Por favor, use este identificador para citar o enlazar este ítem: https://rima.ufrrj.br/jspui/handle/20.500.14407/11366
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorPantaleão, Laura Cristina
dc.date.accessioned2023-12-22T01:51:02Z-
dc.date.available2023-12-22T01:51:02Z-
dc.date.issued2020-07-22
dc.identifier.citationPANTALEÃO, Laura Cristina. Efeito dos atributos funcionais de plantas e biomassa acima do solo sobre processos ecossistêmicos em comunidades de restauração ecológica na Mata Atlântica. 2020. 43 f. Dissertação (Mestrado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11366-
dc.description.abstractDiante das consequências do desmatamento e da perda de biodiversidade, a demanda por projetos de restauração ecológica se tornou crescente. A técnica de plantio de mudas é uma das mais utilizadas para a restauração ecológica de florestas tropicais, direcionando a sucessão ecológica e contribuindo com a provisão de diversos processos ecossistêmicos. Há uma relação entre os compartimentos acima e abaixo do solo, onde as características da vegetação são importantes para a manutenção da qualidade do solo. Esse estudo avaliou a importância da média ponderada da comunidade, diversidade funcional e biomassa acima do solo nos processos ecossistêmicos do solo em comunidades em restauração ecológica na Mata Atlântica. Essa avaliação permite inferir qual a importância dos diferentes mecanismos que auxiliam na recuperação dos processos ecossistêmicos. O estudo foi conduzido em um experimento in situ de plantios de restauração com quatro tratamentos baseados em grupos sucessionais, implantados há 19 anos na Reserva Biológica de Poço das Antas, localizada no município de Silva Jardim, Rio de Janeiro. Foram coletados e mensurados atributos funcionais de 32 espécies, sendo eles: área foliar, área foliar específica, conteúdo de matéria seca da folha, conteúdo de carbono, fósforo e nitrogênio foliar e densidade da madeira. Para a diversidade funcional foram calculadas as seguintes métricas: riqueza funcional, divergência funcional, equabilidade funcional e entropia quadrática de Rao. Os processos ecossistêmicos do solo avaliados foram: carbono, nitrogênio, fósforo, carbono da biomassa microbiana, quociente metabólico e atividade enzimática microbiana. Além disso, foi obtida a biomassa acima do solo dos tratamentos. Os resultados das análises de componentes principais confirmaram que as comunidades de restauração implantadas com diferentes espécies possuem diferenças em relação a média ponderada da comunidade e a diversidade funcional. O tratamento composto por espécies pioneiras apresentou características mais aquisitivas, enquanto o tratamento com espécies clímax, características mais conservativas. Para os processos ecossistêmicos do solo, a média ponderada da comunidade teve efeitos mais importantes do que a diversidade funcional e biomassa acima do solo. Entretanto, a diversidade funcional também apresentou relações importantes com os processos do solo. Para carbono do solo, os três fatores foram fatores importantes, tendo uma relação positiva com área foliar específica e negativa com biomassa acima do solo e equabilidade funcional. Para fósforo no solo, a relação mais importante foi com área foliar específica, seguida pela divergência funcional, as duas positivas. Para a atividade enzimática, área foliar específica e divergência funcional apresentaram uma alta relação negativa com o processo. Para quociente metabólico do solo, a única relação importante foi com fósforo foliar, sendo positiva. Para o carbono da biomassa microbiana houve uma relação forte e negativa com índice da entropia quadrática de Rao, porém mais fraca e positiva com o carbono da biomassa microbiana. Os resultados encontrados demonstram que a média ponderada da comunidade e a diversidade funcional são mais importantes para explicar os processos ecossistêmicos do solo durante o processo de restauração ecológica do que puramente a quantidade de vegetação nas comunidades. Isso demonstra a importância em considerar os atributos funcionais das espécies implantadas em projetos de restauração ecológica em florestas tropicais.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectDiversidade funcionalpor
dc.subjectCommunity weighted meanpor
dc.subjectModelagem de equações estruturaispor
dc.subjectFunctional diversityeng
dc.subjectStructural equations modelingeng
dc.titleEfeito dos atributos funcionais de plantas e biomassa acima do solo sobre processos ecossistêmicos em comunidades de restauração ecológica na Mata Atlânticapor
dc.title.alternativeEffect of plant functional traits and aboveground biomass on ecosystem processes in communities under ecological restoration in the Atlantic Foresteng
dc.typeDissertaçãopor
dc.description.abstractOtherFacing the consequences of deforestation and loss of biodiversity, the demand for ecological restoration projects has become increasing. The technique of planting seedlings is one of the most used for the ecological restoration of tropical forests, directing the ecological succession and contributing to the ecosystem processes. There is a relationship between the above and below ground compartments, where the vegetation characteristics are important for the maintenance of soil quality. This study assessed the role of functional composition, functional diversity and aboveground biomass under soil ecosystem processes in communities undergoing ecological restoration in the Atlantic Forest. This assessment allows us to infer the importance of the different mechanisms that assist in the recovery of ecosystem processes. The study was conducted in an ecological restoration experiment composed by four treatments based on succession groups, implemented 19 years ago in the Poço das Antas Biological Reserve, located in the municipality of Silva Jardim, Rio de Janeiro. Functional attributes of the 32 species found were collected and measured: leaf area, specific leaf area, leaf dry matter content, carbon content, phosphorus and leaf nitrogen and wood density. For functional diversity the following metrics were calculated: functional richness, functional divergence, functional equity and quadratic entropy of Rao. The soil ecosystem processes evaluated were: carbon, nitrogen, phosphorus, microbial biomass carbon, metabolic quotient and microbial enzymatic activity. In addition, aboveground biomass was obtained from the treatments. The results of the principal component analyses confirmed that the restoration communities implemented with different species have differences in functional composition and functional diversity. The treatment composed of pioneer species presented more acquisitive characteristics, while the treatment with climax species, more conservative characteristics. For soil ecosystem processes, functional composition had more important effects than functional diversity and above-ground biomass. However, functional diversity also presented important relationships with soil processes. For soil carbon, the three factors were important, having a positive relationship with specific leaf area and negative with aboveground biomass and functional equity. For phosphorus in the soil, the most important relationship was with specific leaf area, followed by functional divergence, both positive. For enzymatic activity, specific foliar area and functional divergence presented a high negative relation with the process. For the metabolic quotient of the soil, the only important relation was positive with foliar phosphorus. For the carbon of microbial biomass there was a strong negative relation with Rao's quadratic entropy index, but weaker and more positive with the carbon of microbial biomass. The findings demonstrate that the functional composition and functional diversity are more important to explain the ecosystem processes of the soil during the ecological restoration process than aboveground biomass. This demonstrates the importance to considered plant the functional traits in ecological restoration projects in the tropical forest.eng
dc.contributor.advisor1Sansevero, Jerônimo Boelsums Barreto
dc.contributor.advisor1ID089.688.927-09por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5790238611041834por
dc.contributor.advisor-co1Moraes, Luiz Fernando Duarte de
dc.contributor.advisor-co1ID068.427.058-78por
dc.contributor.referee1Sansevero, Jerônimo Boelsums Barreto
dc.contributor.referee2Moraes, Luiz Fernando Duarte de
dc.contributor.referee3Rosenfield, Milena Fermina
dc.contributor.referee4Amorim, Thiago de Azevedo
dc.creator.ID117.305.006-09por
dc.creator.Latteshttp://lattes.cnpq.br/1030943215243788por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Florestaspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Ambientais e Florestaispor
dc.relation.referencesALBERTI, G. et al. Soil C : N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests. Biogeosciences and Forestry, v. 8, n. 1, p. 195–206, 2015. ANDREASEN, J. K. et al. Considerations for the development of a terrestrial index of ecological integrity. Ecological Indicators, v. 1, p. 21–35, 2001. ARONSON, J. et al. What role should government regulation play in ecological restoration? Ongoing debate in São Paulo State, Brazil. Res, v. 19, n. 6, p. 690–695, 2011. ARONSON, J.; OVALLE, C.; AVENDANO, J. Ecological and economic rehabilitation of degraded “Espinales” in the subhumid Mediterranean-climate region of Central Chila. Landscape and Urban Planning, v. 24, n. 3, p. 15–21, 1993. ASSESSMENT, M. E. Ecosystems and human well-being. [s.l: s.n.]. BARALOTO, C. et al. Decoupled leaf and stem economics in rain forest trees. Ecology Letters, v. 13, p. 1338–1347, 2010. BECKNELL, J. M.; POWERS, J. S. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. v. 613, n. February, p. 604–613, 2014. BINKLEY, D.; LUIZ, J.; RYAN, M. G. Thinking about efficiency of resource use in forests. Forest Ecology and Management, v. 193, n. 1–2, p. 5–16, 2004. BOUKILI, V. K.; CHAZDON, R. L. Environmental filtering, local site factors and landscape context drive changes in functional trait composition during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics, v. 24, p. 37–47, 2017. BRANCALION, P. H. S. et al. Instrumentos legais podem contribuir para a restauração de lorestas tropicais biodiversas. Revista Arvore, v. 34, n. 3, p. 455–470, 2010. BUDOWSKI, G. Distribution of tropical American rain forest species in the light of successional processes. Turrialba, v. 15, n. 1, p. 40–42, 1965. BURNS, R. G. et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, v. 58, p. 216–234, 2013. CAMPANHA, M. M. et al. Teores e Estoques de Carbono no Solo de Sistemas Agroflorestais e Tradicionais no Semiárido Brasileiro. Circular Técnica, v. 42, 2008. CARBONE CARNEIRO, M. A. et al. Carbono orgânico, nitrogênio total, biomassa e atividade microbiana do solo em duas cronossequências de reabilitação após a mineração de bauxita. Revista Brasileira de Ciência do Solo, v. 32, n. 621–632, 2008. CARDINALE, B. J.; NELSON, K.; PALMER, M. A. Linking species diversity to the functioning of ecosystems : on the importance of environmental context. OIKOS, v. 91, n. March, p. 175–183, 2000. CHAPÍN, F. S.; MATSON, P.; MOONEY, H. Principles of terrestrial ecosystem ecology. Nova Iorque: Springer, 2002. CHAVE, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Ecosystem Ecology, v. 145, n. 1, p. 87–99, 2005. CHAVE, J. et al. Towards a worldwide wood economics spectrum. Ecology Letters, v. 12, n. 4, p. 351–366, 2009. CHAVE, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, v. 20, n. 10, p. 3177–3190, 2014. CONTI, G.; DÍAZ, S. Plant functional diversity and carbon storage - an empirical test in semi-arid forest ecosystems. Journal of Ecology, v. 101, n. 1, p. 18–28, 2013. CORNELISSEN, J. H. C. A. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, v. 51, p. 335–380, 2003. CUNHA, G. M. et al. Fósforo orgânico em solos sob florestas montanas, pastagens e eucalipto no Norte Fluminense. Revista Brasileira de Ciencia do Solo, v. 31, n. 4, p. 667–672, 2007. DE-POLLI, H.; GUERRA, J. G. M. Determinação do carbono da biomassa microbiana do solo: método da fumigação-extração. 1997. DE ARAÚJO, A. S. F.; MONTEIRO, R. T. R. Indicadores biológicos de qualidade do solo. Bioscience Journal, v. 23, n. 3, p. 66–75, 2007. DE SOUZA, F. M.; BATISTA, J. L. F. Restoration of seasonal semideciduous forests in Brazil: Influence of age and restoration design on forest structure. Forest Ecology and Management, v. 191, n. 1–3, p. 185–200, 2004. Díaz, S.; CABIDO, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16:646–655. DICK, R. P.; BREAKWELL, D. P.; TURCO, R. F. Soil Enzyme Activities and Biodiversity Measurements as Integrative Microbiological Indicators. In: Methods for Assessing Soil Quality. [s.l: s.n.]. p. 247–271. DORAN, J. W.; ZEISS, M. R. Soil health and sustainability : managing the biotic component of soil quality. Applied Soil Ecology, v. 15, n. 1, p. 3–11, 2000. EATON, W. D. Microbial and nutrient activity in soils from three different subtropical forest habitats in Belize , Central America before and during the transition from dry to wet season. Applied Soil Ecology, v. 16, p. 219–227, 2001. EBELHAR, S. A.; FRYE, W. W.; BLEVINS, R. L. Nitrogen from Legume Cover Crops for No-Tillage Corn1. Agronomy Journal, v. 76, n. 1, p. 51, 1984. FERNÁNDEZ, I. E. et al. Reversibilidade do fóforo não-lábil em solos submetidos à redução microbiana e química II - extrações sucessivas do fósforo pela resina de troca aniônica. Revista Brasileira de Ciencia do Solo, v. 32, n. 6, p. 2319–2330, 2008. FINEGAN, B. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests ? Testing three alternative hypotheses. Journal of Ecology, v. 103, n. 1, p. 191–201, 2014. FOUDYL-BEY, S.; BRAIS, S.; DROUIN, P. Litter heterogeneity modulates fungal activity, C mineralization and N retention in the boreal forest floor. Soil Biology and Biochemistry, v. 100, p. 264–275, 2016. GARCÍA-PALACIOS, P. et al. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters, v. 16, n. 8, p. 1045–1053, 2013. GARCIA, C.; HERNANDEZ, T.; COSTA, F. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Communications in Soil Science and Plant Analysis, v. 28, n. 1–2, p. 123–134, 1997. GARNIER, E. et al. Plant functional markers capture ecossystem properties during secondary sucession. Ecology, v. 85, n. 9, p. 2630–2637, 2004. GIL-SOTRES, F. et al. Different approaches to evaluating soil quality using biochemical properties. Soil Biology & Biochemistry, v. 37, n. 5, p. 877–887, 2005. GRIME, J. P. Benefits of plant diversity to ecosystems: immediate filter and founder effects. Journal of Ecology, v. 86, n. 6, p. 891–899, 1998. GRIME, J. P. Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. Journal of Vegetation Science, v. 17, n. 2, p. 255–260, 2006. GUIMARÃES, Z. T. M. et al. Leaf traits explaining the growth of tree species planted in a Central Amazonian disturbed area. Forest Ecology and Management, v. 430, p. 618–628, 2018. HARIDASAN, M. Nutritional adaptations of native plants of the cerrado biome in acid soils. Brazilian of Plant Physiology, v. 20, n. 3, p. 183–195, 2008. HÄTTENSCHWILER, S.; FROMIN, N.; BARANTAL, S. Functional diversity of terrestrial microbial decomposers and their substrates. Comptes Rendus Biologies, v. 334, p. 393–402, 2011. HOBBIE, S. E.; VITOUSEK, P. M. Nutrient regulation of decomposition in Hawaiian montane forests: do the same nutrients limit production and decomposition. Ecology, v. 81, n. 7, p. 1867–1877, 2000. HOLL, K. D.; AIDE, T. M. When and where to actively restore ecosystems? Forest Ecology and Management, v. 261, n. 10, p. 1558–1563, 2011. HÜTTL, R. F.; SCHNEIDER, B. U. Forest ecosystem degradation and rehabilitation 1. Ecological E, v. 10, n. 1, p. 19–31, 1998. JENKINSON, D. S.; POWLSON, D. S. The effects of biocidal treatments on metabolism in soil - V. Soil Biol. Biochem., v. 8, p. 209–2013, 1975. KAGEYAMA, P. Y.; CASTRO, C. F. A. Sucessão secundária, estrutura genética e plantações de espécies arbóreas nativas. IPEF, v. 41–42, p. 83–93, 1989. KLEIMAN, G. D.; RYLANDS, A. B. Lion Tamarins: Biology and Conservation. Washington: Smithsonian Institution Press, 2002. KÖGEL-KNABNER, I. et al. Organo-mineral associations in temperate soils : Integrating biology, mineralogy , and organic matter chemistry. J. Plant. Nutr. Soil Sci., v. 171, p. 61–82, 2008. LAGANIÈRE, J.; ANGERS, D. A.; PARÉ, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Global Change Biology, v. 16, n. 1, p. 439–453, 2010. LAL, R. et al. Soil carbon sequestration to mitigate climate change and advance food security. Soil Science, v. 172, n. 12, p. 943–956, 2007. LAMB, D.; ERSKINE, P. D.; PARROTTA, J. A. Restoration of degraded tropical forest landscapes. Science, v. 310, n. 5754, p. 1628–1632, 2005. LANGE, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, n. 6, p. 1–8, 2015. LARCHER, W. Ecofisiologia vegetal. São Carlos: Rima, 2000. LAUGHLIN, D. C. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters, v. 17, n. 7, p. 771–784, 2014. LAVOREL, S.; GARNIER, E. Predicting changes in community composition and ecosystem functioning from plant traits : Functional Ecology, v. 16, n. 5, p. 545–556, 2002. LEFCHECK, J. S. PiecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution, v. 7, n. 5, p. 573–579, 2016. LEHMANN, J. et al. Inorganic and organic soil phosphorus and sulfur pools in an Amazonian multistrata agroforestry system. Agroforestry Systems, v. 53, n. 2, p. 113–124, 2001. LI, W. et al. Community-weighted mean traits but not functional diversity determine the changes in soil properties during wetland drying on the Tibetan Plateau. p. 137–147, 2017. LI, X. et al. Influence of earthworm invasion on soil microbial biomass and activity in a northern hardwood forest. Soil Biology and Biochemistry, v. 34, n. 12, p. 1929–1937, 2002. LIMA, H. C. DE et al. Caracterização fisionômico-florística e mapeamento da vegetação da Reserva Biológica de Poço das Antas, Silva Jardim, Rio de Janeiro, Brasil. Rodriguésia, v. 57, n. 3, p. 369–389, 2006. LOHBECK, M. et al. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, v. 96, n. 5, p. 1242–1252, 2015. LOMOV, B. B. et al. Are butterflies and moths useful indicators for restoration monitoring? A pilot study in Sydney’s Cumberland Plain Woodland. Ecological Management & Restoration, v. 7, n. 3, p. 204–210, 2006. LOREAU, M.; HECTOR, A. Partitioning selection and complementarity in biodiversity experiments. Nature, v. 412, n. 5, p. 72–76, 2001. LU, D. et al. Classification of successional forest stages in the Brazilian Amazon basin. Forest Ecology and Management, v. 181, p. 301–312, 2003. LUTZOW, M. V. et al. Stabilization of organic matter in temperate soils : mechanisms and their relevance under different soil conditions - a review. European Journal of Soil Science, v. 57, n. August, p. 426–445, 2006. MAGNAGO, L. F. S. et al. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. Journal of Ecology, v. 102, n. 2, p. 475–485, 2014. MARY, B. et al. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant and Soil, v. 181, p. 71–82, 1996. MASON, N. W. H. et al. Functional richness , functional evenness and functional divergence : the primary components of functional diversity. OIKOS, v. 1, n. 111, p. 112–118, 2005. MATZEK, V.; WARREN, S.; FISHER, C. Incomplete recovery of ecosystem processes after two decades of riparian forest restoration. Restoration Ecology, v. 24, n. 5, p. 637–645, 2016. MENDES, M. S. et al. Look down — there is a gap — the need to include soil data in Atlantic Forest restoration. Restoration Ecology, v. 27, n. 2, p. 1–10, 2018. MIDORI, M. Y. et al. Atributos químicos e bioquímicos em solos degradados por mineração de estanho e em fase de recuperação em ecossistema Amazônico. Revista Brasileira de Ciencia do Solo, v. 39, n. 3, p. 714–724, 2015. MONTEITH, J. L.; MOSS, C. J. Climate and the Efficiency of Crop Production in Britain [ and Discussion ]. p. 277–294, 1977. MORAES, L. F. D. DE et al. Plantio de espécies arbóreas nativas para a restauração ecológica na Reserva Biológica de Poço das Antas, Rio de Janeiro, Brasil. Rodriguésia, v. 57, n. 3, p. 477–489, 2006. MORAES, L. F. D.; CAMPELLO, E. F. C.; FRANCO, A. A. Restauração florestal: Do diagnóstics de degradação ao uso de indicadores ecológicos para o monitoramento das ações. Oecologia Australis, v. 14, n. 2, p. 437–451, 2010. MOREIRA, F. M. S.; SIQUEIRA, J. O. Microbiologia e bioquímica do solo. Lavras: UFLA, 2006. MOSER, P. et al. Interaction between extreme weather events and mega‐dams increases tree mortality and alters functional status of Amazonian forests. Journal of Applied Ecology, n. August, p. 1–11, 2019. MURCIA, C. et al. Challenges and Prospects for Scaling-up Ecological Restoration to Meet International Commitments: Colombia as a Case Study. Conservation Biology, v. 9, n. June, p. 213–220, 2016. NADROWSKI, K.; WIRTH, C.; SCHERER-LORENZEN, M. Is forest diversity driving ecosystem function and service? Current Opinion in Environmental Sustainability, v. 2, n. 1–2, p. 75–79, 2010. NAEEM, S.; LI, S. Biodiversity enhances ecosystem reliability. Nature, v. 390, n. December, p. 507–509, 1997. NORDEN, N. et al. Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proceedings of the National Academy of Sciences of the United States of America, v. 112, n. 26, p. 8013–8018, 2015. OCIO, J. A.; BROOKES, P. C. An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil Biology and Biochemistry, v. 22, n. 5, p. 685–694, 1990. OLIVEIRA, J. R. A.; MENDES, I. C.; VIVALDI, L. Carbono da biomassa microbiana em solos de cerrado sob vegetação nativa e sob cultivo: avaliação dos métodos fumigação-incubação e fumigação-extração. Revista Brasileira de Ciência do Solo, v. 25, n. 4, p. 836–871, 2001. OLIVEIRA, R. A. C.; MARQUES, R.; MARQUES, M. C. M. Plant diversity and local environmental conditions indirectly affect litter decomposition in a tropical forest. Applied Soil Ecology, v. 134, n. November 2017, p. 45–53, 2019. ORCHAD, V. A.; COOK, F. J. Relationship between soil respiration and soil moisture. Soil Biol. Biochem., v. 15, n. 4, p. 447–453, 1983. ORWIN, K. H. et al. Linkages of plant traits to soil properties and the functioning of temperate grassland. n. C, p. 1074–1083, 2010. OSTERTAG, R. et al. Using plant functional traits to restore Hawaiian rainforest. Journal of Applied Ecology, v. 52, n. 4, p. 805–809, 2015. PACALA, S. W.; TILMAN, D. Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. The American Naturalist, v. 143, n. 2, p. 222–257, 1994. PAIXÃO, F. A. et al. Quantificação do estoque de carbono e avaliação econômica de diferentes alternativas de manejo em um plantio de eucalipto. Revista Arvore, v. 30, n. 3, p. 411–420, 2006. PARROTTA, J. A.; KNOWLES, O. H. Restoring tropical forests on lands mined for bauxite: Examples from the Brazilian Amazon. Ecological Engineering, v. 17, n. 2–3, p. 219–239, 2001. PARROTTA, J. A.; TURNBULL, J. W.; JONES, N. Catalyzing native forest regeneration on degraded tropical lands. Forest Ecology and Management, v. 99, n. 1–2, p. 1–7, 1997. PÉREZ-HARGUINDEGUY, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, v. 61, n. 34, p. 167–234, 2013. PETCHEY, O. L.; GASTON, K. J. Extinction and the loss of functional diversity. Proceedings: Biological Sciences, v. 269, n. 1501, p. 1721–1727, 2002. PETCHEY, O. L.; GASTON, K. J. REVIEWS AND Functional diversity : back to basics and looking forward. Ecology Letters, v. 9, n. 6, p. 741–758, 2006. PILLAR, V. D. et al. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science, v. 20, n. 2, p. 334–348, 2009. PODGAISKI, L. R.; JR, M. DE S. M.; PILLAR, V. D. O uso de atributos funcionais de invertebrados terrestres na ecologia: o que, como e por quê? Oecologia Australis, v. 15, n. 4, p. 835–853, 2011. POORTER, L.; BONGERS, F. Leaftraits are good predictors of plant performance across 53 rain forest species. Ecology, v. 87, n. 7, p. 1733–1743, 2006. PRESCOTT, C. E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry, v. 101, n. 1, p. 133–149, 2010. PRIMAVESI, A. Ecological Soil Management: Agriculture in Tropical Regions. São Paulo: Nobel, 2002. PYWELL, R. F. et al. Plant traits as predictors of performance in ecological restoration. n. ii, p. 65–77, 2003. QUESADA, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences, v. 7, n. 5, p. 1515–1541, 2010. QUILCHANO, C.; MARAÑÓN, T. Dehydrogenase activity in Mediterranean forest soils. Biol Fertil Soils, v. 35, p. 102–107, 2002. REISS, J. et al. Emerging horizons in biodiversity and ecosystem functioning research. Trends in Ecology & Evolution, v. 24, n. 9, p. 505–514, 2009. RICHARDS, A. E. et al. The in fluence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiology, v. 30, n. 9, p. 1192–1208, 2010. RICOTTA, C.; MORETTI, M. CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia, v. 167, p. 181–188, 2011. RODRIGUES, R. R. et al. On the restoration of high diversity forests : 30 years of experience in the Brazilian Atlantic Forest. Biological Conservation, v. 142, n. 6, p. 1242–1251, 2009. ROSENFIELD, M. F.; MÜLLER, S. C. Predicting restored communities based on reference ecosystems using a trait-based approach. Forest Ecology and Management, v. 391, p. 176–183, 2017. ROSENFIELD, M. F.; MÜLLER, S. C. Assessing ecosystem functioning in forests undergoing restoration. Restoration Ecology, v. 27, n. 1, p. 158–167, 2018. ROSENFIELD, M. F.; MÜLLER, S. C. Plant Traits Rather than Species Richness Explain Ecological Processes in Subtropical Forests. Ecosystems, 2019. RUAN, H. H. et al. Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest. Plant and Soil, v. 260, n. 1–2, p. 147–154, 2004. RUIZ-JAEN, M. C.; AIDE, T. M. Restoration Success : How Is It Being Measured? Restoration Ecology, v. 13, n. 3, p. 569–577, 2005. RUIZ-JAEN, M. C.; POTVIN, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytologist, v. 189, n. 4, p. 978–987, 2011. SANSEVERO, J. B. B. et al. Natural regeneration in plantations of native trees in lowland brasilian Antlantic Forest: community structure, diversity and dispersal syndromes. Restoration Ecology, v. 19, n. 3, p. 379–389, 2011. SCARANO, F. R.; CATTÂNIO, J. H.; CRAWFORD, R. M. M. Root carbohydrat storage in young saplings of an amazonian tidal varzea forest before the onset of the wet season. Acta Botanica Brasilica, v. 8, p. 129–139, 1994. SCHEFFER, M. et al. Catastrophic shifts in ecosystems. Nature, v. 413, n. October, p. 591–596, 2001. SCHERER-LORENZEN, M. et al. The Design of Experimental Tree Plantations for Functional Biodiversity Research 16 . 1 Introduction , or “ Why Do We Need Diversity Experiments with Trees ?” Forest Diversity and Function: Temperate and Boreal Systems, v. 176, p. 347–376, 2005. SCHERER-LORENZEN, M.; BONILLA, J. L.; POTVIN, C. Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos, v. 116, n. 12, p. 2108–2124, 2007. SCHNURER, J.; ROSSWALL, T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43, n. 6, p. 1256–1261, 1982. SELLE, G. L. Nutrient cycling in forest ecosystems. Bioscience Journal, v. 23, n. 4, p. 29–39, 2007. SILVA, E. E. DA; AZEVEDO, P. H. S. DE; DE-POLLI, H. Comunicado 99 Técnico. Comunicado Técnico, v. 99, p. 1–4, 2007. SILVA, M.; SIQUEIRA, E. R.; COSTA, J. L. DA S. Hidrólise de diacetato de fluoresceína como bioindicador da atividade microbiológica de um solo submetido a reflorestamento. Ciência Rural, v. 34, n. 5, p. 1493–1496, 2004. SMART, S. M. et al. Leaf dry matter content is better at predicting above- ground net primary production than specific leaf area. Functional Ecology, n. 31, p. 1336–1344, 2017. SOARES-FILHO, B. et al. Cracking Brazil ’ s Forest Code. Science, v. 344, p. 363–364, 2014. SORREANO, M. C. M.; RODRIGUES, R. R.; BOARETTO, A. E. Guia de Nutrição – para Espécies Florestais Nativas. São Paulo: Oficina de textos, 2012. STENBERG, B. Monitoring Soil Quality of Arable Land: Microbiological Indicators. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, v. 49, n. 1, p. 1–24, 1999. STRASSBURG, B. B. N. et al. triple conservation gains and halve costs. Nature Ecology & Evolution, v. 3, n. January, p. 62–70, 2019. SUDING, B. K. et al. Committing to ecological restoration. Science, v. 348, n. 6235, p. 638–640, 2015. SWENSON, N. G.; ENQUIST, B. J. The relationship between stem and branch wood specific gravity and the ability of each measure to predict leaf area. American Journal of Botany, v. 95, n. 4, p. 516–519, 2008. SZOTT, L. T.; MELENDEZ, G. Phosphorus availability under annual cropping , alley cropping , and multistrata agroforestry systems. Agroforestry Systems, v. 53, n. 2, p. 125–132, 2001. TIEMANN, L. K.; BILLINGS, S. A. Indirect Effects of Nitrogen Amendments on Organic Substrate Quality Increase Enzymatic Activity Driving Decomposition in a Mesic Grassland. Ecosystems, v. 14, n. 2, p. 234–247, 2011. TILMAN, D. et al. The Influence of Functional Diversity and Composition on Ecosystem Processes. Science, v. 277, p. 1300–1302, 1997. TILMAN, D. THE ECOLOGICAL CONSEQUENCES OF CHANGES IN BIODIVERSITY : Perspectives. Ecology, v. 80, n. 5, p. 1455–1474, 1999. TOLEDO-ACEVES, T.; LÓPEZ-BARRERA, F.; VÁSQUEZ-REYES, V. Preliminary analysis of functional traits in cloud forest tree seedlings. Trees, v. 31, p. 1253–1262, 2017. TRAUTE-HEIDI, A.; DOMSCH, K. H. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem., v. 22, n. 2, p. 251–255, 1990. TRIVELIN, P. C. O. et al. Perdas do nitrogênio da uréia no sistema solo-planta Material e Métodos Os estudos foram desenvolvidos no campo experimental. Pesq. agropec. bras., v. 37, n. 2, p. 193–201, 2002. VALLADARES, F. et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. v. 81, n. 7, p. 1925–1936, 2000. VAN DER SANDE, M. T. et al. Abiotic and biotic drivers of biomass change in a Neotropical forest. Journal of Ecology, v. 105, n. 5, p. 1223–1234, 2017. VILLÉGER, S.; MASON, N. W. H.; MOUILLOT, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, v. 89, n. 8, p. 2290–2301, 2008. VIOLLE, C. et al. Let the concept of trait be functional ! OIKOS, v. 116, n. 5, p. 882–892, 2007. WARDLE, D. A. A comparative assesssment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev., v. 67, n. 3, p. 321–356, 1992. WARDLE, D. A. The influence of biotic interactions on soil biodiversity. Ecology Letters, v. 9, p. 870–886, 2006. WEEDON, J. T. et al. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecology Letters, v. 12, n. 1, p. 45–56, 2009. WILLIAMS, N. M. et al. Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation, v. 143, n. 10, p. 2280–2291, 2010. WILSEY, B. J.; POTVIN, C. Biodiversity and Ecosystem Functioning: Importance of Species Evenness in an Old Field. Ecology, v. 81, n. 4, p. 887, 2000. WORTLEY, L.; HERO, J. M.; HOWES, M. Evaluating ecological restoration success: A review of the literature. Restoration Ecology, v. 21, n. 5, p. 537–543, 2013. WRIGHT, I. J. et al. The worldwide leaf economics spectrum. Nature, v. 428, p. 821–827, 2004. ZAHAWI, R. A. et al. Testing applied nucleation as a strategy to facilitate tropical forest recovery. Journal of Applied Ecology, v. 50, n. 1, p. 88–96, 2013.por
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/70284/2020%20-%20Laura%20Cristina%20Pantale%c3%a3o.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5879
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-08-15T18:31:34Z No. of bitstreams: 1 2020 - Laura Cristina Pantaleão.pdf: 1170661 bytes, checksum: 6b511a02521e039b0d3236391dae2518 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-08-15T18:31:35Z (GMT). No. of bitstreams: 1 2020 - Laura Cristina Pantaleão.pdf: 1170661 bytes, checksum: 6b511a02521e039b0d3236391dae2518 (MD5) Previous issue date: 2020-07-22eng
Aparece en las colecciones:Mestrado em Ciências Ambientais e Florestais

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2020 - Laura Cristina Pantaleão.pdf1.14 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.