Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/11193
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOliveira, Isabelly Santos Rosado de
dc.date.accessioned2023-12-22T01:49:00Z-
dc.date.available2023-12-22T01:49:00Z-
dc.date.issued2018-02-26
dc.identifier.citationOLIVEIRA, Isabelly Santos Rosado de. Biogeografia de rizóbios de sabiá (Mimosa caesalpiniifolia Benth.) isolados dos biomas Caatinga e Mata Atlântica. 2018. 47 f.. Dissertação (Mestrado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2018.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11193-
dc.description.abstractO sabiá (Mimosa caesalpiinifolia Benth.) é uma espécie lenhosa da família Fabaceae (Leguminosae) nativa do bioma Caatinga e que foi introduzida com sucesso em outros biomas, como o Cerrado e a Mata Atlântica. Esta espécie possui alto potencial para usos como: cerca viva, lenha, carvão entre outras utilidades. O sucesso na adaptação em diferentes biomas brasileiros pode estar relacionado com a capacidade dessa espécie em se associar simbioticamente com bactérias fixadoras de nitrogênio, chamadas genericamente de rizóbios, em especial aos beta-rizóbios do gênero Paraburkholderia. Dentro desse contexto, estudou-se a filogenia de estirpes de bactérias que estariam envolvidas nessa simbiose nos biomas Caatinga e Mata Atlântica. O objetivo deste trabalho foi estudar as relações filogenéticas entre as estirpes de rizóbios provenientes do estado do Rio de Janeiro e de regiões de onde o sabiá é nativo, de modo a desvendar a relação entre o simbionte e a introdução bem-sucedida da espécie em outros ambientes. Foram selecionados isolados que foram cultivados e caracterizados morfologicamente em meio 79 e autenticados em casa de vegetação em condições estéreis. Em seguida, foi realizada a caracterização molecular por BOX-PCR, o sequenciamento dos genes 16S rRNA, recA e nifH e a construção das árvores filogenéticas por meio de programas de bioinformática. Os resultados mostraram que o sabiá se associou preferencialmente a bactéria Paraburkholderia sabiae em solos do bioma Mata atlântica, além de nodular com bactérias do gênero Rhizobium. Já, em seu bioma de origem, o simbionte encontrado foi predominantemente a Paraburkholderia diazotrophica; apenas um isolado proveniente do Rio Grande do Norte, foi classificado como Paraburkholderia symbiotica. A classificação taxonômica e a divisão baseada na localidade foram suportadas tanto pela filogenia do gene 16S rRNA quanto pela do gene recA. A filogenia do gene nifH também separou os isolados de acordo com seu local de origem. Contudo, ao contrário do que foi observado para os demais genes, a P. phymatum se apresentou evolutivamente mais próxima de P. diazotrophica do que de P. sabiae, indicando a ocorrência de uma transferência horizontal desse gene entre as duas primeiras espécies. Os resultados aqui apresentados demonstram a capacidade de adaptação da espécie a populações bacterianas nativas do Sudeste do Brasil.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectfixação biológica do nitrogêniopor
dc.subjectBeta-rizóbiospor
dc.subjectFilogeniapor
dc.subjectBiological Nitrogen Fixationeng
dc.subjectBeta-rhizobiaeng
dc.subjectPhylogenyeng
dc.titleBiogeografia de rizóbios de sabiá (Mimosa caesalpiniifolia Benth.) isolados dos biomas Caatinga e Mata Atlânticapor
dc.title.alternativeIsabelly Santos Rosado. Biogeography of rhizobia of sabiá (Mimosa caesalpiniifolia Benth.) isolated from the biomes Caatinga and Atlantic Forest.eng
dc.typeDissertaçãopor
dc.description.abstractOtherThe sabiá (Mimosa caesalpiinifolia Benth.) is a woody legume species native to the Caatinga, and which has been successfully introduced in other Brazilian biomes, such as the Cerrado and the Atlantic Forest. This species has high potential for several uses such as hedge, wood, and coal, among others. Its successful adaptation to different biomes may be related to its ability to associate symbiotically with nitrogen-fixing bacteria called rhizobia, in particular to beta-rhizobia of the genus Paraburkholderia. In this context, we studied the phylogeny of rhizobia strains that are involved in this symbiosis in the Caatinga and in the Atlantic Forest. The objective of this work was to study the phylogenetic relationships between rhizobia strains from Rio de Janeiro, where sabiá was introduced, and from regions where this legume is native to discover the relationship between the symbiont and the successful introduction of this species into a new environment. The morphological characterization of the isolates was carried out in yeast-mannitol agar and they were authenticated under sterile conditions in a glasshouse. The genotypic characterization of those strains was carried out by BOX-PCR, and representative strains were chosen for sequencing of the 16S rRNA, recA, and nifH genes, followed by phylogenic analysis with bioinformatics programs. The results showed that sabiá was mainly associated with Paraburkholderia sabiae in the Atlantic Forest, besides nodulating with Rhizobium. Paraburkholderia diazotrophica was the predominant symbiont in the Caatinga, with only one isolate from Rio Grande do Norte belonging to P. symbiotica. Both the taxonomic classification and the separation of strains by location were supported by the 16S rRNA, and recA phylogenies. The strains were also separated by location in the nifH phylogeny, however, differently from what was observed with the other genes, P. phymatum was phylogenetically closer to P. diazotrophica than to P. sabiae, indicating a possible horizontal transfer event between the first two species. The results presented herein demonstrate the ability of sabiá to adapt to bacterial populations native to the Southeast.eng
dc.contributor.advisor1Faria, Sergio Miana de
dc.contributor.advisor1ID612687127-87por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2191253156772498por
dc.contributor.advisor-co1Jesus, Ederson da Conceição
dc.contributor.referee1Jesus, Ederson da Conceição
dc.contributor.referee2Coelho, Marcia Reed Rodrigues
dc.contributor.referee3Coelho, Irene da Silva
dc.creator.ID157804717-03por
dc.creator.Latteshttp://lattes.cnpq.br/9864846608754227por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Florestaspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Ambientais e Florestaispor
dc.relation.referencesALLEN, E.K. & ALLEN, O.N. The Leguminosae: A Source Book of Characteristics Uses and Nodulation. Wisconsin, University of Wisconsin Press. 812 p. 1981. ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W. E LIPMAN, D. J. Basic Local Alignment Search Tool. Journal of Molecular Biology 215:403-410. 1990. ANGUS AA; AGAPAKIS C.M; FONG S.; YERRAPRAGADA S.; ESTRADA DE LOS SANTOS P.; YANG P.; SONG N.; KANO S.; CABALLERO-MELLADO J.; DE FARIA S.M.; DAKORA F.D.; WEINSTOCK G.; HIRSCH A.M. Plant Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis. PloS One; v. 9, e83779, 2014. ARDLEY, J.K.; PARKER M.A.; DE MEYER S.E.; TRENGOVE R.D.; O’HARA G.W.; REEVE W.G.; YATES R.J.; DILWORTH M.J.; WILLEMS A.; HOWIESON J.G. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. International Journal of Systematic and Evolutionary Microbiology, v. 62, p. 2579-2588, 2012. AZANI, N.; BABINEAU, M.; BAILEY, C. D. et al. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon, v. 66, n. 1, p. 44-77. 2017. BABIC, K.H; SCHAUSS, K; HAI, B.; SIRORA, S.; REDZEPOVIC, S., RADL, V.; SCHLOTER, M. Influence of diferente Sinorhizobium melioti inocula on abundance of genes involved in nitrogen transformations in the rhizosphere of alfafa (Medicago sativa L.). Environmental Microbiology, v. 10, p. 2903 – 3185, 2008. BALBINO, E., CARNEIRO, J.G.A., BARROSO, D.G., PAULINO, G.M., LAMÔNICA, K.R. Crescimento inicial e fertilidade do solo em plantios puros e consorcioados de Mimosa caesalpiniifolia Benth. Scientia Forestalis, Piracicaba, v.38, n.85, p.27-37, 2010. BARAÚNA A.C.; ROUWS L.F.M.; SIMOES-ARAÚJO J.L.; dos REIS JUNIOR F.B.; IANNETTA P.P.M.; MALUK M.; GOI S.R.; REIS V.M.; JAMES E.K.; ZILLI J.E. Rhizobium altiplani sp. nov. isolated from effective nodules on Mimosa pudica growing in untypically alcaline soil in Central Brazil. International Journal of Systematic and Evolutionary Microbiology, v. 66, p. 4118-4124, 2016. BLAHA D.; PRINGENT-COMBARET C.; MIRZA M.S.; Moënne-Loccoz MOENNE-LOCCOZ Y. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminse-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecology, v.56, P. 455–470, 2006. BONTEMPS C.; ELLIOT G.N.; SIMON M.F.; DOS REIS JÚNIOR F.B.; GROSS E.; LAWTON R.C.; NETO N.E.; LOUREIRO M.F.; DE FARIA S.M.; SPRENT J.I.; JAMES E.K.; YOUNG J.P.W. Burkholderia species are ancient symbionts of legumes. Molecular Ecology, v. 19, p. 44–52, 2010. 31 BONTEMPS C.; ROGEL M.A.; WIECHMANN A.; MUSSABEKOVA A.; MOODY S.; SIMON M.F.; MOULIN L.; ELLIOT G.N.; LACERCAT-DIDIER L.; DA SILVA C.; GRETHER R.; CAMARGO-RICALDE S.L.; CHEN W.; SPRENT J.I.; MARTÍNEZ ROMERO E.; YOUNG J.P.W.; JAMES E.K. Endemic Mimosa species from Mexico prefer alphaproteobacterial rhizobial symbionts. New Phytologist v. 209:319, p.333, 2016. BOURNAUD C.; DE FARIA S.M.; DOS SANTOS J.M.F.; TISSEYRE P.; SILVA M.; CHAINTREUIL C.; GROSS E.; JAMES E.K.; PRIN Y.; MOULIN L. Burkholderia species are the most common and preferred nodulating symbionts of the Piptadenia group (tribe Mimoseae). PLoS One, v.8, e63478, 2013. BROUGHTON W.J.; HANIN M. RELIC B.; KOPCÑSKA J.; GOLINOWSKI S.S.; REUHS O.; REUHS B.; MARIE C.; KOBAYASHI H.; BORDOGNA B.; LE QUÉRÉ A.; JABBOURI S.; FELLAY R.; PERRET X.; DEAKIN W.J. Flavonoid- inducible modifications to rhamnan O antigens are necessary for Rhizobium sp. strain NGR234-legume symbioses. Journal of Bacteriology, v. 188, n. 10, p. 3654-3663, 2006. BRUIJN, F. J. de; RADEMAKER, J.; SCHNEIDER, M. Rep-PCR Genomic Fingerprinting of Plant-Associated Bacteria and Computer-Assisted Phylogenetic Analyses. In: Biology of Plant-Microbe Interaction; Proceedings of the 8th International Congress of Molecular Plant-Microbe Interactions (G. Stacey, B. Mullin and P. Gresshoff, Eds.) APS Press, p. 497-502, 1996. BRUNEAU A.; MERCURE M.; LEWIS G.P.; HERENDEEN P.S. Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany, v. 86, p. 697–718, 2008. BUCHANAN, R.E. Approved lists of bacterial names. In: SKERMAN, V.B.D.; McGOWAN, V.; SNEATH, P.H.A., eds. International Journal of Systematic Bacteriology, v.30,p.225-240. 1980. CANNON, F.C.; DIXON, R.A.; POSTGATE, J.R.; PRIMROSE, S.B. Chromossomal integration of Klebsiella nitrogen fixation genes in Escherichia coli. Journal of General Microbiology, v.80, n.1, p. 227-239, 1974. CARDOSO D.; PENNINGTON R.T.; DE QUEIROZ L.P.; BOATWRIGTH J.S.; VAN WYK B.E.; WOJCIECHOWSKI M.F.; LAVIN M. Reconstructing the deep-branching relationships of the papilionoid legumes. South African Journal Botany. v.89, p. 58–75, 2013b. CARVALHO, P.E.R. Sabiá – Mimosa caesalpiniifolia. Colombo-PR, 2007. 10p. (Embrapa Florestas: Comunicado Técnico, 135). CHEN W.M.; DE FARIA S.M.; STRALIOTTO R.; PITARD R.M.; SIMÕES-ARAÚJO J.L.; CHOU Y.J.; BARRIOS E.; PRESCOTT A.R.; ELLIOT G.N.; SPRENT J.I.; YOUNG J.P.W.; JAMES E.J. Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. Applied and Environmental Microbiology, v.71, p. 7461–7471, 2005a. CHEN, W.M.; JAMES, E.U.; CHOU, J.H.; SHEU, S.Y.; YANG, S.Z.; SPRENT, J.I. β-rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytologist, v.168, p.661–675, 2005b. 32 CHEN, W.M.; FARIA, S.M.; CHOU, J.H.; JAMES, E.K.; ELLIOT, G.N.; SPRENT, J.I.; BONTEMPS, C. YOUNG, J.P.W.; VANDAMME, P. Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. International Journal of Systematic and Evolutionary Microbiology, v.58,n.9,p.2174-2179, 2008b. CHEN, W.-M.; LAEVENS, S.; LEE, T.-M.; COENYE, T.; DE VOS, P.; MERGEAY, M.; VANDAMME, P. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. International Journal of Systematic and Evolutionary Microbiology, v.51, p.1729-1735, 2001. CHEN, W-M.; WU, C.H.; JAMES, E. K.; CHANG, J-S. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. Journal of Hazardous Materials, Amsterdam, v. 151, n. 2-3, p. 364-371, 2008a. COENYE T.; VANDAMME P.; GOVAN J. R. W.; LIPUMA J.J. Taxonomy and identification of the Burkholderia cepacia complex. Journal of Clinical Microbiology, v. 39, n. 10, p. 3427-3436, 2001. COENYE, T. & VANDAMME, P. Extracting phylogenetic information from whole-genome sequencing projects the lactic acid bacteria as a test case. Microbiology, v.149, p.3507-3517, 2003. COLE, J. R.; CHAI,B.; FARRIS, R. J.; WANG, Q.; KULAM-SYED-MOHIDEEN, A. S.;MCGARREL, D. M.; BANDELA, A. M.; CARDENAS, E.; GARRITY, G. M.; TIEDJE, J. M. The Ribosomal Database Project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Research, v. 35, D169-D172, 2007. COWAN, S.T. A dictionary of microbial taxonomic usage. Oliver & Boyd, Edinburgh, 1968. DA SILVA K.; FLORENTINO L.A.; DA SILVA K.B.; BRANDT E.; VANDAMME P.; MOREIRA F.M.S. Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Systematic and Applied Microbiology, v. 35, p. 175–182, 2012. DALL‘AGNOL R.F., RIBEIRO R.A., ORMEÑO-ORRILLO E., ROGEL M.A., DELAMUTA J.R.M., ANDRADE D.S., MARTÍNEZ-ROMERO E., HUNGRIA M. Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. International Journal of Systematic and Evolutionary Microbiology, v. 63, p.4167-4173, 2013. DALL’AGNOL R.F. Taxonomia e Filogenia de Alfa e Beta rizóbios provenientes de solos dos Cerrados e da Mata Atlântica. 2016. 217f. Tese (Doutorado em Biotecnologia) – Universidade Federal de Londrina – Londrina, PR. DALL'AGNOL, R. F.; PLOTEGHER, F.; SOUZA, R. C.; MENDES, I. de C.; REIS JUNIOR, F. B. dos; BÉNA, G.; MOULIN, L.; HUNGRIA, M. Paraburkholderia nodosa is the main N2-fixing species trapped by promiscuous common bean (Phaseolus vulgaris L.) in the Brazilian 'Cerradão'. FEMS Microbiology Ecology, 2016, v. 92, n. 8, 14 p., nov. 2016. DE LAJUDIE, P.; WILLEMS, A.; NICK, G.; MOREIRA, F.; MOLOUBA, F.; HOSTE, B.; TORCK, U.; NEYRA, M.; COLLINS, M.D.; LINDSTRÖM, K.; DREYFUS, B.; GILLIS, M. 33 Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. International Journal of Systematic Bacteriology, v. 48, p. 369-382, 1998. DELONG, E.F.; WICKHAM, G.S.; PACE, N.R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single microbial cells. Science, v.243, p.1360-1363, 1989. DIXON, E.; EADY, R.R.; ESPIN, G. Analysis of regulation of Klebsiella pneumoniae nitrogen fixation (nif) gene cluster with gene fusions. Nature, v.286, p.128-132, 1980. DOBRITSA A.P.; SAMADPOUR M. Transfer of eleven Burkholderia species to the genus Paraburkholderia and proposal of Caballeronia gen. nov., a new genus to accommodate twelve species of Burkholderia and Paraburkholderia. International Journal System Evolutionary Microbiology, v.66, p.2836-2846, 2016. ELLIOT G.N.; CHOU J.H.; CHEN W.M.; BLOEMBERG G.V.; BONTEMPS C.; MARTÍNEZ-ROMERO E.; VELÁZQUEZ E.; YOUNG J.P.W.; SPRENT J.I.; JAMES E.K. Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N‐limited conditions. Environmental Microbiology, v.11, p.762-778, 2009. ELLIOT, G.N.; CHEN, W.M.;CHOU, J.H.; WANG, H.C.; SHEU, S.Y.; PERIN, L.; REIS, V.M.; MOULIN, L.; SIMON, M.F.; BONTEMPS, C.; SUTHERLAND, J.M; BESSI, R.; FARIA, S.M.; TRINICK, M.J.; PRESCOTT, A.R.; SPRENT, J.I. JAMES, E. K. Burkholderia phymatum is a higly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytologist [S.I.],v.173,n.1,p.168-180, 2007. ESTRADA DE LOS SANTOS P.; BUSTILLOS-CRISTALES R.; CABALLERO-MELLADO J. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Applied and Environmental Microbiology, v. 67, p. 2790-2798, 2001. ESTRADA DE LOS SANTOS P.; ROJAS-ROJAS F.U.; TAPIA-GARCÍA E.Y.; VÁSQUEZ-MURRIETA M.S.; HIRSCH A.M. To split or not to split: an opinion on dividing the genus Burkholderia. Ann Microbiol, v.66, p. 1303–1314, 2015. FELFILI, J.M.; SILVA JUNIOR, M.C.; REZENDE, A.V.; MACHADO, J.W.B.; WALTER, B.M.T.; SILVA, P.E.N.; HAY, J.D. Análise comparativa da florística e fitossociologia da vegetação arbórea do cerrado sensu stricto na Chapada Pratinha,D.F. Brasil. Acta Botânica Brasílica, São Paulo, v. 6, p. 27-46, 1993. FRANCO, A. A. et al. Revegetação de solos degradados. Seropédica: Embrapa CNPBS, 8 p. 1992 (Embrapa. CNPBS. Comunicado Técnico, 9). FRED, E. B.; BALDWIN, I. L.; MCCOY, E. Root nodule bacteria of leguminous plants. Madison: University of Wisconsin Press, 1932. 343 p. FRED, E.B.; WAKSMAN S.A. Yeast extract-manitol agar. Laboratory manual of general microbiology. McGraw-Hill, New York, p 145, 1928. GARRITY G. M.; BELL, J. A.; LILBURN, T. Alphaproteobacteria class. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published 34 Outside the IJSB, List no. 107. International Journal of Systematic and Evolutionary Microbiology, v. 56, p. 1-6, 2006. GARRITY, G. M.; BELL, J. A.; LILBURN, T. Class II. Betaproteobacteria class. nov. In: BRENNER, D. J. (editors), Bergey's Manual of Systematic Bacteriology, 2nd ed., v. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), Springer, New York, p. 575, 2005a. GARRITY, G. M.; BELL, J. A.; LILBURN, T. Family IX. Methylobacteriaceae fam. nov. In: D.J. BRENNER (editors). Bergey's Manual of Systematic Bacteriology, 2nd ed, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), Springer, New York, p. 567, 2005b. GARRITY, G.M. & HOLT, J.G. The road map to the Manual. In: GARRITY, G.M.; BOONE, D.R.; CASTENHOLZ, R.W., eds. Bergey's manual of systematic bacteriology. 9th ed., v.1, The Archaea and the deeply branching and phototrophic bacteria 2nd ed. New York: The Williams & Wilkins, Springer-Verlag, 2001, p.119-154. GAUNT, M.W.; TURNER, S.L.; RIGOTTIER-GOIS, L.; LLOYD-MACGILP, S.A; YOUNG, J.P. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. International Journal Systematic and Evolutionary Microbiology, 51, 2037-2048, 2001. GEVERS, D.; COHAN, F.M.; LAWRENCE, J.G.; SPRATT, B.G.; COENYE, T.; FEIL, E.J.; STACKEBRANDT, E.; PEER, Y. V. DE; VANDAMME, P.; THOMPSON, F.L.; SWINGS, J. Re-evaluating prokaryotic species. Nature Reviews, v.3, p.733-739, 2005. GILLIS, M.; TRAN, V.V.; BARDIN, R.; GOOR, M.; HEBBAR, P.; WILLEMS, A.; SEGERS, P.; KERSTERS, K.; HEULIN, T.; FERNANDEZ, M. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. International Journal Systematic Bacteriology, v.45, p. 274–289, 1995. GOMES, P. Forragens fartas na seca. 4 ed. São Paulo: Nobel, 1977, 238p. GRUZMAN, I; DOBEREINER, J. IN: Anais da IV reunião latino americana sobre inoculantes para leguminosas. Porto Alegre, p. 84, 1968. GYANESHWAR, P.; HIRSCH, A.M.; MOULIN, L.; CHEN, W.M.; ELLIOT, G.N.; BONTEMPS, C.; ESTRADA DE LOS SANTOS, P.; GROSS, E.; DOS REIS JUNIOR F.B.; SPRENT, J.I.; YOUNG, J.P.W; JAMES, E.K. Legume-nodulating betaproeteobacteria: diversity, host range, and future prospects. Molecular Plant-Microbe Interactions, v.24, p. 1276–1288, 2011. HAO, B., LI, W., MU, L. C., LI, Y., ZHANG, R., TANG, M., X., BAO, W., K. A study of conservation genetics in Cupressus chengiana, na endangered endemic of China, Using ISSR Markers. Biochemical Genetics, v.44, p.29-43, 2006. 35 HUNGRIA M.; VARGAS M.A.T.; ARAUJO R.S. Fixação biológica do nitrogênio em feijoeiro. In: VARGAS, M.A.T.; HUNGRIA, M. (Ed.) Biologia dos solos dos Cerrados. Planaltina: EMBRAPA-CPAC, 1997, p.189-295. HUNGRIA, M.; CAMPO, R.J.; MENDES, I.C. Fixação biológica do nitrogênio na cultura da soja. Londrina: Embrapa Soja, 2001. (Embrapa Soja. Circular Técnica 35/ Embrapa Cerrados. Circular Técnica 13). 48p. HUNGRIA, M.; CHUEIRE, L.M.O.; MENNA, P.; BANGEL, E.V. Caracterização genética de rizóbios e outras bactérias diazotróficas e promotoras do crescimento de plantas por BOX-PCR. Londrina: Embrapa Soja, 2008. 12p. (Embrapa Soja. Comunicado Técnico, 79). HUNGRIA, M.; STACEY, G. Molecular signals exchanged between host plants and rhizobia: basic aspects and potential application in agriculture. Soil Biology and Biochemistry, v. 29, p. 819-830, 1997. JORDAN, D. C. Rhizobium. In: KRIEG, N. R. e HOLT, J. G. Bergey’s Manual of Systematic Bacteriology. Baltimore: Williams and Wilkins, p. 235-242. 1984. JORDAN, D.C. & ALLEN, N.O. Family III. Rhizobiaceae Conn 1938. In: BUCHNAN, R.E.; GIBBONS, N.E , eds. Bergey's manual of determinative bacteriology. v.1 Baltimore London: Williams & Wilkins Co., 1974. p.235-244. JORDAN, D.C. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. International Journal of Systematic Bacteriology, v.32, p.136-139, 1982. KAJITA, T.; OHASHI, H.; TATEISHI, Y.; DOYLE, J.J. rbcL and legume phylogeny with particular reference to Phase-oleae, Millettieae and allies. Systematic Botany, v.26, p.515–536, 2001. KARPATI, F.; JONASSON, J. Polymerase chain reaction for the detection of Pseudomonas eruginosa, Stenotrophomonas maltophiliaand Burkholderia cepacia in sputum of patients with cystic fibrosis. Molecular and Cellular Probes, v. 10, p. 397–403, 1996. KOCHIEVA, E.Z.; RYZHOVA, N.N., LEGKOBIT, M.P., KHADEEVA, N.V. RAPD and ISSR analyses of species and populations of the genus Stachys. Russel J Genet, v.42. p.723-727, 2006. KOEUTH, T.; VERSALOVIC, J.; LUPSKI, J.R. Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res, v.5p.408-418, 1995. KUZNETSOVA, O.I., ASH, O.A., HARTINA, G.A. GOSTIMSKIJ, S.A. RAPD and ISSR analyses of regenerated pea Pisum sativum L. plants. Russel Journal Genetics, v.41, p.60-65, 2005. LARANJO, M.; ALEXANDRE, A.; OLIVEIRA, S. Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Microbiological Research, v.169, n.1, p. 2–17, 2014. 36 LAVIN, M.; HERENDEEN, P.S.; WOJCIECHOWSKI, M.F. Evolution-ary Rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Systematic Biology, v.54, p.575–594, 2005. LEMAIRE, B.; CHIMPHANGO, S.B.M.; STIRTON, C.; RAFUDEEN, S.; HONNAY, O.; SMETS, E.; CHEN, W.M.; SPRENT, J.; JAMES, E.K.; MUASYA A.M. Biogeographical patterns of legume-nodulating Paraburkholderia: from African Fynbos to continental scales. Applied and Environmental Microbiology, v.82, p.5099–5115, 2016. LESSIE, T.G.; HENDRICKSON, W.; MANNING, B.D.; DEVEREUX, R. Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol Lett, v.144, p. 117–128, 1996. LEWIS, G., SCHRIRE, B., MACKINDER, B.; LOCK, M. Legumes of the world. Kew: Royal Botanic Gardens. 577 p. 2005. LI, Y.Y., CHEN, X.Y., ZHANG, X. Genetic Differences between Wild and Artificial Populations of Metaseqoia glyptostroboides: Implications for Species Recovery, Conversation Biology, v.19, p.224-231, 2005. LIN, D.X.; WANG, E.T.; TANG, H.; HAN, T.X.; HE, Y.G.; CHEN W.X. Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. International Journal of Systematic and Evolutionary Microbiology, v. 58, p. 1409-1413, 2008. LORENZI, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 3 ed. Nova Odessa: Instituto Plantarum, 2000. V. 1. 351p. LPSN. List of Prokaryotic names with standing in nomenclature. Disponível em: <http://www.bacterio.net/>. Acesso em: 05 Fev.2018. LPWG, Legume Phylogeny Working Group. Towards a new classification system for legumes: Progress report from the 6th International Legume Conference. South African Journal of Botany, v.89, p.3–9, 2013b. MAHENTHIRALINGAM E.; BALDWIN A.; DOWSON C.G. Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. Journal of Applied Microbiology, v. 104, n. 6, p. 1539–1551, 2008. MARTINS, P.G.S.; LIRA JUNIOR, M.A.; FRACETTO, G.G.M.; BASTOS DA SILVA, M.L.R.; VINCENTIN, R.P.; PEREIRA DE LYRA, M.C.C. Mimosa caesalpiniifolia rhizobial isolates from different origins of the Brazilian Northeast. Archives of Microbiology, v.197, p. 459-469, 2015. MAYNAUD, G.; WILLEMS, A.; SOUSSOU, S.; VIDAL, C.; MAURÉ, L.; MOULIN, L.; CLEYET-MAREL, J.C.; BRUNEL, B. Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legumenodulating bacteria. Systematic and Applied Microbiology, v. 35, p. 65-72, 2012. 37 MCKEY, D. Legume and nitrogen: The evolutionary ecology of a nitrogen demanding lifestyle. In: SPRENT, J. I.; MCKEY, D. (Ed.). Advances in legume systematic. 5. The nitrogen factor. Kew: Royal Botanic Gardens, 1994. p. 211-228. MENDES, B.V. Plantas das Caatingas: umbuzeiro, juazeiro e sabiá. Mossoró: Fundação Vingt-Unt Rosado, 2001. 110p. (Coleção Mossoroense). MENDES, B.V. Sabiá (Mimosa caesalpiniifolia Benth.): valiosa forrageira arbórea e produtora de madeira das caatingas. Mossoró: ESAM, 1989. 31p. (Coleção Mossoroense, 660, Série B). MENNA, P.; HUNGRIA, M.; BARCELLOS, F.G.; BANGEL, E.V.; HESS, P.N.; MARTÍNEZ-ROMERO, E. Molecular phylogeny based on the 16S rRNA gene a of elite rhizobial strains used in Brazilian commercial inoculants. Systematic and Applied Microbiology, v.29, p.315-32, 2006. MICHÉ, L.; FAURE, D.; BLOT, M.; CABANNE-GIULI, E.; BALANDREAU, J. Detection and activity of insertion sequences in environmental strains of Burkholderia. Environmental Microbiology, v.3, p.766–773, 2001. MOREIRA, F.M.S., SILVA, M.F., DE FARIA, S.M. Occurrence of nodulation in legume species in the Amazon region of Brazil. The New Phytologist, London , v. 121, p. 563- 570, 1992. MOREIRA, F.M.S., SIQUEIRA,J.O. Microbiologia e bioquímica do solo. Lavras: UFLA, 729 p. 2006. MORGANTE, P. G. Fixação biológica e assimilação de nitrogênio. Disponível em: <http://pt.scribd.com/doc/3319817/Fixacao-Biologica-e-Assimilacao-de- Nitrogenio, 2003>. Acesso em: 02 Fev.2018. MOULIN L.; MUNIVE A.; DREYFUS B. E BOIVIN-MASSON C. Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature, v. 411, p. 948-950. 2001. MOUSAVI, S.A., OSTERMAN, J., WAHLBERG, N., NESME, X., LAVIRE, C., VIAL, L., PAULIN, L., DE LAJUDIE, P., LINDSTROM, K. Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst. Appl. Microbiol. 37, 208–215. 2014. MOUSAVI, S.A.; WILLEMS, A.; NESME, X; DE LAJUDIE, P.; LINDSTROM, K. Revised phylogeny of Rhizobiaceae: Proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Systematic and Applied Microbiology, v. 38, n. 2, p. 84-90, 2015. ODUM, E.P. Fundamentos de ecologia. 6ª ed. Lisboa, Fundação Calouste Gulbenkian, 2001. 976p. OLIVEIRA, L.M.; DAVIDE, A.C.; CARVALHO, M.L.M. Avaliação de métodos para quebra de dormência e para a desinfestação de sementes de canafístula (Peltophorum dubium (Sprengel)) Taubert. Revista Árvore, Viçosa-MG, v.27, n.5, p597-603. 2003. 38 OREN, A.; GARRITY, G.M. Notification of changes in taxonomic opinion previously published outside the IJSEM. International Journal of Systematic and Evolutionary Microbiology, v. 65, p. 2028-2029, 2015. PASSOS, M.A; TAVARES,K.M.P; ALVES, A.R. Germinação de sementes de sabiá (Mimosa caesalpiniifolia Benth.). Revista Brasileira de Ciências Agrárias [S.I], v.2, n.1, p.51-56, 2007. PAYNE, G.W.; VANDAMME, P.; MORGAN, S.H.; LIPUMA, J.J.; CONYE, T.; WEIGHTMAN, A.J.; JONES, T.H.; MAHENTHIRALINGAN, E. Development of a recA Gene-Based Identification Approach for the Entire Burkholderia Genus. Applied and Environmental Microbiology, v.71, p.3917-3927, 2005. PIRES, R.C.; DOS REIS JÚNIOR, F.B.; ZILLI, J.E.; FISCHER, D.; HOFMANN, A.; JAMES, E.K.; SIMON, M.F. Soil characteristics determine the rhizobia in association with different species of Mimosa in central Brazil. Plant and Soil. https://doi.org/10.1007/s11104-017-3521-5. 2017. RADEMAKER, J. L. W.; LOUWS, F. J.; VERSALOVIC J.; DE BRUIJN, F. J. Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. Molecular Microbial Ecology Manual. v.2, p.1-26, 2004. REIS JÚNIOR, F.B.; SIMON, M.F.; GROSS, E.; BODDEY, R.M.; ELLIOT, G.N.; NETO, N.E.; LOUREIRO, M.F.; QUEIROZ, L.P.; SCOTTI, M.R.; CHEN, W.W.; NORÉN, A.; RUBIO, M.C.; DE FARIA, S.M.; BONTEMPS, C.; GOI, S.R.; YOUNG, J.P.W.; SPRENT, J.I.; JAMES, E.K. Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytologist, v.186, p.934–946, 2010. RIBASKI, J.; LIMA, P.C.F.; OLIVEIRA, V.R; DRUMOND, M.A. Sabiá (Mimosa caesalpiniifolia) Árvore de Múltiplo uso no Brasil. Colombo PR, 2003. 4p. (Embrapa Florestas: Comunicado Técnico, 104). RICKFLES,R.E. A economia da natureza. Rio de Janeiro, Guanabara Koogan, 2003. 503p. RIVAS, R.; GARCÍA-FRAILE, P.; VELÁZQUEZ, E. Taxonomy of bacteria nodulating legumes. Microbiology Insights, v. 2, p. 51-69, 2009. RIVAS, R.; WILLEMS, A.; SUBBA-RAO, N.S; MATEOS, P.F.; DAZZO, F.B.; KROPPENSTEDT, R.M.; MARTÍNEZ-MOLINA, E.; GILLIS, M.; VELÁZQUEZ, E. Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Systematic and Applied Microbiology, v. 26, p. 47-53, 2003. RIZZINI, C.T. Árvores e madeiras úteis do Brasil. 2 ed. São Paulo: Editora Edgard Blucher Ltda., 1995. 294p. RIZZINI, C.T.; MORHS, W.B. Botânica econômica brasileira. São Paulo, EPU/EDUSP, 1976. 235p. 39 SAIKI, R.K.; GELFAND, D.H.; STOFFEL, S.; SCHARF, S.J.; HIGUCHI, R.; HORN, E.T.; ERLICH, H.A. Primer-directed enzimatic amplification of DNA with a thermostable DNA polymerase. Science, v.239, p.487-491, 1988. SAWANA, A.; ADEOLU, M.; GUPTA, R.S. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Frontiers Genetics, v.5, p. 429, 2014. SHELLY, D. B.; SPILKER, T.; GRACELY, E.J.; COENYE, T.; VANDAMME, P.; LIPUMA, J.J. Utility of commercial systems for identification of Burkholderia cepacia complex from cystic fibrosis sputum culture. Journal of Clinical Microbiology, v. 38, p. 3112–3115, 2000. SHEU, S.Y.; CHOU, J.H.; BONTEMPS, C.; ELLIOT, G.N.; GROSS, E.; DOS REIS JÚNIOR, F.B.; MELKONIAN, R.; MOULIN, L.; JAMES, E.K.; SPRENT, J.I.; YOUNG, J.P.W; CHEN, W.M. .Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. International Journal of Systematic and Evolutionary Microbiology, v. 63, p. 435-441, 2013. SHEU, S.Y.; CHOU, J.H.; BONTEMPS, C.; ELLIOT, G.N.; GROSS, E.; JAMES, E.K.; SPRENT, J.I.; YOUNG, J.P.W.; CHEN, W.M. Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. International Journal of Systematic and Evolutionary Microbiology, v. 62, p. 2272-2278, 2012. SIMON, M.F.; GRETHER, R.; DE QUEIROZ, L.P.; SKEMA, C.; PENNINGTON, R.T.; HUGHES, C.E. Recent assembly of the Cerrado, a Neotropical plant diversity hotspot, by in situ evolution of adap-tations to fire. Proc. Natl. Acad. Sci. U.S.A. v.106, p. 20359–20364, 2009. SOLBRIG, O.T. The diversity of the savanna ecosystem. In: SOLBRIG, O.T.; MDEINA, E.; SILVA, J.A. (Ed.). Biodiversity and savanna ecosystem processes. Heidelberg: Spring-Verlag, 1996. p. 1-27. STACKEBRANDT, E.; FREDERIKSEN, W.; GARRITY, G.M.; GRIMONT, P.A.D.; KAMPFER, P.; MAIDEN, M.C.J.; NESME, X.; ROSSELLO-MORA, R.; SWINGS, J.; TRUPER, H.G.; VAUTERIN, L.; WARD, A.C.; WHITMAN, W.B. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, v.52, p.1043-1047, 2002. SWOFFORD, D.L.; OLSEN, G.J.; WADDELL, P.J.; HILLIS, D.M. Phylogenetic Inference. In Hillis, D.M.; MORTIZ, D.; MABLE, B.K.; editors, Molecular Systematics, p.407-514. Sinauer Associates, Sunderland, Massachusetts. TAMURA, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution 9: 678-687. 1992. 40 TORRES, A.R.; ARAÚJO, W.L; CURSINO, L.; HUNGRIA, M.; PLOTEGHER, F.; MOTASSO, F.L; AZEVEDO, J.L. Diversity of endophytic enterobactéria associated with diferente host plants. The Journal of Microbiology, v.46, n.4, p.373-379, 2008. TRUJILLO, M.E.; WILLEMS, A.; ABRIL, A.; PLANCHUELO, A.M.; RIVAS, R.; LUDEÑA, D.; MATEOS, P.F.; MARTÍNEZ-MOLINA, E.; VELÁSQUEZ, E. Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Applied and Environmental Microbiology, v, 71, p. 1318-1327, 2005. TRUPER, H.G. & SCHLEIFER, K.H. Prokaryote characterization and identification. In: Balows, A., Truper, H. G., Dworkin, M., Harder, W., Schleifer, K. H., (Eds.), The Prokaryotes, Springer, New York, 2nd edn, 1, pp. 126-148, 1991. VANDAMME, P.; GILLIS, P.; KERSTERS, K.; SWINGS, J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiological Reviews, v. 60, n. 2, p. 407-438, 1996. WANG, E.T.; ROGEL, M.A.; GARCÍA DE LOS SANTOS, A.; MARTÍNEZ-ROMERO, J.; CEVALLOS, M.A.; MARTÍNEZ-ROMERO, E. Rhizobium etli bv. mimosae, a novel biovar isolated from Mimosa affinis. International Journal of Systematic Bacteriology, v.49, p.1479-1491, 1999. WANG, R-F.;CAO, W-W; CERNIGLIA, C. E. Phylogenetic analysis of Fuso Bacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation. International Journal of Systematic Bacteriology, v. 46, n. 1, p. 341-343. 1996. WEISBURG, W.G.; BARNS, S.M.; PELLETIE, D.A.; LANE, D.J. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, v.173, p.697-703, 1991. WOESE, C.R. Bacterial evolution. Microbiology Reviews, v.51, p.221-271, 1987. WOESE, C.R.; KANDLER, O.; WHEELIS, M.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya. Proceedings of the National Academy of Sciences of USA, v.87, p.4576-4579, 1990. XAVIER, G.R; MARTINS, L.M.V.; RIBEIRO, J.R.A.; RUMJANEK, N.G. Especificidade simbiótica entre rizóbios e acessos de feijão caupi de diferentes nacionalidades. Caatinga, v.19, n.01, p. 25-33, 2006. YABUUCHI, E.; KOSAKO, Y.; OYAIZU, H.; YANO, I.; HOTTA, H.; HASHIMOTO, Y.; EZAKI, T.; ARAKAWA, M. Proposal of Burkholderia gen nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov., Microbiology Immunology, v. 36, p.1251–1275, 1992. ZHANG, D.F; CHEN, S.L.; CHEN, S.Y.; ZHANG, D.J; GAO, Q. Patterns of genetic variation in Swertia przewalskii, na endangered endemic species of the Qinghai-Tibet plateau. Biochemical Genetics, v.45, p.33-50, 2007.por
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/65751/2018%20-%20Isabelly%20Santos%20Rosado%20de%20Oliveira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4803
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-06-28T20:26:44Z No. of bitstreams: 1 2018 - Isabelly Santos Rosado de Oliveira.pdf: 1145495 bytes, checksum: 6fdcfa0847757ea9bcf7c460042133b2 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-06-28T20:26:44Z (GMT). No. of bitstreams: 1 2018 - Isabelly Santos Rosado de Oliveira.pdf: 1145495 bytes, checksum: 6fdcfa0847757ea9bcf7c460042133b2 (MD5) Previous issue date: 2018-02-26eng
Appears in Collections:Mestrado em Ciências Ambientais e Florestais

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Isabelly Santos Rosado de Oliveira.pdf2018 - Isabelly Santos Rosado de Oliveira1.12 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.