diffusion tensor imaging with histologic correlation. Plos One, v. 7, n. 3, p. e34009, 2012. ZAKERI, Z.; LOCKSHIN, R. A. Cell Death: History and Future. Programmed Cell Death in Cancer Progression and Therapy. Advances in Experimental Medicine and Biology, v. 615, n. 1-11, 2007. ZIEGLER, U.; GROUSCURT, P. Morphological features of cell death. News in Physiological Sciences, v. 19, p. 124-28, 2004.por
dc.subject.cnpqMorfologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/13909/2013%20-%20ADRIANA%20VENTURA.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/16462/2013%20-%20ADRIANA%20VENTURA.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/22846/2013%20-%20ADRIANA%20VENTURA.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/29150/2013%20-%20ADRIANA%20VENTURA.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/35584/2013%20-%20ADRIANA%20VENTURA.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/41960/2013%20-%20ADRIANA%20VENTURA.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/48316/2013%20-%20ADRIANA%20VENTURA.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/54740/2013%20-%20ADRIANA%20VENTURA.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/3423
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-04-09T15:33:16Z No. of bitstreams: 1 2013 - ADRIANA VENTURA.pdf: 2660504 bytes, checksum: a05168cb2a37d846567186bc2c60ab2c (MD5)eng
dc.originais.provenanceMade available in DSpace on 2020-04-09T15:33:17Z (GMT). No. of bitstreams: 1 2013 - ADRIANA VENTURA.pdf: 2660504 bytes, checksum: a05168cb2a37d846567186bc2c60ab2c (MD5) Previous issue date: 2013-02-18eng
Appears in Collections:Mestrado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2013 - ADRIANA VENTURA.pdf2013 - ADRIANA VENTURA2.6 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.