Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/11391
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Monteiro, Lívia da Rocha Natalino | |
dc.date.accessioned | 2023-12-22T01:52:15Z | - |
dc.date.available | 2023-12-22T01:52:15Z | - |
dc.date.issued | 2016-02-17 | |
dc.identifier.citation | MONTEIRO, Lívia da Rocha Natalino. Protocolos que desafiam o apetite ao sódio: alterações hidroeletrolíticas, cardiovasculares e moleculares. 2016. 81 f. Dissertação (Mestrado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2016. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/11391 | - |
dc.description.abstract | A regulação constante do balanço de água e sódio é essencial para a manutenção da vida. Desde os organismos mais simples até os mais complexos, a conservação de tais elementos em níveis adequados constitui ponto crucial para a homeostase do indivíduo. Para tanto, os organismos lançam mão de uma série de mecanismos neuro-humorais que regulam a todo momento o conteúdo de água e sódio corporal. Nas últimas décadas, estudos sobre mecanismos neurais envolvidos na regulação do apetite ao sódio têm ganhado destaque, uma vez que o consumo exagerado de cloreto de sódio está diretamente relacionado a alterações funcionais que podem gerar doenças como a hipertensão arterial. Além do alto consumo diário de sódio pelas sociedades ocidentais, há também um crescente número de casos de hipertensão arterial, particularmente do tipo denominado sal-sensível. Assim, é necessário que os mecanismos envolvidos nessas alterações sejam intensamente estudados em modelos científicos. Desta forma, através do uso de modelo animal, investigamos neste trabalho as alterações funcionais advindas da modificação do conteúdo de sódio presente na dieta dos animais. Para tanto, ratos Wistar machos foram randomicamente divididos em 4 grupos experimentais: i) controle (CTRL); ii) dieta pobre em sódio (DP); iii) furosemida (FURO); iv) sobrecarga salina (SS). A partir desta divisão, traçamos os perfis hidroeletrolítico, cardiovascular e molecular desses paradigmas de desafio ao balanço hidroeletrolítico. Verificamos que a dieta hipossódica e a furosemida foram capazes de induzir o apetite ao sódio de forma sustentada até 4 horas após reapresentação de fluidos (DP 4,1 ± 0,8 de peso corporal; FURO 8,5 ± 1,0 vs. CTRL 0,15 ± 0,08 mL/100g; p<0,05). Confirmamos a ocorrência de hipernatremia a partir da sobrecarga salina (SS 163,7 ± 1,6 vs. CTRL 143,2 ± 0,7 mEq/L; p<0,05) e, surpreendentemente, encontramos níveis natrêmicos maiores que o controle no grupo DP (DP 148,7 ± 1,8 vs. Ctrl 143,2 ± 0,7 mEq/L; p<0,05). Quanto à avaliação dos parâmetros cardíacos, somente o grupo furosemida apresentou PAM menor que o controle após a administração de fenilefrina nas concentrações de 10 e 50 μg/mL ( Phe10 = Furo 142,6 ± 19,1 vs. Ctrl 222,4 ± 14,2 ; Phe50 = Furo 261,0 ± 74,8 vs. Ctrl 190,9 ± 19,6 mmHg; p<0,05), provavelmente devido à hipovolemia nestes animais. Verificamos ainda que no grupo submetido à sobrecarga salina ocorre aumento da expressão de mRNA para AVP (SS 2,61 ± 0,16 vs. CTRL 1,04 ± 0,04 a.u - unidades arbitrárias; p<0,05) e OT (SS 1,52 ± 0,12 vs. CTRL 1,01 ± 0,05 a.u; p<0,05), enquanto que no grupo dieta pobre estes parâmetros são reduzidos (AVP - DP 0,65 ± 0,07vs. CTRL 1,04 ± 0,04; OT - DP 0,65 ± 0,06vs. CTRL 1,01 ± 0,05 a.u; p<0,05). Por fim, encontramos níveis aumentados de mRNA do receptor AT1 nos grupos sobrecarga salina (SS 2,94 ± 0,26 vs. CTRL 1,14 ± 0,25 a.u; p<0,05) e furosemida (Furo 3,08 ± 0,51 vs. CTRL 1,14 ± 0,25 a.u; p<0,05). Deste modo, estes resultados reforçam o importante papel dos sistemas neuroendócrinos centrais na modulação da homeostase hidroeletrolítica e cardiovascular | por |
dc.description.sponsorship | FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Hydroectrolitic balance | eng |
dc.subject | Sodium appetite | eng |
dc.subject | Equilíbrio hidroeletrolítico. . | por |
dc.subject | Apetite ao sódio | por |
dc.subject | Alterações cardiovasculares | por |
dc.subject | Cardiovascular alterations | por |
dc.title | Protocolos que desafiam o apetite ao sódio: alterações hidroeletrolíticas, cardiovasculares e moleculares | por |
dc.title.alternative | Protocols that defy the appetite to sodium: hydroelectrolytic, cardiovascular and molecular alterations | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | The constant regulation of sodium and water balance is essential for the maintenance of life. From the simplest to the most complex organisms, conservation of such elements at appropriate levels is a vital issue for the homeostasis of the individual. In order to maintain this balance, organisms resort a set of neurohumoral mechanisms that constantly regulate the content of bodily water and sodium. In recent decades, studies of neural mechanisms involved in the regulation of sodium appetite have gained ground since the excessive intake of sodium chloride has been directly related to functional changes which can lead to diseases such as hypertension. Besides the high daily consumption of sodium chloride by occidental societies, there is also a growing number cases of hypertension, particularly the so-called “salt-sensitive”. Therefore, it is necessary that the mechanisms involved in these changes are intensively studied in scientific models. Thus, through the use of an animal model, we investigated the functional changes arising from the modification of sodium content in the diet of animals. Wistar male rats were randomly divided into 4 groups: i) control (CTRL); ii) low-sodium diet (LSD); iii) furosemide (FURO); iv) saline overload (SO). From this division, we draw the hydroelectrolytic, cardiovascular and molecular profiles of these paradigms four days after the protocols beginning. We found that low-sodium diet and furosemide were able to induce a sustained sodium appetite 4 hours after reintroduction of fluids when compared to control group (LSD: 4.1 ± 0.8 and FURO: 8.5 ± 1.0 vs. CTRL 0.15 ± 0.08 mL/100g body weight, p<0.05, respectively). Besides we have confirmed the occurrence of hypernatremia in SO group (163.7 ± 1.6 vs. 143.2 ± 0.7 mEq/L, p<0.05) we surprisingly have found higher plasma sodium levels in LSD (148.7 ± 1.0 vs. 143.2 ± 0.7 mEq/L, p<0.05) when compared to control group. During the assessment of cardiac parameters, only the FURO group showed smaller mean arterial pressure than control after administration of phenylephrine at both 10 and 50 μg/mL concentrations (Phe10: 142.6 ± 19.1 vs. 222.4 ± 14 bpm, p<0.05; Phe50: 261.0 ± 74.8 vs. 190.9 ± 19.6 mmHg, p<0.05, respectively), probably due to hypovolemia, a factor which could also explain the absence of hyponatremia in these animals. Concerning the molecular parameters within the PVN, SO group showed an increased mRNA expression of AVP (2.61 ± 0.16 vs. 1.04 ± 0.04 a.u., p<0.05) and OT (1.52 ± 0.12 vs. 1.01 ± 0.05 a.u., p<0.05), while in the LSD group, these parameters are reduced (AVP: 0.65 ± 0.07 vs. 1.04 ± 0.04 a.u., p<0.05; OT: 0.65 ± 0.06 vs. 1.01 ± 0.05 a.u., p<0.05), when compared to control group, respectively. Finally, we found increased levels of AT1 receptor mRNA in SO group (2.94 ± 0.26 vs. 1.14 ± 0.25 a.u, p<0.05) and FURO (3.08 ± 0.51 vs. 1.14 ± 0.25 a.u, p<0.05) compared to control, respectively. Thus, these results underscore the central role of neuroendocrine systems in the modulation of electrolyte and cardiovascular homeostasis | eng |
dc.contributor.advisor1 | Reis, Luis Carlos | |
dc.contributor.advisor1ID | 484.252.577-00 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2679836949147357 | por |
dc.creator.ID | 127.683.267-20 | por |
dc.creator.Lattes | http://lattes.cnpq.br/2107648850040072 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Ciências Biológicas e da Saúde | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Fisiológicas | por |
dc.relation.references | AGARWAL, M. K.; MIRSHAHI, M. General overview of mineralocorticoid hormone action. Pharmacology and Therapeutics, v. 84, n. 3, p. 273–326, 1999. ALZAMORA, A. C.; SANTOS, R. A. S. Hypotensive effect of ANG II and ANG- ( 1 – 7 ) at the caudal ventrolateral medulla involves different mechanisms. p. 1187–1195, 2002. ANDERSSON, B. Regulation of water intake. Physiol Rev, v. 58, n. 3, p. 582, 1978. ANDRESEN, M. C. Nucleus tractus solitarius - gateway to neural circulatory control. p. 93–116, 1994. ANTUNES-RODRIGUES, J. et al. Neuroendocrine control of body fluid metabolism. Physiological reviews, v. 84, n. 1, p. 169–208, 2004. AZMITIA, E. C.; SEGAL, M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. The Journal of comparative neurology, v. 179, n. 3, p. 641–667, 1978. BADAUÊ-PASSOS, D. et al. Dorsal raphe nuclei integrate allostatic information evoked by depletion-induced sodium ingestion. Experimental Neurology, v. 206, n. 1, p. 86–94, 2007. BALMENT, R. J.; BRIMBLET, M. J.; FORSLING, M. L. RELEASE OF OXYTOCIN INDUCED BY SALT LOADING AND ITS. p. 439–449, 1980. BATUMAN, V. Salt and Hypertension: An Evolutionary Perspective. Journal of Hypertension: Open Access, v. 01, n. 03, p. 1–3, 2012. BECKER, L. K. et al. Immunofluorescence localization of the receptor Mas in cardiovascular-related areas of the rat brain. p. 1416–1424, 2007. BOURQUE, C. W.; OLIET, S. H.; RICHARD, D. Osmoreceptors, osmoreception, and osmoregulation.Frontiers in neuroendocrinology, 1994. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0091302284710107> CATO, M. J.; TONEY, G. M. Angiotensin II excites paraventricular nucleus neurons that innervate the rostral ventrolateral medulla: an in vitro patch-clamp study in brain slices. 72 Journal of neurophysiology, v. 93, n. 1, p. 403–13, 2005. CAVALCANTE-LIMA et al. Chronic excitotoxic lesion of the dorsal raphe nucleus induces sodium appetite. Brazilian journal of medical and biological research = Revista brasileira de pesquisas médicas e biológicas / Sociedade Brasileira de Biofísica [et al], v. 38, n. 11, p. 1669–1675, 2005a. CAVALCANTE-LIMA, H. R. et al. Dipsogenic stimulation in ibotenic DRN-lesioned rats induces concomitant sodium appetite. Neuroscience letters, v. 374, n. 1, p. 5–10, 2005b. CHARRON, G. et al. Acute sodium deficit triggers plasticity of the brain angiotensin type 1 receptors. The FASEB Journal, 2002. CHENG, W. et al. Renin activates PI3K-Akt-eNOS signalling through the angiotensin AT 1 and Mas receptors to modulate central blood pressure control in the nucleus tractus solitarii. 2012. CIRILLO M1, CAPASSO G, DI LEO VA, D. S. N. Am J Nephrol. Am J Nephrol, v. 14, n. (4-6), p. 426–31, 1994. CIURA, S., B. C. W. Transient Receptor Potential Vanilloid 1 Is Required for Intrinsic Osmoreception in Organum Vasculosum Lamina Terminalis Neurons and for Normal Thirst Responses to Systemic Hyperosmolality. Journal of Neuroscience, v. 26, n. 35, p. 9069–9075, 2006. D. S. COLOMBARI, J. V. MENANI, A. K. J. Forebrain angiotensin type 1 receptors and parabrachial serotonin in the control of NaCl and water intake. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, v. 271, n. 6, p. R1470–R1476, 1996. DAHL, L. K. Possible role of salt intake in the development of essential hypertension. International Journal of Epidemiology, v. 34, n. 5, p. 967–972, 2005. DENTON, B. D. A.; SABINE, J. R. THE SELECTIVE APPETITE FOR Na + SHOWN BY Na + -DEFICIENT SHEEP From the Department of Physiology , University of Melbourne , Victoria , Australia In view of the importance of Na + equilibrium to normal function of higher species , an innate behaviour patt. p. 97–116, 1961. DUNN, F. L. et al. The Role of Blood Osmolality and Volume. v. i, n. December, p. 73 3212–3219, 1973. ENDO, S. et al. Blockade of angiotensin II type-1 receptor increases salt sensitivity in Sprague – Dawley rats. v. 32, n. 6, p. 513–519, 2009. EPSTEIN, A N.; FITZSIMONS, J. T.; ROLLS, B. J. Drinking induced by injection of angiotensin into the rain of the rat. The Journal of physiology, v. 210, n. 2, p. 457–474, 1970. FALK, J. L. AND LIPTON, J. M. Temporal factors in the genesis of NaCl appetite by intraperitoneal dialysis. J Comp Physiol Psychol, n. 63, p. 247–251., 1967. FERRARIO, C. M. et al. An Evolving Story of ANgiotensin II Forming Pathways in Rodents and Humans. Clin Sci (Lond.), v. 126, n. 7, p. 461–469, 2014. FITZSIMONS, B. J. T.; SIMONS, B. J. THE EFFECT ON DRINKING IN THE RAT OF INTRAVENOUS INFUSION OF ANGIOTENSIN , GIVEN ALONE OR IN COMBINATION WITH OTHER STIMULI OF THIRST. J. Physiol., n. 203, p. 45–57, 1969. FITZSIMONS, J. T. et al. Angiotensin , Thirst , and Sodium Appetite. v. 78, n. 3, p. 583–687, 1998. FITZSIMONS, J. T. Angiotensin, thirst, and sodium appetite. Physiological reviews, v. 78, n. 3, p. 583–686, 1998. FRANCHINI, L. F. et al. Sodium appetite and Fos activation in serotonergic neurons. American journal of physiology. Regulatory, integrative and comparative physiology, v. 282, n. 1, p. R235–43, 2002. FRY M, F. A. The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior. Physiol Behav, v. 24;91, n. 4, p. :413–23, 2007. GEERLING, J. C.; LOEWY, A. D. Central regulation of sodium appetite. Experimental Physiology, v. 93, n. 2, p. 177–209, 2008. GODINO, A. et al. Oxytocinergic and serotonergic systems involvement in sodium intake regulation: satiety or hypertonicity markers? American journal of physiology. Regulatory, integrative and comparative physiology, v. 293, n. 3, p. R1027–R1036, 2007. 74 GODINO, A. et al. Body sodium overload modulates the firing rate and fos immunoreactivity of serotonergic cells of dorsal raphe nucleus. PloS one, v. 8, n. 9, p. e74689, 2013. GREENWOOD, M. P. et al. Salt appetite is reduced by a single experience of drinking hypertonic saline in the adult rat. PloS one, v. 9, n. 8, p. e104802, 2014. HOFMEISTER, L. H.; PERISIC, S.; TITZE, J. Tissue sodium storage: evidence for kidney-like extrarenal countercurrent systems? Pflügers Archiv : European journal of physiology, v. 467, n. 3, p. 551–8, 2015a. HOFMEISTER, L. H.; PERISIC, S.; TITZE, J. Tissue sodium storage: evidence for kidney-like extrarenal countercurrent systems?Pflügers Archiv : European journal of physiology, 2015b. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/25600900> IMPORTANCE, T. R. Section of Comparative Medicine President ’ s Address The Relative Importance of. v. 65, p. 631–634, 1972. J, V. A.; J, C. Mechanism of the Effects of Furosemide on Renin Secretion in Anesthetized Dogs. Circulation Research, v. 25, n. 2, p. 145–152, 1969. JACKSON, F. L. An evolutionary perspective on salt, hypertension, and human genetic variability. Hypertension, v. 17, p. I129–I132, 1991. JE, J. Sodium appetite elicited by furosemide: effects of differential dietary maintenance. Behav Biol, n. 10, p. 313–327, 1974. KOPP, C. et al. 23Na Magnetic Resonance Imaging-Determined Tissue Sodium in Healthy Subjects and Hypertensive Patients. Hypertension, v. 61, n. 3, p. 635–640, 2013. LECHNER, S. G. et al. The molecular and cellular identity of peripheral osmoreceptors. Neuron, v. 69, n. 2, p. 332–344, 2011. LIMA, S. G. DE et al. Review Article Renin-Angiotensin System : is it Possible to Identify Hypertension Susceptibility Genes ? Arquivos Brasileiros de Cardiologia, p. 389–395, 2007. LIND RW, T. R. & J. A. The subfornical organ and the integration of multiple factors in thirst. Physiology and Behavior, v. 32, p. 69–74., 1984. 75 MATAVELLI, L. C. et al. Salt loading produces severe renal hemodynamic dysfunction independent of arterial pressure in spontaneously hypertensive rats. American journal of physiology. Heart and circulatory physiology, v. 292, n. 2, p. H814–H819, 2007. MCKINLEY, M. J.; HARDS, D. K.; OLDFIELD, B. J. Identification of neural pathways activated in dehydrated rats by means of Fos-immunohistochemistry and neural tracing. Brain research, v. 653, n. 1-2, p. 305–14, 1994. MCKINLEY, M. J.; JOHNSON, A. K. The physiological regulation of thirst and fluid intake. News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society, v. 19, p. 1–6, 2004. MECAWI, A S. et al. The role of angiotensin II on sodium appetite after a low-sodium diet. Journal of neuroendocrinology, v. 25, n. 3, p. 281–91, 2013. MICHELL AR. The clinical biology of sodium. New York: Elsevier, 1995. MOE KE, WEISS ML, E. A. Sodium appetite during captopril blockade of endogenous angiotensin II formation. Am J Physiol., v. 247, n. 2 Pt 2, p. R356–65., 1984. MOINIER, B. M.; DRÜEKE, T. B. Aphrodite, sex and salt--from butterfly to man. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, v. 23, n. 7, p. 2154–61, 2008. NA, K. I. Y. et al. Upregulation of Na+ transporter abundances in response to chronic thiazide or loop diuretic treatment in rats. p. 133–143, 2003. NEILL, J. C.; COOPER, S. J. Selective reduction by serotonergic agents of hypertonic saline consumption in rats: evidence for possible 5-HT1C receptor mediation. Psychopharmacology, v. 99, n. 2, p. 196–201, 1989. NODA, M. Sodium-level-sensitive Sodium Channel and Salt-Intake Behavior. Chemical Senses, v. 30, n. Supplement 1, p. i44–i45, 2005. OLIVARES, E. L. et al. Effect of electrolytic lesion of the dorsal raphe nucleus on water intake and sodium appetite. Brazilian Journal of Medical and Biological Research, v. 36, n. 12, p. 1709–1716, 2003. 76 OPPERMANN, M. et al. Vasodilatation of afferent arterioles and paradoxical increase of renal vascular resistance by furosemide in mice. American journal of physiology. Renal physiology, v. 293, n. 1, p. F279–87, 2007. PAXINOS, G. WATSON, C. The rat brain in stereotaxic coordinates. [s.l.]. [s.l.] Elsevier Academic Press, 2005. PEDRINO, G. R. et al. Role of catecholaminergic neurones of the caudal ventrolateral medulla in cardiovascular responses induced by acute changes in circulating volume in rats. Experimental physiology, v. 91, n. 6, p. 995–1005, 2006. POLLAK DOROCIC, I. et al. A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei. Neuron, v. 83, n. 3, p. 663–678, 2014. RAKOVA, N. et al. Long-term space flight simulation reveals infradian rhythmicity in human Na+ balance. Cell Metabolism, v. 17, n. 1, p. 125–131, 2013. ROUAH-ROSILIO M, OROSCO M, N. S. Serotoninergic Modulation of Sodium Appetite in the Rat. v. 55, n. 5, p. 811–816, 1994. RUIZ-ORTEGA, M. et al. Role of the renin-angiotensin system in vascular diseases: expanding the field. Hypertension, v. 38, n. 6, p. 1382–1387, 2001. SAKAI, E. G. K. AND R. R. Richter and sodium appetite: from adrenalectomy to molecular biology. Appetite, v. 49, n. 2, p. 353–367, 2007. SANADA, H.; JONES, J. E.; JOSE, P. A. Genetics of salt-sensitive hypertension. Current Hypertension Reports, v. 13, n. 1, p. 55–66, 2011. SANTOS, L. DOS et al. Effects of high sodium intake diet on the vascular reactivity to phenylephrine on rat isolated caudal and renal vascular beds : Endothelial modulation. v. 78, p. 2272–2279, 2006. SANTOS, R. A. S. et al. G protein-coupled receptor Mas. 2003. SANTOS, R. A. S.; FERREIRA, A. J.; SIM, A. C. Recent advances in the angiotensin-converting enzyme 2 – angiotensin ( 1 – 7 )– Mas axis. p. 519–527, 2008. SAWCHENKO PE, S. L. Central Noradrenergic Pathways for the Integration of Hypothalamic Neuroendocrine and Autonomic Responses. v. 214, n. 4521, p. 685–7, 1981. 77 SCHAFFLHUBER, M. et al. Mobilization of osmotically inactive Na+ by growth and by dietary salt restriction in rats. American journal of physiology. Renal physiology, v. 292, n. 5, p. F1490–F1500, 2007. SCHWARTZBAUM. J S, W. H. AN OSMOTIC FACTOR IN THE REGULATION OF FOOD INTAKE IN THE RAT. J. Comp. Physiol. Psychol., v. 51, n. 8, p. 555–560, 1958. SHARIF NAEINI, R. et al. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nature neuroscience, v. 9, n. 1, p. 93–8, 2006. SMITH, C. A et al. Presystemic influences on thirst, salt appetite, and vasopressin secretion in the hypovolemic rat. American journal of physiology. Regulatory, integrative and comparative physiology, v. 292, n. 5, p. R2089–R2099, 2007. SMYTH, H. et al. Reflex Regulation of Arterial Pressure during Sleep in Man: a quantitative method of assessing baroreflex sensitivity. v. XXIV, n. January, p. 109–122, 1969. SONKODI, S. et al. RESPONSE OF THE RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM TO UPRIGHT TILTING AND TO INTRAVENOUS FRUSEMIDE : EFFECT OF PRIOR METOPROLOL AND PROPRANOLOL. Br. J. clin. Pharmac., v. 13, p. 341–350, 1982. STELLAR, E. Salt appetite: its neuroendocrine basis. Acta neurobiologiae experimentalis, v. 53, n. 3, p. 475–84, 1993. STRICKER E.M. AND JALOWIEC J.E. Restoration of intravascular fluid volume following acute hypovolemia in rats. Am J Physiol, v. 218, p. 191–196, 1970. SUSAN, L.; TAYLOR, K.; VAN, D. The role of volume depletion, antidiuretic hormone and angiotensin II in the furosemide-induced decrease in mesenteric conductance in the dog. The Journal of Pharmacology and Experimental Terapeutics, v. 219, n. 2, 1981. SWANSON, L. G. S. AND L. W. Drinking induced by injections of angiotensin into forebrain and mid-brain sites of the monkey. J Physiol., v. 239, n. 3, p. 595–622, 1974. TAGAWA, T.; DAMPNEY, R. A. AT(1) receptors mediate excitatory inputs to rostral ventrolateral medulla pressor neurons from hypothalamus. Hypertension, v. 34, n. 6, p. 1301–7, 1999. 78 TANAKA J, USHIGOME A, H. K. & N. M. Response of raphe nucleus projecting subfornical organ neurons to angiotensin II in rats. Brain Research Bulletin, v. 45, p. 315–318., 1998. TITZE, J. et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. American journal of physiology. Heart and circulatory physiology, v. 287, n. 1, p. H203–H208, 2004. TITZE, J. Sodium balance is not just a renal affair. Conh, v. 23, n. 2, p. 101–5, 2014. TITZE, J. A different view on sodium balance. Current opinion in nephrology and hypertension, v. 24, n. 1, p. 14–20, 2015. VENTURA, R. R. et al. Neuronal nitric oxide synthase inhibition differentially affects oxytocin and vasopressin secretion in salt loaded rats. Neuroscience letters, v. 379, n. 2, p. 75–80, 2005. VERBALIS, E. M. S. AND J. G. Hormones and Behavior: The Biology of Thirst and Sodium Appetite. Scientist, American, v. 76, n. 3 (May-June ), p. 261–267, 1988. VERBALIS, J. G. et al. Central oxytocin inhibition of food and salt ingestion: a mechanism for intake regulation of solute homeostasis. Regulatory Peptides, v. 45, n. 1-2, p. 149–154, 1993. VERBALIS, J. G. Disorders of body water homeostasis. Best Practice & Research Clinical Endocrinology & Metabolism, v. 17, n. 4, p. 471–503, 2003. VERNEY, E. B. The Antidiuretic Hormone and the Factors Which Determine Its Release. Proc R Soc Lond B Biol Sci., v. 135, n. 878, p. 25–106, 1947. VIVAS, L. et al. Neurochemical Circuits Subserving Fluid Balance and Baroreflex: A Role for Serotonin, Oxytocin, and Gonadal Steroids. In: DE LUCA LA JR, MENANI JV, J. A. (Ed.). . Neurobiology of Body Fluid Homeostasis: Transduction and Integration. Boca Raton (FL): CRC Press/Taylor & Francis, 2014. W.F. GANONG, P.J. MULROW, A. B. AND G. C. Evidence for a direct effect of angiotensin-II on adrenal cortex of the dog. Proc Soc Exp Biol Med., v. Feb, n. 109, p. 381–4., 1962. WANG, D. H. et al. Regulation of Type 1 Angiotensin II Receptor in Adrenal Gland : Role of 1-Adrenoreceptor. Hypertension, v. 30, n. 3, p. 345–350, 1997. WATANABE, E. et al. Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. The Journal of neuroscience : the official journal of the Society for Neuroscience, v. 20, n. 20, p. 7743–7751, 2000. WATANABE, E. et al. Nax sodium channel is expressed in non-myelinating Schwann cells and alveolar type II cells in mice. Neuroscience Letters, v. 330, n. 1, p. 109–113, 2002. | por |
dc.subject.cnpq | Fisiologia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/57866/2016%20-%20L%c3%advia%20da%20Rocha%20Natalino%20Monteiro.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/1389 | |
dc.originais.provenance | Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-01-24T15:47:47Z No. of bitstreams: 1 2016 - Lívia da Rocha Natalino Monteiro.pdf: 1451629 bytes, checksum: c984d90970fa9192a11dedd19eb857df (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2017-01-24T15:47:47Z (GMT). No. of bitstreams: 1 2016 - Lívia da Rocha Natalino Monteiro.pdf: 1451629 bytes, checksum: c984d90970fa9192a11dedd19eb857df (MD5) Previous issue date: 2016-02-17 | eng |
Appears in Collections: | Mestrado em Ciências Fisiológicas |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2016 - Lívia da Rocha Natalino Monteiro.pdf | 2016 - Lívia da Rocha Natalino Monteiro | 1.42 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.