Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/11396
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Souza, Viviane Felintro de | |
dc.date.accessioned | 2023-12-22T01:52:17Z | - |
dc.date.available | 2023-12-22T01:52:17Z | - |
dc.date.issued | 2018-03-09 | |
dc.identifier.citation | SOUZA, Viviane Felintro. Efeito da sede intracelular nas respostas exploratórias e análogas a ansiedade em ratos: possível participação dos receptores AVPR1a e OTR. 2018. 54 f. Dissertação (mestrado em Ciências Fisiológicas). Instituto de Ciências Biológicas e da Saúde, Departamento de Ciências Fisiológicas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2018. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/11396 | - |
dc.description.abstract | A sede é uma sensação que induz a ingestão de água. Esse comportamento é essencial para a manutenção da vida, e os vertebrados recorrem a um conjunto de mecanismos neuro-humorais que regulam constantemente os teores de água e sódio corporais. Diferentes estímulos osmóticos, como privação de água e sobrecarga salina, desencadeiam a liberação de vasopressina (AVP) e ocitocina (OT) e, consequentemente, suas ações sistêmicas. Recentes estudos demonstraram que os neurônios paraventriculares vasopressinérgicos magnocelulares se projetam para regiões extraipotalâmicas, que incluem a habênula lateral e a amígdala central. Sendo assim, é possível que essas estruturas e neuropeptídeos também estejam envolvidos com as mudanças nos comportamentos análogos à ansiedade em condições de hiperosmolalidade. O objetivo deste estudo foi analisar o efeito da hiperosmolalidade induzida pela desidratação em comportamentos semelhantes à ansiedade e na expressão gênica de receptores para AVP e OT, bem como, enzima glutamato descarboxilase (GAD) e o transportador de glutamato vesicular (vGLUT) na amígdala e habênula. Para tanto, foram utilizados ratos Wistar (~ 300g) separados em cinco grupos: controle (CT), privação hídrica por 24 horas (PH24) e 48 horas (PH48) e sobrecarga salina com NaCl 1,8% por 24 horas (SS24) e 48 horas (SS48). Os grupos foram submetidos ao teste de campo aberto (CA) seguido pelo labirinto em cruz elevado (LCE), enquanto outro grupo de ratos foi submetido a caixa claro e escuro (CCE). Todos os testes foram realizados no período noturno. Para verificar a influência da desidratação na expressão gênica nós usamos RT-qPCR. Todos os dados são descritos como média ± erro padrão da média e a significância estatística foi estabelecida em p<0,05. A osmolalidade plasmática aumentou significativamente nos grupos PH48 (p=0,0039) e SS48 (p=0,0176) enquanto o hematócrito aumentou apenas no grupo WD48 (p=0,0003). No LCE houve aumento da porcentagem do tempo despendido nos braços abertos em PH48 (p=0,00124) e SS48 (p<0,0001), assim como, maior porcentagem de entradas nos braços abertos, PH48 (p=0,0143) e SS48 (p<0,0001), indicando uma resposta ansiolítica. Adicionalmente, a regressão linear demonstrou uma correlação diretamente proporcional entre a osmolalidade plasmática e o tempo de permanência nos braços abertos (p=0,0142; r=0,3631). No CA, nenhuma diferença foi observada, indicando que os animais não aumentaram a atividade locomotora espontânea. Já na CCE, apenas o grupo PH48 (p=0,0424) apresentou aumento no tempo de permanência na área clara. Em relação à expressão gênica, observamos aumento significativo na expressão do receptor para OT (p=0,0103) na amígdala central e para vGLUT2 (p=0,0430) na habênula, ambos no grupo PH48. Nossos dados demonstram que a hiperosmolalidade plasmática induzida por 48 horas de privação hídrica e sobrecarga salina desencadeia um comportamento ansiolítico em ratos, independentemente da atividade locomotora. Este comportamento ansiolítico é provavelmente essencial para a busca de água em animais desidratados e pode envolver a participação da sinalização da OT na amígdala central. | por |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil. | por |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasil. | por |
dc.description.sponsorship | Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ, Brasil. | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | sede | por |
dc.subject | comportamentos análogos à ansiedade | por |
dc.subject | receptor para ocitocina | por |
dc.subject | Thirst | eng |
dc.subject | anxiety-like behaviors | eng |
dc.subject | oxytocin receptor | eng |
dc.title | Efeito da sede intracelular nas respostas exploratórias e análogas a ansiedade em ratos: possível participação dos receptores AVPR1a e OTR. | por |
dc.title.alternative | Effect of intracellular thirst on exploratory and anxiety-like responses in rats: possible participation of AVPR1a and OTR receptors. | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | Thirst is a sensation that induces water intake. This behavior is essential for the maintenance of life, and the vertebrates resort to a set of neurohumoral mechanisms that constantly regulate the body water and sodium content. Different osmotic stimuli, such as water deprivation and salt loading, trigger the release of vasopressin (AVP) and oxytocin (OT) and, consequently, their systemic actions. Recent studies have demonstrated that magnocellular vasopressinergic paraventricular neurons project to extrahypothalamic regions, which include the lateral habenula and central amygdala. Thus, it is possible that these structures and neuropeptides are involved with the changes in anxiety-like/motivated behaviors under conditions of hyperosmolality. The objective of this study was to analyze the effect of the hyperosmolality induced by dehydration on anxiety-like behaviors and gene expression of the AVP and OT receptorsas well as, the enzyme glutamate decarboxylase (GAD) and the vesicular glutamate transporter (vGLUT) in amygdala and habenula. For this purpose, we used Wistar rats (~300g) separated into five different groups: control (CT), water deprivation for 24 hours (WD24) and 48hours (WD48) and salt loading wich NaCl 1.8% for 24 hours (SL24) and 48 hours (SL48). These groups were submitted to the open field test (OF) followed by the elevated plus maze (EPM) while another set of rats underwent the light/dark box test (LDB). All tests were carried out in the night period. To verify the influence of dehydration in gene expression we used RT-qPCR. All data are described as mean ± standard error of the mean and statistical significance was set at p<0.05. Plasma osmolality increased significantly in the PH48 (p=0.0039) and SS48 (p=0.0176) groups while hematocrit increased only in the WD48 group (p=0.0003). In the EPM there was an increased in the percentage of time spent in the open arms in WD48 (p=0,00124) and SL48 (p<0,0001), as well as, increased percentage of entries in the open arms, WD48 (p=0,0143) e SL48 (p<0,0001), indicating an anxiolytic response. In addition, the linear regression analysis showed a positive correlation between the increase in osmolality and the time spent in the open arms (p=0.0142; r=0.3631). In the OF test, no differences were observed, indicating that animals had no increase in spontaneous locomotor activity. Already in the LDB, only WD48 group increased the time in light area (p=0.0424). In relation to, gene expression we observed a significant increase in mRNA for OTR (p=0.0103) in WD48 in the central amygdala, as well as also increased vGLUT expression in habenula (p=0.0430). Our dada demonstrate that the plasma hyperosmolality induced by 48 hours of water deprivation and salt loading induces an anxiolytic-like behavior in rats independently of locomotor activity. This anxiolytic behavior was probably essential for the search for water in dehydrated animals and may involve the participation of OT signaling in the central amygdala. | eng |
dc.contributor.advisor1 | Mecawi, André de Souza | |
dc.contributor.advisor1ID | 103.378.127-46 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7081349017203771 | por |
dc.contributor.referee1 | Mecawi, André de Souza | |
dc.contributor.referee2 | Rocha, Fábio Fagundes da | |
dc.contributor.referee3 | Borges, Danilo Lustrino | |
dc.creator.ID | 131.291.597-89 | por |
dc.creator.Lattes | http://lattes.cnpq.br/5108266656427851 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Ciências Biológicas e da Saúde | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Fisiológicas | por |
dc.relation.references | ADACHI, A.; NIIJIMA, A.; JACOBS, H. L. An hepatic osmoreceptor mechanism in the rat: electrophysiological and behavioral studies. Am J Physiol, v. 231, n. 4, p. 1043-9, Oct 1976. AIZAWA, H. et al. Molecular characterization of the subnuclei in rat habenula. J Comp Neurol, v. 520, n. 18, p. 4051-66, Dec 2012. ALVAREZ-BOLADO, G. Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res, Jun 2018. ANDRADE, M. M. et al. Longitudinal study of daily variation of rats' behavior in the elevated plus-maze. Physiol Behav, v. 78, n. 1, p. 125-33, Jan 2003. ANTUNES-RODRIGUES, J. et al. Neuroendocrine control of body fluid metabolism. Physiol Rev, v. 84, n. 1, p. 169-208, Jan 2004. ASADA, H. et al. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A, v. 94, n. 12, p. 6496-9, Jun 1997. BALE, T. L. et al. CNS region-specific oxytocin receptor expression: importance in regulation of anxiety and sex behavior. J Neurosci, v. 21, n. 7, p. 2546-52, Apr 2001. BARKER, D. J. et al. Brief light as a practical aversive stimulus for the albino rat. Behav Brain Res, v. 214, n. 2, p. 402-8, Dec 2010. BERRIDGE, K. C. Motivation concepts in behavioral neuroscience. Physiol Behav, v. 81, n. 2, p. 179-209, Apr 2004. BLUME, A. et al. Oxytocin reduces anxiety via ERK1/2 activation: local effect within the rat hypothalamic paraventricular nucleus. Eur J Neurosci, v. 27, n. 8, p. 1947-56, Apr 2008. BOURIN, M.; HASCOËT, M. The mouse light/dark box test. Eur J Pharmacol, v. 463, n. 1- 3, p. 55-65, Feb 2003. BOURQUE, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci, v. 9, n. 7, p. 519-31, Jul 2008. BOURQUE, C. W.; OLIET, S. H.; RICHARD, D. Osmoreceptors, osmoreception, and osmoregulation. Front Neuroendocrinol, v. 15, n. 3, p. 231-74, Sep 1994. 44 BRASZKO, J. J.; KUŁAKOWSKA, A.; WINNICKA, M. M. Effects of angiotensin II and its receptor antagonists on motor activity and anxiety in rats. J Physiol Pharmacol, v. 54, n. 2, p. 271-81, Jun 2003. BRETHES, D. et al. Depolarization-induced Ca2+ increase in isolated neurosecretory nerve terminals measured with fura-2. Proc Natl Acad Sci U S A, v. 84, n. 5, p. 1439-43, Mar 1987. BROWN, C. H. Magnocellular Neurons and Posterior Pituitary Function. Compr Physiol, v. 6, n. 4, p. 1701-1741, 09 2016. BUFFINGTON, S. A. et al. Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. Cell, v. 165, n. 7, p. 1762-1775, Jun 2016. BUIJS, R. M. et al. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res, v. 186, n. 3, p. 423-33, Jan 1978. CARDENAS, F.; LAMPREA, M. R.; MORATO, S. Vibrissal sense is not the main sensory modality in rat exploratory behavior in the elevated plus-maze. Behav Brain Res, v. 122, n. 2, p. 169-74, Aug 2001. CHAOULOFF, F.; DURAND, M.; MORMÈDE, P. Anxiety- and activity-related effects of diazepam and chlordiazepoxide in the rat light/dark and dark/light tests. Behav Brain Res, v. 85, n. 1, p. 27-35, Apr 1997. CHWALBIŃSKA-MONETA, J. Role of hepatic portal osmoreception in the control of ADH release. Am J Physiol, v. 236, n. 6, p. E603-9, Jun 1979. COELHO, M. S. et al. High- or low-salt diet from weaning to adulthood: effect on body weight, food intake and energy balance in rats. Nutr Metab Cardiovasc Dis, v. 16, n. 2, p. 148-55, Mar 2006. CORBANI, M. et al. Neuroanatomical distribution and function of the vasopressin V. Gen Comp Endocrinol, v. 258, p. 15-32, 03 2018. CRAWLEY, J.; GOODWIN, F. K. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav, v. 13, n. 2, p. 167-70, Aug 1980. DAVIS, M.; WHALEN, P. J. The amygdala: vigilance and emotion. Mol Psychiatry, v. 6, n. 1, p. 13-34, Jan 2001. 45 DAWSON, G. R.; TRICKLEBANK, M. D. Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol Sci, v. 16, n. 2, p. 33-6, Feb 1995. DE LUCA, L. A. et al. Water deprivation-induced sodium appetite. Physiol Behav, v. 100, n. 5, p. 535-44, Jul 2010. DONALDSON, Z. R.; YOUNG, L. J. Oxytocin, vasopressin, and the neurogenetics of sociality. Science, v. 322, n. 5903, p. 900-4, Nov 2008. DUMAIS, K. M.; VEENEMA, A. H. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol, v. 40, p. 1-23, Jan 2016. ETKIN, A. et al. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry, v. 66, n. 12, p. 1361-72, Dec 2009. FADOK, J. P. et al. New perspectives on central amygdala function. Curr Opin Neurobiol, v. 49, p. 141-147, Apr 2018. FERGUSON, A. V.; LATCHFORD, K. J.; SAMSON, W. K. The paraventricular nucleus of the hypothalamus - a potential target for integrative treatment of autonomic dysfunction. Expert Opin Ther Targets, v. 12, n. 6, p. 717-27, Jun 2008. FUJIWARA, Y. et al. The roles of V1a vasopressin receptors in blood pressure homeostasis: a review of studies on V1a receptor knockout mice. Clin Exp Nephrol, v. 16, n. 1, p. 30-4, Feb 2012. GAMER, M.; BÜCHEL, C. Oxytocin specifically enhances valence-dependent parasympathetic responses. Psychoneuroendocrinology, v. 37, n. 1, p. 87-93, Jan 2012. GEERLING, J. C. et al. Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J Comp Neurol, v. 518, n. 9, p. 1460-99, May 2010. GENN, R. F. et al. Age-associated sex differences in response to food deprivation in two animal tests of anxiety. Neurosci Biobehav Rev, v. 27, n. 1-2, p. 155-61, 2003 Jan-Mar 2003. GIMPL, G.; FAHRENHOLZ, F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev, v. 81, n. 2, p. 629-83, Apr 2001. GIZOWSKI, C.; BOURQUE, C. W. The neural basis of homeostatic and anticipatory thirst. Nat Rev Nephrol, v. 14, n. 1, p. 11-25, Jan 2018. ISSN 1759-507X. 46 GREENWOOD, M. P. et al. A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol, v. 308, n. 7, p. R559-68, Apr 2015. GROSS, C.; HEN, R. The developmental origins of anxiety. Nat Rev Neurosci, v. 5, n. 7, p. 545-52, Jul 2004. HAANWINCKEL, M. A. et al. Oxytocin mediates atrial natriuretic peptide release and natriuresis after volume expansion in the rat. Proc Natl Acad Sci U S A, v. 92, n. 17, p. 7902- 6, Aug 1995. HALL, C. S. Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. Journal of Comparative Psychology, v. 18, n. 3, p. 385-403, 1934. HANDLEY, S. L.; MCBLANE, J. W. An assessment of the elevated X-maze for studying anxiety and anxiety-modulating drugs. J Pharmacol Toxicol Methods, v. 29, n. 3, p. 129-38, Jun 1993. HERKENHAM, M.; NAUTA, W. J. Efferent connections of the habenular nuclei in the rat. J Comp Neurol, v. 187, n. 1, p. 19-47, Sep 1979. HERNANDO, F. et al. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology, v. 142, n. 4, p. 1659-68, Apr 2001. HERNÁNDEZ, V. S. et al. Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping. Front Neural Circuits, v. 10, p. 92, 2016. HERZOG, E. et al. Synaptic and vesicular co-localization of the glutamate transporters VGLUT1 and VGLUT2 in the mouse hippocampus. J Neurochem, v. 99, n. 3, p. 1011-8, Nov 2006. HIGA, K. T. et al. Baroreflex control of heart rate by oxytocin in the solitary-vagal complex. Am J Physiol Regul Integr Comp Physiol, v. 282, n. 2, p. R537-45, Feb 2002. HIKOSAKA, O. The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci, v. 11, n. 7, p. 503-13, Jul 2010. HUBER, D.; VEINANTE, P.; STOOP, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, v. 308, n. 5719, p. 245-8, Apr 2005. 47 HUNG, L. W. et al. Gating of social reward by oxytocin in the ventral tegmental area. Science, v. 357, n. 6358, p. 1406-1411, 09 2017. INOUE, K. et al. Reduction of anxiety after restricted feeding in the rat: implication for eating disorders. Biol Psychiatry, v. 55, n. 11, p. 1075-81, Jun 2004. JACINTO, L. R. et al. The habenula as a critical node in chronic stress-related anxiety. Exp Neurol, v. 289, p. 46-54, 03 2017. JANAK, P. H.; TYE, K. M. From circuits to behaviour in the amygdala. Nature, v. 517, n. 7534, p. 284-92, Jan 2015. JI, H.; SHEPARD, P. D. Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor-mediated mechanism. J Neurosci, v. 27, n. 26, p. 6923-30, Jun 2007. JOHNSON, A. K.; GROSS, P. M. Sensory circumventricular organs and brain homeostatic pathways. FASEB J, v. 7, n. 8, p. 678-86, May 1993. JUREK, B. et al. Differential contribution of hypothalamic MAPK activity to anxiety-like behaviour in virgin and lactating rats. PLoS One, v. 7, n. 5, p. e37060, 2012. KATO, Y. et al. Distribution and developmental changes in vasopressin V2 receptor mRNA in rat brain. Differentiation, v. 59, n. 3, p. 163-9, Oct 1995. KIMURA, T.; SAJI, F. Molecular Endocrinology of the oxytocin receptor. Endocr J, v. 42, n. 5, p. 607-15, Oct 1995. KOSHIMIZU, T. A. et al. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev, v. 92, n. 4, p. 1813-64, Oct 2012. KRAUSE, E. G. et al. Hydration state controls stress responsiveness and social behavior. J Neurosci, v. 31, n. 14, p. 5470-6, Apr 2011. LANDGRAF, R. et al. Release of vasopressin within the brain contributes to neuroendocrine and behavioral regulation. Prog Brain Res, v. 119, p. 201-20, 1998. LANGE, M. D. et al. Glutamic acid decarboxylase 65: a link between GABAergic synaptic plasticity in the lateral amygdala and conditioned fear generalization. Neuropsychopharmacology, v. 39, n. 9, p. 2211-20, Aug 2014. 48 LAWSON, E. A. The effects of oxytocin on eating behaviour and metabolism in humans. Nat Rev Endocrinol, v. 13, n. 12, p. 700-709, Dec 2017. LEIB, D. E.; ZIMMERMAN, C. A.; KNIGHT, Z. A. Thirst. Curr Biol, v. 26, n. 24, p. R1260-R1265, Dec 2016. LEPETIT, P. et al. Comparison of the effects of chronic water deprivation and hypertonic saline ingestion on cerebral protein synthesis in rats. Brain Res, v. 586, n. 2, p. 181-7, Jul 1992. LINDEN, A. M. et al. Anxiolytic activity of the MGLU2/3 receptor agonist LY354740 on the elevated plus maze is associated with the suppression of stress-induced c-Fos in the hippocampus and increases in c-Fos induction in several other stress-sensitive brain regions. Neuropsychopharmacology, v. 29, n. 3, p. 502-13, Mar 2004. LUDWIG, M. et al. Systemic osmotic stimulation increases vasopressin and oxytocin release within the supraoptic nucleus. J Neuroendocrinol, v. 6, n. 4, p. 369-73, Aug 1994. LUKAS, M.; NEUMANN, I. D. Oxytocin and vasopressin in rodent behaviors related to social dysfunctions in autism spectrum disorders. Behav Brain Res, v. 251, p. 85-94, Aug 2013. LÁSZLÓ, K. et al. Positive reinforcing effect of oxytocin microinjection in the rat central nucleus of amygdala. Behav Brain Res, v. 296, p. 279-285, Jan 2016. MAK, P. et al. Modulation of anxiety behavior in the elevated plus maze using peptidic oxytocin and vasopressin receptor ligands in the rat. J Psychopharmacol, v. 26, n. 4, p. 532- 42, Apr 2012. MARTÍNEZ, J. C. et al. The role of vision and proprioception in the aversion of rats to the open arms of an elevated plus-maze. Behav Processes, v. 60, n. 1, p. 15-26, Oct 2002. MCBLANE, J. W.; HANDLEY, S. L. Effects of two stressors on behaviour in the elevated Xmaze: preliminary investigation of their interaction with 8-OH-DPAT. Psychopharmacology (Berl), v. 116, n. 2, p. 173-82, Oct 1994. MCKINLEY, M. J.; JOHNSON, A. K. The physiological regulation of thirst and fluid intake. News Physiol Sci, v. 19, p. 1-6, Feb 2004. MECAWI, A. E. S. et al. Neuroendocrine Regulation of Hydromineral Homeostasis. Compr Physiol, v. 5, n. 3, p. 1465-516, Jul 2015. 49 MISSLIN, R.; BELZUNG, C.; VOGEL, E. Behavioural validation of a light/dark choice procedure for testing anti-anxiety agents. Behav Processes, v. 18, n. 1-3, p. 119-32, 1989. MIYATA, S. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Front Neurosci, v. 9, p. 390, 2015. MURPHY, C. A. et al. Lesion of the habenular efferent pathway produces anxiety and locomotor hyperactivity in rats: a comparison of the effects of neonatal and adult lesions. Behav Brain Res, v. 81, n. 1-2, p. 43-52, Nov 1996. NEUMANN, I. D.; LANDGRAF, R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci, v. 35, n. 11, p. 649-59, Nov 2012. NEUMANN, I. D.; SLATTERY, D. A. Oxytocin in General Anxiety and Social Fear: A Translational Approach. Biol Psychiatry, v. 79, n. 3, p. 213-21, Feb 2016. PAN, Z. et al. The effects of sevoflurane anesthesia on rat hippocampus: a genomic expression analysis. Brain Res, v. 1381, p. 124-33, Mar 2011. PAXINOS, G.; WATSON, C. The rat brain in stereotaxic coordinates. 5th. Amsterdam ; Boston: Elsevier Academic Press, 2005. PELLOW, S. et al. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods, v. 14, n. 3, p. 149-67, Aug 1985. PETROVIC, P. et al. Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J Neurosci, v. 28, n. 26, p. 6607-15, Jun 2008. PETROVICH, G. D. et al. Central, but not basolateral, amygdala is critical for control of feeding by aversive learned cues. J Neurosci, v. 29, n. 48, p. 15205-12, Dec 2009. PINAL, C. S.; TOBIN, A. J. Uniqueness and redundancy in GABA production. Perspect Dev Neurobiol, v. 5, n. 2-3, p. 109-18, 1998. PIÑOL, R. A. et al. Visualization of oxytocin release that mediates paired pulse facilitation in hypothalamic pathways to brainstem autonomic neurons. PLoS One, v. 9, n. 11, p. e112138, 2014. PORGES, S. W. Love: an emergent property of the mammalian autonomic nervous system. Psychoneuroendocrinology, v. 23, n. 8, p. 837-61, Nov 1998. 50 PROULX, C. D.; HIKOSAKA, O.; MALINOW, R. Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci, v. 17, n. 9, p. 1146-52, Sep 2014. PRUT, L.; BELZUNG, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol, v. 463, n. 1-3, p. 3-33, Feb 2003. RAGGENBASS, M. et al. Neurons in the dorsal motor nucleus of the vagus nerve are excited by oxytocin in the rat but not in the guinea pig. Proc Natl Acad Sci U S A, v. 84, n. 11, p. 3926-30, Jun 1987. REBOLLEDO-SOLLEIRO, D. et al. Role of thirst and visual barriers in the differential behavior displayed by streptozotocin-treated rats in the elevated plus-maze and the open field test. Physiol Behav, v. 120, p. 130-5, Aug 2013. REED, B. et al. Carbon dioxide-induced anesthesia results in a rapid increase in plasma levels of vasopressin. Endocrinology, v. 150, n. 6, p. 2934-9, Jun 2009. REVERSI, A.; CASSONI, P.; CHINI, B. Oxytocin receptor signaling in myoepithelial and cancer cells. J Mammary Gland Biol Neoplasia, v. 10, n. 3, p. 221-9, Jul 2005. RODGERS, R. J.; DALVI, A. Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev, v. 21, n. 6, p. 801-10, Nov 1997. SAAVEDRA, J. M. Beneficial effects of Angiotensin II receptor blockers in brain disorders. Pharmacol Res, v. 125, n. Pt A, p. 91-103, Nov 2017. SAAVEDRA, J. M.; BENICKY, J. Brain and peripheral angiotensin II play a major role in stress. Stress, v. 10, n. 2, p. 185-93, Jun 2007. SAH, P. et al. The amygdaloid complex: anatomy and physiology. Physiol Rev, v. 83, n. 3, p. 803-34, Jul 2003. SAITO, M. et al. Molecular cloning and characterization of rat V1b vasopressin receptor: evidence for its expression in extra-pituitary tissues. Biochem Biophys Res Commun, v. 212, n. 3, p. 751-7, Jul 1995. SASAKI, S. et al. Water channels in the kidney collecting duct. Kidney Int, v. 48, n. 4, p. 1082-7, Oct 1995. SASAKI, S.; ISHIBASHI, K.; MARUMO, F. Aquaporin-2 and -3: representatives of two subgroups of the aquaporin family colocalized in the kidney collecting duct. Annu Rev Physiol, v. 60, p. 199-220, 1998. 51 SAWCHENKO, P. E.; SWANSON, L. W. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol, v. 205, n. 3, p. 260-72, Mar 1982. SGOIFO, A. et al. Social stress, autonomic neural activation, and cardiac activity in rats. Neurosci Biobehav Rev, v. 23, n. 7, p. 915-23, Nov 1999. SHAFTON, A. D.; RYAN, A.; BADOER, E. Neurons in the hypothalamic paraventricular nucleus send collaterals to the spinal cord and to the rostral ventrolateral medulla in the rat. Brain Res, v. 801, n. 1-2, p. 239-43, Aug 1998. SMITH, J. A. et al. Hydration and beyond: neuropeptides as mediators of hydromineral balance, anxiety and stress-responsiveness. Front Syst Neurosci, v. 9, p. 46, 2015. ______. Acute hypernatremia promotes anxiolysis and attenuates stress-induced activation of the hypothalamic-pituitary-adrenal axis in male mice. Physiol Behav, v. 136, p. 91-6, Sep 2014. SOARES, T. J. et al. Atrial natriuretic peptide and oxytocin induce natriuresis by release of cGMP. Proc Natl Acad Sci U S A, v. 96, n. 1, p. 278-83, Jan 1999. SOGHOMONIAN, J. J.; MARTIN, D. L. Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci, v. 19, n. 12, p. 500-5, Dec 1998. SONG, Z.; ALBERS, H. E. Cross-talk among oxytocin and arginine-vasopressin receptors: Relevance for basic and clinical studies of the brain and periphery. Front Neuroendocrinol, Oct 2017. STEPHENSON-JONES, M. et al. Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems. Proc Natl Acad Sci U S A, v. 109, n. 3, p. E164-73, Jan 2012. SWAAB, D. F.; NIJVELDT, F.; POOL, C. W. Distribution of oxytocin and vasopressin in the rat supraoptic and paraventricular nucleus. J Endocrinol, v. 67, n. 3, p. 461-2, Dec 1975. SWANSON, L. W.; SAWCHENKO, P. E. Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology, v. 31, n. 6, p. 410-7, Dec 1980. TAKEI, Y. Comparative physiology of body fluid regulation in vertebrates with special reference to thirst regulation. Jpn J Physiol, v. 50, n. 2, p. 171-86, Apr 2000. 52 ______. From aquatic to terrestrial life: evolution of the mechanisms for water acquisition. Zoolog Sci, v. 32, n. 1, p. 1-7, Jan 2015. TAKEI, Y.; OGOSHI, M.; INOUE, K. A 'reverse' phylogenetic approach for identification of novel osmoregulatory and cardiovascular hormones in vertebrates. Front Neuroendocrinol, v. 28, n. 4, p. 143-60, Oct 2007. TASAN, R. O. et al. Altered GABA transmission in a mouse model of increased trait anxiety. Neuroscience, v. 183, p. 71-80, Jun 2011. THORNTON, S. N. Thirst and hydration: physiology and consequences of dysfunction. Physiol Behav, v. 100, n. 1, p. 15-21, Apr 2010. TOVOTE, P.; FADOK, J. P.; LÜTHI, A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci, v. 16, n. 6, p. 317-31, Jun 2015. TRUITT, W. A. et al. Anxiety-like behavior is modulated by a discrete subpopulation of interneurons in the basolateral amygdala. Neuroscience, v. 160, n. 2, p. 284-94, May 2009. VAN DEN BURG, E. H. et al. Oxytocin Stimulates Extracellular Ca2+ Influx Through TRPV2 Channels in Hypothalamic Neurons to Exert Its Anxiolytic Effects. Neuropsychopharmacology, v. 40, n. 13, p. 2938-47, Dec 2015. VARGAS, K. J. et al. Postnatal expression of V2 vasopressin receptor splice variants in the rat cerebellum. Differentiation, v. 77, n. 4, p. 377-85, Apr 2009. VAROQUI, H. et al. Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci, v. 22, n. 1, p. 142-55, Jan 2002. VERBALIS, J. G. Disorders of body water homeostasis. Best Pract Res Clin Endocrinol Metab, v. 17, n. 4, p. 471-503, Dec 2003. WALKER, J. E. Glutamate, GABA, and CNS disease: a review. Neurochem Res, v. 8, n. 4, p. 521-50, Apr 1983. YANG, L. M. et al. Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behav Brain Res, v. 188, n. 1, p. 84-90, Mar 2008. 53 YOUNG, W. S.; GAINER, H. Transgenesis and the study of expression, cellular targeting and function of oxytocin, vasopressin and their receptors. Neuroendocrinology, v. 78, n. 4, p. 185-203, Oct 2003. ZHANG, L. et al. Thirst Is Associated with Suppression of Habenula Output and Active Stress Coping: Is there a Role for a Non-canonical Vasopressin-Glutamate Pathway? Front Neural Circuits, v. 10, p. 13, 2016. ZINGG, H. H. Vasopressin and oxytocin receptors. Baillieres Clin Endocrinol Metab, v. 10, n. 1, p. 75-96, Jan 1996. ZOICAS, I.; SLATTERY, D. A.; NEUMANN, I. D. Brain oxytocin in social fear conditioning and its extinction: involvement of the lateral septum. Neuropsychopharmacology, v. 39, n. 13, p. 3027-35, Dec 2014. | por |
dc.subject.cnpq | Fisiologia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/66677/2018%20-%20Viviane%20Felintro%20de%20Souza.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5023 | |
dc.originais.provenance | Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-09-12T23:36:25Z No. of bitstreams: 1 2018 - Viviane Felintro de Souza.pdf: 1710801 bytes, checksum: ff3d98a5cdc76bfc7cd0479e45fe5a6e (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2021-09-12T23:36:25Z (GMT). No. of bitstreams: 1 2018 - Viviane Felintro de Souza.pdf: 1710801 bytes, checksum: ff3d98a5cdc76bfc7cd0479e45fe5a6e (MD5) Previous issue date: 2018-03-09 | eng |
Appears in Collections: | Mestrado em Ciências Fisiológicas |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2018 - Viviane Felintro de Souza.pdf | 2018 - Viviane Felintro de Souza | 1.67 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.